TPTP Problem File: ITP222^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP222^1 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer problem VEBT_Definitions 00680_031305
% Version  : [Des22] axioms.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source   : [Des22]
% Names    : 0063_VEBT_Definitions_00680_031305 [Des22]

% Status   : Theorem
% Rating   : 0.62 v9.0.0, 0.50 v8.2.0, 0.23 v8.1.0
% Syntax   : Number of formulae    : 11215 (6173 unt; 963 typ;   0 def)
%            Number of atoms       : 25701 (11647 equ;   0 cnn)
%            Maximal formula atoms :   71 (   2 avg)
%            Number of connectives : 102249 (2233   ~; 504   |;1386   &;89690   @)
%                                         (   0 <=>;8436  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   39 (   5 avg)
%            Number of types       :   85 (  84 usr)
%            Number of type conns  : 3398 (3398   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  882 ( 879 usr;  53 con; 0-8 aty)
%            Number of variables   : 23647 (2258   ^;20801   !; 588   ?;23647   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            from the van Emde Boas Trees session in the Archive of Formal
%            proofs - 
%            www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
%            2022-02-17 17:57:02.298
%------------------------------------------------------------------------------
% Could-be-implicit typings (84)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J_J,type,
    produc3368934014287244435at_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc4471711990508489141at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
    set_fi4554929511873752355omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7413028617227757229T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    produc2963631642982155120at_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc7248412053542808358at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
    set_fi7789364187291644575l_real: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    filter6041513312241820739omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
    list_P7037539587688870467BT_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    list_P4547456442757143711BT_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P5647936690300460905T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    produc8243902056947475879T_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    set_Pr5085853215250843933omplex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc8923325533196201883nteger: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Extended____Nat__Oenat_J,type,
    produc7272778201969148633d_enat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    list_P3126845725202233233VEBT_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7495141550334521929T_VEBT: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    filter2146258269922977983l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    list_P8526636022914148096eger_o: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    set_Pr448751882837621926eger_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    option4927543243414619207at_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    filter1242075044329608583at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_Pr6218003697084177305l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    list_P3744719386663036955um_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    produc9072475918466114483BT_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    produc4894624898956917775BT_int: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    set_Pr8218934625190621173um_num: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    set_Pr6200539531224447659at_num: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1261947904930325089at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    set_Pr958786334691620121nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    produc4411394909380815293omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
    list_P7333126701944960589_nat_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
    list_P6285523579766656935_o_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    list_P3795440434834930179_o_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    produc334124729049499915VEBT_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    produc2504756804600209347T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc6271795597528267376eger_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    produc2422161461964618553l_real: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    product_prod_num_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    product_prod_nat_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    list_P4002435161011370285od_o_o: $tType ).

thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    list_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
    product_prod_o_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    product_prod_o_int: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    list_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    set_set_int: $tType ).

thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    set_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
    set_Product_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    set_Extended_enat: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    product_prod_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    set_set_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
    option_num: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
    set_char: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
    list_num: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__VEBT____Definitions__OVEBT,type,
    vEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Code____Numeral__Ointeger,type,
    code_integer: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__List__Olist_I_Eo_J,type,
    list_o: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (879)
thf(sy_c_Archimedean__Field_Oceiling_001t__Rat__Orat,type,
    archim2889992004027027881ng_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
    archim3151403230148437115or_rat: rat > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Rat__Orat,type,
    archimedean_frac_rat: rat > rat ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Real__Oreal,type,
    archim2898591450579166408c_real: real > real ).

thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
    archim7778729529865785530nd_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
    gbinomial_complex: complex > nat > complex ).

thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
    gbinomial_int: int > nat > int ).

thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
    gbinomial_nat: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
    gbinomial_rat: rat > nat > rat ).

thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
    gbinomial_real: real > nat > real ).

thf(sy_c_Bit__Operations_Oand__int__rel,type,
    bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Bit__Operations_Oand__not__num,type,
    bit_and_not_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Oconcat__bit,type,
    bit_concat_bit: nat > int > int > int ).

thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
    bit_or_not_num_neg: num > num > num ).

thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
    bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Code____Numeral__Ointeger,type,
    bit_ri7632146776885996613nteger: code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
    bit_ri7919022796975470100ot_int: int > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
    bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Ointeger,type,
    bit_se3949692690581998587nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
    bit_se725231765392027082nd_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
    bit_se727722235901077358nd_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
    bit_se8568078237143864401it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
    bit_se8570568707652914677it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1345352211410354436nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Code____Numeral__Ointeger,type,
    bit_se2119862282449309892nteger: nat > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
    bit_se1409905431419307370or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
    bit_se1412395901928357646or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
    bit_se545348938243370406it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
    bit_se547839408752420682it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se2793503036327961859nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1745604003318907178nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
    bit_se2923211474154528505it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
    bit_se2925701944663578781it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se8260200283734997820nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
    bit_se4205575877204974255it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Code____Numeral__Ointeger,type,
    bit_se3222712562003087583nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
    bit_se6526347334894502574or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
    bit_se6528837805403552850or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Code____Numeral__Ointeger,type,
    bit_se9216721137139052372nteger: code_integer > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
    bit_se1146084159140164899it_int: int > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
    bit_se1148574629649215175it_nat: nat > nat > $o ).

thf(sy_c_Bit__Operations_Otake__bit__num,type,
    bit_take_bit_num: nat > num > option_num ).

thf(sy_c_Code__Numeral_Obit__cut__integer,type,
    code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).

thf(sy_c_Code__Numeral_Odivmod__abs,type,
    code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odivmod__integer,type,
    code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
    code_int_of_integer: code_integer > int ).

thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
    code_integer_of_int: int > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__num,type,
    code_integer_of_num: num > code_integer ).

thf(sy_c_Code__Numeral_Onat__of__integer,type,
    code_nat_of_integer: code_integer > nat ).

thf(sy_c_Code__Numeral_Onum__of__integer,type,
    code_num_of_integer: code_integer > num ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
    comple4887499456419720421f_real: set_real > real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Int__Oint,type,
    complete_Sup_Sup_int: set_int > int ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Complex_OArg,type,
    arg: complex > real ).

thf(sy_c_Complex_Ocis,type,
    cis: real > complex ).

thf(sy_c_Complex_Ocnj,type,
    cnj: complex > complex ).

thf(sy_c_Complex_Ocomplex_OComplex,type,
    complex2: real > real > complex ).

thf(sy_c_Complex_Ocomplex_OIm,type,
    im: complex > real ).

thf(sy_c_Complex_Ocomplex_ORe,type,
    re: complex > real ).

thf(sy_c_Complex_Ocsqrt,type,
    csqrt: complex > complex ).

thf(sy_c_Complex_Oimaginary__unit,type,
    imaginary_unit: complex ).

thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
    differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
    has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Divides_Oadjust__div,type,
    adjust_div: product_prod_int_int > int ).

thf(sy_c_Divides_Oadjust__mod,type,
    adjust_mod: int > int > int ).

thf(sy_c_Divides_Odivmod__nat,type,
    divmod_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Divides_Oeucl__rel__int,type,
    eucl_rel_int: int > int > product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
    unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
    unique6319869463603278526ux_int: product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
    unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
    unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
    unique5052692396658037445od_int: num > num > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
    unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
    unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
    unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
    unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Extended__Nat_Oenat,type,
    extended_enat2: nat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat_Ocase__enat_001_Eo,type,
    extended_case_enat_o: ( nat > $o ) > $o > extended_enat > $o ).

thf(sy_c_Extended__Nat_Oenat_Ocase__enat_001t__Extended____Nat__Oenat,type,
    extend3600170679010898289d_enat: ( nat > extended_enat ) > extended_enat > extended_enat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat_Orec__enat_001_Eo,type,
    extended_rec_enat_o: ( nat > $o ) > $o > extended_enat > $o ).

thf(sy_c_Extended__Nat_Oenat_Orec__enat_001t__Extended____Nat__Oenat,type,
    extend1611788537373416385d_enat: ( nat > extended_enat ) > extended_enat > extended_enat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat_Orec__enat_001t__Int__Oint,type,
    extend7766020554117459729at_int: ( nat > int ) > int > extended_enat > int ).

thf(sy_c_Extended__Nat_Oenat_Orec__enat_001t__Real__Oreal,type,
    extend3259767177765611793t_real: ( nat > real ) > real > extended_enat > real ).

thf(sy_c_Extended__Nat_Oenat_Orec__set__enat_001t__Int__Oint,type,
    extend5266846564383770563at_int: ( nat > int ) > int > extended_enat > int > $o ).

thf(sy_c_Extended__Nat_Oenat_Orec__set__enat_001t__Real__Oreal,type,
    extend4979364747348822211t_real: ( nat > real ) > real > extended_enat > real > $o ).

thf(sy_c_Extended__Nat_Oinfinity__class_Oinfinity_001t__Extended____Nat__Oenat,type,
    extend5688581933313929465d_enat: extended_enat ).

thf(sy_c_Extended__Nat_Othe__enat,type,
    extended_the_enat: extended_enat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
    comm_s8582702949713902594nteger: code_integer > nat > code_integer ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
    comm_s2602460028002588243omplex: complex > nat > complex ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Extended____Nat__Oenat,type,
    comm_s3181272606743183617d_enat: extended_enat > nat > extended_enat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
    comm_s4660882817536571857er_int: int > nat > int ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
    comm_s4663373288045622133er_nat: nat > nat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
    comm_s4028243227959126397er_rat: rat > nat > rat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
    comm_s7457072308508201937r_real: real > nat > real ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
    semiri3624122377584611663nteger: nat > code_integer ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
    semiri5044797733671781792omplex: nat > complex ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Extended____Nat__Oenat,type,
    semiri4449623510593786356d_enat: nat > extended_enat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
    semiri1406184849735516958ct_int: nat > int ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
    semiri773545260158071498ct_rat: nat > rat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
    semiri2265585572941072030t_real: nat > real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
    at_bot_real: filter_real ).

thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
    at_top_real: filter_real ).

thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
    eventually_nat: ( nat > $o ) > filter_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    eventu5826381225784669381omplex: ( produc4411394909380815293omplex > $o ) > filter6041513312241820739omplex > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    eventu1038000079068216329at_nat: ( product_prod_nat_nat > $o ) > filter1242075044329608583at_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    eventu3244425730907250241l_real: ( produc2422161461964618553l_real > $o ) > filter2146258269922977983l_real > $o ).

thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
    eventually_real: ( real > $o ) > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).

thf(sy_c_Filter_Oprod__filter_001t__Nat__Onat_001t__Nat__Onat,type,
    prod_filter_nat_nat: filter_nat > filter_nat > filter1242075044329608583at_nat ).

thf(sy_c_Finite__Set_Ocard_001_Eo,type,
    finite_card_o: set_o > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
    finite_card_complex: set_complex > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
    finite_card_int: set_int > nat ).

thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
    finite_card_list_nat: set_list_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
    finite410649719033368117t_unit: set_Product_unit > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
    finite_card_char: set_char > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Extended____Nat__Oenat,type,
    finite4001608067531595151d_enat: set_Extended_enat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
    finite_finite_int: set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
    bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).

thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).

thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
    strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
    the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).

thf(sy_c_GCD_Obezw,type,
    bezw: nat > nat > product_prod_int_int ).

thf(sy_c_GCD_Obezw__rel,type,
    bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Code____Numeral__Ointeger,type,
    gcd_gcd_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
    gcd_gcd_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
    gcd_gcd_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__nat__rel,type,
    gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
    abs_abs_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
    abs_abs_complex: complex > complex ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
    abs_abs_rat: rat > rat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    minus_8727706125548526216plex_o: ( complex > $o ) > ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
    minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
    minus_1139252259498527702_nat_o: ( list_nat > $o ) > ( list_nat > $o ) > list_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
    minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
    minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
    minus_minus_complex: complex > complex > complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
    minus_minus_rat: rat > rat > rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    minus_811609699411566653omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    minus_7954133019191499631st_nat: set_list_nat > set_list_nat > set_list_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
    one_one_Code_integer: code_integer ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
    plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
    sgn_sgn_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
    sgn_sgn_complex: complex > complex ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
    sgn_sgn_int: int > int ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
    sgn_sgn_rat: rat > rat ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
    sgn_sgn_real: real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
    times_3573771949741848930nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    uminus1680532995456772888plex_o: ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Int__Oint_M_Eo_J,type,
    uminus_uminus_int_o: ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
    uminus5770388063884162150_nat_o: ( list_nat > $o ) > list_nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
    uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
    uminus_uminus_real_o: ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    uminus6401447641752708672_nat_o: ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
    uminus1351360451143612070nteger: code_integer > code_integer ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
    uminus1482373934393186551omplex: complex > complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
    uminus_uminus_rat: rat > rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    uminus8566677241136511917omplex: set_complex > set_complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
    uminus1532241313380277803et_int: set_int > set_int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    uminus3195874150345416415st_nat: set_list_nat > set_list_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
    uminus612125837232591019t_real: set_real > set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    uminus613421341184616069et_nat: set_set_nat > set_set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
    zero_z3403309356797280102nteger: code_integer ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
    groups4538972089207619220nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
    groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
    groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
    groups8778361861064173332t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Extended____Nat__Oenat,type,
    groups7108830773950497114d_enat: ( nat > extended_enat ) > set_nat > extended_enat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
    groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
    groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups8097168146408367636l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
    groups8255218700646806128omplex: ( set_nat > complex ) > set_set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
    groups5107569545109728110t_real: ( set_nat > real ) > set_set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
    groups1705073143266064639nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
    groups705719431365010083at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
    groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
    groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
    groups4561878855575611511st_nat: list_nat > nat ).

thf(sy_c_HOL_OThe_001t__Complex__Ocomplex,type,
    the_complex: ( complex > $o ) > complex ).

thf(sy_c_HOL_OThe_001t__Int__Oint,type,
    the_int: ( int > $o ) > int ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    the_Pr406357557219058217eger_o: ( produc6271795597528267376eger_o > $o ) > produc6271795597528267376eger_o ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    the_Pr4378521158711661632nt_int: ( product_prod_int_int > $o ) > product_prod_int_int ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    the_Pr7557018466319803784at_nat: ( product_prod_nat_nat > $o ) > product_prod_nat_nat ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    the_Pr8265262403268641490at_num: ( product_prod_nat_num > $o ) > product_prod_nat_num ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    the_Pr6395592806576110876um_num: ( product_prod_num_num > $o ) > product_prod_num_num ).

thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
    the_real: ( real > $o ) > real ).

thf(sy_c_If_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    if_int_int: $o > ( int > int ) > ( int > int ) > int > int ).

thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J,type,
    if_nat_int_int: $o > ( nat > int > int ) > ( nat > int > int ) > nat > int > int ).

thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    if_nat_nat_nat: $o > ( nat > nat > nat ) > ( nat > nat > nat ) > nat > nat > nat ).

thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
    if_Code_integer: $o > code_integer > code_integer > code_integer ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Extended____Nat__Oenat,type,
    if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
    if_list_nat: $o > list_nat > list_nat > list_nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Num__Onum,type,
    if_num: $o > num > num > num ).

thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
    if_option_num: $o > option_num > option_num > option_num ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Rat__Orat,type,
    if_rat: $o > rat > rat > rat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
    if_set_int: $o > set_int > set_int > set_int ).

thf(sy_c_Int_OAbs__Integ,type,
    abs_Integ: product_prod_nat_nat > int ).

thf(sy_c_Int_ORep__Integ,type,
    rep_Integ: int > product_prod_nat_nat ).

thf(sy_c_Int_Oint__ge__less__than,type,
    int_ge_less_than: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Oint__ge__less__than2,type,
    int_ge_less_than2: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Code____Numeral__Ointeger,type,
    ring_11222124179247155820nteger: set_Code_integer ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Complex__Ocomplex,type,
    ring_1_Ints_complex: set_complex ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Int__Oint,type,
    ring_1_Ints_int: set_int ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Rat__Orat,type,
    ring_1_Ints_rat: set_rat ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
    ring_1_Ints_real: set_real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
    ring_18347121197199848620nteger: int > code_integer ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
    ring_17405671764205052669omplex: int > complex ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
    ring_1_of_int_rat: int > rat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
    semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
    sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    sup_sup_set_set_o: set_set_o > set_set_o > set_set_o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    sup_sup_set_set_int: set_set_int > set_set_int > set_set_int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    sup_sup_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
    bfun_nat_real: ( nat > real ) > filter_nat > $o ).

thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
    at_infinity_real: filter_real ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Odistinct_001t__Int__Oint,type,
    distinct_int: list_int > $o ).

thf(sy_c_List_Odistinct_001t__Nat__Onat,type,
    distinct_nat: list_nat > $o ).

thf(sy_c_List_Odrop_001t__Nat__Onat,type,
    drop_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_Ohd_001t__Nat__Onat,type,
    hd_nat: list_nat > nat ).

thf(sy_c_List_Olist_Omap_001_Eo_001_Eo,type,
    map_o_o: ( $o > $o ) > list_o > list_o ).

thf(sy_c_List_Olist_Omap_001_Eo_001t__Int__Oint,type,
    map_o_int: ( $o > int ) > list_o > list_int ).

thf(sy_c_List_Olist_Omap_001_Eo_001t__Nat__Onat,type,
    map_o_nat: ( $o > nat ) > list_o > list_nat ).

thf(sy_c_List_Olist_Omap_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    map_o_VEBT_VEBT: ( $o > vEBT_VEBT ) > list_o > list_VEBT_VEBT ).

thf(sy_c_List_Olist_Omap_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    map_complex_complex: ( complex > complex ) > list_complex > list_complex ).

thf(sy_c_List_Olist_Omap_001t__Int__Oint_001_Eo,type,
    map_int_o: ( int > $o ) > list_int > list_o ).

thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Int__Oint,type,
    map_int_int: ( int > int ) > list_int > list_int ).

thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__VEBT____Definitions__OVEBT,type,
    map_int_VEBT_VEBT: ( int > vEBT_VEBT ) > list_int > list_VEBT_VEBT ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001_Eo,type,
    map_nat_o: ( nat > $o ) > list_nat > list_o ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Int__Oint,type,
    map_nat_int: ( nat > int ) > list_nat > list_int ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
    map_nat_nat: ( nat > nat ) > list_nat > list_nat ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
    map_nat_VEBT_VEBT: ( nat > vEBT_VEBT ) > list_nat > list_VEBT_VEBT ).

thf(sy_c_List_Olist_Omap_001t__Real__Oreal_001t__Real__Oreal,type,
    map_real_real: ( real > real ) > list_real > list_real ).

thf(sy_c_List_Olist_Omap_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    map_set_nat_set_nat: ( set_nat > set_nat ) > list_set_nat > list_set_nat ).

thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    map_VEBT_VEBT_o: ( vEBT_VEBT > $o ) > list_VEBT_VEBT > list_o ).

thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    map_VEBT_VEBT_int: ( vEBT_VEBT > int ) > list_VEBT_VEBT > list_int ).

thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    map_VEBT_VEBT_nat: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > list_nat ).

thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    map_VE8901447254227204932T_VEBT: ( vEBT_VEBT > vEBT_VEBT ) > list_VEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Olist_Oset_001_Eo,type,
    set_o2: list_o > set_o ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
    set_int2: list_int > set_int ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
    set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
    size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).

thf(sy_c_List_Olist_Otl_001t__Nat__Onat,type,
    tl_nat: list_nat > list_nat ).

thf(sy_c_List_Onth_001_Eo,type,
    nth_o: list_o > nat > $o ).

thf(sy_c_List_Onth_001t__Code____Numeral__Ointeger,type,
    nth_Code_integer: list_Code_integer > nat > code_integer ).

thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
    nth_complex: list_complex > nat > complex ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Num__Onum,type,
    nth_num: list_num > nat > num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    nth_Product_prod_o_o: list_P4002435161011370285od_o_o > nat > product_prod_o_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    nth_Pr1649062631805364268_o_int: list_P3795440434834930179_o_int > nat > product_prod_o_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
    nth_Pr5826913651314560976_o_nat: list_P6285523579766656935_o_nat > nat > product_prod_o_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr6777367263587873994T_VEBT: list_P7495141550334521929T_VEBT > nat > produc2504756804600209347T_VEBT ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    nth_Pr8522763379788166057eger_o: list_P8526636022914148096eger_o > nat > produc6271795597528267376eger_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    nth_Pr6456567536196504476um_num: list_P3744719386663036955um_num > nat > product_prod_num_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    nth_Pr6837108013167703752BT_int: list_P4547456442757143711BT_int > nat > produc4894624898956917775BT_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    nth_Pr1791586995822124652BT_nat: list_P7037539587688870467BT_nat > nat > produc9072475918466114483BT_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
    nth_set_nat: list_set_nat > nat > set_nat ).

thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
    nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
    product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).

thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
    product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).

thf(sy_c_List_Oproduct_001_Eo_001t__Nat__Onat,type,
    product_o_nat: list_o > list_nat > list_P6285523579766656935_o_nat ).

thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).

thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc3607205314601156340eger_o: list_Code_integer > list_o > list_P8526636022914148096eger_o ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001_Eo,type,
    product_nat_o: list_nat > list_o > list_P7333126701944960589_nat_o ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
    produc7156399406898700509T_VEBT: list_nat > list_VEBT_VEBT > list_P5647936690300460905T_VEBT ).

thf(sy_c_List_Oproduct_001t__Num__Onum_001t__Num__Onum,type,
    product_num_num: list_num > list_num > list_P3744719386663036955um_num ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc7295137177222721919BT_nat: list_VEBT_VEBT > list_nat > list_P7037539587688870467BT_nat ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).

thf(sy_c_List_Oremdups_001t__Nat__Onat,type,
    remdups_nat: list_nat > list_nat ).

thf(sy_c_List_Oreplicate_001_Eo,type,
    replicate_o: nat > $o > list_o ).

thf(sy_c_List_Oreplicate_001t__Complex__Ocomplex,type,
    replicate_complex: nat > complex > list_complex ).

thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
    replicate_int: nat > int > list_int ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
    replicate_real: nat > real > list_real ).

thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
    replicate_set_nat: nat > set_nat > list_set_nat ).

thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
    replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Osorted__wrt_001t__Int__Oint,type,
    sorted_wrt_int: ( int > int > $o ) > list_int > $o ).

thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
    sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).

thf(sy_c_List_Otake_001_Eo,type,
    take_o: nat > list_o > list_o ).

thf(sy_c_List_Otake_001t__Complex__Ocomplex,type,
    take_complex: nat > list_complex > list_complex ).

thf(sy_c_List_Otake_001t__Int__Oint,type,
    take_int: nat > list_int > list_int ).

thf(sy_c_List_Otake_001t__Nat__Onat,type,
    take_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Otake_001t__Real__Oreal,type,
    take_real: nat > list_real > list_real ).

thf(sy_c_List_Otake_001t__Set__Oset_It__Nat__Onat_J,type,
    take_set_nat: nat > list_set_nat > list_set_nat ).

thf(sy_c_List_Otake_001t__VEBT____Definitions__OVEBT,type,
    take_VEBT_VEBT: nat > list_VEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Oupt,type,
    upt: nat > nat > list_nat ).

thf(sy_c_List_Oupto,type,
    upto: int > int > list_int ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_List_Oupto__rel,type,
    upto_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    compow_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
    case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
    semiri4939895301339042750nteger: nat > code_integer ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
    semiri8010041392384452111omplex: nat > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
    semiri4216267220026989637d_enat: nat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
    semiri681578069525770553at_rat: nat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Complex__Ocomplex,type,
    semiri2816024913162550771omplex: ( complex > complex ) > nat > complex > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Extended____Nat__Oenat,type,
    semiri8563196900006977889d_enat: ( extended_enat > extended_enat ) > nat > extended_enat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
    semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
    semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Rat__Orat,type,
    semiri7787848453975740701ux_rat: ( rat > rat ) > nat > rat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
    semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
    size_size_list_o: list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    size_s3445333598471063425nteger: list_Code_integer > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
    size_size_list_num: list_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    size_s1515746228057227161od_o_o: list_P4002435161011370285od_o_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    size_s2953683556165314199_o_int: list_P3795440434834930179_o_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
    size_s5443766701097040955_o_nat: list_P6285523579766656935_o_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s4313452262239582901T_VEBT: list_P7495141550334521929T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
    size_s6491369823275344609_nat_o: list_P7333126701944960589_nat_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s4762443039079500285T_VEBT: list_P5647936690300460905T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    size_s9168528473962070013VEBT_o: list_P3126845725202233233VEBT_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    size_s3661962791536183091BT_int: list_P4547456442757143711BT_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
    size_s6152045936467909847BT_nat: list_P7037539587688870467BT_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s7466405169056248089T_VEBT: list_P7413028617227757229T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    size_s3254054031482475050et_nat: list_set_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Num__Onum_J,type,
    size_size_option_num: option_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
    size_size_VEBT_VEBT: vEBT_VEBT > nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
    nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Nat__Bijection_Oset__decode,type,
    nat_set_decode: nat > set_nat ).

thf(sy_c_Nat__Bijection_Oset__encode,type,
    nat_set_encode: set_nat > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_NthRoot_Osqrt,type,
    sqrt: real > real ).

thf(sy_c_Num_OBitM,type,
    bitM: num > num ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
    neg_nu8804712462038260780nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
    neg_nu7009210354673126013omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
    neg_nu7757733837767384882nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
    neg_nu6511756317524482435omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
    neg_nu3179335615603231917ec_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
    neg_nu5831290666863070958nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
    neg_nu8557863876264182079omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
    neg_nu5219082963157363817nc_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
    neg_numeral_sub_int: num > num > int ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
    case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onum__of__nat,type,
    num_of_nat: nat > num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
    numera6620942414471956472nteger: num > code_integer ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
    numera6690914467698888265omplex: num > complex ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
    numeral_numeral_rat: num > rat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Num_Opred__numeral,type,
    pred_numeral: num > nat ).

thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
    none_num: option_num ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    none_P5556105721700978146at_nat: option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
    some_num: num > option_num ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
    case_option_int_num: int > ( num > int ) > option_num > int ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
    case_option_num_num: num > ( num > num ) > option_num > num ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
    case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Omap__option_001t__Num__Onum_001t__Num__Onum,type,
    map_option_num_num: ( num > num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Osize__option_001t__Num__Onum,type,
    size_option_num: ( num > nat ) > option_num > nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    size_o8335143837870341156at_nat: ( product_prod_nat_nat > nat ) > option4927543243414619207at_nat > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
    bot_bo4199563552545308370d_enat: extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
    bot_bot_set_int: set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
    ord_le6747313008572928689nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le1307284697595431911nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_less_set_complex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
    ord_le2162486998276636481er_o_o: ( code_integer > $o > $o ) > ( code_integer > $o > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    ord_le4573692005234683329plex_o: ( complex > $o ) > ( complex > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
    ord_le6741204236512500942_int_o: ( int > int > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_Eo_J,type,
    ord_less_eq_int_o: ( int > $o ) > ( int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
    ord_le2646555220125990790_nat_o: ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Num__Onum_M_Eo_J_J,type,
    ord_le3404735783095501756_num_o: ( nat > num > $o ) > ( nat > num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
    ord_le6124364862034508274_num_o: ( num > num > $o ) > ( num > num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J_J,type,
    ord_le1598226405681992910_int_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    ord_le8369615600986905444_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J,type,
    ord_le5604493270027003598_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le704812498762024988_nat_o: ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J_J,type,
    ord_le2556027599737686990_num_o: ( product_prod_num_num > product_prod_num_num > $o ) > ( product_prod_num_num > product_prod_num_num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J,type,
    ord_le2239182809043710856_num_o: ( product_prod_num_num > $o ) > ( product_prod_num_num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_M_Eo_J_J,type,
    ord_le1077754993875142464_nat_o: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le7812727212727832188_nat_o: ( produc9072475918466114483BT_nat > $o ) > ( produc9072475918466114483BT_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    ord_le3964352015994296041_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
    ord_le3102999989581377725nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
    ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
    ord_le4104064031414453916r_real: filter_real > filter_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le7084787975880047091nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    ord_le6045566169113846134st_nat: set_list_nat > set_list_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_eq_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    ord_le8980329558974975238eger_o: set_Pr448751882837621926eger_o > set_Pr448751882837621926eger_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    ord_le2843351958646193337nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    ord_le8085105155179020875at_num: set_Pr6200539531224447659at_num > set_Pr6200539531224447659at_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    ord_le880128212290418581um_num: set_Pr8218934625190621173um_num > set_Pr8218934625190621173um_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_eq_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    ord_le4403425263959731960et_int: set_set_int > set_set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
    ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
    ord_max_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
    ord_max_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_9091379641038594480t_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_mono_nat_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_mono_nat_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_mono_real_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_5726023648592871131at_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Nat__Oenat,type,
    top_to3028658606643905974d_enat: extended_enat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
    top_top_set_int: set_int ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    top_to1996260823553986621t_unit: set_Product_unit ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
    top_top_set_char: set_char ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
    power_8256067586552552935nteger: code_integer > nat > code_integer ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nat__Oenat,type,
    power_8040749407984259932d_enat: extended_enat > nat > extended_enat ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
    power_power_rat: rat > nat > rat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc3209952032786966637at_nat: ( nat > nat > nat ) > produc7248412053542808358at_nat > produc4471711990508489141at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    produc851828971589881931at_num: ( nat > num > num ) > produc2963631642982155120at_num > produc3368934014287244435at_num ).

thf(sy_c_Product__Type_OPair_001_Eo_001_Eo,type,
    product_Pair_o_o: $o > $o > product_prod_o_o ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Int__Oint,type,
    product_Pair_o_int: $o > int > product_prod_o_int ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Nat__Onat,type,
    product_Pair_o_nat: $o > nat > product_prod_o_nat ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    produc2982872950893828659T_VEBT: $o > vEBT_VEBT > produc2504756804600209347T_VEBT ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
    product_Pair_nat_num: nat > num > product_prod_nat_num ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    produc1195630363706982562at_num: nat > product_prod_nat_num > produc2963631642982155120at_num ).

thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
    product_Pair_num_num: num > num > product_prod_num_num ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Extended____Nat__Oenat,type,
    produc581526299967858633d_enat: vEBT_VEBT > extended_enat > produc7272778201969148633d_enat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc736041933913180425BT_int: vEBT_VEBT > int > produc4894624898956917775BT_int ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).

thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001_Eo,type,
    produc7828578312038201481er_o_o: ( code_integer > $o > $o ) > produc6271795597528267376eger_o > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc8281089916252573759eger_o: ( code_integer > $o > produc6271795597528267376eger_o ) > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc1043322548047392435omplex: ( code_integer > $o > set_complex ) > produc6271795597528267376eger_o > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Int__Oint_J,type,
    produc1253318751659547953et_int: ( code_integer > $o > set_int ) > produc6271795597528267376eger_o > set_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Nat__Onat_J,type,
    produc5431169771168744661et_nat: ( code_integer > $o > set_nat ) > produc6271795597528267376eger_o > set_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Real__Oreal_J,type,
    produc242741666403216561t_real: ( code_integer > $o > set_real ) > produc6271795597528267376eger_o > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__String__Ochar,type,
    produc4188289175737317920o_char: ( code_integer > $o > char ) > produc6271795597528267376eger_o > char ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
    produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
    produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
    produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
    produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    produc1917071388513777916omplex: ( nat > nat > complex ) > product_prod_nat_nat > complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Extended____Nat__Oenat,type,
    produc2676513652042109336d_enat: ( nat > nat > extended_enat ) > product_prod_nat_nat > extended_enat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint,type,
    produc6840382203811409530at_int: ( nat > nat > int ) > product_prod_nat_nat > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Rat__Orat,type,
    produc6207742614233964070at_rat: ( nat > nat > rat ) > product_prod_nat_nat > rat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Real__Oreal,type,
    produc1703576794950452218t_real: ( nat > nat > real ) > product_prod_nat_nat > real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001_Eo,type,
    produc4927758841916487424_num_o: ( nat > num > $o ) > product_prod_nat_num > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
    produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    produc49306077274653107at_num: ( nat > num > product_prod_nat_num ) > product_prod_nat_num > product_prod_nat_num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc6231982587499038204omplex: ( nat > num > set_complex ) > product_prod_nat_num > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
    produc1435849484188172666t_real: ( nat > num > set_real ) > product_prod_nat_num > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001_Eo,type,
    produc5703948589228662326_num_o: ( num > num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    produc64540874165560627um_num: ( num > num > product_prod_num_num ) > product_prod_num_num > product_prod_num_num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc2866383454006189126omplex: ( num > num > set_complex ) > product_prod_num_num > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Int__Oint_J,type,
    produc6406642877701697732et_int: ( num > num > set_int ) > product_prod_num_num > set_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Nat__Onat_J,type,
    produc1361121860356118632et_nat: ( num > num > set_nat ) > product_prod_num_num > set_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
    produc8296048397933160132t_real: ( num > num > set_real ) > product_prod_num_num > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
    produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
    product_fst_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
    product_fst_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6174133586879617921nteger: produc8923325533196201883nteger > code_integer ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
    product_snd_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
    product_snd_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Rat_OFrct,type,
    frct: product_prod_int_int > rat ).

thf(sy_c_Rat_Onormalize,type,
    normalize: product_prod_int_int > product_prod_int_int ).

thf(sy_c_Rat_Oof__int,type,
    of_int: int > rat ).

thf(sy_c_Rat_Oquotient__of,type,
    quotient_of: rat > product_prod_int_int ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
    real_V2521375963428798218omplex: set_complex ).

thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V5970128139526366754l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
    real_V3694042436643373181omplex: complex > complex > real ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
    real_V975177566351809787t_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
    real_V1022390504157884413omplex: complex > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
    real_V7735802525324610683m_real: real > real ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
    real_V4546457046886955230omplex: real > complex ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Real__Oreal,type,
    real_V1803761363581548252l_real: real > real ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
    real_V2046097035970521341omplex: real > complex > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
    real_V1485227260804924795R_real: real > real > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
    divide6298287555418463151nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
    divide1717551699836669952omplex: complex > complex > complex ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
    dvd_dvd_Code_integer: code_integer > code_integer > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
    dvd_dvd_rat: rat > rat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
    modulo364778990260209775nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
    zero_n356916108424825756nteger: $o > code_integer ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
    zero_n1201886186963655149omplex: $o > complex ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Extended____Nat__Oenat,type,
    zero_n1046097342994218471d_enat: $o > extended_enat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
    zero_n2684676970156552555ol_int: $o > int ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
    zero_n2687167440665602831ol_nat: $o > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
    zero_n2052037380579107095ol_rat: $o > rat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
    zero_n3304061248610475627l_real: $o > real ).

thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
    suminf_complex: ( nat > complex ) > complex ).

thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
    suminf_int: ( nat > int ) > int ).

thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
    suminf_nat: ( nat > nat ) > nat ).

thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
    suminf_real: ( nat > real ) > real ).

thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
    summable_complex: ( nat > complex ) > $o ).

thf(sy_c_Series_Osummable_001t__Int__Oint,type,
    summable_int: ( nat > int ) > $o ).

thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
    summable_nat: ( nat > nat ) > $o ).

thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
    summable_real: ( nat > real ) > $o ).

thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
    sums_complex: ( nat > complex ) > complex > $o ).

thf(sy_c_Series_Osums_001t__Int__Oint,type,
    sums_int: ( nat > int ) > int > $o ).

thf(sy_c_Series_Osums_001t__Nat__Onat,type,
    sums_nat: ( nat > nat ) > nat > $o ).

thf(sy_c_Series_Osums_001t__Real__Oreal,type,
    sums_real: ( nat > real ) > real > $o ).

thf(sy_c_Set_OCollect_001t__Code____Numeral__Ointeger,type,
    collect_Code_integer: ( code_integer > $o ) > set_Code_integer ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Num__Onum,type,
    collect_num: ( num > $o ) > set_num ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).

thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
    collect_rat: ( rat > $o ) > set_rat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
    collect_set_int: ( set_int > $o ) > set_set_int ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OPow_001t__Nat__Onat,type,
    pow_nat: set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_I_Eo_J,type,
    image_o_set_o: ( $o > set_o ) > set_o > set_set_o ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Set__Oset_It__Int__Oint_J,type,
    image_int_set_int: ( int > set_int ) > set_int > set_set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
    image_nat_int: ( nat > int ) > set_nat > set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
    image_nat_real: ( nat > real ) > set_nat > set_real ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
    image_nat_char: ( nat > char ) > set_nat > set_char ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
    image_char_nat: ( char > nat ) > set_char > set_nat ).

thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
    insert_int: int > set_int > set_int ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
    set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Extended____Nat__Oenat,type,
    set_fo2538466533108834004d_enat: ( nat > extended_enat > extended_enat ) > nat > nat > extended_enat > extended_enat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
    set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
    set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Num__Onum,type,
    set_fo8365102181078989356at_num: ( nat > num > num ) > nat > nat > num > num ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
    set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
    set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Nat__Onat,type,
    set_fo3699595496184130361el_nat: produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Num__Onum,type,
    set_fo256927282339908995el_num: produc3368934014287244435at_num > produc3368934014287244435at_num > $o ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
    set_ord_atLeast_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
    set_ord_atMost_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
    set_ord_atMost_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
    set_ord_atMost_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
    set_ord_atMost_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Int__Oint_J,type,
    set_or58775011639299419et_int: set_int > set_set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4236626031148496127et_nat: set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
    set_or6656581121297822940st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
    set_or6659071591806873216st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
    set_or5832277885323065728an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
    set_or5834768355832116004an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001_Eo,type,
    set_or6416164934427428222Than_o: $o > set_o ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Int__Oint,type,
    set_or1207661135979820486an_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
    set_or1210151606488870762an_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
    set_or5849166863359141190n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001_Eo,type,
    set_ord_lessThan_o: $o > set_o ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
    set_ord_lessThan_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
    set_or5984915006950818249n_real: real > set_real ).

thf(sy_c_String_Oascii__of,type,
    ascii_of: char > char ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar__of__integer,type,
    char_of_integer: code_integer > char ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ointeger__of__char,type,
    integer_of_char: char > code_integer ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ogenerate__topology_001_Eo,type,
    topolo4667128019001906403logy_o: set_set_o > set_o > $o ).

thf(sy_c_Topological__Spaces_Ogenerate__topology_001t__Int__Oint,type,
    topolo1611008123915946401gy_int: set_set_int > set_int > $o ).

thf(sy_c_Topological__Spaces_Ogenerate__topology_001t__Nat__Onat,type,
    topolo1613498594424996677gy_nat: set_set_nat > set_nat > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Code____Numeral__Ointeger,type,
    topolo2919662092509805066nteger: ( nat > code_integer ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
    topolo4899668324122417113eq_int: ( nat > int ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
    topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Num__Onum,type,
    topolo1459490580787246023eq_num: ( nat > num ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Rat__Orat,type,
    topolo4267028734544971653eq_rat: ( nat > rat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Set__Oset_It__Int__Oint_J,type,
    topolo3100542954746470799et_int: ( nat > set_int ) > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001_Eo,type,
    topolo9180104560040979295open_o: set_o > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Complex__Ocomplex,type,
    topolo4110288021797289639omplex: set_complex > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Int__Oint,type,
    topolo4325760605701065253en_int: set_int > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Nat__Onat,type,
    topolo4328251076210115529en_nat: set_nat > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Real__Oreal,type,
    topolo4860482606490270245n_real: set_real > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
    topolo2177554685111907308n_real: real > set_real > filter_real ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Complex__Ocomplex,type,
    topolo6517432010174082258omplex: ( nat > complex ) > $o ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
    topolo4055970368930404560y_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
    topolo896644834953643431omplex: filter6041513312241820739omplex ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
    topolo1511823702728130853y_real: filter2146258269922977983l_real ).

thf(sy_c_Transcendental_Oarccos,type,
    arccos: real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarcsin,type,
    arcsin: real > real ).

thf(sy_c_Transcendental_Oarctan,type,
    arctan: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
    cos_complex: complex > complex ).

thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
    cos_real: real > real ).

thf(sy_c_Transcendental_Ocos__coeff,type,
    cos_coeff: nat > real ).

thf(sy_c_Transcendental_Ocosh_001t__Complex__Ocomplex,type,
    cosh_complex: complex > complex ).

thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
    cosh_real: real > real ).

thf(sy_c_Transcendental_Ocot_001t__Complex__Ocomplex,type,
    cot_complex: complex > complex ).

thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
    cot_real: real > real ).

thf(sy_c_Transcendental_Odiffs_001t__Code____Numeral__Ointeger,type,
    diffs_Code_integer: ( nat > code_integer ) > nat > code_integer ).

thf(sy_c_Transcendental_Odiffs_001t__Complex__Ocomplex,type,
    diffs_complex: ( nat > complex ) > nat > complex ).

thf(sy_c_Transcendental_Odiffs_001t__Int__Oint,type,
    diffs_int: ( nat > int ) > nat > int ).

thf(sy_c_Transcendental_Odiffs_001t__Rat__Orat,type,
    diffs_rat: ( nat > rat ) > nat > rat ).

thf(sy_c_Transcendental_Odiffs_001t__Real__Oreal,type,
    diffs_real: ( nat > real ) > nat > real ).

thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
    exp_complex: complex > complex ).

thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
    exp_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log: real > real > real ).

thf(sy_c_Transcendental_Opi,type,
    pi: real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
    sin_complex: complex > complex ).

thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
    sin_real: real > real ).

thf(sy_c_Transcendental_Osin__coeff,type,
    sin_coeff: nat > real ).

thf(sy_c_Transcendental_Osinh_001t__Complex__Ocomplex,type,
    sinh_complex: complex > complex ).

thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
    sinh_real: real > real ).

thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
    tan_complex: complex > complex ).

thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
    tan_real: real > real ).

thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
    tanh_complex: complex > complex ).

thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
    tanh_real: real > real ).

thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
    vEBT_Leaf: $o > $o > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
    vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
    vEBT_size_VEBT: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
    vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oelim__dead,type,
    vEBT_VEBT_elim_dead: vEBT_VEBT > extended_enat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oelim__dead__rel,type,
    vEBT_V312737461966249ad_rel: produc7272778201969148633d_enat > produc7272778201969148633d_enat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
    vEBT_VEBT_high: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
    vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
    vEBT_VEBT_low: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
    vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
    vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
    vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
    vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
    vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
    vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
    vEBT_invar_vebt: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oset__vebt,type,
    vEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
    vEBT_vebt_buildup: nat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
    vEBT_v4011308405150292612up_rel: nat > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
    accp_nat: ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    accp_P6019419558468335806at_nat: ( produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ) > produc4471711990508489141at_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J_J,type,
    accp_P4916641582247091100at_num: ( produc3368934014287244435at_num > produc3368934014287244435at_num > $o ) > produc3368934014287244435at_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Extended____Nat__Oenat_J,type,
    accp_P6183159247885693666d_enat: ( produc7272778201969148633d_enat > produc7272778201969148633d_enat > $o ) > produc7272778201969148633d_enat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Omeasure_001t__Int__Oint,type,
    measure_int: ( int > nat ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Wellfounded_Omeasure_001t__Nat__Onat,type,
    measure_nat: ( nat > nat ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Wellfounded_Omeasure_001t__Num__Onum,type,
    measure_num: ( num > nat ) > set_Pr8218934625190621173um_num ).

thf(sy_c_fChoice_001t__Complex__Ocomplex,type,
    fChoice_complex: ( complex > $o ) > complex ).

thf(sy_c_fChoice_001t__Int__Oint,type,
    fChoice_int: ( int > $o ) > int ).

thf(sy_c_fChoice_001t__Nat__Onat,type,
    fChoice_nat: ( nat > $o ) > nat ).

thf(sy_c_fChoice_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    fChoic166683996008689692eger_o: ( produc6271795597528267376eger_o > $o ) > produc6271795597528267376eger_o ).

thf(sy_c_fChoice_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    fChoic3800441565783186701nt_int: ( product_prod_int_int > $o ) > product_prod_int_int ).

thf(sy_c_fChoice_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    fChoic6978938873391328853at_nat: ( product_prod_nat_nat > $o ) > product_prod_nat_nat ).

thf(sy_c_fChoice_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    fChoic7687182810340166559at_num: ( product_prod_nat_num > $o ) > product_prod_nat_num ).

thf(sy_c_fChoice_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    fChoic5817513213647635945um_num: ( product_prod_num_num > $o ) > product_prod_num_num ).

thf(sy_c_fChoice_001t__Real__Oreal,type,
    fChoice_real: ( real > $o ) > real ).

thf(sy_c_fChoice_001t__Set__Oset_It__Nat__Onat_J,type,
    fChoice_set_nat: ( set_nat > $o ) > set_nat ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Code____Numeral__Ointeger,type,
    member_Code_integer: code_integer > set_Code_integer > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Extended____Nat__Oenat,type,
    member_Extended_enat: extended_enat > set_Extended_enat > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    member1379723562493234055eger_o: produc6271795597528267376eger_o > set_Pr448751882837621926eger_o > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    member9148766508732265716at_num: product_prod_nat_num > set_Pr6200539531224447659at_num > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    member7279096912039735102um_num: product_prod_num_num > set_Pr8218934625190621173um_num > $o ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Int__Oint_J,type,
    member_set_int: set_int > set_set_int > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
    member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_v_dega____,type,
    dega: nat ).

thf(sy_v_m____,type,
    m: nat ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_summarya____,type,
    summarya: vEBT_VEBT ).

thf(sy_v_treeLista____,type,
    treeLista: list_VEBT_VEBT ).

% Relevant facts (10202)
thf(fact_0__C2_Ohyps_C_I3_J,axiom,
    m = na ).

% "2.hyps"(3)
thf(fact_1__C2_OIH_C_I2_J,axiom,
    ( ( vEBT_VEBT_elim_dead @ summarya @ extend5688581933313929465d_enat )
    = summarya ) ).

% "2.IH"(2)
thf(fact_2__C2_Ohyps_C_I5_J,axiom,
    ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ summarya @ X_1 ) ).

% "2.hyps"(5)
thf(fact_3__C2_Ohyps_C_I1_J,axiom,
    vEBT_invar_vebt @ summarya @ m ).

% "2.hyps"(1)
thf(fact_4_not__enat__eq,axiom,
    ! [X: extended_enat] :
      ( ( ! [Y: nat] :
            ( X
           != ( extended_enat2 @ Y ) ) )
      = ( X = extend5688581933313929465d_enat ) ) ).

% not_enat_eq
thf(fact_5_not__infinity__eq,axiom,
    ! [X: extended_enat] :
      ( ( X != extend5688581933313929465d_enat )
      = ( ? [I: nat] :
            ( X
            = ( extended_enat2 @ I ) ) ) ) ).

% not_infinity_eq
thf(fact_6_enat_Osimps_I5_J,axiom,
    ! [F1: nat > $o,F2: $o] :
      ( ( extended_case_enat_o @ F1 @ F2 @ extend5688581933313929465d_enat )
      = F2 ) ).

% enat.simps(5)
thf(fact_7_enat_Osimps_I5_J,axiom,
    ! [F1: nat > extended_enat,F2: extended_enat] :
      ( ( extend3600170679010898289d_enat @ F1 @ F2 @ extend5688581933313929465d_enat )
      = F2 ) ).

% enat.simps(5)
thf(fact_8__C2_OIH_C_I1_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ treeLista ) )
     => ( ( vEBT_invar_vebt @ X2 @ na )
        & ( ( vEBT_VEBT_elim_dead @ X2 @ extend5688581933313929465d_enat )
          = X2 ) ) ) ).

% "2.IH"(1)
thf(fact_9_enat_Odistinct_I2_J,axiom,
    ! [Nat: nat] :
      ( extend5688581933313929465d_enat
     != ( extended_enat2 @ Nat ) ) ).

% enat.distinct(2)
thf(fact_10_enat_Odistinct_I1_J,axiom,
    ! [Nat: nat] :
      ( ( extended_enat2 @ Nat )
     != extend5688581933313929465d_enat ) ).

% enat.distinct(1)
thf(fact_11_enat_Oexhaust,axiom,
    ! [Y2: extended_enat] :
      ( ! [Nat2: nat] :
          ( Y2
         != ( extended_enat2 @ Nat2 ) )
     => ( Y2 = extend5688581933313929465d_enat ) ) ).

% enat.exhaust
thf(fact_12_enat2__cases,axiom,
    ! [Y2: extended_enat,Ya: extended_enat] :
      ( ( ? [Nat2: nat] :
            ( Y2
            = ( extended_enat2 @ Nat2 ) )
       => ! [Nata: nat] :
            ( Ya
           != ( extended_enat2 @ Nata ) ) )
     => ( ( ? [Nat2: nat] :
              ( Y2
              = ( extended_enat2 @ Nat2 ) )
         => ( Ya != extend5688581933313929465d_enat ) )
       => ( ( ( Y2 = extend5688581933313929465d_enat )
           => ! [Nat2: nat] :
                ( Ya
               != ( extended_enat2 @ Nat2 ) ) )
         => ~ ( ( Y2 = extend5688581933313929465d_enat )
             => ( Ya != extend5688581933313929465d_enat ) ) ) ) ) ).

% enat2_cases
thf(fact_13_enat3__cases,axiom,
    ! [Y2: extended_enat,Ya: extended_enat,Yb: extended_enat] :
      ( ( ? [Nat2: nat] :
            ( Y2
            = ( extended_enat2 @ Nat2 ) )
       => ( ? [Nata: nat] :
              ( Ya
              = ( extended_enat2 @ Nata ) )
         => ! [Natb: nat] :
              ( Yb
             != ( extended_enat2 @ Natb ) ) ) )
     => ( ( ? [Nat2: nat] :
              ( Y2
              = ( extended_enat2 @ Nat2 ) )
         => ( ? [Nata: nat] :
                ( Ya
                = ( extended_enat2 @ Nata ) )
           => ( Yb != extend5688581933313929465d_enat ) ) )
       => ( ( ? [Nat2: nat] :
                ( Y2
                = ( extended_enat2 @ Nat2 ) )
           => ( ( Ya = extend5688581933313929465d_enat )
             => ! [Nata: nat] :
                  ( Yb
                 != ( extended_enat2 @ Nata ) ) ) )
         => ( ( ? [Nat2: nat] :
                  ( Y2
                  = ( extended_enat2 @ Nat2 ) )
             => ( ( Ya = extend5688581933313929465d_enat )
               => ( Yb != extend5688581933313929465d_enat ) ) )
           => ( ( ( Y2 = extend5688581933313929465d_enat )
               => ( ? [Nat2: nat] :
                      ( Ya
                      = ( extended_enat2 @ Nat2 ) )
                 => ! [Nata: nat] :
                      ( Yb
                     != ( extended_enat2 @ Nata ) ) ) )
             => ( ( ( Y2 = extend5688581933313929465d_enat )
                 => ( ? [Nat2: nat] :
                        ( Ya
                        = ( extended_enat2 @ Nat2 ) )
                   => ( Yb != extend5688581933313929465d_enat ) ) )
               => ( ( ( Y2 = extend5688581933313929465d_enat )
                   => ( ( Ya = extend5688581933313929465d_enat )
                     => ! [Nat2: nat] :
                          ( Yb
                         != ( extended_enat2 @ Nat2 ) ) ) )
                 => ~ ( ( Y2 = extend5688581933313929465d_enat )
                     => ( ( Ya = extend5688581933313929465d_enat )
                       => ( Yb != extend5688581933313929465d_enat ) ) ) ) ) ) ) ) ) ) ).

% enat3_cases
thf(fact_14__C2_Ohyps_C_I6_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ treeLista ) )
     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_1 ) ) ).

% "2.hyps"(6)
thf(fact_15_enat_Oinject,axiom,
    ! [Nat: nat,Nat3: nat] :
      ( ( ( extended_enat2 @ Nat )
        = ( extended_enat2 @ Nat3 ) )
      = ( Nat = Nat3 ) ) ).

% enat.inject
thf(fact_16_enat_Osimps_I4_J,axiom,
    ! [F1: nat > $o,F2: $o,Nat: nat] :
      ( ( extended_case_enat_o @ F1 @ F2 @ ( extended_enat2 @ Nat ) )
      = ( F1 @ Nat ) ) ).

% enat.simps(4)
thf(fact_17_enat_Osimps_I4_J,axiom,
    ! [F1: nat > extended_enat,F2: extended_enat,Nat: nat] :
      ( ( extend3600170679010898289d_enat @ F1 @ F2 @ ( extended_enat2 @ Nat ) )
      = ( F1 @ Nat ) ) ).

% enat.simps(4)
thf(fact_18__C2_Ohyps_C_I4_J,axiom,
    ( dega
    = ( plus_plus_nat @ na @ m ) ) ).

% "2.hyps"(4)
thf(fact_19_enat__ex__split,axiom,
    ( ( ^ [P: extended_enat > $o] :
        ? [X3: extended_enat] : ( P @ X3 ) )
    = ( ^ [P2: extended_enat > $o] :
          ( ( P2 @ extend5688581933313929465d_enat )
          | ? [X4: nat] : ( P2 @ ( extended_enat2 @ X4 ) ) ) ) ) ).

% enat_ex_split
thf(fact_20_the__enat_Osimps,axiom,
    ! [N: nat] :
      ( ( extended_the_enat @ ( extended_enat2 @ N ) )
      = N ) ).

% the_enat.simps
thf(fact_21_valid__eq,axiom,
    vEBT_VEBT_valid = vEBT_invar_vebt ).

% valid_eq
thf(fact_22_valid__eq1,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_invar_vebt @ T @ D )
     => ( vEBT_VEBT_valid @ T @ D ) ) ).

% valid_eq1
thf(fact_23_valid__eq2,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_VEBT_valid @ T @ D )
     => ( vEBT_invar_vebt @ T @ D ) ) ).

% valid_eq2
thf(fact_24__C2_Ohyps_C_I2_J,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeLista )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).

% "2.hyps"(2)
thf(fact_25__092_060open_062deg_Adiv_A2_A_061_An_092_060close_062,axiom,
    ( ( divide_divide_nat @ dega @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = na ) ).

% \<open>deg div 2 = n\<close>
thf(fact_26_a,axiom,
    ! [I2: nat] :
      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( vEBT_VEBT_elim_dead @ ( nth_VEBT_VEBT @ treeLista @ I2 ) @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) )
        = ( nth_VEBT_VEBT @ treeLista @ I2 ) ) ) ).

% a
thf(fact_27__092_060open_0622_A_094_Am_A_061_A2_A_094_Adeg_Adiv_A2_A_094_A_Ideg_Adiv_A2_J_092_060close_062,axiom,
    ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m )
    = ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ dega ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ dega @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% \<open>2 ^ m = 2 ^ deg div 2 ^ (deg div 2)\<close>
thf(fact_28_calculation,axiom,
    ( ( take_VEBT_VEBT @ ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ dega ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ dega @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      @ ( map_VE8901447254227204932T_VEBT
        @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) )
        @ treeLista ) )
    = treeLista ) ).

% calculation
thf(fact_29_elimnum,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
     => ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        = ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) ) ) ).

% elimnum
thf(fact_30_infinity__ileE,axiom,
    ! [M: nat] :
      ~ ( ord_le2932123472753598470d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ M ) ) ).

% infinity_ileE
thf(fact_31_enat__ord__code_I5_J,axiom,
    ! [N: nat] :
      ~ ( ord_le2932123472753598470d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) ) ).

% enat_ord_code(5)
thf(fact_32_inthall,axiom,
    ! [Xs: list_complex,P3: complex > $o,N: nat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ ( set_complex2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
       => ( P3 @ ( nth_complex @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_33_inthall,axiom,
    ! [Xs: list_real,P3: real > $o,N: nat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_real2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
       => ( P3 @ ( nth_real @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_34_inthall,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o,N: nat] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ ( set_set_nat2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
       => ( P3 @ ( nth_set_nat @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_35_inthall,axiom,
    ! [Xs: list_VEBT_VEBT,P3: vEBT_VEBT > $o,N: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
       => ( P3 @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_36_inthall,axiom,
    ! [Xs: list_o,P3: $o > $o,N: nat] :
      ( ! [X5: $o] :
          ( ( member_o @ X5 @ ( set_o2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
       => ( P3 @ ( nth_o @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_37_inthall,axiom,
    ! [Xs: list_nat,P3: nat > $o,N: nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
       => ( P3 @ ( nth_nat @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_38_inthall,axiom,
    ! [Xs: list_int,P3: int > $o,N: nat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ ( set_int2 @ Xs ) )
         => ( P3 @ X5 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
       => ( P3 @ ( nth_int @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_39_VEBT_Oinject_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
      ( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
        = ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 )
        & ( X13 = Y13 )
        & ( X14 = Y14 ) ) ) ).

% VEBT.inject(1)
thf(fact_40_pow__sum,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).

% pow_sum
thf(fact_41_enat__ord__code_I3_J,axiom,
    ! [Q: extended_enat] : ( ord_le2932123472753598470d_enat @ Q @ extend5688581933313929465d_enat ) ).

% enat_ord_code(3)
thf(fact_42_enat__ord__simps_I5_J,axiom,
    ! [Q: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ extend5688581933313929465d_enat @ Q )
      = ( Q = extend5688581933313929465d_enat ) ) ).

% enat_ord_simps(5)
thf(fact_43_b,axiom,
    ( ( map_VE8901447254227204932T_VEBT
      @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) )
      @ treeLista )
    = treeLista ) ).

% b
thf(fact_44_VEBT__internal_Oelim__dead_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,L: nat] :
      ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ ( extended_enat2 @ L ) )
      = ( vEBT_Node @ Info @ Deg
        @ ( take_VEBT_VEBT @ ( divide_divide_nat @ L @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( map_VE8901447254227204932T_VEBT
            @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
            @ TreeList ) )
        @ ( vEBT_VEBT_elim_dead @ Summary @ ( extended_enat2 @ ( divide_divide_nat @ L @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.elim_dead.simps(3)
thf(fact_45_VEBT__internal_Oelim__dead_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ extend5688581933313929465d_enat )
      = ( vEBT_Node @ Info @ Deg
        @ ( map_VE8901447254227204932T_VEBT
          @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          @ TreeList )
        @ ( vEBT_VEBT_elim_dead @ Summary @ extend5688581933313929465d_enat ) ) ) ).

% VEBT_internal.elim_dead.simps(2)
thf(fact_46_enat__ile,axiom,
    ! [N: extended_enat,M: nat] :
      ( ( ord_le2932123472753598470d_enat @ N @ ( extended_enat2 @ M ) )
     => ? [K: nat] :
          ( N
          = ( extended_enat2 @ K ) ) ) ).

% enat_ile
thf(fact_47_enat__ord__simps_I3_J,axiom,
    ! [Q: extended_enat] : ( ord_le2932123472753598470d_enat @ Q @ extend5688581933313929465d_enat ) ).

% enat_ord_simps(3)
thf(fact_48_case__enat__def,axiom,
    extended_case_enat_o = extended_rec_enat_o ).

% case_enat_def
thf(fact_49_case__enat__def,axiom,
    extend3600170679010898289d_enat = extend1611788537373416385d_enat ).

% case_enat_def
thf(fact_50_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_51_mem__Collect__eq,axiom,
    ! [A: real,P3: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P3 ) )
      = ( P3 @ A ) ) ).

% mem_Collect_eq
thf(fact_52_mem__Collect__eq,axiom,
    ! [A: complex,P3: complex > $o] :
      ( ( member_complex @ A @ ( collect_complex @ P3 ) )
      = ( P3 @ A ) ) ).

% mem_Collect_eq
thf(fact_53_mem__Collect__eq,axiom,
    ! [A: list_nat,P3: list_nat > $o] :
      ( ( member_list_nat @ A @ ( collect_list_nat @ P3 ) )
      = ( P3 @ A ) ) ).

% mem_Collect_eq
thf(fact_54_mem__Collect__eq,axiom,
    ! [A: set_nat,P3: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P3 ) )
      = ( P3 @ A ) ) ).

% mem_Collect_eq
thf(fact_55_mem__Collect__eq,axiom,
    ! [A: nat,P3: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P3 ) )
      = ( P3 @ A ) ) ).

% mem_Collect_eq
thf(fact_56_mem__Collect__eq,axiom,
    ! [A: int,P3: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P3 ) )
      = ( P3 @ A ) ) ).

% mem_Collect_eq
thf(fact_57_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X4: real] : ( member_real @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_58_Collect__mem__eq,axiom,
    ! [A2: set_complex] :
      ( ( collect_complex
        @ ^ [X4: complex] : ( member_complex @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_59_Collect__mem__eq,axiom,
    ! [A2: set_list_nat] :
      ( ( collect_list_nat
        @ ^ [X4: list_nat] : ( member_list_nat @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_60_Collect__mem__eq,axiom,
    ! [A2: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_61_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X4: nat] : ( member_nat @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_62_Collect__mem__eq,axiom,
    ! [A2: set_int] :
      ( ( collect_int
        @ ^ [X4: int] : ( member_int @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_63_Collect__cong,axiom,
    ! [P3: complex > $o,Q2: complex > $o] :
      ( ! [X5: complex] :
          ( ( P3 @ X5 )
          = ( Q2 @ X5 ) )
     => ( ( collect_complex @ P3 )
        = ( collect_complex @ Q2 ) ) ) ).

% Collect_cong
thf(fact_64_Collect__cong,axiom,
    ! [P3: list_nat > $o,Q2: list_nat > $o] :
      ( ! [X5: list_nat] :
          ( ( P3 @ X5 )
          = ( Q2 @ X5 ) )
     => ( ( collect_list_nat @ P3 )
        = ( collect_list_nat @ Q2 ) ) ) ).

% Collect_cong
thf(fact_65_Collect__cong,axiom,
    ! [P3: set_nat > $o,Q2: set_nat > $o] :
      ( ! [X5: set_nat] :
          ( ( P3 @ X5 )
          = ( Q2 @ X5 ) )
     => ( ( collect_set_nat @ P3 )
        = ( collect_set_nat @ Q2 ) ) ) ).

% Collect_cong
thf(fact_66_Collect__cong,axiom,
    ! [P3: nat > $o,Q2: nat > $o] :
      ( ! [X5: nat] :
          ( ( P3 @ X5 )
          = ( Q2 @ X5 ) )
     => ( ( collect_nat @ P3 )
        = ( collect_nat @ Q2 ) ) ) ).

% Collect_cong
thf(fact_67_Collect__cong,axiom,
    ! [P3: int > $o,Q2: int > $o] :
      ( ! [X5: int] :
          ( ( P3 @ X5 )
          = ( Q2 @ X5 ) )
     => ( ( collect_int @ P3 )
        = ( collect_int @ Q2 ) ) ) ).

% Collect_cong
thf(fact_68_nth__map,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,F: vEBT_VEBT > nat] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( ( nth_nat @ ( map_VEBT_VEBT_nat @ F @ Xs ) @ N )
        = ( F @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_69_nth__map,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,F: vEBT_VEBT > int] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( ( nth_int @ ( map_VEBT_VEBT_int @ F @ Xs ) @ N )
        = ( F @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_70_nth__map,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( ( nth_VEBT_VEBT @ ( map_VE8901447254227204932T_VEBT @ F @ Xs ) @ N )
        = ( F @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_71_nth__map,axiom,
    ! [N: nat,Xs: list_o,F: $o > vEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
     => ( ( nth_VEBT_VEBT @ ( map_o_VEBT_VEBT @ F @ Xs ) @ N )
        = ( F @ ( nth_o @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_72_nth__map,axiom,
    ! [N: nat,Xs: list_o,F: $o > nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
     => ( ( nth_nat @ ( map_o_nat @ F @ Xs ) @ N )
        = ( F @ ( nth_o @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_73_nth__map,axiom,
    ! [N: nat,Xs: list_o,F: $o > int] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
     => ( ( nth_int @ ( map_o_int @ F @ Xs ) @ N )
        = ( F @ ( nth_o @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_74_nth__map,axiom,
    ! [N: nat,Xs: list_nat,F: nat > vEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_VEBT_VEBT @ ( map_nat_VEBT_VEBT @ F @ Xs ) @ N )
        = ( F @ ( nth_nat @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_75_nth__map,axiom,
    ! [N: nat,Xs: list_nat,F: nat > int] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_int @ ( map_nat_int @ F @ Xs ) @ N )
        = ( F @ ( nth_nat @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_76_nth__map,axiom,
    ! [N: nat,Xs: list_nat,F: nat > nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_nat @ ( map_nat_nat @ F @ Xs ) @ N )
        = ( F @ ( nth_nat @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_77_nth__map,axiom,
    ! [N: nat,Xs: list_int,F: int > vEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
     => ( ( nth_VEBT_VEBT @ ( map_int_VEBT_VEBT @ F @ Xs ) @ N )
        = ( F @ ( nth_int @ Xs @ N ) ) ) ) ).

% nth_map
thf(fact_78_nth__take,axiom,
    ! [I2: nat,N: nat,Xs: list_int] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( nth_int @ ( take_int @ N @ Xs ) @ I2 )
        = ( nth_int @ Xs @ I2 ) ) ) ).

% nth_take
thf(fact_79_nth__take,axiom,
    ! [I2: nat,N: nat,Xs: list_VEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( nth_VEBT_VEBT @ ( take_VEBT_VEBT @ N @ Xs ) @ I2 )
        = ( nth_VEBT_VEBT @ Xs @ I2 ) ) ) ).

% nth_take
thf(fact_80_nth__take,axiom,
    ! [I2: nat,N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( nth_nat @ ( take_nat @ N @ Xs ) @ I2 )
        = ( nth_nat @ Xs @ I2 ) ) ) ).

% nth_take
thf(fact_81_div__exp__eq,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_82_div__exp__eq,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_83_field__less__half__sum,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ord_less_real @ X @ ( divide_divide_real @ ( plus_plus_real @ X @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_84_field__less__half__sum,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( ord_less_rat @ X @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_85_high__bound__aux,axiom,
    ! [Ma: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% high_bound_aux
thf(fact_86_length__map,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( map_VE8901447254227204932T_VEBT @ F @ Xs ) )
      = ( size_s6755466524823107622T_VEBT @ Xs ) ) ).

% length_map
thf(fact_87_length__map,axiom,
    ! [F: $o > vEBT_VEBT,Xs: list_o] :
      ( ( size_s6755466524823107622T_VEBT @ ( map_o_VEBT_VEBT @ F @ Xs ) )
      = ( size_size_list_o @ Xs ) ) ).

% length_map
thf(fact_88_length__map,axiom,
    ! [F: nat > vEBT_VEBT,Xs: list_nat] :
      ( ( size_s6755466524823107622T_VEBT @ ( map_nat_VEBT_VEBT @ F @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_map
thf(fact_89_length__map,axiom,
    ! [F: int > vEBT_VEBT,Xs: list_int] :
      ( ( size_s6755466524823107622T_VEBT @ ( map_int_VEBT_VEBT @ F @ Xs ) )
      = ( size_size_list_int @ Xs ) ) ).

% length_map
thf(fact_90_length__map,axiom,
    ! [F: vEBT_VEBT > $o,Xs: list_VEBT_VEBT] :
      ( ( size_size_list_o @ ( map_VEBT_VEBT_o @ F @ Xs ) )
      = ( size_s6755466524823107622T_VEBT @ Xs ) ) ).

% length_map
thf(fact_91_length__map,axiom,
    ! [F: $o > $o,Xs: list_o] :
      ( ( size_size_list_o @ ( map_o_o @ F @ Xs ) )
      = ( size_size_list_o @ Xs ) ) ).

% length_map
thf(fact_92_length__map,axiom,
    ! [F: nat > $o,Xs: list_nat] :
      ( ( size_size_list_o @ ( map_nat_o @ F @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_map
thf(fact_93_length__map,axiom,
    ! [F: int > $o,Xs: list_int] :
      ( ( size_size_list_o @ ( map_int_o @ F @ Xs ) )
      = ( size_size_list_int @ Xs ) ) ).

% length_map
thf(fact_94_length__map,axiom,
    ! [F: vEBT_VEBT > nat,Xs: list_VEBT_VEBT] :
      ( ( size_size_list_nat @ ( map_VEBT_VEBT_nat @ F @ Xs ) )
      = ( size_s6755466524823107622T_VEBT @ Xs ) ) ).

% length_map
thf(fact_95_length__map,axiom,
    ! [F: $o > nat,Xs: list_o] :
      ( ( size_size_list_nat @ ( map_o_nat @ F @ Xs ) )
      = ( size_size_list_o @ Xs ) ) ).

% length_map
thf(fact_96_map__eq__conv,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT,G: vEBT_VEBT > vEBT_VEBT] :
      ( ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = ( map_VE8901447254227204932T_VEBT @ G @ Xs ) )
      = ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) ) ) ) ).

% map_eq_conv
thf(fact_97_map__eq__conv,axiom,
    ! [F: nat > nat,Xs: list_nat,G: nat > nat] :
      ( ( ( map_nat_nat @ F @ Xs )
        = ( map_nat_nat @ G @ Xs ) )
      = ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) ) ) ) ).

% map_eq_conv
thf(fact_98_nat__add__left__cancel__less,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_99_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_100_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_101_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_102_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_103_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_104_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_105_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_106_plus__enat__simps_I2_J,axiom,
    ! [Q: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ extend5688581933313929465d_enat @ Q )
      = extend5688581933313929465d_enat ) ).

% plus_enat_simps(2)
thf(fact_107_plus__enat__simps_I3_J,axiom,
    ! [Q: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ Q @ extend5688581933313929465d_enat )
      = extend5688581933313929465d_enat ) ).

% plus_enat_simps(3)
thf(fact_108_enat__ord__simps_I4_J,axiom,
    ! [Q: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ Q @ extend5688581933313929465d_enat )
      = ( Q != extend5688581933313929465d_enat ) ) ).

% enat_ord_simps(4)
thf(fact_109_enat__ord__simps_I6_J,axiom,
    ! [Q: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ extend5688581933313929465d_enat @ Q ) ).

% enat_ord_simps(6)
thf(fact_110_high__def,axiom,
    ( vEBT_VEBT_high
    = ( ^ [X4: nat,N2: nat] : ( divide_divide_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% high_def
thf(fact_111_map__ident,axiom,
    ( ( map_VE8901447254227204932T_VEBT
      @ ^ [X4: vEBT_VEBT] : X4 )
    = ( ^ [Xs2: list_VEBT_VEBT] : Xs2 ) ) ).

% map_ident
thf(fact_112_map__ident,axiom,
    ( ( map_nat_nat
      @ ^ [X4: nat] : X4 )
    = ( ^ [Xs2: list_nat] : Xs2 ) ) ).

% map_ident
thf(fact_113_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_114_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_115_enat__ord__number_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(2)
thf(fact_116_enat__ord__simps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% enat_ord_simps(2)
thf(fact_117_plus__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_p3455044024723400733d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( plus_plus_nat @ M @ N ) ) ) ).

% plus_enat_simps(1)
thf(fact_118_numeral__less__enat__iff,axiom,
    ! [M: num,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% numeral_less_enat_iff
thf(fact_119_enat__add__left__cancel__less,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A != extend5688581933313929465d_enat )
        & ( ord_le72135733267957522d_enat @ B @ C ) ) ) ).

% enat_add_left_cancel_less
thf(fact_120_plus__eq__infty__iff__enat,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = extend5688581933313929465d_enat )
      = ( ( M = extend5688581933313929465d_enat )
        | ( N = extend5688581933313929465d_enat ) ) ) ).

% plus_eq_infty_iff_enat
thf(fact_121_enat__add__left__cancel,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ A @ B )
        = ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A = extend5688581933313929465d_enat )
        | ( B = C ) ) ) ).

% enat_add_left_cancel
thf(fact_122_numeral__ne__infinity,axiom,
    ! [K2: num] :
      ( ( numera1916890842035813515d_enat @ K2 )
     != extend5688581933313929465d_enat ) ).

% numeral_ne_infinity
thf(fact_123_enat__iless,axiom,
    ! [N: extended_enat,M: nat] :
      ( ( ord_le72135733267957522d_enat @ N @ ( extended_enat2 @ M ) )
     => ? [K: nat] :
          ( N
          = ( extended_enat2 @ K ) ) ) ).

% enat_iless
thf(fact_124_less__enat__def,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [M2: extended_enat,N2: extended_enat] :
          ( extended_case_enat_o
          @ ^ [M1: nat] : ( extended_case_enat_o @ ( ord_less_nat @ M1 ) @ $true @ N2 )
          @ $false
          @ M2 ) ) ) ).

% less_enat_def
thf(fact_125_numeral__eq__enat,axiom,
    ( numera1916890842035813515d_enat
    = ( ^ [K3: num] : ( extended_enat2 @ ( numeral_numeral_nat @ K3 ) ) ) ) ).

% numeral_eq_enat
thf(fact_126_less__enatE,axiom,
    ! [N: extended_enat,M: nat] :
      ( ( ord_le72135733267957522d_enat @ N @ ( extended_enat2 @ M ) )
     => ~ ! [K: nat] :
            ( ( N
              = ( extended_enat2 @ K ) )
           => ~ ( ord_less_nat @ K @ M ) ) ) ).

% less_enatE
thf(fact_127_infinity__ilessE,axiom,
    ! [M: nat] :
      ~ ( ord_le72135733267957522d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ M ) ) ).

% infinity_ilessE
thf(fact_128_less__infinityE,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ N @ extend5688581933313929465d_enat )
     => ~ ! [K: nat] :
            ( N
           != ( extended_enat2 @ K ) ) ) ).

% less_infinityE
thf(fact_129_enat__ord__code_I4_J,axiom,
    ! [M: nat] : ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat ) ).

% enat_ord_code(4)
thf(fact_130_enat__add__left__cancel__le,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A = extend5688581933313929465d_enat )
        | ( ord_le2932123472753598470d_enat @ B @ C ) ) ) ).

% enat_add_left_cancel_le
thf(fact_131_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_132_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_133_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_134_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_135_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_136_nat__less__induct,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ( P3 @ M3 ) )
         => ( P3 @ N3 ) )
     => ( P3 @ N ) ) ).

% nat_less_induct
thf(fact_137_infinite__descent,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P3 @ N3 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
              & ~ ( P3 @ M3 ) ) )
     => ( P3 @ N ) ) ).

% infinite_descent
thf(fact_138_linorder__neqE__nat,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_139_size__neq__size__imp__neq,axiom,
    ! [X: list_VEBT_VEBT,Y2: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ X )
       != ( size_s6755466524823107622T_VEBT @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_140_size__neq__size__imp__neq,axiom,
    ! [X: list_o,Y2: list_o] :
      ( ( ( size_size_list_o @ X )
       != ( size_size_list_o @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_141_size__neq__size__imp__neq,axiom,
    ! [X: list_nat,Y2: list_nat] :
      ( ( ( size_size_list_nat @ X )
       != ( size_size_list_nat @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_142_size__neq__size__imp__neq,axiom,
    ! [X: list_int,Y2: list_int] :
      ( ( ( size_size_list_int @ X )
       != ( size_size_list_int @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_143_size__neq__size__imp__neq,axiom,
    ! [X: num,Y2: num] :
      ( ( ( size_size_num @ X )
       != ( size_size_num @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_144_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_VEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_145_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_o] :
      ( ( size_size_list_o @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_146_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_nat] :
      ( ( size_size_list_nat @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_147_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_int] :
      ( ( size_size_list_int @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_148_neq__if__length__neq,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs )
       != ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_149_neq__if__length__neq,axiom,
    ! [Xs: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs )
       != ( size_size_list_o @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_150_neq__if__length__neq,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
       != ( size_size_list_nat @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_151_neq__if__length__neq,axiom,
    ! [Xs: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs )
       != ( size_size_list_int @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_152_take__equalityI,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ! [I3: nat] :
          ( ( take_VEBT_VEBT @ I3 @ Xs )
          = ( take_VEBT_VEBT @ I3 @ Ys ) )
     => ( Xs = Ys ) ) ).

% take_equalityI
thf(fact_153_take__equalityI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ! [I3: nat] :
          ( ( take_nat @ I3 @ Xs )
          = ( take_nat @ I3 @ Ys ) )
     => ( Xs = Ys ) ) ).

% take_equalityI
thf(fact_154_plus__enat__def,axiom,
    ( plus_p3455044024723400733d_enat
    = ( ^ [M2: extended_enat,N2: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [O: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [P4: nat] : ( extended_enat2 @ ( plus_plus_nat @ O @ P4 ) )
              @ extend5688581933313929465d_enat
              @ N2 )
          @ extend5688581933313929465d_enat
          @ M2 ) ) ) ).

% plus_enat_def
thf(fact_155_list_Omap__ident,axiom,
    ! [T: list_VEBT_VEBT] :
      ( ( map_VE8901447254227204932T_VEBT
        @ ^ [X4: vEBT_VEBT] : X4
        @ T )
      = T ) ).

% list.map_ident
thf(fact_156_list_Omap__ident,axiom,
    ! [T: list_nat] :
      ( ( map_nat_nat
        @ ^ [X4: nat] : X4
        @ T )
      = T ) ).

% list.map_ident
thf(fact_157_power__divide,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
      = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_divide
thf(fact_158_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_159_power__divide,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
      = ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_divide
thf(fact_160_add__lessD1,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ K2 )
     => ( ord_less_nat @ I2 @ K2 ) ) ).

% add_lessD1
thf(fact_161_add__less__mono,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ K2 @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_162_not__add__less1,axiom,
    ! [I2: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ I2 ) ).

% not_add_less1
thf(fact_163_not__add__less2,axiom,
    ! [J: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_164_add__less__mono1,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_less_mono1
thf(fact_165_trans__less__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_166_trans__less__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_167_less__add__eq__less,axiom,
    ! [K2: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K2 @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_168_length__induct,axiom,
    ! [P3: list_VEBT_VEBT > $o,Xs: list_VEBT_VEBT] :
      ( ! [Xs3: list_VEBT_VEBT] :
          ( ! [Ys2: list_VEBT_VEBT] :
              ( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys2 ) @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
             => ( P3 @ Ys2 ) )
         => ( P3 @ Xs3 ) )
     => ( P3 @ Xs ) ) ).

% length_induct
thf(fact_169_length__induct,axiom,
    ! [P3: list_o > $o,Xs: list_o] :
      ( ! [Xs3: list_o] :
          ( ! [Ys2: list_o] :
              ( ( ord_less_nat @ ( size_size_list_o @ Ys2 ) @ ( size_size_list_o @ Xs3 ) )
             => ( P3 @ Ys2 ) )
         => ( P3 @ Xs3 ) )
     => ( P3 @ Xs ) ) ).

% length_induct
thf(fact_170_length__induct,axiom,
    ! [P3: list_nat > $o,Xs: list_nat] :
      ( ! [Xs3: list_nat] :
          ( ! [Ys2: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs3 ) )
             => ( P3 @ Ys2 ) )
         => ( P3 @ Xs3 ) )
     => ( P3 @ Xs ) ) ).

% length_induct
thf(fact_171_length__induct,axiom,
    ! [P3: list_int > $o,Xs: list_int] :
      ( ! [Xs3: list_int] :
          ( ! [Ys2: list_int] :
              ( ( ord_less_nat @ ( size_size_list_int @ Ys2 ) @ ( size_size_list_int @ Xs3 ) )
             => ( P3 @ Ys2 ) )
         => ( P3 @ Xs3 ) )
     => ( P3 @ Xs ) ) ).

% length_induct
thf(fact_172_list_Omap__cong,axiom,
    ! [X: list_VEBT_VEBT,Ya: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT,G: vEBT_VEBT > vEBT_VEBT] :
      ( ( X = Ya )
     => ( ! [Z: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ Z @ ( set_VEBT_VEBT2 @ Ya ) )
           => ( ( F @ Z )
              = ( G @ Z ) ) )
       => ( ( map_VE8901447254227204932T_VEBT @ F @ X )
          = ( map_VE8901447254227204932T_VEBT @ G @ Ya ) ) ) ) ).

% list.map_cong
thf(fact_173_list_Omap__cong,axiom,
    ! [X: list_nat,Ya: list_nat,F: nat > nat,G: nat > nat] :
      ( ( X = Ya )
     => ( ! [Z: nat] :
            ( ( member_nat @ Z @ ( set_nat2 @ Ya ) )
           => ( ( F @ Z )
              = ( G @ Z ) ) )
       => ( ( map_nat_nat @ F @ X )
          = ( map_nat_nat @ G @ Ya ) ) ) ) ).

% list.map_cong
thf(fact_174_list_Omap__cong0,axiom,
    ! [X: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT,G: vEBT_VEBT > vEBT_VEBT] :
      ( ! [Z: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ Z @ ( set_VEBT_VEBT2 @ X ) )
         => ( ( F @ Z )
            = ( G @ Z ) ) )
     => ( ( map_VE8901447254227204932T_VEBT @ F @ X )
        = ( map_VE8901447254227204932T_VEBT @ G @ X ) ) ) ).

% list.map_cong0
thf(fact_175_list_Omap__cong0,axiom,
    ! [X: list_nat,F: nat > nat,G: nat > nat] :
      ( ! [Z: nat] :
          ( ( member_nat @ Z @ ( set_nat2 @ X ) )
         => ( ( F @ Z )
            = ( G @ Z ) ) )
     => ( ( map_nat_nat @ F @ X )
        = ( map_nat_nat @ G @ X ) ) ) ).

% list.map_cong0
thf(fact_176_list_Oinj__map__strong,axiom,
    ! [X: list_VEBT_VEBT,Xa: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT,Fa: vEBT_VEBT > vEBT_VEBT] :
      ( ! [Z: vEBT_VEBT,Za: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ Z @ ( set_VEBT_VEBT2 @ X ) )
         => ( ( member_VEBT_VEBT @ Za @ ( set_VEBT_VEBT2 @ Xa ) )
           => ( ( ( F @ Z )
                = ( Fa @ Za ) )
             => ( Z = Za ) ) ) )
     => ( ( ( map_VE8901447254227204932T_VEBT @ F @ X )
          = ( map_VE8901447254227204932T_VEBT @ Fa @ Xa ) )
       => ( X = Xa ) ) ) ).

% list.inj_map_strong
thf(fact_177_list_Oinj__map__strong,axiom,
    ! [X: list_nat,Xa: list_nat,F: nat > nat,Fa: nat > nat] :
      ( ! [Z: nat,Za: nat] :
          ( ( member_nat @ Z @ ( set_nat2 @ X ) )
         => ( ( member_nat @ Za @ ( set_nat2 @ Xa ) )
           => ( ( ( F @ Z )
                = ( Fa @ Za ) )
             => ( Z = Za ) ) ) )
     => ( ( ( map_nat_nat @ F @ X )
          = ( map_nat_nat @ Fa @ Xa ) )
       => ( X = Xa ) ) ) ).

% list.inj_map_strong
thf(fact_178_map__ext,axiom,
    ! [Xs: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT,G: vEBT_VEBT > vEBT_VEBT] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
         => ( ( F @ X5 )
            = ( G @ X5 ) ) )
     => ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = ( map_VE8901447254227204932T_VEBT @ G @ Xs ) ) ) ).

% map_ext
thf(fact_179_map__ext,axiom,
    ! [Xs: list_nat,F: nat > nat,G: nat > nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
         => ( ( F @ X5 )
            = ( G @ X5 ) ) )
     => ( ( map_nat_nat @ F @ Xs )
        = ( map_nat_nat @ G @ Xs ) ) ) ).

% map_ext
thf(fact_180_map__idI,axiom,
    ! [Xs: list_complex,F: complex > complex] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ ( set_complex2 @ Xs ) )
         => ( ( F @ X5 )
            = X5 ) )
     => ( ( map_complex_complex @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_181_map__idI,axiom,
    ! [Xs: list_real,F: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_real2 @ Xs ) )
         => ( ( F @ X5 )
            = X5 ) )
     => ( ( map_real_real @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_182_map__idI,axiom,
    ! [Xs: list_set_nat,F: set_nat > set_nat] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ ( set_set_nat2 @ Xs ) )
         => ( ( F @ X5 )
            = X5 ) )
     => ( ( map_set_nat_set_nat @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_183_map__idI,axiom,
    ! [Xs: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
         => ( ( F @ X5 )
            = X5 ) )
     => ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_184_map__idI,axiom,
    ! [Xs: list_nat,F: nat > nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
         => ( ( F @ X5 )
            = X5 ) )
     => ( ( map_nat_nat @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_185_map__idI,axiom,
    ! [Xs: list_int,F: int > int] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ ( set_int2 @ Xs ) )
         => ( ( F @ X5 )
            = X5 ) )
     => ( ( map_int_int @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_186_map__cong,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT,G: vEBT_VEBT > vEBT_VEBT] :
      ( ( Xs = Ys )
     => ( ! [X5: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Ys ) )
           => ( ( F @ X5 )
              = ( G @ X5 ) ) )
       => ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
          = ( map_VE8901447254227204932T_VEBT @ G @ Ys ) ) ) ) ).

% map_cong
thf(fact_187_map__cong,axiom,
    ! [Xs: list_nat,Ys: list_nat,F: nat > nat,G: nat > nat] :
      ( ( Xs = Ys )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ ( set_nat2 @ Ys ) )
           => ( ( F @ X5 )
              = ( G @ X5 ) ) )
       => ( ( map_nat_nat @ F @ Xs )
          = ( map_nat_nat @ G @ Ys ) ) ) ) ).

% map_cong
thf(fact_188_ex__map__conv,axiom,
    ! [Ys: list_VEBT_VEBT,F: vEBT_VEBT > vEBT_VEBT] :
      ( ( ? [Xs2: list_VEBT_VEBT] :
            ( Ys
            = ( map_VE8901447254227204932T_VEBT @ F @ Xs2 ) ) )
      = ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Ys ) )
           => ? [Y: vEBT_VEBT] :
                ( X4
                = ( F @ Y ) ) ) ) ) ).

% ex_map_conv
thf(fact_189_ex__map__conv,axiom,
    ! [Ys: list_nat,F: nat > nat] :
      ( ( ? [Xs2: list_nat] :
            ( Ys
            = ( map_nat_nat @ F @ Xs2 ) ) )
      = ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ Ys ) )
           => ? [Y: nat] :
                ( X4
                = ( F @ Y ) ) ) ) ) ).

% ex_map_conv
thf(fact_190_map__eq__imp__length__eq,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT,G: vEBT_VEBT > vEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = ( map_VE8901447254227204932T_VEBT @ G @ Ys ) )
     => ( ( size_s6755466524823107622T_VEBT @ Xs )
        = ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_191_map__eq__imp__length__eq,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT,G: $o > vEBT_VEBT,Ys: list_o] :
      ( ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = ( map_o_VEBT_VEBT @ G @ Ys ) )
     => ( ( size_s6755466524823107622T_VEBT @ Xs )
        = ( size_size_list_o @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_192_map__eq__imp__length__eq,axiom,
    ! [F: vEBT_VEBT > nat,Xs: list_VEBT_VEBT,G: nat > nat,Ys: list_nat] :
      ( ( ( map_VEBT_VEBT_nat @ F @ Xs )
        = ( map_nat_nat @ G @ Ys ) )
     => ( ( size_s6755466524823107622T_VEBT @ Xs )
        = ( size_size_list_nat @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_193_map__eq__imp__length__eq,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT,G: nat > vEBT_VEBT,Ys: list_nat] :
      ( ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = ( map_nat_VEBT_VEBT @ G @ Ys ) )
     => ( ( size_s6755466524823107622T_VEBT @ Xs )
        = ( size_size_list_nat @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_194_map__eq__imp__length__eq,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT,G: int > vEBT_VEBT,Ys: list_int] :
      ( ( ( map_VE8901447254227204932T_VEBT @ F @ Xs )
        = ( map_int_VEBT_VEBT @ G @ Ys ) )
     => ( ( size_s6755466524823107622T_VEBT @ Xs )
        = ( size_size_list_int @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_195_map__eq__imp__length__eq,axiom,
    ! [F: $o > vEBT_VEBT,Xs: list_o,G: vEBT_VEBT > vEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( map_o_VEBT_VEBT @ F @ Xs )
        = ( map_VE8901447254227204932T_VEBT @ G @ Ys ) )
     => ( ( size_size_list_o @ Xs )
        = ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_196_map__eq__imp__length__eq,axiom,
    ! [F: $o > nat,Xs: list_o,G: nat > nat,Ys: list_nat] :
      ( ( ( map_o_nat @ F @ Xs )
        = ( map_nat_nat @ G @ Ys ) )
     => ( ( size_size_list_o @ Xs )
        = ( size_size_list_nat @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_197_map__eq__imp__length__eq,axiom,
    ! [F: nat > vEBT_VEBT,Xs: list_nat,G: vEBT_VEBT > vEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( map_nat_VEBT_VEBT @ F @ Xs )
        = ( map_VE8901447254227204932T_VEBT @ G @ Ys ) )
     => ( ( size_size_list_nat @ Xs )
        = ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_198_map__eq__imp__length__eq,axiom,
    ! [F: nat > nat,Xs: list_nat,G: vEBT_VEBT > nat,Ys: list_VEBT_VEBT] :
      ( ( ( map_nat_nat @ F @ Xs )
        = ( map_VEBT_VEBT_nat @ G @ Ys ) )
     => ( ( size_size_list_nat @ Xs )
        = ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_199_map__eq__imp__length__eq,axiom,
    ! [F: nat > nat,Xs: list_nat,G: $o > nat,Ys: list_o] :
      ( ( ( map_nat_nat @ F @ Xs )
        = ( map_o_nat @ G @ Ys ) )
     => ( ( size_size_list_nat @ Xs )
        = ( size_size_list_o @ Ys ) ) ) ).

% map_eq_imp_length_eq
thf(fact_200_in__set__takeD,axiom,
    ! [X: complex,N: nat,Xs: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ ( take_complex @ N @ Xs ) ) )
     => ( member_complex @ X @ ( set_complex2 @ Xs ) ) ) ).

% in_set_takeD
thf(fact_201_in__set__takeD,axiom,
    ! [X: real,N: nat,Xs: list_real] :
      ( ( member_real @ X @ ( set_real2 @ ( take_real @ N @ Xs ) ) )
     => ( member_real @ X @ ( set_real2 @ Xs ) ) ) ).

% in_set_takeD
thf(fact_202_in__set__takeD,axiom,
    ! [X: set_nat,N: nat,Xs: list_set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ ( take_set_nat @ N @ Xs ) ) )
     => ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) ) ) ).

% in_set_takeD
thf(fact_203_in__set__takeD,axiom,
    ! [X: vEBT_VEBT,N: nat,Xs: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( take_VEBT_VEBT @ N @ Xs ) ) )
     => ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) ) ) ).

% in_set_takeD
thf(fact_204_in__set__takeD,axiom,
    ! [X: nat,N: nat,Xs: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ ( take_nat @ N @ Xs ) ) )
     => ( member_nat @ X @ ( set_nat2 @ Xs ) ) ) ).

% in_set_takeD
thf(fact_205_in__set__takeD,axiom,
    ! [X: int,N: nat,Xs: list_int] :
      ( ( member_int @ X @ ( set_int2 @ ( take_int @ N @ Xs ) ) )
     => ( member_int @ X @ ( set_int2 @ Xs ) ) ) ).

% in_set_takeD
thf(fact_206_take__map,axiom,
    ! [N: nat,F: nat > vEBT_VEBT,Xs: list_nat] :
      ( ( take_VEBT_VEBT @ N @ ( map_nat_VEBT_VEBT @ F @ Xs ) )
      = ( map_nat_VEBT_VEBT @ F @ ( take_nat @ N @ Xs ) ) ) ).

% take_map
thf(fact_207_take__map,axiom,
    ! [N: nat,F: vEBT_VEBT > nat,Xs: list_VEBT_VEBT] :
      ( ( take_nat @ N @ ( map_VEBT_VEBT_nat @ F @ Xs ) )
      = ( map_VEBT_VEBT_nat @ F @ ( take_VEBT_VEBT @ N @ Xs ) ) ) ).

% take_map
thf(fact_208_take__map,axiom,
    ! [N: nat,F: vEBT_VEBT > vEBT_VEBT,Xs: list_VEBT_VEBT] :
      ( ( take_VEBT_VEBT @ N @ ( map_VE8901447254227204932T_VEBT @ F @ Xs ) )
      = ( map_VE8901447254227204932T_VEBT @ F @ ( take_VEBT_VEBT @ N @ Xs ) ) ) ).

% take_map
thf(fact_209_take__map,axiom,
    ! [N: nat,F: nat > nat,Xs: list_nat] :
      ( ( take_nat @ N @ ( map_nat_nat @ F @ Xs ) )
      = ( map_nat_nat @ F @ ( take_nat @ N @ Xs ) ) ) ).

% take_map
thf(fact_210_nth__equalityI,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs )
        = ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
           => ( ( nth_VEBT_VEBT @ Xs @ I3 )
              = ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_211_nth__equalityI,axiom,
    ! [Xs: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs )
        = ( size_size_list_o @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs ) )
           => ( ( nth_o @ Xs @ I3 )
              = ( nth_o @ Ys @ I3 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_212_nth__equalityI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
           => ( ( nth_nat @ Xs @ I3 )
              = ( nth_nat @ Ys @ I3 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_213_nth__equalityI,axiom,
    ! [Xs: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs )
        = ( size_size_list_int @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs ) )
           => ( ( nth_int @ Xs @ I3 )
              = ( nth_int @ Ys @ I3 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_214_Skolem__list__nth,axiom,
    ! [K2: nat,P3: nat > vEBT_VEBT > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ K2 )
           => ? [X6: vEBT_VEBT] : ( P3 @ I @ X6 ) ) )
      = ( ? [Xs2: list_VEBT_VEBT] :
            ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
              = K2 )
            & ! [I: nat] :
                ( ( ord_less_nat @ I @ K2 )
               => ( P3 @ I @ ( nth_VEBT_VEBT @ Xs2 @ I ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_215_Skolem__list__nth,axiom,
    ! [K2: nat,P3: nat > $o > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ K2 )
           => ? [X6: $o] : ( P3 @ I @ X6 ) ) )
      = ( ? [Xs2: list_o] :
            ( ( ( size_size_list_o @ Xs2 )
              = K2 )
            & ! [I: nat] :
                ( ( ord_less_nat @ I @ K2 )
               => ( P3 @ I @ ( nth_o @ Xs2 @ I ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_216_Skolem__list__nth,axiom,
    ! [K2: nat,P3: nat > nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ K2 )
           => ? [X6: nat] : ( P3 @ I @ X6 ) ) )
      = ( ? [Xs2: list_nat] :
            ( ( ( size_size_list_nat @ Xs2 )
              = K2 )
            & ! [I: nat] :
                ( ( ord_less_nat @ I @ K2 )
               => ( P3 @ I @ ( nth_nat @ Xs2 @ I ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_217_Skolem__list__nth,axiom,
    ! [K2: nat,P3: nat > int > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ K2 )
           => ? [X6: int] : ( P3 @ I @ X6 ) ) )
      = ( ? [Xs2: list_int] :
            ( ( ( size_size_list_int @ Xs2 )
              = K2 )
            & ! [I: nat] :
                ( ( ord_less_nat @ I @ K2 )
               => ( P3 @ I @ ( nth_int @ Xs2 @ I ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_218_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y3: list_VEBT_VEBT,Z2: list_VEBT_VEBT] : ( Y3 = Z2 ) )
    = ( ^ [Xs2: list_VEBT_VEBT,Ys3: list_VEBT_VEBT] :
          ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
            = ( size_s6755466524823107622T_VEBT @ Ys3 ) )
          & ! [I: nat] :
              ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
             => ( ( nth_VEBT_VEBT @ Xs2 @ I )
                = ( nth_VEBT_VEBT @ Ys3 @ I ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_219_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y3: list_o,Z2: list_o] : ( Y3 = Z2 ) )
    = ( ^ [Xs2: list_o,Ys3: list_o] :
          ( ( ( size_size_list_o @ Xs2 )
            = ( size_size_list_o @ Ys3 ) )
          & ! [I: nat] :
              ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
             => ( ( nth_o @ Xs2 @ I )
                = ( nth_o @ Ys3 @ I ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_220_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y3: list_nat,Z2: list_nat] : ( Y3 = Z2 ) )
    = ( ^ [Xs2: list_nat,Ys3: list_nat] :
          ( ( ( size_size_list_nat @ Xs2 )
            = ( size_size_list_nat @ Ys3 ) )
          & ! [I: nat] :
              ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
             => ( ( nth_nat @ Xs2 @ I )
                = ( nth_nat @ Ys3 @ I ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_221_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y3: list_int,Z2: list_int] : ( Y3 = Z2 ) )
    = ( ^ [Xs2: list_int,Ys3: list_int] :
          ( ( ( size_size_list_int @ Xs2 )
            = ( size_size_list_int @ Ys3 ) )
          & ! [I: nat] :
              ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
             => ( ( nth_int @ Xs2 @ I )
                = ( nth_int @ Ys3 @ I ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_222_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_223_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_224_all__set__conv__all__nth,axiom,
    ! [Xs: list_VEBT_VEBT,P3: vEBT_VEBT > $o] :
      ( ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
           => ( P3 @ X4 ) ) )
      = ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs ) )
           => ( P3 @ ( nth_VEBT_VEBT @ Xs @ I ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_225_all__set__conv__all__nth,axiom,
    ! [Xs: list_o,P3: $o > $o] :
      ( ( ! [X4: $o] :
            ( ( member_o @ X4 @ ( set_o2 @ Xs ) )
           => ( P3 @ X4 ) ) )
      = ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs ) )
           => ( P3 @ ( nth_o @ Xs @ I ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_226_all__set__conv__all__nth,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
           => ( P3 @ X4 ) ) )
      = ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
           => ( P3 @ ( nth_nat @ Xs @ I ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_227_all__set__conv__all__nth,axiom,
    ! [Xs: list_int,P3: int > $o] :
      ( ( ! [X4: int] :
            ( ( member_int @ X4 @ ( set_int2 @ Xs ) )
           => ( P3 @ X4 ) ) )
      = ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs ) )
           => ( P3 @ ( nth_int @ Xs @ I ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_228_all__nth__imp__all__set,axiom,
    ! [Xs: list_complex,P3: complex > $o,X: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3451745648224563538omplex @ Xs ) )
         => ( P3 @ ( nth_complex @ Xs @ I3 ) ) )
     => ( ( member_complex @ X @ ( set_complex2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_229_all__nth__imp__all__set,axiom,
    ! [Xs: list_real,P3: real > $o,X: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs ) )
         => ( P3 @ ( nth_real @ Xs @ I3 ) ) )
     => ( ( member_real @ X @ ( set_real2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_230_all__nth__imp__all__set,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o,X: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs ) )
         => ( P3 @ ( nth_set_nat @ Xs @ I3 ) ) )
     => ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_231_all__nth__imp__all__set,axiom,
    ! [Xs: list_VEBT_VEBT,P3: vEBT_VEBT > $o,X: vEBT_VEBT] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
         => ( P3 @ ( nth_VEBT_VEBT @ Xs @ I3 ) ) )
     => ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_232_all__nth__imp__all__set,axiom,
    ! [Xs: list_o,P3: $o > $o,X: $o] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs ) )
         => ( P3 @ ( nth_o @ Xs @ I3 ) ) )
     => ( ( member_o @ X @ ( set_o2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_233_all__nth__imp__all__set,axiom,
    ! [Xs: list_nat,P3: nat > $o,X: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
         => ( P3 @ ( nth_nat @ Xs @ I3 ) ) )
     => ( ( member_nat @ X @ ( set_nat2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_234_all__nth__imp__all__set,axiom,
    ! [Xs: list_int,P3: int > $o,X: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs ) )
         => ( P3 @ ( nth_int @ Xs @ I3 ) ) )
     => ( ( member_int @ X @ ( set_int2 @ Xs ) )
       => ( P3 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_235_in__set__conv__nth,axiom,
    ! [X: complex,Xs: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_s3451745648224563538omplex @ Xs ) )
            & ( ( nth_complex @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_236_in__set__conv__nth,axiom,
    ! [X: real,Xs: list_real] :
      ( ( member_real @ X @ ( set_real2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_real @ Xs ) )
            & ( ( nth_real @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_237_in__set__conv__nth,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_s3254054031482475050et_nat @ Xs ) )
            & ( ( nth_set_nat @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_238_in__set__conv__nth,axiom,
    ! [X: vEBT_VEBT,Xs: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs ) )
            & ( ( nth_VEBT_VEBT @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_239_in__set__conv__nth,axiom,
    ! [X: $o,Xs: list_o] :
      ( ( member_o @ X @ ( set_o2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs ) )
            & ( ( nth_o @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_240_in__set__conv__nth,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
            & ( ( nth_nat @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_241_in__set__conv__nth,axiom,
    ! [X: int,Xs: list_int] :
      ( ( member_int @ X @ ( set_int2 @ Xs ) )
      = ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs ) )
            & ( ( nth_int @ Xs @ I )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_242_list__ball__nth,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,P3: vEBT_VEBT > $o] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( ! [X5: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
           => ( P3 @ X5 ) )
       => ( P3 @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).

% list_ball_nth
thf(fact_243_list__ball__nth,axiom,
    ! [N: nat,Xs: list_o,P3: $o > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
     => ( ! [X5: $o] :
            ( ( member_o @ X5 @ ( set_o2 @ Xs ) )
           => ( P3 @ X5 ) )
       => ( P3 @ ( nth_o @ Xs @ N ) ) ) ) ).

% list_ball_nth
thf(fact_244_list__ball__nth,axiom,
    ! [N: nat,Xs: list_nat,P3: nat > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
           => ( P3 @ X5 ) )
       => ( P3 @ ( nth_nat @ Xs @ N ) ) ) ) ).

% list_ball_nth
thf(fact_245_list__ball__nth,axiom,
    ! [N: nat,Xs: list_int,P3: int > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ ( set_int2 @ Xs ) )
           => ( P3 @ X5 ) )
       => ( P3 @ ( nth_int @ Xs @ N ) ) ) ) ).

% list_ball_nth
thf(fact_246_nth__mem,axiom,
    ! [N: nat,Xs: list_complex] :
      ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
     => ( member_complex @ ( nth_complex @ Xs @ N ) @ ( set_complex2 @ Xs ) ) ) ).

% nth_mem
thf(fact_247_nth__mem,axiom,
    ! [N: nat,Xs: list_real] :
      ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
     => ( member_real @ ( nth_real @ Xs @ N ) @ ( set_real2 @ Xs ) ) ) ).

% nth_mem
thf(fact_248_nth__mem,axiom,
    ! [N: nat,Xs: list_set_nat] :
      ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
     => ( member_set_nat @ ( nth_set_nat @ Xs @ N ) @ ( set_set_nat2 @ Xs ) ) ) ).

% nth_mem
thf(fact_249_nth__mem,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs @ N ) @ ( set_VEBT_VEBT2 @ Xs ) ) ) ).

% nth_mem
thf(fact_250_nth__mem,axiom,
    ! [N: nat,Xs: list_o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
     => ( member_o @ ( nth_o @ Xs @ N ) @ ( set_o2 @ Xs ) ) ) ).

% nth_mem
thf(fact_251_nth__mem,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( member_nat @ ( nth_nat @ Xs @ N ) @ ( set_nat2 @ Xs ) ) ) ).

% nth_mem
thf(fact_252_nth__mem,axiom,
    ! [N: nat,Xs: list_int] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
     => ( member_int @ ( nth_int @ Xs @ N ) @ ( set_int2 @ Xs ) ) ) ).

% nth_mem
thf(fact_253_field__sum__of__halves,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_254_field__sum__of__halves,axiom,
    ! [X: rat] :
      ( ( plus_plus_rat @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_255_both__member__options__ding,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
     => ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).

% both_member_options_ding
thf(fact_256_high__inv,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X ) @ N )
        = Y2 ) ) ).

% high_inv
thf(fact_257_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_258_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_259_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_260_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_261_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_262_add__numeral__left,axiom,
    ! [V: num,W: num,Z3: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z3 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_263_add__numeral__left,axiom,
    ! [V: num,W: num,Z3: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z3 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_264_add__numeral__left,axiom,
    ! [V: num,W: num,Z3: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z3 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_265_add__numeral__left,axiom,
    ! [V: num,W: num,Z3: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z3 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_266_add__numeral__left,axiom,
    ! [V: num,W: num,Z3: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z3 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_267_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_268_add__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_269_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_270_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_271_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_272_add__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_273_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_274_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_275_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_276_add__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_277_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_278_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_279_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_280_add__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_281_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_282_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_283_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_284_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_285_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_286_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_287_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_288_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_289_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_290_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_291_VEBT__internal_Oelim__dead_Oelims,axiom,
    ! [X: vEBT_VEBT,Xa: extended_enat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_VEBT_elim_dead @ X @ Xa )
        = Y2 )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( Y2
             != ( vEBT_Leaf @ A3 @ B2 ) ) )
       => ( ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( ( Xa = extend5688581933313929465d_enat )
               => ( Y2
                 != ( vEBT_Node @ Info2 @ Deg2
                    @ ( map_VE8901447254227204932T_VEBT
                      @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      @ TreeList2 )
                    @ ( vEBT_VEBT_elim_dead @ Summary2 @ extend5688581933313929465d_enat ) ) ) ) )
         => ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
               => ! [L2: nat] :
                    ( ( Xa
                      = ( extended_enat2 @ L2 ) )
                   => ( Y2
                     != ( vEBT_Node @ Info2 @ Deg2
                        @ ( take_VEBT_VEBT @ ( divide_divide_nat @ L2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                          @ ( map_VE8901447254227204932T_VEBT
                            @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            @ TreeList2 ) )
                        @ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extended_enat2 @ ( divide_divide_nat @ L2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.elim_dead.elims
thf(fact_292_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_code(2)
thf(fact_293_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_code(2)
thf(fact_294_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_code(2)
thf(fact_295_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_code(2)
thf(fact_296_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_code(2)
thf(fact_297_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera6690914467698888265omplex @ M )
        = ( numera6690914467698888265omplex @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_298_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_299_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_rat @ M )
        = ( numeral_numeral_rat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_300_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_301_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_302_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_303_add__right__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_304_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_305_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_306_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_307_add__left__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_308_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_309_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_310_nat__add__left__cancel__le,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_311_VEBT_Oinject_I2_J,axiom,
    ! [X21: $o,X22: $o,Y21: $o,Y22: $o] :
      ( ( ( vEBT_Leaf @ X21 @ X22 )
        = ( vEBT_Leaf @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% VEBT.inject(2)
thf(fact_312_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z3: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z3 ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z3 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_313_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z3: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z3 ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z3 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_314_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z3: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z3 ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z3 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_315_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z3: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z3 ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z3 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_316_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z3: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z3 ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z3 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_317_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_318_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_319_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_320_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_321_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_322_low__inv,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X ) @ N )
        = X ) ) ).

% low_inv
thf(fact_323_take__all__iff,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT] :
      ( ( ( take_VEBT_VEBT @ N @ Xs )
        = Xs )
      = ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N ) ) ).

% take_all_iff
thf(fact_324_take__all__iff,axiom,
    ! [N: nat,Xs: list_o] :
      ( ( ( take_o @ N @ Xs )
        = Xs )
      = ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N ) ) ).

% take_all_iff
thf(fact_325_take__all__iff,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ( take_nat @ N @ Xs )
        = Xs )
      = ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N ) ) ).

% take_all_iff
thf(fact_326_take__all__iff,axiom,
    ! [N: nat,Xs: list_int] :
      ( ( ( take_int @ N @ Xs )
        = Xs )
      = ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N ) ) ).

% take_all_iff
thf(fact_327_take__all,axiom,
    ! [Xs: list_VEBT_VEBT,N: nat] :
      ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N )
     => ( ( take_VEBT_VEBT @ N @ Xs )
        = Xs ) ) ).

% take_all
thf(fact_328_take__all,axiom,
    ! [Xs: list_o,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N )
     => ( ( take_o @ N @ Xs )
        = Xs ) ) ).

% take_all
thf(fact_329_take__all,axiom,
    ! [Xs: list_nat,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N )
     => ( ( take_nat @ N @ Xs )
        = Xs ) ) ).

% take_all
thf(fact_330_take__all,axiom,
    ! [Xs: list_int,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N )
     => ( ( take_int @ N @ Xs )
        = Xs ) ) ).

% take_all
thf(fact_331_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_332_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_333_enat__ord__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% enat_ord_simps(1)
thf(fact_334_distrib__right__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_335_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_336_distrib__right__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_337_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_338_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_339_distrib__left__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_340_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_341_distrib__left__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_342_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_343_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_344_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_345_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_346_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_347_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_348_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_349_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_350_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_351_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_352_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_353_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_354_power__add__numeral2,axiom,
    ! [A: complex,M: num,N: num,B: complex] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_355_power__add__numeral2,axiom,
    ! [A: real,M: num,N: num,B: real] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_356_power__add__numeral2,axiom,
    ! [A: rat,M: num,N: num,B: rat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_357_power__add__numeral2,axiom,
    ! [A: nat,M: num,N: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_358_power__add__numeral2,axiom,
    ! [A: int,M: num,N: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_359_power__add__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_360_power__add__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_361_power__add__numeral,axiom,
    ! [A: rat,M: num,N: num] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_362_power__add__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_363_power__add__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_364_numeral__le__enat__iff,axiom,
    ! [M: num,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% numeral_le_enat_iff
thf(fact_365_enat__less__induct,axiom,
    ! [P3: extended_enat > $o,N: extended_enat] :
      ( ! [N3: extended_enat] :
          ( ! [M3: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M3 @ N3 )
             => ( P3 @ M3 ) )
         => ( P3 @ N3 ) )
     => ( P3 @ N ) ) ).

% enat_less_induct
thf(fact_366_mult__le__mono2,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K2 @ I2 ) @ ( times_times_nat @ K2 @ J ) ) ) ).

% mult_le_mono2
thf(fact_367_mult__le__mono1,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K2 ) @ ( times_times_nat @ J @ K2 ) ) ) ).

% mult_le_mono1
thf(fact_368_mult__le__mono,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K2 ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_369_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_370_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_371_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_372_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_373_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_374_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_375_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A4: real,B3: real] : ( times_times_real @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_376_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A4: rat,B3: rat] : ( times_times_rat @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_377_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B3: nat] : ( times_times_nat @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_378_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A4: int,B3: int] : ( times_times_int @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_379_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_380_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_381_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_382_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_383_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_384_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_385_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_386_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_387_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_388_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_389_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_390_set__take__subset__set__take,axiom,
    ! [M: nat,N: nat,Xs: list_VEBT_VEBT] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( take_VEBT_VEBT @ M @ Xs ) ) @ ( set_VEBT_VEBT2 @ ( take_VEBT_VEBT @ N @ Xs ) ) ) ) ).

% set_take_subset_set_take
thf(fact_391_set__take__subset__set__take,axiom,
    ! [M: nat,N: nat,Xs: list_nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_set_nat @ ( set_nat2 @ ( take_nat @ M @ Xs ) ) @ ( set_nat2 @ ( take_nat @ N @ Xs ) ) ) ) ).

% set_take_subset_set_take
thf(fact_392_set__take__subset__set__take,axiom,
    ! [M: nat,N: nat,Xs: list_int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_set_int @ ( set_int2 @ ( take_int @ M @ Xs ) ) @ ( set_int2 @ ( take_int @ N @ Xs ) ) ) ) ).

% set_take_subset_set_take
thf(fact_393_power__commuting__commutes,axiom,
    ! [X: complex,Y2: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y2 )
        = ( times_times_complex @ Y2 @ X ) )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ Y2 )
        = ( times_times_complex @ Y2 @ ( power_power_complex @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_394_power__commuting__commutes,axiom,
    ! [X: real,Y2: real,N: nat] :
      ( ( ( times_times_real @ X @ Y2 )
        = ( times_times_real @ Y2 @ X ) )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y2 )
        = ( times_times_real @ Y2 @ ( power_power_real @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_395_power__commuting__commutes,axiom,
    ! [X: rat,Y2: rat,N: nat] :
      ( ( ( times_times_rat @ X @ Y2 )
        = ( times_times_rat @ Y2 @ X ) )
     => ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ Y2 )
        = ( times_times_rat @ Y2 @ ( power_power_rat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_396_power__commuting__commutes,axiom,
    ! [X: nat,Y2: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y2 )
        = ( times_times_nat @ Y2 @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y2 )
        = ( times_times_nat @ Y2 @ ( power_power_nat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_397_power__commuting__commutes,axiom,
    ! [X: int,Y2: int,N: nat] :
      ( ( ( times_times_int @ X @ Y2 )
        = ( times_times_int @ Y2 @ X ) )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y2 )
        = ( times_times_int @ Y2 @ ( power_power_int @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_398_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_399_power__mult__distrib,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_400_power__mult__distrib,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_401_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_402_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_403_power__commutes,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_commutes
thf(fact_404_power__commutes,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_commutes
thf(fact_405_power__commutes,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_commutes
thf(fact_406_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_407_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_408_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_409_power__mult,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_410_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_411_power__mult,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_412_VEBT_Oexhaust,axiom,
    ! [Y2: vEBT_VEBT] :
      ( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
          ( Y2
         != ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
     => ~ ! [X212: $o,X222: $o] :
            ( Y2
           != ( vEBT_Leaf @ X212 @ X222 ) ) ) ).

% VEBT.exhaust
thf(fact_413_VEBT_Odistinct_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X22: $o] :
      ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
     != ( vEBT_Leaf @ X21 @ X22 ) ) ).

% VEBT.distinct(1)
thf(fact_414_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_415_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_416_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_417_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
          | ( M2 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_418_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_419_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M2 @ N2 )
          & ( M2 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_420_left__add__mult__distrib,axiom,
    ! [I2: nat,U: nat,J: nat,K2: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I2 @ J ) @ U ) @ K2 ) ) ).

% left_add_mult_distrib
thf(fact_421_add__mult__distrib2,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K2 @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) ) ) ).

% add_mult_distrib2
thf(fact_422_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K2 )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) ) ) ).

% add_mult_distrib
thf(fact_423_subset__code_I1_J,axiom,
    ! [Xs: list_complex,B4: set_complex] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ B4 )
      = ( ! [X4: complex] :
            ( ( member_complex @ X4 @ ( set_complex2 @ Xs ) )
           => ( member_complex @ X4 @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_424_subset__code_I1_J,axiom,
    ! [Xs: list_real,B4: set_real] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ B4 )
      = ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_real2 @ Xs ) )
           => ( member_real @ X4 @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_425_subset__code_I1_J,axiom,
    ! [Xs: list_set_nat,B4: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ B4 )
      = ( ! [X4: set_nat] :
            ( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs ) )
           => ( member_set_nat @ X4 @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_426_subset__code_I1_J,axiom,
    ! [Xs: list_VEBT_VEBT,B4: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ B4 )
      = ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
           => ( member_VEBT_VEBT @ X4 @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_427_subset__code_I1_J,axiom,
    ! [Xs: list_nat,B4: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B4 )
      = ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
           => ( member_nat @ X4 @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_428_subset__code_I1_J,axiom,
    ! [Xs: list_int,B4: set_int] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ B4 )
      = ( ! [X4: int] :
            ( ( member_int @ X4 @ ( set_int2 @ Xs ) )
           => ( member_int @ X4 @ B4 ) ) ) ) ).

% subset_code(1)
thf(fact_429_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
        ? [K3: nat] :
          ( N2
          = ( plus_plus_nat @ M2 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_430_trans__le__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_431_trans__le__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_432_add__le__mono1,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_le_mono1
thf(fact_433_add__le__mono,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_434_le__Suc__ex,axiom,
    ! [K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ K2 @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K2 @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_435_add__leD2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ K2 @ N ) ) ).

% add_leD2
thf(fact_436_add__leD1,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_437_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_438_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_439_add__leE,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K2 @ N ) ) ) ).

% add_leE
thf(fact_440_div__mult2__eq,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) ).

% div_mult2_eq
thf(fact_441_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_442_div__le__mono,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K2 ) @ ( divide_divide_nat @ N @ K2 ) ) ) ).

% div_le_mono
thf(fact_443_mult__numeral__1__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_444_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_445_mult__numeral__1__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_446_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_447_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_448_mult__numeral__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_449_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_450_mult__numeral__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_451_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_452_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_453_VEBT__internal_Oelim__dead_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,Uu: extended_enat] :
      ( ( vEBT_VEBT_elim_dead @ ( vEBT_Leaf @ A @ B ) @ Uu )
      = ( vEBT_Leaf @ A @ B ) ) ).

% VEBT_internal.elim_dead.simps(1)
thf(fact_454_less__eq__enat__def,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [M2: extended_enat] :
          ( extended_case_enat_o
          @ ^ [N1: nat] :
              ( extended_case_enat_o
              @ ^ [M1: nat] : ( ord_less_eq_nat @ M1 @ N1 )
              @ $false
              @ M2 )
          @ $true ) ) ) ).

% less_eq_enat_def
thf(fact_455_power__add,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_add
thf(fact_456_power__add,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% power_add
thf(fact_457_power__add,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_add
thf(fact_458_power__add,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% power_add
thf(fact_459_power__add,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% power_add
thf(fact_460_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K2: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K2 ) @ ( F @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_461_less__mult__imp__div__less,axiom,
    ! [M: nat,I2: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I2 @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I2 ) ) ).

% less_mult_imp_div_less
thf(fact_462_set__take__subset,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT] : ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( take_VEBT_VEBT @ N @ Xs ) ) @ ( set_VEBT_VEBT2 @ Xs ) ) ).

% set_take_subset
thf(fact_463_set__take__subset,axiom,
    ! [N: nat,Xs: list_nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ ( take_nat @ N @ Xs ) ) @ ( set_nat2 @ Xs ) ) ).

% set_take_subset
thf(fact_464_set__take__subset,axiom,
    ! [N: nat,Xs: list_int] : ( ord_less_eq_set_int @ ( set_int2 @ ( take_int @ N @ Xs ) ) @ ( set_int2 @ Xs ) ) ).

% set_take_subset
thf(fact_465_left__add__twice,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_466_left__add__twice,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_467_left__add__twice,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_468_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_469_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_470_mult__2__right,axiom,
    ! [Z3: complex] :
      ( ( times_times_complex @ Z3 @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ Z3 @ Z3 ) ) ).

% mult_2_right
thf(fact_471_mult__2__right,axiom,
    ! [Z3: real] :
      ( ( times_times_real @ Z3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ Z3 @ Z3 ) ) ).

% mult_2_right
thf(fact_472_mult__2__right,axiom,
    ! [Z3: rat] :
      ( ( times_times_rat @ Z3 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ Z3 @ Z3 ) ) ).

% mult_2_right
thf(fact_473_mult__2__right,axiom,
    ! [Z3: nat] :
      ( ( times_times_nat @ Z3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z3 @ Z3 ) ) ).

% mult_2_right
thf(fact_474_mult__2__right,axiom,
    ! [Z3: int] :
      ( ( times_times_int @ Z3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z3 @ Z3 ) ) ).

% mult_2_right
thf(fact_475_mult__2,axiom,
    ! [Z3: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z3 )
      = ( plus_plus_complex @ Z3 @ Z3 ) ) ).

% mult_2
thf(fact_476_mult__2,axiom,
    ! [Z3: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z3 )
      = ( plus_plus_real @ Z3 @ Z3 ) ) ).

% mult_2
thf(fact_477_mult__2,axiom,
    ! [Z3: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z3 )
      = ( plus_plus_rat @ Z3 @ Z3 ) ) ).

% mult_2
thf(fact_478_mult__2,axiom,
    ! [Z3: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z3 )
      = ( plus_plus_nat @ Z3 @ Z3 ) ) ).

% mult_2
thf(fact_479_mult__2,axiom,
    ! [Z3: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z3 )
      = ( plus_plus_int @ Z3 @ Z3 ) ) ).

% mult_2
thf(fact_480_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_481_add__right__imp__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_482_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_483_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_484_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_485_add__left__imp__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_486_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_487_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_488_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_489_add_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_490_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_491_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_492_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_493_add_Ocommute,axiom,
    ( plus_plus_rat
    = ( ^ [A4: rat,B3: rat] : ( plus_plus_rat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_494_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_495_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_496_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_497_add_Oright__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_498_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_499_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_500_add_Oleft__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_501_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_502_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_503_add_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.assoc
thf(fact_504_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_505_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_506_group__cancel_Oadd2,axiom,
    ! [B4: real,K2: real,B: real,A: real] :
      ( ( B4
        = ( plus_plus_real @ K2 @ B ) )
     => ( ( plus_plus_real @ A @ B4 )
        = ( plus_plus_real @ K2 @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_507_group__cancel_Oadd2,axiom,
    ! [B4: rat,K2: rat,B: rat,A: rat] :
      ( ( B4
        = ( plus_plus_rat @ K2 @ B ) )
     => ( ( plus_plus_rat @ A @ B4 )
        = ( plus_plus_rat @ K2 @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_508_group__cancel_Oadd2,axiom,
    ! [B4: nat,K2: nat,B: nat,A: nat] :
      ( ( B4
        = ( plus_plus_nat @ K2 @ B ) )
     => ( ( plus_plus_nat @ A @ B4 )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_509_group__cancel_Oadd2,axiom,
    ! [B4: int,K2: int,B: int,A: int] :
      ( ( B4
        = ( plus_plus_int @ K2 @ B ) )
     => ( ( plus_plus_int @ A @ B4 )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_510_group__cancel_Oadd1,axiom,
    ! [A2: real,K2: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K2 @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K2 @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_511_group__cancel_Oadd1,axiom,
    ! [A2: rat,K2: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K2 @ A ) )
     => ( ( plus_plus_rat @ A2 @ B )
        = ( plus_plus_rat @ K2 @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_512_group__cancel_Oadd1,axiom,
    ! [A2: nat,K2: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K2 @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_513_group__cancel_Oadd1,axiom,
    ! [A2: int,K2: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K2 @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_514_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( I2 = J )
        & ( K2 = L ) )
     => ( ( plus_plus_real @ I2 @ K2 )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_515_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( I2 = J )
        & ( K2 = L ) )
     => ( ( plus_plus_rat @ I2 @ K2 )
        = ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_516_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I2 = J )
        & ( K2 = L ) )
     => ( ( plus_plus_nat @ I2 @ K2 )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_517_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( I2 = J )
        & ( K2 = L ) )
     => ( ( plus_plus_int @ I2 @ K2 )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_518_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_519_is__num__normalize_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_520_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_521_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_522_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_523_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_524_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_525_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_526_power__numeral__even,axiom,
    ! [Z3: complex,W: num] :
      ( ( power_power_complex @ Z3 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_complex @ ( power_power_complex @ Z3 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_527_power__numeral__even,axiom,
    ! [Z3: real,W: num] :
      ( ( power_power_real @ Z3 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_real @ ( power_power_real @ Z3 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_528_power__numeral__even,axiom,
    ! [Z3: rat,W: num] :
      ( ( power_power_rat @ Z3 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_rat @ ( power_power_rat @ Z3 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_529_power__numeral__even,axiom,
    ! [Z3: nat,W: num] :
      ( ( power_power_nat @ Z3 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_nat @ ( power_power_nat @ Z3 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_530_power__numeral__even,axiom,
    ! [Z3: int,W: num] :
      ( ( power_power_int @ Z3 @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( power_power_int @ Z3 @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_531_iadd__le__enat__iff,axiom,
    ! [X: extended_enat,Y2: extended_enat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y2 ) @ ( extended_enat2 @ N ) )
      = ( ? [Y4: nat,X7: nat] :
            ( ( X
              = ( extended_enat2 @ X7 ) )
            & ( Y2
              = ( extended_enat2 @ Y4 ) )
            & ( ord_less_eq_nat @ ( plus_plus_nat @ X7 @ Y4 ) @ N ) ) ) ) ).

% iadd_le_enat_iff
thf(fact_532_power2__eq__square,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_complex @ A @ A ) ) ).

% power2_eq_square
thf(fact_533_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_534_power2__eq__square,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_rat @ A @ A ) ) ).

% power2_eq_square
thf(fact_535_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_536_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_537_power4__eq__xxxx,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_538_power4__eq__xxxx,axiom,
    ! [X: real] :
      ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_539_power4__eq__xxxx,axiom,
    ! [X: rat] :
      ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_540_power4__eq__xxxx,axiom,
    ! [X: nat] :
      ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_541_power4__eq__xxxx,axiom,
    ! [X: int] :
      ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_542_power__even__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_543_power__even__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_544_power__even__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_545_power__even__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_546_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_547_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_548_self__le__ge2__pow,axiom,
    ! [K2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K2 @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_549_nth__take__lemma,axiom,
    ! [K2: nat,Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ord_less_eq_nat @ K2 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( ( ord_less_eq_nat @ K2 @ ( size_s6755466524823107622T_VEBT @ Ys ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ K2 )
             => ( ( nth_VEBT_VEBT @ Xs @ I3 )
                = ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
         => ( ( take_VEBT_VEBT @ K2 @ Xs )
            = ( take_VEBT_VEBT @ K2 @ Ys ) ) ) ) ) ).

% nth_take_lemma
thf(fact_550_nth__take__lemma,axiom,
    ! [K2: nat,Xs: list_o,Ys: list_o] :
      ( ( ord_less_eq_nat @ K2 @ ( size_size_list_o @ Xs ) )
     => ( ( ord_less_eq_nat @ K2 @ ( size_size_list_o @ Ys ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ K2 )
             => ( ( nth_o @ Xs @ I3 )
                = ( nth_o @ Ys @ I3 ) ) )
         => ( ( take_o @ K2 @ Xs )
            = ( take_o @ K2 @ Ys ) ) ) ) ) ).

% nth_take_lemma
thf(fact_551_nth__take__lemma,axiom,
    ! [K2: nat,Xs: list_nat,Ys: list_nat] :
      ( ( ord_less_eq_nat @ K2 @ ( size_size_list_nat @ Xs ) )
     => ( ( ord_less_eq_nat @ K2 @ ( size_size_list_nat @ Ys ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ K2 )
             => ( ( nth_nat @ Xs @ I3 )
                = ( nth_nat @ Ys @ I3 ) ) )
         => ( ( take_nat @ K2 @ Xs )
            = ( take_nat @ K2 @ Ys ) ) ) ) ) ).

% nth_take_lemma
thf(fact_552_nth__take__lemma,axiom,
    ! [K2: nat,Xs: list_int,Ys: list_int] :
      ( ( ord_less_eq_nat @ K2 @ ( size_size_list_int @ Xs ) )
     => ( ( ord_less_eq_nat @ K2 @ ( size_size_list_int @ Ys ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ K2 )
             => ( ( nth_int @ Xs @ I3 )
                = ( nth_int @ Ys @ I3 ) ) )
         => ( ( take_int @ K2 @ Xs )
            = ( take_int @ K2 @ Ys ) ) ) ) ) ).

% nth_take_lemma
thf(fact_553_power2__sum,axiom,
    ! [X: complex,Y2: complex] :
      ( ( power_power_complex @ ( plus_plus_complex @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_554_power2__sum,axiom,
    ! [X: real,Y2: real] :
      ( ( power_power_real @ ( plus_plus_real @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_555_power2__sum,axiom,
    ! [X: rat,Y2: rat] :
      ( ( power_power_rat @ ( plus_plus_rat @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_556_power2__sum,axiom,
    ! [X: nat,Y2: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_557_power2__sum,axiom,
    ! [X: int,Y2: int] :
      ( ( power_power_int @ ( plus_plus_int @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_558_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_559_add__le__imp__le__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_560_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_561_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_562_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_563_add__le__imp__le__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_564_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_565_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_566_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
        ? [C2: nat] :
          ( B3
          = ( plus_plus_nat @ A4 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_567_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_568_add__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_569_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_570_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_571_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_572_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_573_add__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_574_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_575_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_576_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_577_add__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_578_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_579_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_580_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( ord_less_eq_real @ K2 @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_581_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I2 @ J )
        & ( ord_less_eq_rat @ K2 @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_582_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_583_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_584_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( I2 = J )
        & ( ord_less_eq_real @ K2 @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_585_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( I2 = J )
        & ( ord_less_eq_rat @ K2 @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_586_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I2 = J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_587_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( I2 = J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_588_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_589_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_590_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_591_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_592_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_593_add__less__imp__less__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_594_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_595_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_596_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_597_add__less__imp__less__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_598_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_599_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_600_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_601_add__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_602_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_603_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_604_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_605_add__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_606_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_607_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_608_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_609_add__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_610_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_611_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_612_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_613_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( ord_less_rat @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_614_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_615_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( K2 = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_616_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( I2 = J )
        & ( ord_less_real @ K2 @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_617_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( I2 = J )
        & ( ord_less_rat @ K2 @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_618_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I2 = J )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_619_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( I2 = J )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_620_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( ord_less_real @ K2 @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_621_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( ord_less_rat @ I2 @ J )
        & ( ord_less_rat @ K2 @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_622_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_623_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_624_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_625_add__less__le__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_626_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_627_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_628_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_629_add__le__less__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_630_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_631_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_632_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( ord_less_eq_real @ K2 @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_633_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( ord_less_rat @ I2 @ J )
        & ( ord_less_eq_rat @ K2 @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_634_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_635_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_636_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: real,J: real,K2: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( ord_less_real @ K2 @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K2 ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_637_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: rat,J: rat,K2: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I2 @ J )
        & ( ord_less_rat @ K2 @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K2 ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_638_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_639_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_640_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_Bit0
thf(fact_641_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_Bit0
thf(fact_642_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_Bit0
thf(fact_643_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_644_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_645_divide__numeral__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_646_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_647_divide__numeral__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_648_in__children__def,axiom,
    ( vEBT_V5917875025757280293ildren
    = ( ^ [N2: nat,TreeList3: list_VEBT_VEBT,X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X4 @ N2 ) ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) ) ) ).

% in_children_def
thf(fact_649_sum__squares__bound,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y2 ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_650_sum__squares__bound,axiom,
    ! [X: rat,Y2: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y2 ) @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_651_set__n__deg__not__0,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,M: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N ) )
     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
       => ( ord_less_eq_nat @ one_one_nat @ N ) ) ) ).

% set_n_deg_not_0
thf(fact_652_times__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_653_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_654_times__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_655_divide__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_656_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_657_divide__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_658_divide__divide__eq__left,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_659_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_660_divide__divide__eq__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_661_times__divide__eq__left,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_662_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_663_times__divide__eq__left,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_664_low__def,axiom,
    ( vEBT_VEBT_low
    = ( ^ [X4: nat,N2: nat] : ( modulo_modulo_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% low_def
thf(fact_665_set__vebt__def,axiom,
    ( vEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).

% set_vebt_def
thf(fact_666_invar__vebt_Ointros_I2_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
               => ( ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(2)
thf(fact_667_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_complex @ ( numera6690914467698888265omplex @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numera6690914467698888265omplex @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_668_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_real @ ( numeral_numeral_real @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_real @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_669_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_rat @ ( numeral_numeral_rat @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_rat @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_670_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_671_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_672_verit__eq__simplify_I8_J,axiom,
    ! [X23: num,Y23: num] :
      ( ( ( bit0 @ X23 )
        = ( bit0 @ Y23 ) )
      = ( X23 = Y23 ) ) ).

% verit_eq_simplify(8)
thf(fact_673_mod__mod__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_674_mod__mod__trivial,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_675_mod__mod__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_676_times__enat__simps_I2_J,axiom,
    ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ extend5688581933313929465d_enat )
    = extend5688581933313929465d_enat ) ).

% times_enat_simps(2)
thf(fact_677_mult_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.right_neutral
thf(fact_678_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_679_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_680_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_681_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_682_mult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% mult_1
thf(fact_683_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_684_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_685_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_686_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_687_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_688_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_689_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ one_one_rat @ N )
      = one_one_rat ) ).

% power_one
thf(fact_690_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_691_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_692_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_693_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ one_one_complex @ N )
      = one_one_complex ) ).

% power_one
thf(fact_694_mod__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self1
thf(fact_695_mod__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self1
thf(fact_696_mod__add__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self1
thf(fact_697_mod__add__self2,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self2
thf(fact_698_mod__add__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self2
thf(fact_699_mod__add__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self2
thf(fact_700_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_701_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_702_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_703_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_704_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_705_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_706_mod__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = M ) ) ).

% mod_less
thf(fact_707_times__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( times_times_nat @ M @ N ) ) ) ).

% times_enat_simps(1)
thf(fact_708_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_709_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_710_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_711_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera6690914467698888265omplex @ N )
        = one_one_complex )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_712_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_713_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_rat @ N )
        = one_one_rat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_714_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_715_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_716_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_complex
        = ( numera6690914467698888265omplex @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_717_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_718_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_rat
        = ( numeral_numeral_rat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_719_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_720_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_721_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_722_power__inject__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ( power_power_rat @ A @ M )
          = ( power_power_rat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_723_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_724_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_725_mod__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self4
thf(fact_726_mod__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self4
thf(fact_727_mod__mult__self4,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self4
thf(fact_728_mod__mult__self3,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self3
thf(fact_729_mod__mult__self3,axiom,
    ! [C: int,B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self3
thf(fact_730_mod__mult__self3,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self3
thf(fact_731_mod__mult__self2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self2
thf(fact_732_mod__mult__self2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self2
thf(fact_733_mod__mult__self2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self2
thf(fact_734_mod__mult__self1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self1
thf(fact_735_mod__mult__self1,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self1
thf(fact_736_mod__mult__self1,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self1
thf(fact_737_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_738_power__mult__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_739_power__mult__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_740_power__mult__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_741_power__mult__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_742_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y2: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y2 ) )
        = ( ord_less_nat @ X @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_743_power__strict__increasing__iff,axiom,
    ! [B: rat,X: nat,Y2: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y2 ) )
        = ( ord_less_nat @ X @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_744_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y2: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y2 ) )
        = ( ord_less_nat @ X @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_745_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y2: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y2 ) )
        = ( ord_less_nat @ X @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_746_one__add__one,axiom,
    ( ( plus_plus_complex @ one_one_complex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_747_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_748_one__add__one,axiom,
    ( ( plus_plus_rat @ one_one_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_749_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_750_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_751_power__increasing__iff,axiom,
    ! [B: real,X: nat,Y2: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_752_power__increasing__iff,axiom,
    ! [B: rat,X: nat,Y2: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_753_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y2: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_754_power__increasing__iff,axiom,
    ! [B: int,X: nat,Y2: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_755_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_756_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_757_bits__one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_one_mod_two_eq_one
thf(fact_758_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_759_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_760_one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% one_mod_two_eq_one
thf(fact_761_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_762_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_763_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_764_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_765_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_766_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_767_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_768_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_769_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_770_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_771_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_772_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_773_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_774_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_775_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_776_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_777_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_778_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_779_mod__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).

% mod_less_eq_dividend
thf(fact_780_Nat_Oex__has__greatest__nat,axiom,
    ! [P3: nat > $o,K2: nat,B: nat] :
      ( ( P3 @ K2 )
     => ( ! [Y5: nat] :
            ( ( P3 @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ? [X5: nat] :
            ( ( P3 @ X5 )
            & ! [Y6: nat] :
                ( ( P3 @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X5 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_781_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_782_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_783_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_784_le__trans,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ J @ K2 )
       => ( ord_less_eq_nat @ I2 @ K2 ) ) ) ).

% le_trans
thf(fact_785_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_786_one__reorient,axiom,
    ! [X: complex] :
      ( ( one_one_complex = X )
      = ( X = one_one_complex ) ) ).

% one_reorient
thf(fact_787_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_788_one__reorient,axiom,
    ! [X: rat] :
      ( ( one_one_rat = X )
      = ( X = one_one_rat ) ) ).

% one_reorient
thf(fact_789_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_790_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_791_mod__mult__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_792_mod__mult__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_793_mod__mult__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_794_mod__mult__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_795_mod__mult__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_796_mod__mult__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_797_mult__mod__right,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_798_mult__mod__right,axiom,
    ! [C: int,A: int,B: int] :
      ( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
      = ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_799_mult__mod__right,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_800_mod__mult__mult2,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
      = ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_801_mod__mult__mult2,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_802_mod__mult__mult2,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_803_mod__mult__cong,axiom,
    ! [A: nat,C: nat,A5: nat,B: nat,B5: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A5 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B5 @ C ) )
       => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( times_times_nat @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_804_mod__mult__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B5: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B5 @ C ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( times_times_int @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_805_mod__mult__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B5: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B5 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_806_mod__mult__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_807_mod__mult__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_808_mod__mult__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_809_mod__add__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_810_mod__add__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_811_mod__add__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_812_mod__add__cong,axiom,
    ! [A: nat,C: nat,A5: nat,B: nat,B5: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A5 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B5 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_813_mod__add__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B5: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B5 @ C ) )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( plus_plus_int @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_814_mod__add__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B5: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B5 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_815_mod__add__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_816_mod__add__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_817_mod__add__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_818_mod__add__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_819_mod__add__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_820_mod__add__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_821_power__mod,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_822_power__mod,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_823_power__mod,axiom,
    ! [A: code_integer,B: code_integer,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
      = ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_824_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_825_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_826_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_827_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_828_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_829_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_830_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_831_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_832_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_833_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_834_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_835_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_836_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_837_mult_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.comm_neutral
thf(fact_838_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_839_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_840_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_841_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_842_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_843_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_844_mod__eqE,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
     => ~ ! [D2: int] :
            ( B
           != ( plus_plus_int @ A @ ( times_times_int @ C @ D2 ) ) ) ) ).

% mod_eqE
thf(fact_845_mod__eqE,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
     => ~ ! [D2: code_integer] :
            ( B
           != ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D2 ) ) ) ) ).

% mod_eqE
thf(fact_846_div__add1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_847_div__add1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_848_div__add1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_849_four__x__squared,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_850_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_851_div__mod__decomp,axiom,
    ! [A2: nat,N: nat] :
      ( A2
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N ) @ N ) @ ( modulo_modulo_nat @ A2 @ N ) ) ) ).

% div_mod_decomp
thf(fact_852_div__mult2__numeral__eq,axiom,
    ! [A: nat,K2: num,L: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K2 ) ) @ ( numeral_numeral_nat @ L ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K2 @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_853_div__mult2__numeral__eq,axiom,
    ! [A: int,K2: num,L: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ L ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K2 @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_854_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_855_gt__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).

% gt_half_sum
thf(fact_856_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_857_less__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).

% less_half_sum
thf(fact_858_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_859_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).

% one_le_numeral
thf(fact_860_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_861_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_862_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_863_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).

% not_numeral_less_one
thf(fact_864_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_865_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_866_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).

% one_plus_numeral_commute
thf(fact_867_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_868_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).

% one_plus_numeral_commute
thf(fact_869_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_870_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_871_numeral__One,axiom,
    ( ( numera6690914467698888265omplex @ one )
    = one_one_complex ) ).

% numeral_One
thf(fact_872_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_873_numeral__One,axiom,
    ( ( numeral_numeral_rat @ one )
    = one_one_rat ) ).

% numeral_One
thf(fact_874_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_875_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_876_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_877_one__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% one_le_power
thf(fact_878_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_879_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_880_power__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_881_power__increasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_rat @ one_one_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_882_power__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_883_power__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_884_left__right__inverse__power,axiom,
    ! [X: complex,Y2: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y2 )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y2 @ N ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_885_left__right__inverse__power,axiom,
    ! [X: real,Y2: real,N: nat] :
      ( ( ( times_times_real @ X @ Y2 )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y2 @ N ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_886_left__right__inverse__power,axiom,
    ! [X: rat,Y2: rat,N: nat] :
      ( ( ( times_times_rat @ X @ Y2 )
        = one_one_rat )
     => ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ Y2 @ N ) )
        = one_one_rat ) ) ).

% left_right_inverse_power
thf(fact_887_left__right__inverse__power,axiom,
    ! [X: nat,Y2: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y2 )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y2 @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_888_left__right__inverse__power,axiom,
    ! [X: int,Y2: int,N: nat] :
      ( ( ( times_times_int @ X @ Y2 )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y2 @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_889_power__one__over,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).

% power_one_over
thf(fact_890_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_891_power__one__over,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
      = ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% power_one_over
thf(fact_892_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_893_pow_Osimps_I1_J,axiom,
    ! [X: num] :
      ( ( pow @ X @ one )
      = X ) ).

% pow.simps(1)
thf(fact_894_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,D: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D )
      = ( D = one_one_nat ) ) ).

% VEBT_internal.valid'.simps(1)
thf(fact_895_div__mult1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_896_div__mult1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_897_div__mult1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_898_mod__mult2__eq,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q ) )
      = ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).

% mod_mult2_eq
thf(fact_899_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_900_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_901_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_902_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_903_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_904_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_905_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_906_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_907_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_908_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_909_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_910_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_911_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_912_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_913_linordered__field__no__lb,axiom,
    ! [X2: real] :
    ? [Y5: real] : ( ord_less_real @ Y5 @ X2 ) ).

% linordered_field_no_lb
thf(fact_914_linordered__field__no__lb,axiom,
    ! [X2: rat] :
    ? [Y5: rat] : ( ord_less_rat @ Y5 @ X2 ) ).

% linordered_field_no_lb
thf(fact_915_linordered__field__no__ub,axiom,
    ! [X2: real] :
    ? [X_12: real] : ( ord_less_real @ X2 @ X_12 ) ).

% linordered_field_no_ub
thf(fact_916_linordered__field__no__ub,axiom,
    ! [X2: rat] :
    ? [X_12: rat] : ( ord_less_rat @ X2 @ X_12 ) ).

% linordered_field_no_ub
thf(fact_917_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_918_power__le__imp__le__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_919_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_920_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_921_power__gt1__lemma,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_922_power__gt1__lemma,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_923_power__gt1__lemma,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_924_power__gt1__lemma,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_925_power__less__power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_926_power__less__power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_927_power__less__power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_928_power__less__power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_929_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_930_power__less__imp__less__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_931_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_932_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_933_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_934_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_rat @ one_one_rat @ A )
       => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_935_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_936_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_937_one__power2,axiom,
    ( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_rat ) ).

% one_power2
thf(fact_938_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_939_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_940_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_941_one__power2,axiom,
    ( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_complex ) ).

% one_power2
thf(fact_942_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_943_div__exp__mod__exp__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_944_div__exp__mod__exp__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_945_div__exp__mod__exp__eq,axiom,
    ! [A: code_integer,N: nat,M: nat] :
      ( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
      = ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_946_ex__power__ivl1,axiom,
    ! [B: nat,K2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K2 )
       => ? [N3: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K2 )
            & ( ord_less_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_947_ex__power__ivl2,axiom,
    ! [B: nat,K2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
       => ? [N3: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K2 )
            & ( ord_less_eq_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_948_verit__comp__simplify1_I3_J,axiom,
    ! [B5: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B5 @ A5 ) )
      = ( ord_less_real @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_949_verit__comp__simplify1_I3_J,axiom,
    ! [B5: rat,A5: rat] :
      ( ( ~ ( ord_less_eq_rat @ B5 @ A5 ) )
      = ( ord_less_rat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_950_verit__comp__simplify1_I3_J,axiom,
    ! [B5: num,A5: num] :
      ( ( ~ ( ord_less_eq_num @ B5 @ A5 ) )
      = ( ord_less_num @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_951_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
      = ( ord_less_nat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_952_verit__comp__simplify1_I3_J,axiom,
    ! [B5: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B5 @ A5 ) )
      = ( ord_less_int @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_953_verit__eq__simplify_I10_J,axiom,
    ! [X23: num] :
      ( one
     != ( bit0 @ X23 ) ) ).

% verit_eq_simplify(10)
thf(fact_954_times__divide__times__eq,axiom,
    ! [X: complex,Y2: complex,Z3: complex,W: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ X @ Y2 ) @ ( divide1717551699836669952omplex @ Z3 @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X @ Z3 ) @ ( times_times_complex @ Y2 @ W ) ) ) ).

% times_divide_times_eq
thf(fact_955_times__divide__times__eq,axiom,
    ! [X: real,Y2: real,Z3: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X @ Y2 ) @ ( divide_divide_real @ Z3 @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ Y2 @ W ) ) ) ).

% times_divide_times_eq
thf(fact_956_times__divide__times__eq,axiom,
    ! [X: rat,Y2: rat,Z3: rat,W: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ X @ Y2 ) @ ( divide_divide_rat @ Z3 @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ Y2 @ W ) ) ) ).

% times_divide_times_eq
thf(fact_957_divide__divide__times__eq,axiom,
    ! [X: complex,Y2: complex,Z3: complex,W: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X @ Y2 ) @ ( divide1717551699836669952omplex @ Z3 @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X @ W ) @ ( times_times_complex @ Y2 @ Z3 ) ) ) ).

% divide_divide_times_eq
thf(fact_958_divide__divide__times__eq,axiom,
    ! [X: real,Y2: real,Z3: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X @ Y2 ) @ ( divide_divide_real @ Z3 @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y2 @ Z3 ) ) ) ).

% divide_divide_times_eq
thf(fact_959_divide__divide__times__eq,axiom,
    ! [X: rat,Y2: rat,Z3: rat,W: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ X @ Y2 ) @ ( divide_divide_rat @ Z3 @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X @ W ) @ ( times_times_rat @ Y2 @ Z3 ) ) ) ).

% divide_divide_times_eq
thf(fact_960_divide__divide__eq__left_H,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_961_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_962_divide__divide__eq__left_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_963_add__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
      = ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_964_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_965_add__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_966_div__by__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ one_one_complex )
      = A ) ).

% div_by_1
thf(fact_967_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_968_div__by__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ one_one_rat )
      = A ) ).

% div_by_1
thf(fact_969_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_970_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_971_mod__eq__nat1E,axiom,
    ! [M: nat,Q: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q )
        = ( modulo_modulo_nat @ N @ Q ) )
     => ( ( ord_less_eq_nat @ N @ M )
       => ~ ! [S2: nat] :
              ( M
             != ( plus_plus_nat @ N @ ( times_times_nat @ Q @ S2 ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_972_mod__eq__nat2E,axiom,
    ! [M: nat,Q: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q )
        = ( modulo_modulo_nat @ N @ Q ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ~ ! [S2: nat] :
              ( N
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q @ S2 ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_973_nat__mod__eq__lemma,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( ( modulo_modulo_nat @ X @ N )
        = ( modulo_modulo_nat @ Y2 @ N ) )
     => ( ( ord_less_eq_nat @ Y2 @ X )
       => ? [Q3: nat] :
            ( X
            = ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q3 ) ) ) ) ) ).

% nat_mod_eq_lemma
thf(fact_974_cancel__div__mod__rules_I2_J,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_975_cancel__div__mod__rules_I2_J,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_976_cancel__div__mod__rules_I2_J,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_977_cancel__div__mod__rules_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_978_cancel__div__mod__rules_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_979_cancel__div__mod__rules_I1_J,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_980_mod__div__decomp,axiom,
    ! [A: nat,B: nat] :
      ( A
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_981_mod__div__decomp,axiom,
    ! [A: int,B: int] :
      ( A
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_982_mod__div__decomp,axiom,
    ! [A: code_integer,B: code_integer] :
      ( A
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_983_div__mult__mod__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_984_div__mult__mod__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_985_div__mult__mod__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_986_mod__div__mult__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_987_mod__div__mult__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_988_mod__div__mult__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_989_mod__mult__div__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_990_mod__mult__div__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_991_mod__mult__div__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_992_mult__div__mod__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_993_mult__div__mod__eq,axiom,
    ! [B: int,A: int] :
      ( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_994_mult__div__mod__eq,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_995_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_996_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_997_zmod__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).

% zmod_numeral_Bit0
thf(fact_998_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y: real] :
          ( ( ord_less_real @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% less_eq_real_def
thf(fact_999_real__arch__pow,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y2 @ ( power_power_real @ X @ N3 ) ) ) ).

% real_arch_pow
thf(fact_1000_complete__real,axiom,
    ! [S3: set_real] :
      ( ? [X2: real] : ( member_real @ X2 @ S3 )
     => ( ? [Z4: real] :
          ! [X5: real] :
            ( ( member_real @ X5 @ S3 )
           => ( ord_less_eq_real @ X5 @ Z4 ) )
       => ? [Y5: real] :
            ( ! [X2: real] :
                ( ( member_real @ X2 @ S3 )
               => ( ord_less_eq_real @ X2 @ Y5 ) )
            & ! [Z4: real] :
                ( ! [X5: real] :
                    ( ( member_real @ X5 @ S3 )
                   => ( ord_less_eq_real @ X5 @ Z4 ) )
               => ( ord_less_eq_real @ Y5 @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_1001_infinity__ne__i1,axiom,
    extend5688581933313929465d_enat != one_on7984719198319812577d_enat ).

% infinity_ne_i1
thf(fact_1002_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_1003_one__enat__def,axiom,
    ( one_on7984719198319812577d_enat
    = ( extended_enat2 @ one_one_nat ) ) ).

% one_enat_def
thf(fact_1004_enat__1__iff_I1_J,axiom,
    ! [X: nat] :
      ( ( ( extended_enat2 @ X )
        = one_on7984719198319812577d_enat )
      = ( X = one_one_nat ) ) ).

% enat_1_iff(1)
thf(fact_1005_enat__1__iff_I2_J,axiom,
    ! [X: nat] :
      ( ( one_on7984719198319812577d_enat
        = ( extended_enat2 @ X ) )
      = ( X = one_one_nat ) ) ).

% enat_1_iff(2)
thf(fact_1006_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1007_linorder__neqE__linordered__idom,axiom,
    ! [X: rat,Y2: rat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_rat @ X @ Y2 )
       => ( ord_less_rat @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1008_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_int @ X @ Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1009_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1010_combine__common__factor,axiom,
    ! [A: rat,E: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1011_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1012_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1013_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_1014_distrib__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1015_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1016_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_1017_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_1018_distrib__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1019_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1020_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_1021_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1022_comm__semiring__class_Odistrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1023_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1024_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1025_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1026_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1027_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1028_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1029_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1030_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1031_lambda__one,axiom,
    ( ( ^ [X4: complex] : X4 )
    = ( times_times_complex @ one_one_complex ) ) ).

% lambda_one
thf(fact_1032_lambda__one,axiom,
    ( ( ^ [X4: real] : X4 )
    = ( times_times_real @ one_one_real ) ) ).

% lambda_one
thf(fact_1033_lambda__one,axiom,
    ( ( ^ [X4: rat] : X4 )
    = ( times_times_rat @ one_one_rat ) ) ).

% lambda_one
thf(fact_1034_lambda__one,axiom,
    ( ( ^ [X4: nat] : X4 )
    = ( times_times_nat @ one_one_nat ) ) ).

% lambda_one
thf(fact_1035_lambda__one,axiom,
    ( ( ^ [X4: int] : X4 )
    = ( times_times_int @ one_one_int ) ) ).

% lambda_one
thf(fact_1036_less__1__mult,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1037_less__1__mult,axiom,
    ! [M: rat,N: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1038_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1039_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1040_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_1041_add__mono1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).

% add_mono1
thf(fact_1042_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_1043_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_1044_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_1045_less__add__one,axiom,
    ! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).

% less_add_one
thf(fact_1046_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_1047_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_1048_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_1049_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_1050_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_1051_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_1052_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_1053_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
      = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_1054_nat__mod__eq__iff,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( ( modulo_modulo_nat @ X @ N )
        = ( modulo_modulo_nat @ Y2 @ N ) )
      = ( ? [Q1: nat,Q22: nat] :
            ( ( plus_plus_nat @ X @ ( times_times_nat @ N @ Q1 ) )
            = ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).

% nat_mod_eq_iff
thf(fact_1055_discrete,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A4 @ one_one_nat ) ) ) ) ).

% discrete
thf(fact_1056_discrete,axiom,
    ( ord_less_int
    = ( ^ [A4: int] : ( ord_less_eq_int @ ( plus_plus_int @ A4 @ one_one_int ) ) ) ) ).

% discrete
thf(fact_1057_cong__exp__iff__simps_I6_J,axiom,
    ! [Q: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_1058_cong__exp__iff__simps_I6_J,axiom,
    ! [Q: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_1059_cong__exp__iff__simps_I6_J,axiom,
    ! [Q: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_1060_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_1061_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_1062_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_1063_invar__vebt_Ointros_I3_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
               => ( ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(3)
thf(fact_1064_dbl__simps_I3_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1065_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1066_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1067_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1068_divmod__digit__1_I1_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
            = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_1069_divmod__digit__1_I1_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
            = ( divide_divide_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_1070_divmod__digit__1_I1_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
            = ( divide_divide_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_1071_arith__geo__mean,axiom,
    ! [U: real,X: real,Y2: real] :
      ( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_real @ X @ Y2 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_1072_arith__geo__mean,axiom,
    ! [U: rat,X: rat,Y2: rat] :
      ( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_rat @ X @ Y2 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
         => ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_1073_both__member__options__from__chilf__to__complete__tree,axiom,
    ! [X: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_eq_nat @ one_one_nat @ Deg )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).

% both_member_options_from_chilf_to_complete_tree
thf(fact_1074_subset__antisym,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( ord_less_eq_set_int @ B4 @ A2 )
       => ( A2 = B4 ) ) ) ).

% subset_antisym
thf(fact_1075_subsetI,axiom,
    ! [A2: set_complex,B4: set_complex] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( member_complex @ X5 @ B4 ) )
     => ( ord_le211207098394363844omplex @ A2 @ B4 ) ) ).

% subsetI
thf(fact_1076_subsetI,axiom,
    ! [A2: set_real,B4: set_real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( member_real @ X5 @ B4 ) )
     => ( ord_less_eq_set_real @ A2 @ B4 ) ) ).

% subsetI
thf(fact_1077_subsetI,axiom,
    ! [A2: set_set_nat,B4: set_set_nat] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ A2 )
         => ( member_set_nat @ X5 @ B4 ) )
     => ( ord_le6893508408891458716et_nat @ A2 @ B4 ) ) ).

% subsetI
thf(fact_1078_subsetI,axiom,
    ! [A2: set_nat,B4: set_nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A2 )
         => ( member_nat @ X5 @ B4 ) )
     => ( ord_less_eq_set_nat @ A2 @ B4 ) ) ).

% subsetI
thf(fact_1079_subsetI,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( member_int @ X5 @ B4 ) )
     => ( ord_less_eq_set_int @ A2 @ B4 ) ) ).

% subsetI
thf(fact_1080_psubsetI,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( A2 != B4 )
       => ( ord_less_set_int @ A2 @ B4 ) ) ) ).

% psubsetI
thf(fact_1081_mod__double__modulus,axiom,
    ! [M: code_integer,X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
       => ( ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( modulo364778990260209775nteger @ X @ M ) )
          | ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_1082_mod__double__modulus,axiom,
    ! [M: nat,X: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_nat @ X @ M ) )
          | ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_nat @ ( modulo_modulo_nat @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_1083_mod__double__modulus,axiom,
    ! [M: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_int @ X @ M ) )
          | ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_int @ ( modulo_modulo_int @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_1084_even__odd__cases,axiom,
    ! [X: nat] :
      ( ! [N3: nat] :
          ( X
         != ( plus_plus_nat @ N3 @ N3 ) )
     => ~ ! [N3: nat] :
            ( X
           != ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) ) ) ).

% even_odd_cases
thf(fact_1085_deg__not__0,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% deg_not_0
thf(fact_1086_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat3: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat3 ) )
      = ( Nat = Nat3 ) ) ).

% old.nat.inject
thf(fact_1087_nat_Oinject,axiom,
    ! [X23: nat,Y23: nat] :
      ( ( ( suc @ X23 )
        = ( suc @ Y23 ) )
      = ( X23 = Y23 ) ) ).

% nat.inject
thf(fact_1088_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1089_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_1090_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1091_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1092_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1093_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1094_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1095_mult__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K2 )
        = ( times_times_nat @ N @ K2 ) )
      = ( ( M = N )
        | ( K2 = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1096_mult__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K2 @ M )
        = ( times_times_nat @ K2 @ N ) )
      = ( ( M = N )
        | ( K2 = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1097_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1098_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1099_div__pos__pos__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ K2 @ L )
       => ( ( divide_divide_int @ K2 @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_1100_div__neg__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ( ( ord_less_int @ L @ K2 )
       => ( ( divide_divide_int @ K2 @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_1101_mod__pos__pos__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ K2 @ L )
       => ( ( modulo_modulo_int @ K2 @ L )
          = K2 ) ) ) ).

% mod_pos_pos_trivial
thf(fact_1102_mod__neg__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ( ( ord_less_int @ L @ K2 )
       => ( ( modulo_modulo_int @ K2 @ L )
          = K2 ) ) ) ).

% mod_neg_neg_trivial
thf(fact_1103_i0__less,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
      = ( N != zero_z5237406670263579293d_enat ) ) ).

% i0_less
thf(fact_1104_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_1105_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_1106_mult__zero__left,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% mult_zero_left
thf(fact_1107_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_1108_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_1109_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_1110_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_1111_mult__zero__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% mult_zero_right
thf(fact_1112_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_1113_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_1114_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_1115_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_1116_mult__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% mult_eq_0_iff
thf(fact_1117_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_1118_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_1119_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_1120_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_1121_mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( times_times_complex @ C @ A )
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1122_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1123_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1124_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1125_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1126_mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( times_times_complex @ A @ C )
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1127_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1128_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1129_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1130_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1131_add_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.right_neutral
thf(fact_1132_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_1133_add_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.right_neutral
thf(fact_1134_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_1135_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_1136_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_1137_double__zero__sym,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( plus_plus_rat @ A @ A ) )
      = ( A = zero_zero_rat ) ) ).

% double_zero_sym
thf(fact_1138_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_1139_add__cancel__left__left,axiom,
    ! [B: complex,A: complex] :
      ( ( ( plus_plus_complex @ B @ A )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_left
thf(fact_1140_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_1141_add__cancel__left__left,axiom,
    ! [B: rat,A: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_left
thf(fact_1142_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_1143_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_1144_add__cancel__left__right,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_right
thf(fact_1145_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_1146_add__cancel__left__right,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_right
thf(fact_1147_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_1148_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_1149_add__cancel__right__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ B @ A ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_left
thf(fact_1150_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_1151_add__cancel__right__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ B @ A ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_left
thf(fact_1152_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_1153_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_1154_add__cancel__right__right,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ A @ B ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_right
thf(fact_1155_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_1156_add__cancel__right__right,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ A @ B ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_right
thf(fact_1157_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_1158_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_1159_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X @ Y2 )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_1160_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y2 ) )
      = ( ( X = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_1161_add__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add_0
thf(fact_1162_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_1163_add__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add_0
thf(fact_1164_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_1165_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_1166_divide__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divide_eq_0_iff
thf(fact_1167_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_1168_divide__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_eq_0_iff
thf(fact_1169_divide__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ C @ A )
        = ( divide1717551699836669952omplex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_1170_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_1171_divide__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( divide_divide_rat @ C @ A )
        = ( divide_divide_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_1172_divide__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_1173_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_1174_divide__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_1175_division__ring__divide__zero,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% division_ring_divide_zero
thf(fact_1176_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_1177_division__ring__divide__zero,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% division_ring_divide_zero
thf(fact_1178_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_1179_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_1180_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_1181_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_1182_div__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% div_0
thf(fact_1183_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_1184_div__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% div_0
thf(fact_1185_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_1186_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_1187_div__by__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% div_by_0
thf(fact_1188_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_1189_div__by__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% div_by_0
thf(fact_1190_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_1191_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_1192_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_1193_bits__mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_1194_bits__mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_0
thf(fact_1195_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_1196_mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mod_0
thf(fact_1197_mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_0
thf(fact_1198_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_1199_mod__by__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ zero_zero_int )
      = A ) ).

% mod_by_0
thf(fact_1200_mod__by__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
      = A ) ).

% mod_by_0
thf(fact_1201_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_1202_mod__self,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ A )
      = zero_zero_int ) ).

% mod_self
thf(fact_1203_mod__self,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_self
thf(fact_1204_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1205_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1206_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1207_power__Suc0__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1208_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_1209_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1210_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_1211_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_1212_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_1213_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1214_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_1215_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1216_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1217_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1218_nat__mult__less__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1219_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1220_mult__less__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1221_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_1222_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_1223_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1224_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_1225_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_1226_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1227_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1228_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_1229_nat__mult__div__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( K2 = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
          = zero_zero_nat ) )
      & ( ( K2 != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_1230_dbl__simps_I2_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% dbl_simps(2)
thf(fact_1231_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_1232_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_1233_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_1234_mi__ma__2__deg,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
     => ( ( ord_less_eq_nat @ Mi @ Ma )
        & ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).

% mi_ma_2_deg
thf(fact_1235_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_1236_add__le__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel1
thf(fact_1237_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_1238_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_1239_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_1240_add__le__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel2
thf(fact_1241_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_1242_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_1243_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_1244_le__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1245_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1246_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_1247_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_1248_le__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1249_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1250_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_1251_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1252_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1253_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1254_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1255_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1256_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1257_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_1258_add__less__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel1
thf(fact_1259_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_1260_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_1261_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_1262_add__less__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel2
thf(fact_1263_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_1264_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_1265_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_1266_less__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1267_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1268_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_1269_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_1270_less__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1271_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1272_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_1273_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1274_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1275_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1276_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1277_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1278_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1279_mult__cancel__right2,axiom,
    ! [A: complex,C: complex] :
      ( ( ( times_times_complex @ A @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_1280_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_1281_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_1282_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_1283_mult__cancel__right1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_1284_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_1285_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_1286_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_1287_mult__cancel__left2,axiom,
    ! [C: complex,A: complex] :
      ( ( ( times_times_complex @ C @ A )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_1288_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_1289_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_1290_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_1291_mult__cancel__left1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_1292_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_1293_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_1294_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_1295_sum__squares__eq__zero__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1296_sum__squares__eq__zero__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y2 @ Y2 ) )
        = zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1297_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y2 @ Y2 ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1298_mult__divide__mult__cancel__left__if,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( C = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = zero_zero_complex ) )
      & ( ( C != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_1299_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_1300_mult__divide__mult__cancel__left__if,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( C = zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = zero_zero_rat ) )
      & ( ( C != zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = ( divide_divide_rat @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_1301_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_1302_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_1303_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_1304_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_1305_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_1306_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_1307_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_1308_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_1309_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_1310_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_1311_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_1312_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_1313_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_1314_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_1315_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_1316_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_1317_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_1318_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_1319_nonzero__mult__div__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_1320_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_1321_nonzero__mult__div__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_1322_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_1323_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_1324_nonzero__mult__div__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_1325_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_1326_nonzero__mult__div__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_1327_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_1328_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_1329_divide__eq__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = one_one_complex )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_1330_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_1331_divide__eq__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = one_one_rat )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_1332_one__eq__divide__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( one_one_complex
        = ( divide1717551699836669952omplex @ A @ B ) )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_1333_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_1334_one__eq__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ A @ B ) )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_1335_divide__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% divide_self
thf(fact_1336_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_1337_divide__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% divide_self
thf(fact_1338_divide__self__if,axiom,
    ! [A: complex] :
      ( ( ( A = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = zero_zero_complex ) )
      & ( ( A != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = one_one_complex ) ) ) ).

% divide_self_if
thf(fact_1339_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_1340_divide__self__if,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = one_one_rat ) ) ) ).

% divide_self_if
thf(fact_1341_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_1342_divide__eq__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ A )
        = one_one_rat )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_1343_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_1344_eq__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ B @ A ) )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_1345_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_1346_one__divide__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( divide_divide_rat @ one_one_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% one_divide_eq_0_iff
thf(fact_1347_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_1348_zero__eq__1__divide__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( divide_divide_rat @ one_one_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_1_divide_iff
thf(fact_1349_div__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% div_self
thf(fact_1350_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_1351_div__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% div_self
thf(fact_1352_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_1353_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_1354_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
      = zero_zero_rat ) ).

% power_0_Suc
thf(fact_1355_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_1356_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_1357_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_1358_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
      = zero_zero_complex ) ).

% power_0_Suc
thf(fact_1359_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_rat ) ).

% power_zero_numeral
thf(fact_1360_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_1361_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_1362_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_1363_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_complex ) ).

% power_zero_numeral
thf(fact_1364_power__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( power_power_rat @ A @ N )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1365_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1366_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1367_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1368_power__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( power_power_complex @ A @ N )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1369_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_1370_mod__mult__self2__is__0,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_mult_self2_is_0
thf(fact_1371_mod__mult__self2__is__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self2_is_0
thf(fact_1372_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_1373_mod__mult__self1__is__0,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
      = zero_zero_int ) ).

% mod_mult_self1_is_0
thf(fact_1374_mod__mult__self1__is__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self1_is_0
thf(fact_1375_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_1376_bits__mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_1377_bits__mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_by_1
thf(fact_1378_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_1379_mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_1380_mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% mod_by_1
thf(fact_1381_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_1382_mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_1383_mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_div_trivial
thf(fact_1384_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_1385_bits__mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_1386_bits__mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_div_trivial
thf(fact_1387_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_1388_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1389_mult__le__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1390_nat__mult__le__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1391_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_1392_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_1393_dbl__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K2 ) )
      = ( numera6690914467698888265omplex @ ( bit0 @ K2 ) ) ) ).

% dbl_simps(5)
thf(fact_1394_dbl__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K2 ) )
      = ( numeral_numeral_real @ ( bit0 @ K2 ) ) ) ).

% dbl_simps(5)
thf(fact_1395_dbl__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K2 ) )
      = ( numeral_numeral_rat @ ( bit0 @ K2 ) ) ) ).

% dbl_simps(5)
thf(fact_1396_dbl__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) ).

% dbl_simps(5)
thf(fact_1397_both__member__options__from__complete__tree__to__child,axiom,
    ! [Deg: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ Deg )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          | ( X = Mi )
          | ( X = Ma ) ) ) ) ).

% both_member_options_from_complete_tree_to_child
thf(fact_1398_times__enat__simps_I4_J,axiom,
    ! [M: nat] :
      ( ( ( M = zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat )
          = zero_z5237406670263579293d_enat ) )
      & ( ( M != zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat )
          = extend5688581933313929465d_enat ) ) ) ).

% times_enat_simps(4)
thf(fact_1399_times__enat__simps_I3_J,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) )
          = zero_z5237406670263579293d_enat ) )
      & ( ( N != zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) )
          = extend5688581933313929465d_enat ) ) ) ).

% times_enat_simps(3)
thf(fact_1400_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_1401_divide__le__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% divide_le_0_1_iff
thf(fact_1402_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_1403_zero__le__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_1404_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_1405_divide__less__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% divide_less_0_1_iff
thf(fact_1406_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_1407_divide__less__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_1408_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_1409_divide__less__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_1410_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_1411_less__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_1412_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_1413_less__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_1414_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_1415_zero__less__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_1416_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
        = A )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_1417_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_1418_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_1419_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
            = B ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_1420_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_1421_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_1422_nonzero__divide__mult__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_1423_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_1424_nonzero__divide__mult__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_1425_nonzero__divide__mult__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_1426_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_1427_nonzero__divide__mult__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_1428_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_1429_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_1430_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_1431_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_1432_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_1433_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_1434_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_1435_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_1436_power__mono__iff,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1437_power__mono__iff,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
            = ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1438_power__mono__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1439_power__mono__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1440_half__negative__int__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_1441_half__nonnegative__int__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% half_nonnegative_int_iff
thf(fact_1442_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_1443_Suc__mod__mult__self1,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K2 @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self1
thf(fact_1444_Suc__mod__mult__self2,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K2 ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self2
thf(fact_1445_Suc__mod__mult__self3,axiom,
    ! [K2: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K2 @ N ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self3
thf(fact_1446_Suc__mod__mult__self4,axiom,
    ! [N: nat,K2: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K2 ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self4
thf(fact_1447_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_1448_divide__le__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_1449_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_1450_divide__le__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_1451_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_1452_le__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_1453_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_1454_le__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_1455_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1456_power__strict__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1457_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1458_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1459_zero__eq__power2,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_power2
thf(fact_1460_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_1461_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_1462_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_1463_zero__eq__power2,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% zero_eq_power2
thf(fact_1464_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_1465_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_1466_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_1467_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_1468_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_1469_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_1470_Suc__times__numeral__mod__eq,axiom,
    ! [K2: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K2 )
       != one_one_nat )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K2 ) @ N ) ) @ ( numeral_numeral_nat @ K2 ) )
        = one_one_nat ) ) ).

% Suc_times_numeral_mod_eq
thf(fact_1471_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_1472_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_1473_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_1474_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_1475_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1476_power__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1477_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1478_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1479_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_1480_power2__less__eq__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% power2_less_eq_zero_iff
thf(fact_1481_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_1482_power2__eq__iff__nonneg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1483_power2__eq__iff__nonneg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1484_power2__eq__iff__nonneg,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1485_power2__eq__iff__nonneg,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1486_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_1487_zero__less__power2,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_power2
thf(fact_1488_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_1489_sum__power2__eq__zero__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_1490_sum__power2__eq__zero__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_1491_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_1492_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_1493_mod__pos__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K2 @ L ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K2 @ L )
          = ( plus_plus_int @ K2 @ L ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_1494_zmod__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% zmod_zmult2_eq
thf(fact_1495_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_1496_unique__quotient__lemma__neg,axiom,
    ! [B: int,Q4: int,R2: int,Q: int,R: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q4 ) @ R2 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( ord_less_int @ B @ R2 )
           => ( ord_less_eq_int @ Q @ Q4 ) ) ) ) ) ).

% unique_quotient_lemma_neg
thf(fact_1497_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_int @ ( modulo_modulo_int @ K2 @ L ) @ L ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_1498_neg__mod__bound,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_int @ L @ ( modulo_modulo_int @ K2 @ L ) ) ) ).

% neg_mod_bound
thf(fact_1499_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_1500_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K2 @ L ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_1501_neg__mod__sign,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K2 @ L ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_1502_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_1503_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_1504_unique__quotient__lemma,axiom,
    ! [B: int,Q4: int,R2: int,Q: int,R: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q4 ) @ R2 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( ord_less_int @ R @ B )
           => ( ord_less_eq_int @ Q4 @ Q ) ) ) ) ) ).

% unique_quotient_lemma
thf(fact_1505_zdiv__mono2__neg__lemma,axiom,
    ! [B: int,Q: int,R: int,B5: int,Q4: int,R2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R )
        = ( plus_plus_int @ ( times_times_int @ B5 @ Q4 ) @ R2 ) )
     => ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B5 @ Q4 ) @ R2 ) @ zero_zero_int )
       => ( ( ord_less_int @ R @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
           => ( ( ord_less_int @ zero_zero_int @ B5 )
             => ( ( ord_less_eq_int @ B5 @ B )
               => ( ord_less_eq_int @ Q4 @ Q ) ) ) ) ) ) ) ).

% zdiv_mono2_neg_lemma
thf(fact_1506_pos__imp__zdiv__pos__iff,axiom,
    ! [K2: int,I2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I2 @ K2 ) )
        = ( ord_less_eq_int @ K2 @ I2 ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_1507_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_1508_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_1509_verit__le__mono__div__int,axiom,
    ! [A2: int,B4: int,N: int] :
      ( ( ord_less_int @ A2 @ B4 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A2 @ N )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B4 @ N )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B4 @ N ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_1510_int__div__less__self,axiom,
    ! [X: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K2 )
       => ( ord_less_int @ ( divide_divide_int @ X @ K2 ) @ X ) ) ) ).

% int_div_less_self
thf(fact_1511_zmod__trivial__iff,axiom,
    ! [I2: int,K2: int] :
      ( ( ( modulo_modulo_int @ I2 @ K2 )
        = I2 )
      = ( ( K2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I2 )
          & ( ord_less_int @ I2 @ K2 ) )
        | ( ( ord_less_eq_int @ I2 @ zero_zero_int )
          & ( ord_less_int @ K2 @ I2 ) ) ) ) ).

% zmod_trivial_iff
thf(fact_1512_zdiv__mono2__lemma,axiom,
    ! [B: int,Q: int,R: int,B5: int,Q4: int,R2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R )
        = ( plus_plus_int @ ( times_times_int @ B5 @ Q4 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B5 @ Q4 ) @ R2 ) )
       => ( ( ord_less_int @ R2 @ B5 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R )
           => ( ( ord_less_int @ zero_zero_int @ B5 )
             => ( ( ord_less_eq_int @ B5 @ B )
               => ( ord_less_eq_int @ Q @ Q4 ) ) ) ) ) ) ) ).

% zdiv_mono2_lemma
thf(fact_1513_div__positive__int,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_eq_int @ L @ K2 )
     => ( ( ord_less_int @ zero_zero_int @ L )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K2 @ L ) ) ) ) ).

% div_positive_int
thf(fact_1514_split__pos__lemma,axiom,
    ! [K2: int,P3: int > int > $o,N: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( P3 @ ( divide_divide_int @ N @ K2 ) @ ( modulo_modulo_int @ N @ K2 ) )
        = ( ! [I: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K2 )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K2 @ I ) @ J3 ) ) )
             => ( P3 @ I @ J3 ) ) ) ) ) ).

% split_pos_lemma
thf(fact_1515_split__neg__lemma,axiom,
    ! [K2: int,P3: int > int > $o,N: int] :
      ( ( ord_less_int @ K2 @ zero_zero_int )
     => ( ( P3 @ ( divide_divide_int @ N @ K2 ) @ ( modulo_modulo_int @ N @ K2 ) )
        = ( ! [I: int,J3: int] :
              ( ( ( ord_less_int @ K2 @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K2 @ I ) @ J3 ) ) )
             => ( P3 @ I @ J3 ) ) ) ) ) ).

% split_neg_lemma
thf(fact_1516_div__int__pos__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K2 @ L ) )
      = ( ( K2 = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K2 )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K2 @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_1517_div__mod__decomp__int,axiom,
    ! [A2: int,N: int] :
      ( A2
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N ) @ N ) @ ( modulo_modulo_int @ A2 @ N ) ) ) ).

% div_mod_decomp_int
thf(fact_1518_zdiv__mono2__neg,axiom,
    ! [A: int,B5: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B5 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_1519_zdiv__mono1__neg,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_1520_int__mod__pos__eq,axiom,
    ! [A: int,B: int,Q: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R )
       => ( ( ord_less_int @ R @ B )
         => ( ( modulo_modulo_int @ A @ B )
            = R ) ) ) ) ).

% int_mod_pos_eq
thf(fact_1521_int__mod__neg__eq,axiom,
    ! [A: int,B: int,Q: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( modulo_modulo_int @ A @ B )
            = R ) ) ) ) ).

% int_mod_neg_eq
thf(fact_1522_int__div__pos__eq,axiom,
    ! [A: int,B: int,Q: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R )
       => ( ( ord_less_int @ R @ B )
         => ( ( divide_divide_int @ A @ B )
            = Q ) ) ) ) ).

% int_div_pos_eq
thf(fact_1523_int__div__neg__eq,axiom,
    ! [A: int,B: int,Q: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( divide_divide_int @ A @ B )
            = Q ) ) ) ) ).

% int_div_neg_eq
thf(fact_1524_zdiv__eq__0__iff,axiom,
    ! [I2: int,K2: int] :
      ( ( ( divide_divide_int @ I2 @ K2 )
        = zero_zero_int )
      = ( ( K2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I2 )
          & ( ord_less_int @ I2 @ K2 ) )
        | ( ( ord_less_eq_int @ I2 @ zero_zero_int )
          & ( ord_less_int @ K2 @ I2 ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_1525_zdiv__mono__strict,axiom,
    ! [A2: int,B4: int,N: int] :
      ( ( ord_less_int @ A2 @ B4 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ( ( modulo_modulo_int @ A2 @ N )
            = zero_zero_int )
         => ( ( ( modulo_modulo_int @ B4 @ N )
              = zero_zero_int )
           => ( ord_less_int @ ( divide_divide_int @ A2 @ N ) @ ( divide_divide_int @ B4 @ N ) ) ) ) ) ) ).

% zdiv_mono_strict
thf(fact_1526_pos__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
        & ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).

% pos_mod_conj
thf(fact_1527_neg__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
        & ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% neg_mod_conj
thf(fact_1528_q__pos__lemma,axiom,
    ! [B5: int,Q4: int,R2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B5 @ Q4 ) @ R2 ) )
     => ( ( ord_less_int @ R2 @ B5 )
       => ( ( ord_less_int @ zero_zero_int @ B5 )
         => ( ord_less_eq_int @ zero_zero_int @ Q4 ) ) ) ) ).

% q_pos_lemma
thf(fact_1529_zdiv__mono2,axiom,
    ! [A: int,B5: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B5 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_1530_zdiv__mono1,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_1531_split__zmod,axiom,
    ! [P3: int > $o,N: int,K2: int] :
      ( ( P3 @ ( modulo_modulo_int @ N @ K2 ) )
      = ( ( ( K2 = zero_zero_int )
         => ( P3 @ N ) )
        & ( ( ord_less_int @ zero_zero_int @ K2 )
         => ! [I: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K2 )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K2 @ I ) @ J3 ) ) )
             => ( P3 @ J3 ) ) )
        & ( ( ord_less_int @ K2 @ zero_zero_int )
         => ! [I: int,J3: int] :
              ( ( ( ord_less_int @ K2 @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K2 @ I ) @ J3 ) ) )
             => ( P3 @ J3 ) ) ) ) ) ).

% split_zmod
thf(fact_1532_split__zdiv,axiom,
    ! [P3: int > $o,N: int,K2: int] :
      ( ( P3 @ ( divide_divide_int @ N @ K2 ) )
      = ( ( ( K2 = zero_zero_int )
         => ( P3 @ zero_zero_int ) )
        & ( ( ord_less_int @ zero_zero_int @ K2 )
         => ! [I: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K2 )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K2 @ I ) @ J3 ) ) )
             => ( P3 @ I ) ) )
        & ( ( ord_less_int @ K2 @ zero_zero_int )
         => ! [I: int,J3: int] :
              ( ( ( ord_less_int @ K2 @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K2 @ I ) @ J3 ) ) )
             => ( P3 @ I ) ) ) ) ) ).

% split_zdiv
thf(fact_1533_zmod__eq__0__iff,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
      = ( ? [Q5: int] :
            ( M
            = ( times_times_int @ D @ Q5 ) ) ) ) ).

% zmod_eq_0_iff
thf(fact_1534_zmod__eq__0D,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
     => ? [Q3: int] :
          ( M
          = ( times_times_int @ D @ Q3 ) ) ) ).

% zmod_eq_0D
thf(fact_1535_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K2 ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_1536_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_1537_zero__reorient,axiom,
    ! [X: complex] :
      ( ( zero_zero_complex = X )
      = ( X = zero_zero_complex ) ) ).

% zero_reorient
thf(fact_1538_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_1539_zero__reorient,axiom,
    ! [X: rat] :
      ( ( zero_zero_rat = X )
      = ( X = zero_zero_rat ) ) ).

% zero_reorient
thf(fact_1540_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_1541_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_1542_vebt__buildup_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ( ( X
         != ( suc @ zero_zero_nat ) )
       => ~ ! [Va: nat] :
              ( X
             != ( suc @ ( suc @ Va ) ) ) ) ) ).

% vebt_buildup.cases
thf(fact_1543_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_1544_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_1545_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_1546_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1547_zero__induct,axiom,
    ! [P3: nat > $o,K2: nat] :
      ( ( P3 @ K2 )
     => ( ! [N3: nat] :
            ( ( P3 @ ( suc @ N3 ) )
           => ( P3 @ N3 ) )
       => ( P3 @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1548_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_1549_diff__induct,axiom,
    ! [P3: nat > nat > $o,M: nat,N: nat] :
      ( ! [X5: nat] : ( P3 @ X5 @ zero_zero_nat )
     => ( ! [Y5: nat] : ( P3 @ zero_zero_nat @ ( suc @ Y5 ) )
       => ( ! [X5: nat,Y5: nat] :
              ( ( P3 @ X5 @ Y5 )
             => ( P3 @ ( suc @ X5 ) @ ( suc @ Y5 ) ) )
         => ( P3 @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_1550_nat__induct,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P3 @ N3 )
           => ( P3 @ ( suc @ N3 ) ) )
       => ( P3 @ N ) ) ) ).

% nat_induct
thf(fact_1551_Suc__inject,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y2 ) )
     => ( X = Y2 ) ) ).

% Suc_inject
thf(fact_1552_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat2: nat] :
            ( Y2
           != ( suc @ Nat2 ) ) ) ).

% old.nat.exhaust
thf(fact_1553_nat_OdiscI,axiom,
    ! [Nat: nat,X23: nat] :
      ( ( Nat
        = ( suc @ X23 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1554_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat3: nat] :
      ( zero_zero_nat
     != ( suc @ Nat3 ) ) ).

% old.nat.distinct(1)
thf(fact_1555_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat3: nat] :
      ( ( suc @ Nat3 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1556_nat_Odistinct_I1_J,axiom,
    ! [X23: nat] :
      ( zero_zero_nat
     != ( suc @ X23 ) ) ).

% nat.distinct(1)
thf(fact_1557_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1558_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_1559_All__less__Suc2,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
           => ( P3 @ I ) ) )
      = ( ( P3 @ zero_zero_nat )
        & ! [I: nat] :
            ( ( ord_less_nat @ I @ N )
           => ( P3 @ ( suc @ I ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1560_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M2: nat] :
            ( N
            = ( suc @ M2 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1561_Ex__less__Suc2,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
            & ( P3 @ I ) ) )
      = ( ( P3 @ zero_zero_nat )
        | ? [I: nat] :
            ( ( ord_less_nat @ I @ N )
            & ( P3 @ ( suc @ I ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1562_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1563_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1564_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R3: real] :
          ( ( ord_less_real @ zero_zero_real @ R3 )
          & ( ( power_power_real @ R3 @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_1565_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1566_mod__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
          = N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
         != N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).

% mod_Suc
thf(fact_1567_enat__0__iff_I2_J,axiom,
    ! [X: nat] :
      ( ( zero_z5237406670263579293d_enat
        = ( extended_enat2 @ X ) )
      = ( X = zero_zero_nat ) ) ).

% enat_0_iff(2)
thf(fact_1568_enat__0__iff_I1_J,axiom,
    ! [X: nat] :
      ( ( ( extended_enat2 @ X )
        = zero_z5237406670263579293d_enat )
      = ( X = zero_zero_nat ) ) ).

% enat_0_iff(1)
thf(fact_1569_zero__enat__def,axiom,
    ( zero_z5237406670263579293d_enat
    = ( extended_enat2 @ zero_zero_nat ) ) ).

% zero_enat_def
thf(fact_1570_power__inject__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N ) )
        = ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_1571_power__inject__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ ( suc @ N ) )
        = ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_1572_power__inject__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_1573_power__inject__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_1574_power__le__imp__le__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_1575_power__le__imp__le__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_1576_power__le__imp__le__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_1577_power__le__imp__le__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_1578_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_1579_num_Osize_I5_J,axiom,
    ! [X23: num] :
      ( ( size_size_num @ ( bit0 @ X23 ) )
      = ( plus_plus_nat @ ( size_size_num @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_1580_ex__least__nat__less,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ N )
     => ( ~ ( P3 @ zero_zero_nat )
       => ? [K: nat] :
            ( ( ord_less_nat @ K @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K )
               => ~ ( P3 @ I4 ) )
            & ( P3 @ ( suc @ K ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1581_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_1582_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_1583_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_1584_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% power_0_left
thf(fact_1585_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_1586_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_1587_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_1588_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% power_0_left
thf(fact_1589_nat__induct__non__zero,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P3 @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P3 @ N3 )
               => ( P3 @ ( suc @ N3 ) ) ) )
         => ( P3 @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1590_power__gt__expt,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K2 @ ( power_power_nat @ N @ K2 ) ) ) ).

% power_gt_expt
thf(fact_1591_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_rat @ zero_zero_rat @ N )
        = zero_zero_rat ) ) ).

% zero_power
thf(fact_1592_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_1593_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ zero_zero_real @ N )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_1594_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_1595_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_complex @ zero_zero_complex @ N )
        = zero_zero_complex ) ) ).

% zero_power
thf(fact_1596_nat__one__le__power,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I2 )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I2 @ N ) ) ) ).

% nat_one_le_power
thf(fact_1597_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X5: real] :
            ( ( ord_less_real @ zero_zero_real @ X5 )
            & ( ( power_power_real @ X5 @ N )
              = A )
            & ! [Y6: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y6 )
                  & ( ( power_power_real @ Y6 @ N )
                    = A ) )
               => ( Y6 = X5 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1598_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ( ( power_power_real @ R3 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1599_Nat_OlessE,axiom,
    ! [I2: nat,K2: nat] :
      ( ( ord_less_nat @ I2 @ K2 )
     => ( ( K2
         != ( suc @ I2 ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( K2
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1600_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_1601_Suc__lessE,axiom,
    ! [I2: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K2 )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I2 @ J2 )
           => ( K2
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1602_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_1603_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_1604_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_1605_Ex__less__Suc,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
            & ( P3 @ I ) ) )
      = ( ( P3 @ N )
        | ? [I: nat] :
            ( ( ord_less_nat @ I @ N )
            & ( P3 @ I ) ) ) ) ).

% Ex_less_Suc
thf(fact_1606_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_1607_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1608_All__less__Suc,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
           => ( P3 @ I ) ) )
      = ( ( P3 @ N )
        & ! [I: nat] :
            ( ( ord_less_nat @ I @ N )
           => ( P3 @ I ) ) ) ) ).

% All_less_Suc
thf(fact_1609_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M5: nat] :
            ( ( M
              = ( suc @ M5 ) )
            & ( ord_less_nat @ N @ M5 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1610_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_1611_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_1612_less__trans__Suc,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ J @ K2 )
       => ( ord_less_nat @ ( suc @ I2 ) @ K2 ) ) ) ).

% less_trans_Suc
thf(fact_1613_less__Suc__induct,axiom,
    ! [I2: nat,J: nat,P3: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] : ( P3 @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K )
               => ( ( P3 @ I3 @ J2 )
                 => ( ( P3 @ J2 @ K )
                   => ( P3 @ I3 @ K ) ) ) ) )
         => ( P3 @ I2 @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1614_strict__inc__induct,axiom,
    ! [I2: nat,J: nat,P3: nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P3 @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P3 @ ( suc @ I3 ) )
               => ( P3 @ I3 ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_1615_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1616_invar__vebt_Ointros_I1_J,axiom,
    ! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).

% invar_vebt.intros(1)
thf(fact_1617_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R4: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X5: nat] : ( R4 @ X5 @ X5 )
       => ( ! [X5: nat,Y5: nat,Z: nat] :
              ( ( R4 @ X5 @ Y5 )
             => ( ( R4 @ Y5 @ Z )
               => ( R4 @ X5 @ Z ) ) )
         => ( ! [N3: nat] : ( R4 @ N3 @ ( suc @ N3 ) )
           => ( R4 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1618_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P3 @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P3 @ N3 )
               => ( P3 @ ( suc @ N3 ) ) ) )
         => ( P3 @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1619_full__nat__induct,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N3 )
             => ( P3 @ M3 ) )
         => ( P3 @ N3 ) )
     => ( P3 @ N ) ) ).

% full_nat_induct
thf(fact_1620_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1621_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1622_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1623_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M4: nat] :
          ( M6
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_1624_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1625_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1626_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1627_nat__arith_Osuc1,axiom,
    ! [A2: nat,K2: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K2 @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K2 @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1628_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1629_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1630_Suc__mult__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K2 ) @ M )
        = ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_1631_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_1632_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_1633_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_1634_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_1635_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_1636_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_1637_field__lbound__gt__zero,axiom,
    ! [D1: rat,D22: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D22 )
       => ? [E2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E2 )
            & ( ord_less_rat @ E2 @ D1 )
            & ( ord_less_rat @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_1638_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_1639_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_1640_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_1641_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_1642_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_1643_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_1644_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_1645_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_1646_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( numera6690914467698888265omplex @ N ) ) ).

% zero_neq_numeral
thf(fact_1647_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N ) ) ).

% zero_neq_numeral
thf(fact_1648_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( numeral_numeral_rat @ N ) ) ).

% zero_neq_numeral
thf(fact_1649_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_1650_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_1651_mult__not__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
       != zero_zero_complex )
     => ( ( A != zero_zero_complex )
        & ( B != zero_zero_complex ) ) ) ).

% mult_not_zero
thf(fact_1652_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_1653_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_1654_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_1655_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_1656_divisors__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
     => ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divisors_zero
thf(fact_1657_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_1658_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_1659_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_1660_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_1661_no__zero__divisors,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( times_times_complex @ A @ B )
         != zero_zero_complex ) ) ) ).

% no_zero_divisors
thf(fact_1662_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_1663_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_1664_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_1665_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_1666_mult__left__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ C @ A )
          = ( times_times_complex @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1667_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1668_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1669_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1670_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1671_mult__right__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = ( times_times_complex @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1672_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1673_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1674_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1675_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1676_zero__neq__one,axiom,
    zero_zero_complex != one_one_complex ).

% zero_neq_one
thf(fact_1677_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_1678_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_1679_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_1680_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_1681_verit__sum__simplify,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% verit_sum_simplify
thf(fact_1682_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_1683_verit__sum__simplify,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% verit_sum_simplify
thf(fact_1684_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_1685_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_1686_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1687_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1688_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1689_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1690_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1691_add_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.comm_neutral
thf(fact_1692_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_1693_add_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.comm_neutral
thf(fact_1694_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_1695_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_1696_add_Ogroup__left__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1697_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1698_add_Ogroup__left__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1699_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1700_power__not__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( A != zero_zero_rat )
     => ( ( power_power_rat @ A @ N )
       != zero_zero_rat ) ) ).

% power_not_zero
thf(fact_1701_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_1702_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_1703_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_1704_power__not__zero,axiom,
    ! [A: complex,N: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_1705_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_1706_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).

% mod_Suc_Suc_eq
thf(fact_1707_mod__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% mod_Suc_eq
thf(fact_1708_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1709_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1710_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1711_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1712_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1713_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1714_infinite__descent0,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P3 @ N3 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N3 )
                  & ~ ( P3 @ M3 ) ) ) )
       => ( P3 @ N ) ) ) ).

% infinite_descent0
thf(fact_1715_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1716_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1717_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1718_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1719_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1720_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1721_nat__mult__eq__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K2 @ M )
        = ( times_times_nat @ K2 @ N ) )
      = ( ( K2 = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1722_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1723_real__arch__pow__inv,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y2 ) ) ) ).

% real_arch_pow_inv
thf(fact_1724_infinity__ne__i0,axiom,
    extend5688581933313929465d_enat != zero_z5237406670263579293d_enat ).

% infinity_ne_i0
thf(fact_1725_VEBT_Osize_I4_J,axiom,
    ! [X21: $o,X22: $o] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X22 ) )
      = zero_zero_nat ) ).

% VEBT.size(4)
thf(fact_1726_power__Suc__le__self,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_1727_power__Suc__le__self,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_1728_power__Suc__le__self,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_1729_power__Suc__le__self,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_1730_power__Suc__less__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_1731_power__Suc__less__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).

% power_Suc_less_one
thf(fact_1732_power__Suc__less__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_1733_power__Suc__less__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_1734_not__iless0,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).

% not_iless0
thf(fact_1735_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_1736_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_1737_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_1738_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_1739_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N )
              = ( power_power_real @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1740_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ( power_power_rat @ A @ N )
              = ( power_power_rat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1741_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N )
              = ( power_power_nat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1742_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N )
              = ( power_power_int @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1743_power__eq__imp__eq__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ N )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1744_power__eq__imp__eq__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ N )
        = ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1745_power__eq__imp__eq__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N )
        = ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1746_power__eq__imp__eq__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ N )
        = ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1747_imult__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_1748_lambda__zero,axiom,
    ( ( ^ [H: complex] : zero_zero_complex )
    = ( times_times_complex @ zero_zero_complex ) ) ).

% lambda_zero
thf(fact_1749_lambda__zero,axiom,
    ( ( ^ [H: real] : zero_zero_real )
    = ( times_times_real @ zero_zero_real ) ) ).

% lambda_zero
thf(fact_1750_lambda__zero,axiom,
    ( ( ^ [H: rat] : zero_zero_rat )
    = ( times_times_rat @ zero_zero_rat ) ) ).

% lambda_zero
thf(fact_1751_lambda__zero,axiom,
    ( ( ^ [H: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_1752_lambda__zero,axiom,
    ( ( ^ [H: int] : zero_zero_int )
    = ( times_times_int @ zero_zero_int ) ) ).

% lambda_zero
thf(fact_1753_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_1754_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_1755_power__strict__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1756_power__strict__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1757_power__strict__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1758_power__strict__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1759_split__div_H,axiom,
    ! [P3: nat > $o,M: nat,N: nat] :
      ( ( P3 @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
          & ( P3 @ zero_zero_nat ) )
        | ? [Q5: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q5 ) @ M )
            & ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q5 ) ) )
            & ( P3 @ Q5 ) ) ) ) ).

% split_div'
thf(fact_1760_power__Suc2,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1761_power__Suc2,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1762_power__Suc2,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1763_power__Suc2,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1764_power__Suc2,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1765_power__Suc,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_Suc
thf(fact_1766_power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_Suc
thf(fact_1767_power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_Suc
thf(fact_1768_power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_Suc
thf(fact_1769_power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_Suc
thf(fact_1770_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1771_lift__Suc__mono__less,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_rat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1772_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1773_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1774_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1775_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1776_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > rat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1777_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1778_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1779_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1780_lift__Suc__mono__le,axiom,
    ! [F: nat > set_int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_set_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1781_lift__Suc__mono__le,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1782_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1783_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1784_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1785_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_set_int @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1786_lift__Suc__antimono__le,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_rat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1787_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1788_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1789_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_int @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1790_Suc__times__mod__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_1791_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1792_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1793_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1794_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1795_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1796_inc__induct,axiom,
    ! [I2: nat,J: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P3 @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I2 @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P3 @ ( suc @ N3 ) )
                 => ( P3 @ N3 ) ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% inc_induct
thf(fact_1797_dec__induct,axiom,
    ! [I2: nat,J: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P3 @ I2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I2 @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P3 @ N3 )
                 => ( P3 @ ( suc @ N3 ) ) ) ) )
         => ( P3 @ J ) ) ) ) ).

% dec_induct
thf(fact_1798_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1799_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1800_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q3: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_1801_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_1802_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_1803_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N2: nat] :
        ? [K3: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M2 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1804_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1805_Suc__mult__less__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K2 ) @ M ) @ ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_1806_Suc__mult__le__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K2 ) @ M ) @ ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1807_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X4: real] : ( plus_plus_real @ X4 @ X4 ) ) ) ).

% dbl_def
thf(fact_1808_dbl__def,axiom,
    ( neg_numeral_dbl_rat
    = ( ^ [X4: rat] : ( plus_plus_rat @ X4 @ X4 ) ) ) ).

% dbl_def
thf(fact_1809_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X4: int] : ( plus_plus_int @ X4 @ X4 ) ) ) ).

% dbl_def
thf(fact_1810_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1811_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_1812_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1813_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1814_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1815_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_le_numeral
thf(fact_1816_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_le_numeral
thf(fact_1817_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_1818_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_le_numeral
thf(fact_1819_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_1820_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_le_zero
thf(fact_1821_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_1822_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_1823_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1824_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1825_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1826_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1827_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1828_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1829_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1830_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1831_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1832_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1833_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1834_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1835_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1836_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1837_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1838_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1839_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1840_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1841_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1842_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1843_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1844_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1845_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1846_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_1847_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_1848_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_1849_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_1850_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1851_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1852_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1853_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1854_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1855_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1856_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1857_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1858_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1859_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1860_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1861_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1862_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1863_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1864_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1865_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1866_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1867_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1868_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1869_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1870_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1871_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1872_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1873_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_1874_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_1875_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_1876_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1877_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1878_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1879_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1880_mult__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1881_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1882_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1883_mult__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1884_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_less_numeral
thf(fact_1885_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_less_numeral
thf(fact_1886_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_1887_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_1888_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_1889_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_less_zero
thf(fact_1890_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_1891_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_1892_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_1893_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one_class.zero_le_one
thf(fact_1894_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_1895_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_1896_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1897_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1898_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1899_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1900_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_1901_not__one__le__zero,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_le_zero
thf(fact_1902_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_1903_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_1904_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1905_add__decreasing,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1906_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1907_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1908_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1909_add__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1910_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1911_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1912_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1913_add__decreasing2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1914_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1915_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1916_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1917_add__increasing2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1918_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1919_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1920_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1921_add__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1922_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1923_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1924_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_1925_add__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1926_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1927_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_1928_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( plus_plus_real @ X @ Y2 )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y2 = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1929_add__nonneg__eq__0__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ( plus_plus_rat @ X @ Y2 )
            = zero_zero_rat )
          = ( ( X = zero_zero_rat )
            & ( Y2 = zero_zero_rat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1930_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X @ Y2 )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1931_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ( plus_plus_int @ X @ Y2 )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1932_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y2 )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y2 = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1933_add__nonpos__eq__0__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
       => ( ( ( plus_plus_rat @ X @ Y2 )
            = zero_zero_rat )
          = ( ( X = zero_zero_rat )
            & ( Y2 = zero_zero_rat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1934_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y2 )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1935_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y2 )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1936_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1937_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1938_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1939_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_1940_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_1941_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_1942_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1943_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1944_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1945_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_1946_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_1947_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_1948_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_1949_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_1950_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_1951_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_1952_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_1953_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1954_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1955_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1956_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1957_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_1958_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_1959_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_1960_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_1961_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1962_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1963_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1964_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1965_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1966_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1967_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1968_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1969_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1970_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1971_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1972_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1973_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1974_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1975_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1976_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1977_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1978_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1979_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1980_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1981_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1982_mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1983_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1984_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1985_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1986_mult__less__cancel__left__disj,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1987_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1988_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1989_mult__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1990_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1991_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1992_mult__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1993_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1994_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1995_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1996_mult__less__cancel__right__disj,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1997_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1998_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1999_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2000_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2001_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2002_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_2003_less__numeral__extra_I1_J,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% less_numeral_extra(1)
thf(fact_2004_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_2005_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_2006_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_2007_not__one__less__zero,axiom,
    ~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_less_zero
thf(fact_2008_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_2009_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_2010_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_2011_zero__less__one,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one
thf(fact_2012_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_2013_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_2014_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_2015_add__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_neg
thf(fact_2016_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_2017_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_2018_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2019_add__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2020_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2021_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2022_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_2023_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2024_pos__add__strict,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2025_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2026_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2027_add__less__zeroD,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y2 @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_2028_add__less__zeroD,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ X @ Y2 ) @ zero_zero_rat )
     => ( ( ord_less_rat @ X @ zero_zero_rat )
        | ( ord_less_rat @ Y2 @ zero_zero_rat ) ) ) ).

% add_less_zeroD
thf(fact_2029_add__less__zeroD,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y2 ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y2 @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_2030_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2031_divide__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2032_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2033_divide__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2034_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2035_zero__le__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2036_divide__nonneg__nonneg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2037_divide__nonneg__nonneg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2038_divide__nonneg__nonpos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2039_divide__nonneg__nonpos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2040_divide__nonpos__nonneg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2041_divide__nonpos__nonneg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2042_divide__nonpos__nonpos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2043_divide__nonpos__nonpos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2044_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2045_divide__right__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2046_mod__induct,axiom,
    ! [P3: nat > $o,N: nat,P5: nat,M: nat] :
      ( ( P3 @ N )
     => ( ( ord_less_nat @ N @ P5 )
       => ( ( ord_less_nat @ M @ P5 )
         => ( ! [N3: nat] :
                ( ( ord_less_nat @ N3 @ P5 )
               => ( ( P3 @ N3 )
                 => ( P3 @ ( modulo_modulo_nat @ ( suc @ N3 ) @ P5 ) ) ) )
           => ( P3 @ M ) ) ) ) ) ).

% mod_induct
thf(fact_2047_power__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2048_power__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2049_power__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2050_power__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2051_zero__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2052_zero__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2053_zero__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2054_zero__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2055_divide__neg__neg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% divide_neg_neg
thf(fact_2056_divide__neg__neg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% divide_neg_neg
thf(fact_2057_divide__neg__pos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_2058_divide__neg__pos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_neg_pos
thf(fact_2059_divide__pos__neg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_2060_divide__pos__neg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_pos_neg
thf(fact_2061_divide__pos__pos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% divide_pos_pos
thf(fact_2062_divide__pos__pos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% divide_pos_pos
thf(fact_2063_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2064_divide__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2065_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_2066_divide__less__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) )
        & ( C != zero_zero_rat ) ) ) ).

% divide_less_cancel
thf(fact_2067_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2068_zero__less__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2069_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2070_divide__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2071_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2072_divide__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2073_mod__Suc__le__divisor,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).

% mod_Suc_le_divisor
thf(fact_2074_zero__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2075_zero__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2076_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2077_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2078_frac__eq__eq,axiom,
    ! [Y2: complex,Z3: complex,X: complex,W: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( Z3 != zero_zero_complex )
       => ( ( ( divide1717551699836669952omplex @ X @ Y2 )
            = ( divide1717551699836669952omplex @ W @ Z3 ) )
          = ( ( times_times_complex @ X @ Z3 )
            = ( times_times_complex @ W @ Y2 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_2079_frac__eq__eq,axiom,
    ! [Y2: real,Z3: real,X: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z3 != zero_zero_real )
       => ( ( ( divide_divide_real @ X @ Y2 )
            = ( divide_divide_real @ W @ Z3 ) )
          = ( ( times_times_real @ X @ Z3 )
            = ( times_times_real @ W @ Y2 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_2080_frac__eq__eq,axiom,
    ! [Y2: rat,Z3: rat,X: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z3 != zero_zero_rat )
       => ( ( ( divide_divide_rat @ X @ Y2 )
            = ( divide_divide_rat @ W @ Z3 ) )
          = ( ( times_times_rat @ X @ Z3 )
            = ( times_times_rat @ W @ Y2 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_2081_divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq
thf(fact_2082_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_2083_divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ C )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq
thf(fact_2084_eq__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq
thf(fact_2085_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_2086_eq__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq
thf(fact_2087_divide__eq__imp,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( B
          = ( times_times_complex @ A @ C ) )
       => ( ( divide1717551699836669952omplex @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_2088_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_2089_divide__eq__imp,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( B
          = ( times_times_rat @ A @ C ) )
       => ( ( divide_divide_rat @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_2090_eq__divide__imp,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = B )
       => ( A
          = ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_2091_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_2092_eq__divide__imp,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = B )
       => ( A
          = ( divide_divide_rat @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_2093_nonzero__divide__eq__eq,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ B @ C )
          = A )
        = ( B
          = ( times_times_complex @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_2094_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_2095_nonzero__divide__eq__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( divide_divide_rat @ B @ C )
          = A )
        = ( B
          = ( times_times_rat @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_2096_nonzero__eq__divide__eq,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( A
          = ( divide1717551699836669952omplex @ B @ C ) )
        = ( ( times_times_complex @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_2097_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_2098_nonzero__eq__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( A
          = ( divide_divide_rat @ B @ C ) )
        = ( ( times_times_rat @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_2099_right__inverse__eq,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = one_one_complex )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2100_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2101_right__inverse__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( divide_divide_rat @ A @ B )
          = one_one_rat )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2102_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_2103_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_2104_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_2105_pos__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).

% pos_zmod_mult_2
thf(fact_2106_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2107_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2108_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2109_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2110_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2111_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2112_power__0,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% power_0
thf(fact_2113_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_2114_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_2115_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_2116_power__0,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% power_0
thf(fact_2117_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2118_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = A )
      = ( ( divide_divide_int @ A @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2119_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = A )
      = ( ( divide6298287555418463151nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2120_ex__least__nat__le,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ N )
     => ( ~ ( P3 @ zero_zero_nat )
       => ? [K: nat] :
            ( ( ord_less_eq_nat @ K @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ~ ( P3 @ I4 ) )
            & ( P3 @ K ) ) ) ) ).

% ex_least_nat_le
thf(fact_2121_less__imp__add__positive,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ? [K: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K )
          & ( ( plus_plus_nat @ I2 @ K )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_2122_nat__mult__less__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ord_less_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_2123_nat__mult__eq__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ( times_times_nat @ K2 @ M )
          = ( times_times_nat @ K2 @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_2124_mult__less__mono2,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_nat @ ( times_times_nat @ K2 @ I2 ) @ ( times_times_nat @ K2 @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_2125_mult__less__mono1,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_nat @ ( times_times_nat @ I2 @ K2 ) @ ( times_times_nat @ J @ K2 ) ) ) ) ).

% mult_less_mono1
thf(fact_2126_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_2127_nat__power__less__imp__less,axiom,
    ! [I2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I2 )
     => ( ( ord_less_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_2128_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_2129_mod__less__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_less_divisor
thf(fact_2130_mod__eq__0D,axiom,
    ! [M: nat,D: nat] :
      ( ( ( modulo_modulo_nat @ M @ D )
        = zero_zero_nat )
     => ? [Q3: nat] :
          ( M
          = ( times_times_nat @ D @ Q3 ) ) ) ).

% mod_eq_0D
thf(fact_2131_nat__bit__induct,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P3 @ N3 )
           => ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( P3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
       => ( ! [N3: nat] :
              ( ( P3 @ N3 )
             => ( P3 @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
         => ( P3 @ N ) ) ) ) ).

% nat_bit_induct
thf(fact_2132_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_2133_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_2134_imult__is__infinity,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ A @ B )
        = extend5688581933313929465d_enat )
      = ( ( ( A = extend5688581933313929465d_enat )
          & ( B != zero_z5237406670263579293d_enat ) )
        | ( ( B = extend5688581933313929465d_enat )
          & ( A != zero_z5237406670263579293d_enat ) ) ) ) ).

% imult_is_infinity
thf(fact_2135_enat__0__less__mult__iff,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
      = ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
        & ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).

% enat_0_less_mult_iff
thf(fact_2136_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_2137_odd__0__le__power__imp__0__le,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_2138_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_2139_odd__power__less__zero,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).

% odd_power_less_zero
thf(fact_2140_odd__power__less__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).

% odd_power_less_zero
thf(fact_2141_odd__power__less__zero,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).

% odd_power_less_zero
thf(fact_2142_power__gt1,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_2143_power__gt1,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_2144_power__gt1,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_2145_power__gt1,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_2146_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2147_mult__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2148_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2149_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2150_mult__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2151_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2152_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2153_mult__left__less__imp__less,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2154_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2155_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2156_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2157_mult__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2158_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2159_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2160_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2161_mult__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2162_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2163_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2164_mult__right__less__imp__less,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2165_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2166_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2167_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2168_mult__strict__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2169_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2170_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2171_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2172_mult__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2173_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2174_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2175_mult__le__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2176_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2177_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2178_mult__le__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2179_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2180_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2181_mult__left__le__imp__le,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2182_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2183_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2184_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2185_mult__right__le__imp__le,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2186_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2187_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2188_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2189_mult__le__less__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2190_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2191_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2192_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2193_mult__less__le__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2194_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2195_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2196_field__le__epsilon,axiom,
    ! [X: real,Y2: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ X @ ( plus_plus_real @ Y2 @ E2 ) ) )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% field_le_epsilon
thf(fact_2197_field__le__epsilon,axiom,
    ! [X: rat,Y2: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ X @ ( plus_plus_rat @ Y2 @ E2 ) ) )
     => ( ord_less_eq_rat @ X @ Y2 ) ) ).

% field_le_epsilon
thf(fact_2198_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_2199_add__neg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_nonpos
thf(fact_2200_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_2201_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_2202_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2203_add__nonneg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2204_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2205_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2206_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_2207_add__nonpos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_neg
thf(fact_2208_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_2209_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_2210_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2211_add__pos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2212_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2213_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2214_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2215_add__strict__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2216_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2217_add__strict__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2218_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2219_add__strict__increasing2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2220_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2221_add__strict__increasing2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2222_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2223_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2224_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2225_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_2226_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_2227_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_2228_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_2229_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_2230_mult__right__le__one__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X @ Y2 ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_2231_mult__right__le__one__le,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ord_less_eq_rat @ Y2 @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X @ Y2 ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_2232_mult__right__le__one__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ord_less_eq_int @ Y2 @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X @ Y2 ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_2233_mult__left__le__one__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y2 @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_2234_mult__left__le__one__le,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ord_less_eq_rat @ Y2 @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y2 @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_2235_mult__left__le__one__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ord_less_eq_int @ Y2 @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y2 @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_2236_sum__squares__le__zero__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_2237_sum__squares__le__zero__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y2 @ Y2 ) ) @ zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_2238_sum__squares__le__zero__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y2 @ Y2 ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_2239_sum__squares__ge__zero,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_2240_sum__squares__ge__zero,axiom,
    ! [X: rat,Y2: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_2241_sum__squares__ge__zero,axiom,
    ! [X: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_2242_frac__le,axiom,
    ! [Y2: real,X: real,W: real,Z3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z3 )
           => ( ord_less_eq_real @ ( divide_divide_real @ X @ Z3 ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2243_frac__le,axiom,
    ! [Y2: rat,X: rat,W: rat,Z3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ X @ Y2 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z3 )
           => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Z3 ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2244_frac__less,axiom,
    ! [X: real,Y2: real,W: real,Z3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ Y2 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z3 )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z3 ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2245_frac__less,axiom,
    ! [X: rat,Y2: rat,W: rat,Z3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ X @ Y2 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z3 )
           => ( ord_less_rat @ ( divide_divide_rat @ X @ Z3 ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2246_frac__less2,axiom,
    ! [X: real,Y2: real,W: real,Z3: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_real @ W @ Z3 )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z3 ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2247_frac__less2,axiom,
    ! [X: rat,Y2: rat,W: rat,Z3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ X @ Y2 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_rat @ W @ Z3 )
           => ( ord_less_rat @ ( divide_divide_rat @ X @ Z3 ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2248_divide__le__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2249_divide__le__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2250_divide__nonneg__neg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_2251_divide__nonneg__neg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_neg
thf(fact_2252_divide__nonneg__pos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2253_divide__nonneg__pos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2254_divide__nonpos__neg,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2255_divide__nonpos__neg,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2256_divide__nonpos__pos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_2257_divide__nonpos__pos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_pos
thf(fact_2258_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2259_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( divide_divide_int @ A @ B )
          = zero_zero_int ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2260_div__positive,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2261_div__positive,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2262_sum__squares__gt__zero__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) ) )
      = ( ( X != zero_zero_real )
        | ( Y2 != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_2263_sum__squares__gt__zero__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y2 @ Y2 ) ) )
      = ( ( X != zero_zero_rat )
        | ( Y2 != zero_zero_rat ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_2264_sum__squares__gt__zero__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y2 @ Y2 ) ) )
      = ( ( X != zero_zero_int )
        | ( Y2 != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_2265_not__sum__squares__lt__zero,axiom,
    ! [X: real,Y2: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_2266_not__sum__squares__lt__zero,axiom,
    ! [X: rat,Y2: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y2 @ Y2 ) ) @ zero_zero_rat ) ).

% not_sum_squares_lt_zero
thf(fact_2267_not__sum__squares__lt__zero,axiom,
    ! [X: int,Y2: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y2 @ Y2 ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_2268_power__less__imp__less__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2269_power__less__imp__less__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2270_power__less__imp__less__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2271_power__less__imp__less__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2272_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_2273_zero__less__two,axiom,
    ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).

% zero_less_two
thf(fact_2274_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_2275_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_2276_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_2277_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_2278_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_2279_divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_2280_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_2281_less__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_2282_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_2283_neg__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_2284_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_2285_neg__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_2286_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_2287_pos__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_2288_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_2289_pos__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_2290_mult__imp__div__pos__less,axiom,
    ! [Y2: real,X: real,Z3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ X @ ( times_times_real @ Z3 @ Y2 ) )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y2 ) @ Z3 ) ) ) ).

% mult_imp_div_pos_less
thf(fact_2291_mult__imp__div__pos__less,axiom,
    ! [Y2: rat,X: rat,Z3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_rat @ X @ ( times_times_rat @ Z3 @ Y2 ) )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y2 ) @ Z3 ) ) ) ).

% mult_imp_div_pos_less
thf(fact_2292_mult__imp__less__div__pos,axiom,
    ! [Y2: real,Z3: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ ( times_times_real @ Z3 @ Y2 ) @ X )
       => ( ord_less_real @ Z3 @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_2293_mult__imp__less__div__pos,axiom,
    ! [Y2: rat,Z3: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_rat @ ( times_times_rat @ Z3 @ Y2 ) @ X )
       => ( ord_less_rat @ Z3 @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_2294_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_2295_divide__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_2296_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_2297_divide__strict__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_2298_power__le__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_2299_power__le__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).

% power_le_one
thf(fact_2300_power__le__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_2301_power__le__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_2302_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_2303_divide__less__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_less_eq_1
thf(fact_2304_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_2305_less__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_2306_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_2307_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( numeral_numeral_real @ W ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_2308_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( numeral_numeral_rat @ W ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_2309_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( numera6690914467698888265omplex @ W )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_2310_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( numeral_numeral_real @ W )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_2311_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( numeral_numeral_rat @ W )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_2312_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z3: complex,A: complex,B: complex] :
      ( ( ( Z3 = zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z3 ) @ B )
          = B ) )
      & ( ( Z3 != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z3 ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_2313_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z3: real,A: real,B: real] :
      ( ( ( Z3 = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z3 ) @ B )
          = B ) )
      & ( ( Z3 != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z3 ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_2314_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z3: rat,A: rat,B: rat] :
      ( ( ( Z3 = zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z3 ) @ B )
          = B ) )
      & ( ( Z3 != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z3 ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_2315_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z3: complex,A: complex,B: complex] :
      ( ( ( Z3 = zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z3 ) )
          = A ) )
      & ( ( Z3 != zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z3 ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z3 ) @ B ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_2316_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z3: real,A: real,B: real] :
      ( ( ( Z3 = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z3 ) )
          = A ) )
      & ( ( Z3 != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z3 ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z3 ) @ B ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_2317_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z3: rat,A: rat,B: rat] :
      ( ( ( Z3 = zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z3 ) )
          = A ) )
      & ( ( Z3 != zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z3 ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z3 ) @ B ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_2318_add__frac__eq,axiom,
    ! [Y2: complex,Z3: complex,X: complex,W: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( Z3 != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y2 ) @ ( divide1717551699836669952omplex @ W @ Z3 ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z3 ) @ ( times_times_complex @ W @ Y2 ) ) @ ( times_times_complex @ Y2 @ Z3 ) ) ) ) ) ).

% add_frac_eq
thf(fact_2319_add__frac__eq,axiom,
    ! [Y2: real,Z3: real,X: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z3 != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y2 ) @ ( divide_divide_real @ W @ Z3 ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z3 ) ) ) ) ) ).

% add_frac_eq
thf(fact_2320_add__frac__eq,axiom,
    ! [Y2: rat,Z3: rat,X: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z3 != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y2 ) @ ( divide_divide_rat @ W @ Z3 ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z3 ) ) ) ) ) ).

% add_frac_eq
thf(fact_2321_add__frac__num,axiom,
    ! [Y2: complex,X: complex,Z3: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y2 ) @ Z3 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z3 @ Y2 ) ) @ Y2 ) ) ) ).

% add_frac_num
thf(fact_2322_add__frac__num,axiom,
    ! [Y2: real,X: real,Z3: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y2 ) @ Z3 )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z3 @ Y2 ) ) @ Y2 ) ) ) ).

% add_frac_num
thf(fact_2323_add__frac__num,axiom,
    ! [Y2: rat,X: rat,Z3: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y2 ) @ Z3 )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z3 @ Y2 ) ) @ Y2 ) ) ) ).

% add_frac_num
thf(fact_2324_add__num__frac,axiom,
    ! [Y2: complex,Z3: complex,X: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( plus_plus_complex @ Z3 @ ( divide1717551699836669952omplex @ X @ Y2 ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z3 @ Y2 ) ) @ Y2 ) ) ) ).

% add_num_frac
thf(fact_2325_add__num__frac,axiom,
    ! [Y2: real,Z3: real,X: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( plus_plus_real @ Z3 @ ( divide_divide_real @ X @ Y2 ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z3 @ Y2 ) ) @ Y2 ) ) ) ).

% add_num_frac
thf(fact_2326_add__num__frac,axiom,
    ! [Y2: rat,Z3: rat,X: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( plus_plus_rat @ Z3 @ ( divide_divide_rat @ X @ Y2 ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z3 @ Y2 ) ) @ Y2 ) ) ) ).

% add_num_frac
thf(fact_2327_add__divide__eq__iff,axiom,
    ! [Z3: complex,X: complex,Y2: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ Y2 @ Z3 ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z3 ) @ Y2 ) @ Z3 ) ) ) ).

% add_divide_eq_iff
thf(fact_2328_add__divide__eq__iff,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( Z3 != zero_zero_real )
     => ( ( plus_plus_real @ X @ ( divide_divide_real @ Y2 @ Z3 ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z3 ) @ Y2 ) @ Z3 ) ) ) ).

% add_divide_eq_iff
thf(fact_2329_add__divide__eq__iff,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( Z3 != zero_zero_rat )
     => ( ( plus_plus_rat @ X @ ( divide_divide_rat @ Y2 @ Z3 ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z3 ) @ Y2 ) @ Z3 ) ) ) ).

% add_divide_eq_iff
thf(fact_2330_divide__add__eq__iff,axiom,
    ! [Z3: complex,X: complex,Y2: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Z3 ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% divide_add_eq_iff
thf(fact_2331_divide__add__eq__iff,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( Z3 != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Z3 ) @ Y2 )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% divide_add_eq_iff
thf(fact_2332_divide__add__eq__iff,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( Z3 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Z3 ) @ Y2 )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% divide_add_eq_iff
thf(fact_2333_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_2334_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_2335_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_2336_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_2337_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ A @ B )
       => ( ( modulo364778990260209775nteger @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2338_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( modulo_modulo_nat @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2339_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( modulo_modulo_int @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2340_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2341_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2342_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2343_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A6: set_int,B6: set_int] :
          ( ( ord_less_set_int @ A6 @ B6 )
          | ( A6 = B6 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_2344_subset__psubset__trans,axiom,
    ! [A2: set_int,B4: set_int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( ord_less_set_int @ B4 @ C4 )
       => ( ord_less_set_int @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_2345_subset__not__subset__eq,axiom,
    ( ord_less_set_int
    = ( ^ [A6: set_int,B6: set_int] :
          ( ( ord_less_eq_set_int @ A6 @ B6 )
          & ~ ( ord_less_eq_set_int @ B6 @ A6 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_2346_psubset__subset__trans,axiom,
    ! [A2: set_int,B4: set_int,C4: set_int] :
      ( ( ord_less_set_int @ A2 @ B4 )
     => ( ( ord_less_eq_set_int @ B4 @ C4 )
       => ( ord_less_set_int @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_2347_psubset__imp__subset,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( ord_less_set_int @ A2 @ B4 )
     => ( ord_less_eq_set_int @ A2 @ B4 ) ) ).

% psubset_imp_subset
thf(fact_2348_psubset__eq,axiom,
    ( ord_less_set_int
    = ( ^ [A6: set_int,B6: set_int] :
          ( ( ord_less_eq_set_int @ A6 @ B6 )
          & ( A6 != B6 ) ) ) ) ).

% psubset_eq
thf(fact_2349_psubsetE,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( ord_less_set_int @ A2 @ B4 )
     => ~ ( ( ord_less_eq_set_int @ A2 @ B4 )
         => ( ord_less_eq_set_int @ B4 @ A2 ) ) ) ).

% psubsetE
thf(fact_2350_in__mono,axiom,
    ! [A2: set_complex,B4: set_complex,X: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B4 )
     => ( ( member_complex @ X @ A2 )
       => ( member_complex @ X @ B4 ) ) ) ).

% in_mono
thf(fact_2351_in__mono,axiom,
    ! [A2: set_real,B4: set_real,X: real] :
      ( ( ord_less_eq_set_real @ A2 @ B4 )
     => ( ( member_real @ X @ A2 )
       => ( member_real @ X @ B4 ) ) ) ).

% in_mono
thf(fact_2352_in__mono,axiom,
    ! [A2: set_set_nat,B4: set_set_nat,X: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B4 )
     => ( ( member_set_nat @ X @ A2 )
       => ( member_set_nat @ X @ B4 ) ) ) ).

% in_mono
thf(fact_2353_in__mono,axiom,
    ! [A2: set_nat,B4: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B4 )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ X @ B4 ) ) ) ).

% in_mono
thf(fact_2354_in__mono,axiom,
    ! [A2: set_int,B4: set_int,X: int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( member_int @ X @ A2 )
       => ( member_int @ X @ B4 ) ) ) ).

% in_mono
thf(fact_2355_subsetD,axiom,
    ! [A2: set_complex,B4: set_complex,C: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B4 )
     => ( ( member_complex @ C @ A2 )
       => ( member_complex @ C @ B4 ) ) ) ).

% subsetD
thf(fact_2356_subsetD,axiom,
    ! [A2: set_real,B4: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A2 @ B4 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B4 ) ) ) ).

% subsetD
thf(fact_2357_subsetD,axiom,
    ! [A2: set_set_nat,B4: set_set_nat,C: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B4 )
     => ( ( member_set_nat @ C @ A2 )
       => ( member_set_nat @ C @ B4 ) ) ) ).

% subsetD
thf(fact_2358_subsetD,axiom,
    ! [A2: set_nat,B4: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B4 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B4 ) ) ) ).

% subsetD
thf(fact_2359_subsetD,axiom,
    ! [A2: set_int,B4: set_int,C: int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( member_int @ C @ A2 )
       => ( member_int @ C @ B4 ) ) ) ).

% subsetD
thf(fact_2360_equalityE,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( A2 = B4 )
     => ~ ( ( ord_less_eq_set_int @ A2 @ B4 )
         => ~ ( ord_less_eq_set_int @ B4 @ A2 ) ) ) ).

% equalityE
thf(fact_2361_subset__eq,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A6: set_complex,B6: set_complex] :
        ! [X4: complex] :
          ( ( member_complex @ X4 @ A6 )
         => ( member_complex @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_2362_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
        ! [X4: real] :
          ( ( member_real @ X4 @ A6 )
         => ( member_real @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_2363_subset__eq,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A6: set_set_nat,B6: set_set_nat] :
        ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ A6 )
         => ( member_set_nat @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_2364_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [X4: nat] :
          ( ( member_nat @ X4 @ A6 )
         => ( member_nat @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_2365_subset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A6: set_int,B6: set_int] :
        ! [X4: int] :
          ( ( member_int @ X4 @ A6 )
         => ( member_int @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_2366_equalityD1,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( A2 = B4 )
     => ( ord_less_eq_set_int @ A2 @ B4 ) ) ).

% equalityD1
thf(fact_2367_equalityD2,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( A2 = B4 )
     => ( ord_less_eq_set_int @ B4 @ A2 ) ) ).

% equalityD2
thf(fact_2368_subset__iff,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A6: set_complex,B6: set_complex] :
        ! [T2: complex] :
          ( ( member_complex @ T2 @ A6 )
         => ( member_complex @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_2369_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
        ! [T2: real] :
          ( ( member_real @ T2 @ A6 )
         => ( member_real @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_2370_subset__iff,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A6: set_set_nat,B6: set_set_nat] :
        ! [T2: set_nat] :
          ( ( member_set_nat @ T2 @ A6 )
         => ( member_set_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_2371_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [T2: nat] :
          ( ( member_nat @ T2 @ A6 )
         => ( member_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_2372_subset__iff,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A6: set_int,B6: set_int] :
        ! [T2: int] :
          ( ( member_int @ T2 @ A6 )
         => ( member_int @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_2373_subset__refl,axiom,
    ! [A2: set_int] : ( ord_less_eq_set_int @ A2 @ A2 ) ).

% subset_refl
thf(fact_2374_Collect__mono,axiom,
    ! [P3: complex > $o,Q2: complex > $o] :
      ( ! [X5: complex] :
          ( ( P3 @ X5 )
         => ( Q2 @ X5 ) )
     => ( ord_le211207098394363844omplex @ ( collect_complex @ P3 ) @ ( collect_complex @ Q2 ) ) ) ).

% Collect_mono
thf(fact_2375_Collect__mono,axiom,
    ! [P3: list_nat > $o,Q2: list_nat > $o] :
      ( ! [X5: list_nat] :
          ( ( P3 @ X5 )
         => ( Q2 @ X5 ) )
     => ( ord_le6045566169113846134st_nat @ ( collect_list_nat @ P3 ) @ ( collect_list_nat @ Q2 ) ) ) ).

% Collect_mono
thf(fact_2376_Collect__mono,axiom,
    ! [P3: set_nat > $o,Q2: set_nat > $o] :
      ( ! [X5: set_nat] :
          ( ( P3 @ X5 )
         => ( Q2 @ X5 ) )
     => ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P3 ) @ ( collect_set_nat @ Q2 ) ) ) ).

% Collect_mono
thf(fact_2377_Collect__mono,axiom,
    ! [P3: nat > $o,Q2: nat > $o] :
      ( ! [X5: nat] :
          ( ( P3 @ X5 )
         => ( Q2 @ X5 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P3 ) @ ( collect_nat @ Q2 ) ) ) ).

% Collect_mono
thf(fact_2378_Collect__mono,axiom,
    ! [P3: int > $o,Q2: int > $o] :
      ( ! [X5: int] :
          ( ( P3 @ X5 )
         => ( Q2 @ X5 ) )
     => ( ord_less_eq_set_int @ ( collect_int @ P3 ) @ ( collect_int @ Q2 ) ) ) ).

% Collect_mono
thf(fact_2379_subset__trans,axiom,
    ! [A2: set_int,B4: set_int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( ord_less_eq_set_int @ B4 @ C4 )
       => ( ord_less_eq_set_int @ A2 @ C4 ) ) ) ).

% subset_trans
thf(fact_2380_set__eq__subset,axiom,
    ( ( ^ [Y3: set_int,Z2: set_int] : ( Y3 = Z2 ) )
    = ( ^ [A6: set_int,B6: set_int] :
          ( ( ord_less_eq_set_int @ A6 @ B6 )
          & ( ord_less_eq_set_int @ B6 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_2381_Collect__mono__iff,axiom,
    ! [P3: complex > $o,Q2: complex > $o] :
      ( ( ord_le211207098394363844omplex @ ( collect_complex @ P3 ) @ ( collect_complex @ Q2 ) )
      = ( ! [X4: complex] :
            ( ( P3 @ X4 )
           => ( Q2 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_2382_Collect__mono__iff,axiom,
    ! [P3: list_nat > $o,Q2: list_nat > $o] :
      ( ( ord_le6045566169113846134st_nat @ ( collect_list_nat @ P3 ) @ ( collect_list_nat @ Q2 ) )
      = ( ! [X4: list_nat] :
            ( ( P3 @ X4 )
           => ( Q2 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_2383_Collect__mono__iff,axiom,
    ! [P3: set_nat > $o,Q2: set_nat > $o] :
      ( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P3 ) @ ( collect_set_nat @ Q2 ) )
      = ( ! [X4: set_nat] :
            ( ( P3 @ X4 )
           => ( Q2 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_2384_Collect__mono__iff,axiom,
    ! [P3: nat > $o,Q2: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P3 ) @ ( collect_nat @ Q2 ) )
      = ( ! [X4: nat] :
            ( ( P3 @ X4 )
           => ( Q2 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_2385_Collect__mono__iff,axiom,
    ! [P3: int > $o,Q2: int > $o] :
      ( ( ord_less_eq_set_int @ ( collect_int @ P3 ) @ ( collect_int @ Q2 ) )
      = ( ! [X4: int] :
            ( ( P3 @ X4 )
           => ( Q2 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_2386_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_2387_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_2388_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
        = zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(2)
thf(fact_2389_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_2390_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_2391_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
      = zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(1)
thf(fact_2392_bounded__Max__nat,axiom,
    ! [P3: nat > $o,X: nat,M7: nat] :
      ( ( P3 @ X )
     => ( ! [X5: nat] :
            ( ( P3 @ X5 )
           => ( ord_less_eq_nat @ X5 @ M7 ) )
       => ~ ! [M4: nat] :
              ( ( P3 @ M4 )
             => ~ ! [X2: nat] :
                    ( ( P3 @ X2 )
                   => ( ord_less_eq_nat @ X2 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_2393_length__pos__if__in__set,axiom,
    ! [X: complex,Xs: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2394_length__pos__if__in__set,axiom,
    ! [X: real,Xs: list_real] :
      ( ( member_real @ X @ ( set_real2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2395_length__pos__if__in__set,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2396_length__pos__if__in__set,axiom,
    ! [X: vEBT_VEBT,Xs: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2397_length__pos__if__in__set,axiom,
    ! [X: $o,Xs: list_o] :
      ( ( member_o @ X @ ( set_o2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2398_length__pos__if__in__set,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2399_length__pos__if__in__set,axiom,
    ! [X: int,Xs: list_int] :
      ( ( member_int @ X @ ( set_int2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_2400_times__enat__def,axiom,
    ( times_7803423173614009249d_enat
    = ( ^ [M2: extended_enat,N2: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [O: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [P4: nat] : ( extended_enat2 @ ( times_times_nat @ O @ P4 ) )
              @ ( if_Extended_enat @ ( O = zero_zero_nat ) @ zero_z5237406670263579293d_enat @ extend5688581933313929465d_enat )
              @ N2 )
          @ ( if_Extended_enat @ ( N2 = zero_z5237406670263579293d_enat ) @ zero_z5237406670263579293d_enat @ extend5688581933313929465d_enat )
          @ M2 ) ) ) ).

% times_enat_def
thf(fact_2401_nat__mult__le__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_2402_div__le__mono2,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K2 @ N ) @ ( divide_divide_nat @ K2 @ M ) ) ) ) ).

% div_le_mono2
thf(fact_2403_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_2404_nat__mult__div__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( divide_divide_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_2405_div__less__iff__less__mult,axiom,
    ! [Q: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_2406_mod__le__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_le_divisor
thf(fact_2407_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_2408_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_2409_div__less__mono,axiom,
    ! [A2: nat,B4: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B4 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( modulo_modulo_nat @ A2 @ N )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B4 @ N )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A2 @ N ) @ ( divide_divide_nat @ B4 @ N ) ) ) ) ) ) ).

% div_less_mono
thf(fact_2410_Suc__ile__eq,axiom,
    ! [M: nat,N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ ( suc @ M ) ) @ N )
      = ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ N ) ) ).

% Suc_ile_eq
thf(fact_2411_imult__infinity,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
     => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ N )
        = extend5688581933313929465d_enat ) ) ).

% imult_infinity
thf(fact_2412_imult__infinity__right,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
     => ( ( times_7803423173614009249d_enat @ N @ extend5688581933313929465d_enat )
        = extend5688581933313929465d_enat ) ) ).

% imult_infinity_right
thf(fact_2413_div__nat__eqI,axiom,
    ! [N: nat,Q: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q ) @ M )
     => ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q ) ) )
       => ( ( divide_divide_nat @ M @ N )
          = Q ) ) ) ).

% div_nat_eqI
thf(fact_2414_field__le__mult__one__interval,axiom,
    ! [X: real,Y2: real] :
      ( ! [Z: real] :
          ( ( ord_less_real @ zero_zero_real @ Z )
         => ( ( ord_less_real @ Z @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z @ X ) @ Y2 ) ) )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% field_le_mult_one_interval
thf(fact_2415_field__le__mult__one__interval,axiom,
    ! [X: rat,Y2: rat] :
      ( ! [Z: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z )
         => ( ( ord_less_rat @ Z @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z @ X ) @ Y2 ) ) )
     => ( ord_less_eq_rat @ X @ Y2 ) ) ).

% field_le_mult_one_interval
thf(fact_2416_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_2417_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_2418_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_2419_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_2420_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_2421_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_2422_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_2423_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_2424_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_2425_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_2426_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_2427_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_2428_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_2429_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_2430_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_2431_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_2432_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_2433_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_2434_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_2435_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_2436_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_2437_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_2438_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_2439_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_2440_divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_2441_divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_2442_le__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_2443_le__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_2444_divide__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_2445_divide__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_2446_neg__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_2447_neg__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_2448_neg__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_2449_neg__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_2450_pos__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_2451_pos__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_2452_pos__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_2453_pos__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_2454_mult__imp__div__pos__le,axiom,
    ! [Y2: real,X: real,Z3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ X @ ( times_times_real @ Z3 @ Y2 ) )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y2 ) @ Z3 ) ) ) ).

% mult_imp_div_pos_le
thf(fact_2455_mult__imp__div__pos__le,axiom,
    ! [Y2: rat,X: rat,Z3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ X @ ( times_times_rat @ Z3 @ Y2 ) )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y2 ) @ Z3 ) ) ) ).

% mult_imp_div_pos_le
thf(fact_2456_mult__imp__le__div__pos,axiom,
    ! [Y2: real,Z3: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z3 @ Y2 ) @ X )
       => ( ord_less_eq_real @ Z3 @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_2457_mult__imp__le__div__pos,axiom,
    ! [Y2: rat,Z3: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z3 @ Y2 ) @ X )
       => ( ord_less_eq_rat @ Z3 @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_2458_divide__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_2459_divide__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_2460_convex__bound__le,axiom,
    ! [X: real,A: real,Y2: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X @ A )
     => ( ( ord_less_eq_real @ Y2 @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_2461_convex__bound__le,axiom,
    ! [X: rat,A: rat,Y2: rat,U: rat,V: rat] :
      ( ( ord_less_eq_rat @ X @ A )
     => ( ( ord_less_eq_rat @ Y2 @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_2462_convex__bound__le,axiom,
    ! [X: int,A: int,Y2: int,U: int,V: int] :
      ( ( ord_less_eq_int @ X @ A )
     => ( ( ord_less_eq_int @ Y2 @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_2463_divide__le__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_2464_divide__le__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_le_eq_1
thf(fact_2465_le__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_2466_le__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_2467_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_2468_divide__less__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_2469_divide__less__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_2470_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_2471_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_2472_power__Suc__less,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_2473_power__Suc__less,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_2474_power__Suc__less,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_2475_power__Suc__less,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_2476_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2477_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ( ord_less_rat @ A @ one_one_rat )
         => ( ord_less_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2478_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2479_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2480_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2481_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ A @ one_one_rat )
         => ( ord_less_eq_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2482_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2483_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2484_zero__power2,axiom,
    ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_rat ) ).

% zero_power2
thf(fact_2485_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_2486_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_2487_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_2488_zero__power2,axiom,
    ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_complex ) ).

% zero_power2
thf(fact_2489_self__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2490_self__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2491_self__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2492_self__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2493_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2494_one__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2495_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2496_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2497_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_2498_invar__vebt_Osimps,axiom,
    ( vEBT_invar_vebt
    = ( ^ [A1: vEBT_VEBT,A22: nat] :
          ( ( ? [A4: $o,B3: $o] :
                ( A1
                = ( vEBT_Leaf @ A4 @ B3 ) )
            & ( A22
              = ( suc @ zero_zero_nat ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X4: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X4 @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N2 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              & ( A22
                = ( plus_plus_nat @ N2 @ N2 ) )
              & ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X6 )
              & ! [X4: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X4: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X4 @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N2 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
              & ( A22
                = ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) )
              & ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X6 )
              & ! [X4: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,Mi2: nat,Ma2: nat] :
              ( ( A1
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X4: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X4 @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N2 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              & ( A22
                = ( plus_plus_nat @ N2 @ N2 ) )
              & ! [I: nat] :
                  ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
                 => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I ) @ X6 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
              & ( ( Mi2 = Ma2 )
               => ! [X4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
              & ( ord_less_eq_nat @ Mi2 @ Ma2 )
              & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A22 ) )
              & ( ( Mi2 != Ma2 )
               => ! [I: nat] :
                    ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
                          = I )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
                      & ! [X4: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
                              = I )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
                         => ( ( ord_less_nat @ Mi2 @ X4 )
                            & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,Mi2: nat,Ma2: nat] :
              ( ( A1
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X4: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X4 @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N2 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
              & ( A22
                = ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) )
              & ! [I: nat] :
                  ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
                 => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I ) @ X6 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I ) ) )
              & ( ( Mi2 = Ma2 )
               => ! [X4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
              & ( ord_less_eq_nat @ Mi2 @ Ma2 )
              & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A22 ) )
              & ( ( Mi2 != Ma2 )
               => ! [I: nat] :
                    ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
                          = I )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
                      & ! [X4: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
                              = I )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
                         => ( ( ord_less_nat @ Mi2 @ X4 )
                            & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.simps
thf(fact_2499_invar__vebt_Ocases,axiom,
    ! [A12: vEBT_VEBT,A23: nat] :
      ( ( vEBT_invar_vebt @ A12 @ A23 )
     => ( ( ? [A3: $o,B2: $o] :
              ( A12
              = ( vEBT_Leaf @ A3 @ B2 ) )
         => ( A23
           != ( suc @ zero_zero_nat ) ) )
       => ( ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( ( A23 = Deg2 )
               => ( ! [X2: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ( vEBT_invar_vebt @ X2 @ N3 ) )
                 => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                   => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                     => ( ( M4 = N3 )
                       => ( ( Deg2
                            = ( plus_plus_nat @ N3 @ M4 ) )
                         => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 )
                           => ~ ! [X2: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                 => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_1 ) ) ) ) ) ) ) ) ) )
         => ( ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
                ( ( A12
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( A23 = Deg2 )
                 => ( ! [X2: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ( vEBT_invar_vebt @ X2 @ N3 ) )
                   => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                       => ( ( M4
                            = ( suc @ N3 ) )
                         => ( ( Deg2
                              = ( plus_plus_nat @ N3 @ M4 ) )
                           => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 )
                             => ~ ! [X2: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_1 ) ) ) ) ) ) ) ) ) )
           => ( ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi3: nat,Ma3: nat] :
                  ( ( A12
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
                 => ( ( A23 = Deg2 )
                   => ( ! [X2: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_invar_vebt @ X2 @ N3 ) )
                     => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                         => ( ( M4 = N3 )
                           => ( ( Deg2
                                = ( plus_plus_nat @ N3 @ M4 ) )
                             => ( ! [I4: nat] :
                                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                   => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X6 ) )
                                      = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                               => ( ( ( Mi3 = Ma3 )
                                   => ! [X2: vEBT_VEBT] :
                                        ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_1 ) ) )
                                 => ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                                   => ( ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ~ ( ( Mi3 != Ma3 )
                                         => ! [I4: nat] :
                                              ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                             => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                                                    = I4 )
                                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                                                & ! [X2: nat] :
                                                    ( ( ( ( vEBT_VEBT_high @ X2 @ N3 )
                                                        = I4 )
                                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X2 @ N3 ) ) )
                                                   => ( ( ord_less_nat @ Mi3 @ X2 )
                                                      & ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
             => ~ ! [TreeList2: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi3: nat,Ma3: nat] :
                    ( ( A12
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
                   => ( ( A23 = Deg2 )
                     => ( ! [X2: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                           => ( vEBT_invar_vebt @ X2 @ N3 ) )
                       => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                         => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                              = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                           => ( ( M4
                                = ( suc @ N3 ) )
                             => ( ( Deg2
                                  = ( plus_plus_nat @ N3 @ M4 ) )
                               => ( ! [I4: nat] :
                                      ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                     => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X6 ) )
                                        = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                                 => ( ( ( Mi3 = Ma3 )
                                     => ! [X2: vEBT_VEBT] :
                                          ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                         => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_1 ) ) )
                                   => ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                                     => ( ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                       => ~ ( ( Mi3 != Ma3 )
                                           => ! [I4: nat] :
                                                ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                               => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                                                      = I4 )
                                                   => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                                                  & ! [X2: nat] :
                                                      ( ( ( ( vEBT_VEBT_high @ X2 @ N3 )
                                                          = I4 )
                                                        & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X2 @ N3 ) ) )
                                                     => ( ( ord_less_nat @ Mi3 @ X2 )
                                                        & ( ord_less_eq_nat @ X2 @ Ma3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.cases
thf(fact_2500_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q ) @ N ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_2501_split__div,axiom,
    ! [P3: nat > $o,M: nat,N: nat] :
      ( ( P3 @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P3 @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I ) @ J3 ) )
               => ( P3 @ I ) ) ) ) ) ) ).

% split_div
thf(fact_2502_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_2503_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_2504_split__mod,axiom,
    ! [P3: nat > $o,M: nat,N: nat] :
      ( ( P3 @ ( modulo_modulo_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P3 @ M ) )
        & ( ( N != zero_zero_nat )
         => ! [I: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I ) @ J3 ) )
               => ( P3 @ J3 ) ) ) ) ) ) ).

% split_mod
thf(fact_2505_Collect__subset,axiom,
    ! [A2: set_real,P3: real > $o] :
      ( ord_less_eq_set_real
      @ ( collect_real
        @ ^ [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ( P3 @ X4 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_2506_Collect__subset,axiom,
    ! [A2: set_complex,P3: complex > $o] :
      ( ord_le211207098394363844omplex
      @ ( collect_complex
        @ ^ [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
            & ( P3 @ X4 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_2507_Collect__subset,axiom,
    ! [A2: set_list_nat,P3: list_nat > $o] :
      ( ord_le6045566169113846134st_nat
      @ ( collect_list_nat
        @ ^ [X4: list_nat] :
            ( ( member_list_nat @ X4 @ A2 )
            & ( P3 @ X4 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_2508_Collect__subset,axiom,
    ! [A2: set_set_nat,P3: set_nat > $o] :
      ( ord_le6893508408891458716et_nat
      @ ( collect_set_nat
        @ ^ [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A2 )
            & ( P3 @ X4 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_2509_Collect__subset,axiom,
    ! [A2: set_nat,P3: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( P3 @ X4 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_2510_Collect__subset,axiom,
    ! [A2: set_int,P3: int > $o] :
      ( ord_less_eq_set_int
      @ ( collect_int
        @ ^ [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( P3 @ X4 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_2511_less__eq__set__def,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A6: set_complex,B6: set_complex] :
          ( ord_le4573692005234683329plex_o
          @ ^ [X4: complex] : ( member_complex @ X4 @ A6 )
          @ ^ [X4: complex] : ( member_complex @ X4 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_2512_less__eq__set__def,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( ord_less_eq_real_o
          @ ^ [X4: real] : ( member_real @ X4 @ A6 )
          @ ^ [X4: real] : ( member_real @ X4 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_2513_less__eq__set__def,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A6: set_set_nat,B6: set_set_nat] :
          ( ord_le3964352015994296041_nat_o
          @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ A6 )
          @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_2514_less__eq__set__def,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( ord_less_eq_nat_o
          @ ^ [X4: nat] : ( member_nat @ X4 @ A6 )
          @ ^ [X4: nat] : ( member_nat @ X4 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_2515_less__eq__set__def,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A6: set_int,B6: set_int] :
          ( ord_less_eq_int_o
          @ ^ [X4: int] : ( member_int @ X4 @ A6 )
          @ ^ [X4: int] : ( member_int @ X4 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_2516_invar__vebt_Ointros_I5_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X6 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X5: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X5 @ N )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X5 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X5 )
                                      & ( ord_less_eq_nat @ X5 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(5)
thf(fact_2517_convex__bound__lt,axiom,
    ! [X: real,A: real,Y2: real,U: real,V: real] :
      ( ( ord_less_real @ X @ A )
     => ( ( ord_less_real @ Y2 @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_2518_convex__bound__lt,axiom,
    ! [X: rat,A: rat,Y2: rat,U: rat,V: rat] :
      ( ( ord_less_rat @ X @ A )
     => ( ( ord_less_rat @ Y2 @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_2519_convex__bound__lt,axiom,
    ! [X: int,A: int,Y2: int,U: int,V: int] :
      ( ( ord_less_int @ X @ A )
     => ( ( ord_less_int @ Y2 @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_2520_divide__le__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_2521_divide__le__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_2522_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_2523_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_2524_half__gt__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_2525_half__gt__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_2526_half__gt__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% half_gt_zero_iff
thf(fact_2527_half__gt__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% half_gt_zero_iff
thf(fact_2528_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_2529_zero__le__power2,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_2530_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_2531_power2__eq__imp__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( X = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_2532_power2__eq__imp__eq,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
         => ( X = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_2533_power2__eq__imp__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
         => ( X = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_2534_power2__eq__imp__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
         => ( X = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_2535_power2__le__imp__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ X @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_2536_power2__le__imp__le,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ X @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_2537_power2__le__imp__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ord_less_eq_nat @ X @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_2538_power2__le__imp__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_eq_int @ X @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_2539_power2__less__0,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).

% power2_less_0
thf(fact_2540_power2__less__0,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).

% power2_less_0
thf(fact_2541_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_2542_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
     => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2543_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2544_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_2545_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_2546_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_2547_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_2548_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_2549_power__odd__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_2550_power__odd__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_2551_power__odd__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_2552_power__odd__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_2553_power__odd__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_2554_power2__less__imp__less,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ X @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_2555_power2__less__imp__less,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_rat @ X @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_2556_power2__less__imp__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ord_less_nat @ X @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_2557_power2__less__imp__less,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_int @ X @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_2558_sum__power2__ge__zero,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_2559_sum__power2__ge__zero,axiom,
    ! [X: rat,Y2: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_2560_sum__power2__ge__zero,axiom,
    ! [X: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_2561_sum__power2__le__zero__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_2562_sum__power2__le__zero__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_2563_sum__power2__le__zero__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_2564_divmod__digit__0_I2_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_2565_divmod__digit__0_I2_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_int @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_2566_divmod__digit__0_I2_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
          = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_2567_not__sum__power2__lt__zero,axiom,
    ! [X: real,Y2: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).

% not_sum_power2_lt_zero
thf(fact_2568_not__sum__power2__lt__zero,axiom,
    ! [X: rat,Y2: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).

% not_sum_power2_lt_zero
thf(fact_2569_not__sum__power2__lt__zero,axiom,
    ! [X: int,Y2: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_2570_sum__power2__gt__zero__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_real )
        | ( Y2 != zero_zero_real ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_2571_sum__power2__gt__zero__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_rat )
        | ( Y2 != zero_zero_rat ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_2572_sum__power2__gt__zero__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_int )
        | ( Y2 != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_2573_bits__stable__imp__add__self,axiom,
    ! [A: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_2574_bits__stable__imp__add__self,axiom,
    ! [A: int] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_2575_bits__stable__imp__add__self,axiom,
    ! [A: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% bits_stable_imp_add_self
thf(fact_2576_zero__le__even__power_H,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_2577_zero__le__even__power_H,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_2578_zero__le__even__power_H,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_2579_verit__le__mono__div,axiom,
    ! [A2: nat,B4: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B4 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B4 @ N )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B4 @ N ) ) ) ) ).

% verit_le_mono_div
thf(fact_2580_divmod__digit__0_I1_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_2581_divmod__digit__0_I1_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_2582_divmod__digit__0_I1_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_2583_invar__vebt_Ointros_I4_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X6 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X5: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X5 @ N )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X5 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X5 )
                                      & ( ord_less_eq_nat @ X5 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(4)
thf(fact_2584_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
    ! [X: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_high @ X @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(1)
thf(fact_2585_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
    ! [X: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_low @ X @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(2)
thf(fact_2586_not__mod__2__eq__0__eq__1,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2587_not__mod__2__eq__0__eq__1,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2588_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2589_not__mod__2__eq__1__eq__0,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2590_not__mod__2__eq__1__eq__0,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2591_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != one_one_Code_integer )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2592_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_2593_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ! [Uu2: $o,Uv2: $o] :
            ( X
           != ( vEBT_Leaf @ Uu2 @ Uv2 ) )
       => ( ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) )
         => ( ! [Mi3: nat,Ma3: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
               => ( ( Xa = Mi3 )
                  | ( Xa = Ma3 ) ) )
           => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                  ( ? [Vc: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
                 => ( ( Xa = Mi3 )
                    | ( Xa = Ma3 )
                    | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
             => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
                    ( ? [Vd: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(3)
thf(fact_2594_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y2: $o] :
      ( ( ( vEBT_VEBT_membermima @ X @ Xa )
        = Y2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => Y2 )
       => ( ( ? [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) )
           => Y2 )
         => ( ! [Mi3: nat,Ma3: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
               => ( Y2
                  = ( ~ ( ( Xa = Mi3 )
                        | ( Xa = Ma3 ) ) ) ) )
           => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                  ( ? [Vc: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
                 => ( Y2
                    = ( ~ ( ( Xa = Mi3 )
                          | ( Xa = Ma3 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) )
             => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
                    ( ? [Vd: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) )
                   => ( Y2
                      = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(1)
thf(fact_2595_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( ( ( Xa = zero_zero_nat )
               => A3 )
              & ( ( Xa != zero_zero_nat )
               => ( ( ( Xa = one_one_nat )
                   => B2 )
                  & ( Xa = one_one_nat ) ) ) ) )
       => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) )
         => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                ( ? [S2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(3)
thf(fact_2596_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ~ ( ( ( Xa = zero_zero_nat )
                 => A3 )
                & ( ( Xa != zero_zero_nat )
                 => ( ( ( Xa = one_one_nat )
                     => B2 )
                    & ( Xa = one_one_nat ) ) ) ) )
       => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
              ( ? [S2: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
             => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(2)
thf(fact_2597_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y2: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X @ Xa )
        = Y2 )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( Y2
              = ( ~ ( ( ( Xa = zero_zero_nat )
                     => A3 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B2 )
                        & ( Xa = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) )
           => Y2 )
         => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                ( ? [S2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
               => ( Y2
                  = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(1)
thf(fact_2598_buildup__gives__valid,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).

% buildup_gives_valid
thf(fact_2599_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ! [Mi3: nat,Ma3: nat] :
            ( ? [Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
           => ~ ( ( Xa = Mi3 )
                | ( Xa = Ma3 ) ) )
       => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
              ( ? [Vc: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
             => ~ ( ( Xa = Mi3 )
                  | ( Xa = Ma3 )
                  | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
         => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
                ( ? [Vd: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) )
               => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(2)
thf(fact_2600_not__None__eq,axiom,
    ! [X: option4927543243414619207at_nat] :
      ( ( X != none_P5556105721700978146at_nat )
      = ( ? [Y: product_prod_nat_nat] :
            ( X
            = ( some_P7363390416028606310at_nat @ Y ) ) ) ) ).

% not_None_eq
thf(fact_2601_not__None__eq,axiom,
    ! [X: option_num] :
      ( ( X != none_num )
      = ( ? [Y: num] :
            ( X
            = ( some_num @ Y ) ) ) ) ).

% not_None_eq
thf(fact_2602_buildup__nothing__in__min__max,axiom,
    ! [N: nat,X: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X ) ).

% buildup_nothing_in_min_max
thf(fact_2603_buildup__nothing__in__leaf,axiom,
    ! [N: nat,X: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X ) ).

% buildup_nothing_in_leaf
thf(fact_2604_both__member__options__def,axiom,
    ( vEBT_V8194947554948674370ptions
    = ( ^ [T2: vEBT_VEBT,X4: nat] :
          ( ( vEBT_V5719532721284313246member @ T2 @ X4 )
          | ( vEBT_VEBT_membermima @ T2 @ X4 ) ) ) ) ).

% both_member_options_def
thf(fact_2605_not__Some__eq,axiom,
    ! [X: option4927543243414619207at_nat] :
      ( ( ! [Y: product_prod_nat_nat] :
            ( X
           != ( some_P7363390416028606310at_nat @ Y ) ) )
      = ( X = none_P5556105721700978146at_nat ) ) ).

% not_Some_eq
thf(fact_2606_not__Some__eq,axiom,
    ! [X: option_num] :
      ( ( ! [Y: num] :
            ( X
           != ( some_num @ Y ) ) )
      = ( X = none_num ) ) ).

% not_Some_eq
thf(fact_2607_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_2608_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,Uw2: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw2 ) ).

% VEBT_internal.membermima.simps(1)
thf(fact_2609_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
    ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw2 ) @ Ux2 ) ).

% VEBT_internal.naive_member.simps(2)
thf(fact_2610_vebt__buildup_Osimps_I1_J,axiom,
    ( ( vEBT_vebt_buildup @ zero_zero_nat )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(1)
thf(fact_2611_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
    ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz ) ).

% VEBT_internal.membermima.simps(2)
thf(fact_2612_vebt__buildup_Osimps_I2_J,axiom,
    ( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(2)
thf(fact_2613_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X )
      = ( ( ( X = zero_zero_nat )
         => A )
        & ( ( X != zero_zero_nat )
         => ( ( ( X = one_one_nat )
             => B )
            & ( X = one_one_nat ) ) ) ) ) ).

% VEBT_internal.naive_member.simps(1)
thf(fact_2614_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ X )
      = ( ( X = Mi )
        | ( X = Ma ) ) ) ).

% VEBT_internal.membermima.simps(3)
thf(fact_2615_option_Osize_I3_J,axiom,
    ( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_2616_option_Osize_I3_J,axiom,
    ( ( size_size_option_num @ none_num )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_2617_combine__options__cases,axiom,
    ! [X: option4927543243414619207at_nat,P3: option4927543243414619207at_nat > option4927543243414619207at_nat > $o,Y2: option4927543243414619207at_nat] :
      ( ( ( X = none_P5556105721700978146at_nat )
       => ( P3 @ X @ Y2 ) )
     => ( ( ( Y2 = none_P5556105721700978146at_nat )
         => ( P3 @ X @ Y2 ) )
       => ( ! [A3: product_prod_nat_nat,B2: product_prod_nat_nat] :
              ( ( X
                = ( some_P7363390416028606310at_nat @ A3 ) )
             => ( ( Y2
                  = ( some_P7363390416028606310at_nat @ B2 ) )
               => ( P3 @ X @ Y2 ) ) )
         => ( P3 @ X @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2618_combine__options__cases,axiom,
    ! [X: option4927543243414619207at_nat,P3: option4927543243414619207at_nat > option_num > $o,Y2: option_num] :
      ( ( ( X = none_P5556105721700978146at_nat )
       => ( P3 @ X @ Y2 ) )
     => ( ( ( Y2 = none_num )
         => ( P3 @ X @ Y2 ) )
       => ( ! [A3: product_prod_nat_nat,B2: num] :
              ( ( X
                = ( some_P7363390416028606310at_nat @ A3 ) )
             => ( ( Y2
                  = ( some_num @ B2 ) )
               => ( P3 @ X @ Y2 ) ) )
         => ( P3 @ X @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2619_combine__options__cases,axiom,
    ! [X: option_num,P3: option_num > option4927543243414619207at_nat > $o,Y2: option4927543243414619207at_nat] :
      ( ( ( X = none_num )
       => ( P3 @ X @ Y2 ) )
     => ( ( ( Y2 = none_P5556105721700978146at_nat )
         => ( P3 @ X @ Y2 ) )
       => ( ! [A3: num,B2: product_prod_nat_nat] :
              ( ( X
                = ( some_num @ A3 ) )
             => ( ( Y2
                  = ( some_P7363390416028606310at_nat @ B2 ) )
               => ( P3 @ X @ Y2 ) ) )
         => ( P3 @ X @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2620_combine__options__cases,axiom,
    ! [X: option_num,P3: option_num > option_num > $o,Y2: option_num] :
      ( ( ( X = none_num )
       => ( P3 @ X @ Y2 ) )
     => ( ( ( Y2 = none_num )
         => ( P3 @ X @ Y2 ) )
       => ( ! [A3: num,B2: num] :
              ( ( X
                = ( some_num @ A3 ) )
             => ( ( Y2
                  = ( some_num @ B2 ) )
               => ( P3 @ X @ Y2 ) ) )
         => ( P3 @ X @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2621_split__option__all,axiom,
    ( ( ^ [P: option4927543243414619207at_nat > $o] :
        ! [X3: option4927543243414619207at_nat] : ( P @ X3 ) )
    = ( ^ [P2: option4927543243414619207at_nat > $o] :
          ( ( P2 @ none_P5556105721700978146at_nat )
          & ! [X4: product_prod_nat_nat] : ( P2 @ ( some_P7363390416028606310at_nat @ X4 ) ) ) ) ) ).

% split_option_all
thf(fact_2622_split__option__all,axiom,
    ( ( ^ [P: option_num > $o] :
        ! [X3: option_num] : ( P @ X3 ) )
    = ( ^ [P2: option_num > $o] :
          ( ( P2 @ none_num )
          & ! [X4: num] : ( P2 @ ( some_num @ X4 ) ) ) ) ) ).

% split_option_all
thf(fact_2623_split__option__ex,axiom,
    ( ( ^ [P: option4927543243414619207at_nat > $o] :
        ? [X3: option4927543243414619207at_nat] : ( P @ X3 ) )
    = ( ^ [P2: option4927543243414619207at_nat > $o] :
          ( ( P2 @ none_P5556105721700978146at_nat )
          | ? [X4: product_prod_nat_nat] : ( P2 @ ( some_P7363390416028606310at_nat @ X4 ) ) ) ) ) ).

% split_option_ex
thf(fact_2624_split__option__ex,axiom,
    ( ( ^ [P: option_num > $o] :
        ? [X3: option_num] : ( P @ X3 ) )
    = ( ^ [P2: option_num > $o] :
          ( ( P2 @ none_num )
          | ? [X4: num] : ( P2 @ ( some_num @ X4 ) ) ) ) ) ).

% split_option_ex
thf(fact_2625_option_Oexhaust,axiom,
    ! [Y2: option4927543243414619207at_nat] :
      ( ( Y2 != none_P5556105721700978146at_nat )
     => ~ ! [X24: product_prod_nat_nat] :
            ( Y2
           != ( some_P7363390416028606310at_nat @ X24 ) ) ) ).

% option.exhaust
thf(fact_2626_option_Oexhaust,axiom,
    ! [Y2: option_num] :
      ( ( Y2 != none_num )
     => ~ ! [X24: num] :
            ( Y2
           != ( some_num @ X24 ) ) ) ).

% option.exhaust
thf(fact_2627_option_OdiscI,axiom,
    ! [Option: option4927543243414619207at_nat,X23: product_prod_nat_nat] :
      ( ( Option
        = ( some_P7363390416028606310at_nat @ X23 ) )
     => ( Option != none_P5556105721700978146at_nat ) ) ).

% option.discI
thf(fact_2628_option_OdiscI,axiom,
    ! [Option: option_num,X23: num] :
      ( ( Option
        = ( some_num @ X23 ) )
     => ( Option != none_num ) ) ).

% option.discI
thf(fact_2629_option_Odistinct_I1_J,axiom,
    ! [X23: product_prod_nat_nat] :
      ( none_P5556105721700978146at_nat
     != ( some_P7363390416028606310at_nat @ X23 ) ) ).

% option.distinct(1)
thf(fact_2630_option_Odistinct_I1_J,axiom,
    ! [X23: num] :
      ( none_num
     != ( some_num @ X23 ) ) ).

% option.distinct(1)
thf(fact_2631_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
    ! [V: nat,TreeList: list_VEBT_VEBT,Vd2: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList @ Vd2 ) @ X )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).

% VEBT_internal.membermima.simps(5)
thf(fact_2632_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
    ! [Uy2: option4927543243414619207at_nat,V: nat,TreeList: list_VEBT_VEBT,S: vEBT_VEBT,X: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy2 @ ( suc @ V ) @ TreeList @ S ) @ X )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).

% VEBT_internal.naive_member.simps(3)
thf(fact_2633_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_2634_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_2635_nat__induct2,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ zero_zero_nat )
     => ( ( P3 @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( P3 @ N3 )
             => ( P3 @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P3 @ N ) ) ) ) ).

% nat_induct2
thf(fact_2636_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
    ! [Mi: nat,Ma: nat,V: nat,TreeList: list_VEBT_VEBT,Vc2: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc2 ) @ X )
      = ( ( X = Mi )
        | ( X = Ma )
        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ).

% VEBT_internal.membermima.simps(4)
thf(fact_2637_zle__add1__eq__le,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z3 @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z3 ) ) ).

% zle_add1_eq_le
thf(fact_2638_set__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_2639_set__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_2640_incr__mult__lemma,axiom,
    ! [D: int,P3: int > $o,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int] :
            ( ( P3 @ X5 )
           => ( P3 @ ( plus_plus_int @ X5 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K2 )
         => ! [X2: int] :
              ( ( P3 @ X2 )
             => ( P3 @ ( plus_plus_int @ X2 @ ( times_times_int @ K2 @ D ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_2641_le__imp__0__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z3 ) ) ) ).

% le_imp_0_less
thf(fact_2642_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_2643_double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( plus_plus_rat @ A @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% double_eq_0_iff
thf(fact_2644_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_2645_unset__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_2646_unset__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_2647_zless__imp__add1__zle,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_int @ W @ Z3 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z3 ) ) ).

% zless_imp_add1_zle
thf(fact_2648_add1__zle__eq,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z3 )
      = ( ord_less_int @ W @ Z3 ) ) ).

% add1_zle_eq
thf(fact_2649_odd__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 ) @ zero_zero_int )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_2650_unset__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_2651_set__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_2652_unset__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% unset_bit_negative_int_iff
thf(fact_2653_set__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_2654_unset__bit__less__eq,axiom,
    ! [N: nat,K2: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K2 ) @ K2 ) ).

% unset_bit_less_eq
thf(fact_2655_set__bit__greater__eq,axiom,
    ! [K2: int,N: nat] : ( ord_less_eq_int @ K2 @ ( bit_se7879613467334960850it_int @ N @ K2 ) ) ).

% set_bit_greater_eq
thf(fact_2656_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ~ ( ord_less_real @ T @ X2 ) ) ).

% minf(7)
thf(fact_2657_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ~ ( ord_less_rat @ T @ X2 ) ) ).

% minf(7)
thf(fact_2658_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z )
     => ~ ( ord_less_num @ T @ X2 ) ) ).

% minf(7)
thf(fact_2659_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ~ ( ord_less_nat @ T @ X2 ) ) ).

% minf(7)
thf(fact_2660_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ~ ( ord_less_int @ T @ X2 ) ) ).

% minf(7)
thf(fact_2661_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ( ord_less_real @ X2 @ T ) ) ).

% minf(5)
thf(fact_2662_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ( ord_less_rat @ X2 @ T ) ) ).

% minf(5)
thf(fact_2663_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z )
     => ( ord_less_num @ X2 @ T ) ) ).

% minf(5)
thf(fact_2664_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( ord_less_nat @ X2 @ T ) ) ).

% minf(5)
thf(fact_2665_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( ord_less_int @ X2 @ T ) ) ).

% minf(5)
thf(fact_2666_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_2667_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_2668_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_2669_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_2670_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_2671_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_2672_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_2673_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_2674_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_2675_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_2676_minf_I2_J,axiom,
    ! [P3: real > $o,P6: real > $o,Q2: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X5: real] :
          ( ( ord_less_real @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2677_minf_I2_J,axiom,
    ! [P3: rat > $o,P6: rat > $o,Q2: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2678_minf_I2_J,axiom,
    ! [P3: num > $o,P6: num > $o,Q2: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X5: num] :
          ( ( ord_less_num @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: num] :
          ! [X2: num] :
            ( ( ord_less_num @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2679_minf_I2_J,axiom,
    ! [P3: nat > $o,P6: nat > $o,Q2: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2680_minf_I2_J,axiom,
    ! [P3: int > $o,P6: int > $o,Q2: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X5: int] :
          ( ( ord_less_int @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2681_minf_I1_J,axiom,
    ! [P3: real > $o,P6: real > $o,Q2: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X5: real] :
          ( ( ord_less_real @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2682_minf_I1_J,axiom,
    ! [P3: rat > $o,P6: rat > $o,Q2: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2683_minf_I1_J,axiom,
    ! [P3: num > $o,P6: num > $o,Q2: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X5: num] :
          ( ( ord_less_num @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: num] :
          ! [X2: num] :
            ( ( ord_less_num @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2684_minf_I1_J,axiom,
    ! [P3: nat > $o,P6: nat > $o,Q2: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2685_minf_I1_J,axiom,
    ! [P3: int > $o,P6: int > $o,Q2: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X5: int] :
          ( ( ord_less_int @ X5 @ Z4 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2686_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( ord_less_real @ T @ X2 ) ) ).

% pinf(7)
thf(fact_2687_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( ord_less_rat @ T @ X2 ) ) ).

% pinf(7)
thf(fact_2688_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z @ X2 )
     => ( ord_less_num @ T @ X2 ) ) ).

% pinf(7)
thf(fact_2689_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( ord_less_nat @ T @ X2 ) ) ).

% pinf(7)
thf(fact_2690_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( ord_less_int @ T @ X2 ) ) ).

% pinf(7)
thf(fact_2691_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ~ ( ord_less_real @ X2 @ T ) ) ).

% pinf(5)
thf(fact_2692_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ~ ( ord_less_rat @ X2 @ T ) ) ).

% pinf(5)
thf(fact_2693_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z @ X2 )
     => ~ ( ord_less_num @ X2 @ T ) ) ).

% pinf(5)
thf(fact_2694_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ~ ( ord_less_nat @ X2 @ T ) ) ).

% pinf(5)
thf(fact_2695_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ~ ( ord_less_int @ X2 @ T ) ) ).

% pinf(5)
thf(fact_2696_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_2697_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_2698_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_2699_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_2700_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_2701_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_2702_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_2703_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_2704_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_2705_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_2706_pinf_I2_J,axiom,
    ! [P3: real > $o,P6: real > $o,Q2: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X5: real] :
          ( ( ord_less_real @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2707_pinf_I2_J,axiom,
    ! [P3: rat > $o,P6: rat > $o,Q2: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2708_pinf_I2_J,axiom,
    ! [P3: num > $o,P6: num > $o,Q2: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X5: num] :
          ( ( ord_less_num @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: num] :
          ! [X2: num] :
            ( ( ord_less_num @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2709_pinf_I2_J,axiom,
    ! [P3: nat > $o,P6: nat > $o,Q2: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2710_pinf_I2_J,axiom,
    ! [P3: int > $o,P6: int > $o,Q2: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X5: int] :
          ( ( ord_less_int @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2711_pinf_I1_J,axiom,
    ! [P3: real > $o,P6: real > $o,Q2: real > $o,Q6: real > $o] :
      ( ? [Z4: real] :
        ! [X5: real] :
          ( ( ord_less_real @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2712_pinf_I1_J,axiom,
    ! [P3: rat > $o,P6: rat > $o,Q2: rat > $o,Q6: rat > $o] :
      ( ? [Z4: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2713_pinf_I1_J,axiom,
    ! [P3: num > $o,P6: num > $o,Q2: num > $o,Q6: num > $o] :
      ( ? [Z4: num] :
        ! [X5: num] :
          ( ( ord_less_num @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: num] :
          ! [X2: num] :
            ( ( ord_less_num @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2714_pinf_I1_J,axiom,
    ! [P3: nat > $o,P6: nat > $o,Q2: nat > $o,Q6: nat > $o] :
      ( ? [Z4: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2715_pinf_I1_J,axiom,
    ! [P3: int > $o,P6: int > $o,Q2: int > $o,Q6: int > $o] :
      ( ? [Z4: int] :
        ! [X5: int] :
          ( ( ord_less_int @ Z4 @ X5 )
         => ( ( P3 @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( Q2 @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z @ X2 )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2716_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ~ ( ord_less_eq_real @ T @ X2 ) ) ).

% minf(8)
thf(fact_2717_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ~ ( ord_less_eq_rat @ T @ X2 ) ) ).

% minf(8)
thf(fact_2718_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z )
     => ~ ( ord_less_eq_num @ T @ X2 ) ) ).

% minf(8)
thf(fact_2719_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ~ ( ord_less_eq_nat @ T @ X2 ) ) ).

% minf(8)
thf(fact_2720_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ~ ( ord_less_eq_int @ T @ X2 ) ) ).

% minf(8)
thf(fact_2721_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ( ord_less_eq_real @ X2 @ T ) ) ).

% minf(6)
thf(fact_2722_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ( ord_less_eq_rat @ X2 @ T ) ) ).

% minf(6)
thf(fact_2723_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z )
     => ( ord_less_eq_num @ X2 @ T ) ) ).

% minf(6)
thf(fact_2724_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( ord_less_eq_nat @ X2 @ T ) ) ).

% minf(6)
thf(fact_2725_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( ord_less_eq_int @ X2 @ T ) ) ).

% minf(6)
thf(fact_2726_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( ord_less_eq_real @ T @ X2 ) ) ).

% pinf(8)
thf(fact_2727_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( ord_less_eq_rat @ T @ X2 ) ) ).

% pinf(8)
thf(fact_2728_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z @ X2 )
     => ( ord_less_eq_num @ T @ X2 ) ) ).

% pinf(8)
thf(fact_2729_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( ord_less_eq_nat @ T @ X2 ) ) ).

% pinf(8)
thf(fact_2730_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( ord_less_eq_int @ T @ X2 ) ) ).

% pinf(8)
thf(fact_2731_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ~ ( ord_less_eq_real @ X2 @ T ) ) ).

% pinf(6)
thf(fact_2732_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ~ ( ord_less_eq_rat @ X2 @ T ) ) ).

% pinf(6)
thf(fact_2733_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z @ X2 )
     => ~ ( ord_less_eq_num @ X2 @ T ) ) ).

% pinf(6)
thf(fact_2734_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ~ ( ord_less_eq_nat @ X2 @ T ) ) ).

% pinf(6)
thf(fact_2735_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ~ ( ord_less_eq_int @ X2 @ T ) ) ).

% pinf(6)
thf(fact_2736_conj__le__cong,axiom,
    ! [X: int,X8: int,P3: $o,P6: $o] :
      ( ( X = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P3 = P6 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P3 )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
            & P6 ) ) ) ) ).

% conj_le_cong
thf(fact_2737_imp__le__cong,axiom,
    ! [X: int,X8: int,P3: $o,P6: $o] :
      ( ( X = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P3 = P6 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P3 )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
           => P6 ) ) ) ) ).

% imp_le_cong
thf(fact_2738_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_2739_times__int__code_I1_J,axiom,
    ! [K2: int] :
      ( ( times_times_int @ K2 @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_2740_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_2741_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_2742_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_2743_zmult__zless__mono2,axiom,
    ! [I2: int,J: int,K2: int] :
      ( ( ord_less_int @ I2 @ J )
     => ( ( ord_less_int @ zero_zero_int @ K2 )
       => ( ord_less_int @ ( times_times_int @ K2 @ I2 ) @ ( times_times_int @ K2 @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_2744_odd__nonzero,axiom,
    ! [Z3: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_2745_int__ge__induct,axiom,
    ! [K2: int,I2: int,P3: int > $o] :
      ( ( ord_less_eq_int @ K2 @ I2 )
     => ( ( P3 @ K2 )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K2 @ I3 )
             => ( ( P3 @ I3 )
               => ( P3 @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% int_ge_induct
thf(fact_2746_int__gr__induct,axiom,
    ! [K2: int,I2: int,P3: int > $o] :
      ( ( ord_less_int @ K2 @ I2 )
     => ( ( P3 @ ( plus_plus_int @ K2 @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K2 @ I3 )
             => ( ( P3 @ I3 )
               => ( P3 @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% int_gr_induct
thf(fact_2747_zless__add1__eq,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z3 @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z3 )
        | ( W = Z3 ) ) ) ).

% zless_add1_eq
thf(fact_2748_int__one__le__iff__zero__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z3 )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% int_one_le_iff_zero_less
thf(fact_2749_set__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_2750_set__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_2751_set__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_2752_unset__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_2753_unset__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_2754_unset__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_2755_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_2756_flip__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_2757_flip__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_2758_flip__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_2759_mult__le__cancel__iff1,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ Y2 @ Z3 ) )
        = ( ord_less_eq_real @ X @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_2760_mult__le__cancel__iff1,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z3 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ Y2 @ Z3 ) )
        = ( ord_less_eq_rat @ X @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_2761_mult__le__cancel__iff1,axiom,
    ! [Z3: int,X: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ ( times_times_int @ X @ Z3 ) @ ( times_times_int @ Y2 @ Z3 ) )
        = ( ord_less_eq_int @ X @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_2762_mult__le__cancel__iff2,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z3 @ X ) @ ( times_times_real @ Z3 @ Y2 ) )
        = ( ord_less_eq_real @ X @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_2763_mult__le__cancel__iff2,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z3 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z3 @ X ) @ ( times_times_rat @ Z3 @ Y2 ) )
        = ( ord_less_eq_rat @ X @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_2764_mult__le__cancel__iff2,axiom,
    ! [Z3: int,X: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z3 @ X ) @ ( times_times_int @ Z3 @ Y2 ) )
        = ( ord_less_eq_int @ X @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_2765_product__nth,axiom,
    ! [N: nat,Xs: list_num,Ys: list_num] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_num @ Xs ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr6456567536196504476um_num @ ( product_num_num @ Xs @ Ys ) @ N )
        = ( product_Pair_num_num @ ( nth_num @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2766_product__nth,axiom,
    ! [N: nat,Xs: list_Code_integer,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr8522763379788166057eger_o @ ( produc3607205314601156340eger_o @ Xs @ Ys ) @ N )
        = ( produc6677183202524767010eger_o @ ( nth_Code_integer @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2767_product__nth,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs @ Ys ) @ N )
        = ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2768_product__nth,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs @ Ys ) @ N )
        = ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2769_product__nth,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,Ys: list_nat] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr1791586995822124652BT_nat @ ( produc7295137177222721919BT_nat @ Xs @ Ys ) @ N )
        = ( produc738532404422230701BT_nat @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2770_product__nth,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT,Ys: list_int] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr6837108013167703752BT_int @ ( produc7292646706713671643BT_int @ Xs @ Ys ) @ N )
        = ( produc736041933913180425BT_int @ ( nth_VEBT_VEBT @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2771_product__nth,axiom,
    ! [N: nat,Xs: list_o,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr6777367263587873994T_VEBT @ ( product_o_VEBT_VEBT @ Xs @ Ys ) @ N )
        = ( produc2982872950893828659T_VEBT @ ( nth_o @ Xs @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2772_product__nth,axiom,
    ! [N: nat,Xs: list_o,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Product_prod_o_o @ ( product_o_o @ Xs @ Ys ) @ N )
        = ( product_Pair_o_o @ ( nth_o @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2773_product__nth,axiom,
    ! [N: nat,Xs: list_o,Ys: list_nat] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr5826913651314560976_o_nat @ ( product_o_nat @ Xs @ Ys ) @ N )
        = ( product_Pair_o_nat @ ( nth_o @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2774_product__nth,axiom,
    ! [N: nat,Xs: list_o,Ys: list_int] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr1649062631805364268_o_int @ ( product_o_int @ Xs @ Ys ) @ N )
        = ( product_Pair_o_int @ ( nth_o @ Xs @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_2775_gcd__nat__induct,axiom,
    ! [P3: nat > nat > $o,M: nat,N: nat] :
      ( ! [M4: nat] : ( P3 @ M4 @ zero_zero_nat )
     => ( ! [M4: nat,N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ( P3 @ N3 @ ( modulo_modulo_nat @ M4 @ N3 ) )
             => ( P3 @ M4 @ N3 ) ) )
       => ( P3 @ M @ N ) ) ) ).

% gcd_nat_induct
thf(fact_2776_concat__bit__Suc,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_concat_bit @ ( suc @ N ) @ K2 @ L )
      = ( plus_plus_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L ) ) ) ) ).

% concat_bit_Suc
thf(fact_2777_dual__order_Orefl,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).

% dual_order.refl
thf(fact_2778_dual__order_Orefl,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% dual_order.refl
thf(fact_2779_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_2780_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_2781_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_2782_order__refl,axiom,
    ! [X: set_int] : ( ord_less_eq_set_int @ X @ X ) ).

% order_refl
thf(fact_2783_order__refl,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ X @ X ) ).

% order_refl
thf(fact_2784_order__refl,axiom,
    ! [X: num] : ( ord_less_eq_num @ X @ X ) ).

% order_refl
thf(fact_2785_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_2786_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_2787_flip__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_2788_flip__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_2789_concat__bit__0,axiom,
    ! [K2: int,L: int] :
      ( ( bit_concat_bit @ zero_zero_nat @ K2 @ L )
      = L ) ).

% concat_bit_0
thf(fact_2790_concat__bit__nonnegative__iff,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K2 @ L ) )
      = ( ord_less_eq_int @ zero_zero_int @ L ) ) ).

% concat_bit_nonnegative_iff
thf(fact_2791_concat__bit__negative__iff,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( ord_less_int @ ( bit_concat_bit @ N @ K2 @ L ) @ zero_zero_int )
      = ( ord_less_int @ L @ zero_zero_int ) ) ).

% concat_bit_negative_iff
thf(fact_2792_length__product,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( size_s7466405169056248089T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_2793_length__product,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_o] :
      ( ( size_s9168528473962070013VEBT_o @ ( product_VEBT_VEBT_o @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_2794_length__product,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_nat] :
      ( ( size_s6152045936467909847BT_nat @ ( produc7295137177222721919BT_nat @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_nat @ Ys ) ) ) ).

% length_product
thf(fact_2795_length__product,axiom,
    ! [Xs: list_VEBT_VEBT,Ys: list_int] :
      ( ( size_s3661962791536183091BT_int @ ( produc7292646706713671643BT_int @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_2796_length__product,axiom,
    ! [Xs: list_o,Ys: list_VEBT_VEBT] :
      ( ( size_s4313452262239582901T_VEBT @ ( product_o_VEBT_VEBT @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_2797_length__product,axiom,
    ! [Xs: list_o,Ys: list_o] :
      ( ( size_s1515746228057227161od_o_o @ ( product_o_o @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_2798_length__product,axiom,
    ! [Xs: list_o,Ys: list_nat] :
      ( ( size_s5443766701097040955_o_nat @ ( product_o_nat @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_nat @ Ys ) ) ) ).

% length_product
thf(fact_2799_length__product,axiom,
    ! [Xs: list_o,Ys: list_int] :
      ( ( size_s2953683556165314199_o_int @ ( product_o_int @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_2800_length__product,axiom,
    ! [Xs: list_nat,Ys: list_VEBT_VEBT] :
      ( ( size_s4762443039079500285T_VEBT @ ( produc7156399406898700509T_VEBT @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_2801_length__product,axiom,
    ! [Xs: list_nat,Ys: list_o] :
      ( ( size_s6491369823275344609_nat_o @ ( product_nat_o @ Xs @ Ys ) )
      = ( times_times_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_2802_concat__bit__assoc,axiom,
    ! [N: nat,K2: int,M: nat,L: int,R: int] :
      ( ( bit_concat_bit @ N @ K2 @ ( bit_concat_bit @ M @ L @ R ) )
      = ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K2 @ L ) @ R ) ) ).

% concat_bit_assoc
thf(fact_2803_VEBT__internal_Ovalid_H_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,D2: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D2 ) )
     => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Deg3 ) ) ) ).

% VEBT_internal.valid'.cases
thf(fact_2804_order__antisym__conv,axiom,
    ! [Y2: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ X )
     => ( ( ord_less_eq_set_int @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_2805_order__antisym__conv,axiom,
    ! [Y2: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y2 @ X )
     => ( ( ord_less_eq_rat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_2806_order__antisym__conv,axiom,
    ! [Y2: num,X: num] :
      ( ( ord_less_eq_num @ Y2 @ X )
     => ( ( ord_less_eq_num @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_2807_order__antisym__conv,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_2808_order__antisym__conv,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ Y2 @ X )
     => ( ( ord_less_eq_int @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_2809_linorder__le__cases,axiom,
    ! [X: rat,Y2: rat] :
      ( ~ ( ord_less_eq_rat @ X @ Y2 )
     => ( ord_less_eq_rat @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_2810_linorder__le__cases,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_eq_num @ X @ Y2 )
     => ( ord_less_eq_num @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_2811_linorder__le__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_2812_linorder__le__cases,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_eq_int @ X @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_2813_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2814_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2815_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2816_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2817_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2818_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2819_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2820_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2821_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2822_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_2823_ord__eq__le__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2824_ord__eq__le__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2825_ord__eq__le__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2826_ord__eq__le__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2827_ord__eq__le__subst,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2828_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2829_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2830_ord__eq__le__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2831_ord__eq__le__subst,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2832_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_2833_linorder__linear,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
      | ( ord_less_eq_rat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_2834_linorder__linear,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
      | ( ord_less_eq_num @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_2835_linorder__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_2836_linorder__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
      | ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_2837_order__eq__refl,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( X = Y2 )
     => ( ord_less_eq_set_int @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_2838_order__eq__refl,axiom,
    ! [X: rat,Y2: rat] :
      ( ( X = Y2 )
     => ( ord_less_eq_rat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_2839_order__eq__refl,axiom,
    ! [X: num,Y2: num] :
      ( ( X = Y2 )
     => ( ord_less_eq_num @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_2840_order__eq__refl,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_2841_order__eq__refl,axiom,
    ! [X: int,Y2: int] :
      ( ( X = Y2 )
     => ( ord_less_eq_int @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_2842_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2843_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2844_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2845_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2846_order__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2847_order__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2848_order__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2849_order__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2850_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2851_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_2852_order__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2853_order__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2854_order__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2855_order__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_eq_int @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2856_order__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2857_order__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2858_order__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2859_order__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_eq_int @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2860_order__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2861_order__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_2862_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: set_int,Z2: set_int] : ( Y3 = Z2 ) )
    = ( ^ [A4: set_int,B3: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B3 )
          & ( ord_less_eq_set_int @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_2863_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: rat,Z2: rat] : ( Y3 = Z2 ) )
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ A4 @ B3 )
          & ( ord_less_eq_rat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_2864_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: num,Z2: num] : ( Y3 = Z2 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_2865_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_2866_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: int,Z2: int] : ( Y3 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_2867_antisym,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_2868_antisym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_2869_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_2870_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_2871_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_2872_dual__order_Otrans,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ C @ B )
       => ( ord_less_eq_set_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_2873_dual__order_Otrans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_2874_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_2875_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_2876_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_2877_dual__order_Oantisym,axiom,
    ! [B: set_int,A: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_2878_dual__order_Oantisym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_2879_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_2880_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_2881_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_2882_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: set_int,Z2: set_int] : ( Y3 = Z2 ) )
    = ( ^ [A4: set_int,B3: set_int] :
          ( ( ord_less_eq_set_int @ B3 @ A4 )
          & ( ord_less_eq_set_int @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_2883_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: rat,Z2: rat] : ( Y3 = Z2 ) )
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ B3 @ A4 )
          & ( ord_less_eq_rat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_2884_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: num,Z2: num] : ( Y3 = Z2 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_2885_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_2886_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: int,Z2: int] : ( Y3 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_2887_linorder__wlog,axiom,
    ! [P3: rat > rat > $o,A: rat,B: rat] :
      ( ! [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: rat,B2: rat] :
            ( ( P3 @ B2 @ A3 )
           => ( P3 @ A3 @ B2 ) )
       => ( P3 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_2888_linorder__wlog,axiom,
    ! [P3: num > num > $o,A: num,B: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: num,B2: num] :
            ( ( P3 @ B2 @ A3 )
           => ( P3 @ A3 @ B2 ) )
       => ( P3 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_2889_linorder__wlog,axiom,
    ! [P3: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: nat,B2: nat] :
            ( ( P3 @ B2 @ A3 )
           => ( P3 @ A3 @ B2 ) )
       => ( P3 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_2890_linorder__wlog,axiom,
    ! [P3: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: int,B2: int] :
            ( ( P3 @ B2 @ A3 )
           => ( P3 @ A3 @ B2 ) )
       => ( P3 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_2891_order__trans,axiom,
    ! [X: set_int,Y2: set_int,Z3: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y2 )
     => ( ( ord_less_eq_set_int @ Y2 @ Z3 )
       => ( ord_less_eq_set_int @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_2892_order__trans,axiom,
    ! [X: rat,Y2: rat,Z3: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ( ord_less_eq_rat @ Y2 @ Z3 )
       => ( ord_less_eq_rat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_2893_order__trans,axiom,
    ! [X: num,Y2: num,Z3: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ Z3 )
       => ( ord_less_eq_num @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_2894_order__trans,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z3 )
       => ( ord_less_eq_nat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_2895_order__trans,axiom,
    ! [X: int,Y2: int,Z3: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z3 )
       => ( ord_less_eq_int @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_2896_order_Otrans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% order.trans
thf(fact_2897_order_Otrans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% order.trans
thf(fact_2898_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_2899_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_2900_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_2901_order__antisym,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y2 )
     => ( ( ord_less_eq_set_int @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_2902_order__antisym,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ( ord_less_eq_rat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_2903_order__antisym,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_2904_order__antisym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_2905_order__antisym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_2906_ord__le__eq__trans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_2907_ord__le__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_2908_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_2909_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_2910_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_2911_ord__eq__le__trans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( A = B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_2912_ord__eq__le__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_2913_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_2914_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_2915_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_2916_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: set_int,Z2: set_int] : ( Y3 = Z2 ) )
    = ( ^ [X4: set_int,Y: set_int] :
          ( ( ord_less_eq_set_int @ X4 @ Y )
          & ( ord_less_eq_set_int @ Y @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_2917_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: rat,Z2: rat] : ( Y3 = Z2 ) )
    = ( ^ [X4: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X4 @ Y )
          & ( ord_less_eq_rat @ Y @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_2918_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: num,Z2: num] : ( Y3 = Z2 ) )
    = ( ^ [X4: num,Y: num] :
          ( ( ord_less_eq_num @ X4 @ Y )
          & ( ord_less_eq_num @ Y @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_2919_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [X4: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y )
          & ( ord_less_eq_nat @ Y @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_2920_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: int,Z2: int] : ( Y3 = Z2 ) )
    = ( ^ [X4: int,Y: int] :
          ( ( ord_less_eq_int @ X4 @ Y )
          & ( ord_less_eq_int @ Y @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_2921_le__cases3,axiom,
    ! [X: rat,Y2: rat,Z3: rat] :
      ( ( ( ord_less_eq_rat @ X @ Y2 )
       => ~ ( ord_less_eq_rat @ Y2 @ Z3 ) )
     => ( ( ( ord_less_eq_rat @ Y2 @ X )
         => ~ ( ord_less_eq_rat @ X @ Z3 ) )
       => ( ( ( ord_less_eq_rat @ X @ Z3 )
           => ~ ( ord_less_eq_rat @ Z3 @ Y2 ) )
         => ( ( ( ord_less_eq_rat @ Z3 @ Y2 )
             => ~ ( ord_less_eq_rat @ Y2 @ X ) )
           => ( ( ( ord_less_eq_rat @ Y2 @ Z3 )
               => ~ ( ord_less_eq_rat @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_rat @ Z3 @ X )
                 => ~ ( ord_less_eq_rat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_2922_le__cases3,axiom,
    ! [X: num,Y2: num,Z3: num] :
      ( ( ( ord_less_eq_num @ X @ Y2 )
       => ~ ( ord_less_eq_num @ Y2 @ Z3 ) )
     => ( ( ( ord_less_eq_num @ Y2 @ X )
         => ~ ( ord_less_eq_num @ X @ Z3 ) )
       => ( ( ( ord_less_eq_num @ X @ Z3 )
           => ~ ( ord_less_eq_num @ Z3 @ Y2 ) )
         => ( ( ( ord_less_eq_num @ Z3 @ Y2 )
             => ~ ( ord_less_eq_num @ Y2 @ X ) )
           => ( ( ( ord_less_eq_num @ Y2 @ Z3 )
               => ~ ( ord_less_eq_num @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_num @ Z3 @ X )
                 => ~ ( ord_less_eq_num @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_2923_le__cases3,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z3 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z3 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z3 )
           => ~ ( ord_less_eq_nat @ Z3 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z3 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z3 )
               => ~ ( ord_less_eq_nat @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z3 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_2924_le__cases3,axiom,
    ! [X: int,Y2: int,Z3: int] :
      ( ( ( ord_less_eq_int @ X @ Y2 )
       => ~ ( ord_less_eq_int @ Y2 @ Z3 ) )
     => ( ( ( ord_less_eq_int @ Y2 @ X )
         => ~ ( ord_less_eq_int @ X @ Z3 ) )
       => ( ( ( ord_less_eq_int @ X @ Z3 )
           => ~ ( ord_less_eq_int @ Z3 @ Y2 ) )
         => ( ( ( ord_less_eq_int @ Z3 @ Y2 )
             => ~ ( ord_less_eq_int @ Y2 @ X ) )
           => ( ( ( ord_less_eq_int @ Y2 @ Z3 )
               => ~ ( ord_less_eq_int @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_int @ Z3 @ X )
                 => ~ ( ord_less_eq_int @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_2925_nle__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_eq_rat @ A @ B ) )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_2926_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_2927_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_2928_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_2929_order__less__imp__not__less,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_2930_order__less__imp__not__less,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ~ ( ord_less_rat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_2931_order__less__imp__not__less,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_2932_order__less__imp__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_2933_order__less__imp__not__less,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_2934_order__less__imp__not__eq2,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_2935_order__less__imp__not__eq2,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_2936_order__less__imp__not__eq2,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_2937_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_2938_order__less__imp__not__eq2,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_2939_order__less__imp__not__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_2940_order__less__imp__not__eq,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_2941_order__less__imp__not__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_2942_order__less__imp__not__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_2943_order__less__imp__not__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_2944_linorder__less__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_real @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_2945_linorder__less__linear,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_rat @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_2946_linorder__less__linear,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_num @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_2947_linorder__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_2948_linorder__less__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_int @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_2949_order__less__imp__triv,axiom,
    ! [X: real,Y2: real,P3: $o] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => P3 ) ) ).

% order_less_imp_triv
thf(fact_2950_order__less__imp__triv,axiom,
    ! [X: rat,Y2: rat,P3: $o] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( ( ord_less_rat @ Y2 @ X )
       => P3 ) ) ).

% order_less_imp_triv
thf(fact_2951_order__less__imp__triv,axiom,
    ! [X: num,Y2: num,P3: $o] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_num @ Y2 @ X )
       => P3 ) ) ).

% order_less_imp_triv
thf(fact_2952_order__less__imp__triv,axiom,
    ! [X: nat,Y2: nat,P3: $o] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X )
       => P3 ) ) ).

% order_less_imp_triv
thf(fact_2953_order__less__imp__triv,axiom,
    ! [X: int,Y2: int,P3: $o] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ X )
       => P3 ) ) ).

% order_less_imp_triv
thf(fact_2954_order__less__not__sym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_2955_order__less__not__sym,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ~ ( ord_less_rat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_2956_order__less__not__sym,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_2957_order__less__not__sym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_2958_order__less__not__sym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_2959_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2960_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2961_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2962_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2963_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2964_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2965_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2966_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2967_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2968_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_2969_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2970_order__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2971_order__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2972_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2973_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2974_order__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2975_order__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2976_order__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2977_order__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2978_order__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_2979_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_2980_order__less__irrefl,axiom,
    ! [X: rat] :
      ~ ( ord_less_rat @ X @ X ) ).

% order_less_irrefl
thf(fact_2981_order__less__irrefl,axiom,
    ! [X: num] :
      ~ ( ord_less_num @ X @ X ) ).

% order_less_irrefl
thf(fact_2982_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_2983_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_2984_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2985_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2986_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2987_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2988_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2989_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2990_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2991_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2992_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2993_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_2994_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_2995_ord__eq__less__subst,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_2996_ord__eq__less__subst,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_2997_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_2998_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_2999_ord__eq__less__subst,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_3000_ord__eq__less__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_3001_ord__eq__less__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_3002_ord__eq__less__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_3003_ord__eq__less__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_3004_order__less__trans,axiom,
    ! [X: real,Y2: real,Z3: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_3005_order__less__trans,axiom,
    ! [X: rat,Y2: rat,Z3: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( ( ord_less_rat @ Y2 @ Z3 )
       => ( ord_less_rat @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_3006_order__less__trans,axiom,
    ! [X: num,Y2: num,Z3: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_num @ Y2 @ Z3 )
       => ( ord_less_num @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_3007_order__less__trans,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_3008_order__less__trans,axiom,
    ! [X: int,Y2: int,Z3: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_3009_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_3010_order__less__asym_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order_less_asym'
thf(fact_3011_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_3012_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_3013_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_3014_linorder__neq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
      = ( ( ord_less_real @ X @ Y2 )
        | ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_3015_linorder__neq__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( X != Y2 )
      = ( ( ord_less_rat @ X @ Y2 )
        | ( ord_less_rat @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_3016_linorder__neq__iff,axiom,
    ! [X: num,Y2: num] :
      ( ( X != Y2 )
      = ( ( ord_less_num @ X @ Y2 )
        | ( ord_less_num @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_3017_linorder__neq__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
      = ( ( ord_less_nat @ X @ Y2 )
        | ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_3018_linorder__neq__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
      = ( ( ord_less_int @ X @ Y2 )
        | ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_3019_order__less__asym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_3020_order__less__asym,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ~ ( ord_less_rat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_3021_order__less__asym,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_3022_order__less__asym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_3023_order__less__asym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_3024_linorder__neqE,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_3025_linorder__neqE,axiom,
    ! [X: rat,Y2: rat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_rat @ X @ Y2 )
       => ( ord_less_rat @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_3026_linorder__neqE,axiom,
    ! [X: num,Y2: num] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_num @ X @ Y2 )
       => ( ord_less_num @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_3027_linorder__neqE,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_3028_linorder__neqE,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_int @ X @ Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_3029_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_3030_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_3031_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_3032_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_3033_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_3034_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_3035_order_Ostrict__implies__not__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_3036_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_3037_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_3038_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_3039_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_3040_dual__order_Ostrict__trans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_3041_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_3042_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_3043_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_3044_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X @ Y2 ) )
      = ( ( ord_less_real @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_3045_not__less__iff__gr__or__eq,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ~ ( ord_less_rat @ X @ Y2 ) )
      = ( ( ord_less_rat @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_3046_not__less__iff__gr__or__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( ~ ( ord_less_num @ X @ Y2 ) )
      = ( ( ord_less_num @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_3047_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_3048_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X @ Y2 ) )
      = ( ( ord_less_int @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_3049_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_3050_order_Ostrict__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_3051_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_3052_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_3053_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_3054_linorder__less__wlog,axiom,
    ! [P3: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: real] : ( P3 @ A3 @ A3 )
       => ( ! [A3: real,B2: real] :
              ( ( P3 @ B2 @ A3 )
             => ( P3 @ A3 @ B2 ) )
         => ( P3 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_3055_linorder__less__wlog,axiom,
    ! [P3: rat > rat > $o,A: rat,B: rat] :
      ( ! [A3: rat,B2: rat] :
          ( ( ord_less_rat @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: rat] : ( P3 @ A3 @ A3 )
       => ( ! [A3: rat,B2: rat] :
              ( ( P3 @ B2 @ A3 )
             => ( P3 @ A3 @ B2 ) )
         => ( P3 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_3056_linorder__less__wlog,axiom,
    ! [P3: num > num > $o,A: num,B: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_num @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: num] : ( P3 @ A3 @ A3 )
       => ( ! [A3: num,B2: num] :
              ( ( P3 @ B2 @ A3 )
             => ( P3 @ A3 @ B2 ) )
         => ( P3 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_3057_linorder__less__wlog,axiom,
    ! [P3: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: nat] : ( P3 @ A3 @ A3 )
       => ( ! [A3: nat,B2: nat] :
              ( ( P3 @ B2 @ A3 )
             => ( P3 @ A3 @ B2 ) )
         => ( P3 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_3058_linorder__less__wlog,axiom,
    ! [P3: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
         => ( P3 @ A3 @ B2 ) )
     => ( ! [A3: int] : ( P3 @ A3 @ A3 )
       => ( ! [A3: int,B2: int] :
              ( ( P3 @ B2 @ A3 )
             => ( P3 @ A3 @ B2 ) )
         => ( P3 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_3059_exists__least__iff,axiom,
    ( ( ^ [P: nat > $o] :
        ? [X3: nat] : ( P @ X3 ) )
    = ( ^ [P2: nat > $o] :
        ? [N2: nat] :
          ( ( P2 @ N2 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ~ ( P2 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_3060_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_3061_dual__order_Oirrefl,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% dual_order.irrefl
thf(fact_3062_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_3063_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_3064_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_3065_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_3066_dual__order_Oasym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ~ ( ord_less_rat @ A @ B ) ) ).

% dual_order.asym
thf(fact_3067_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_3068_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_3069_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_3070_linorder__cases,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_3071_linorder__cases,axiom,
    ! [X: rat,Y2: rat] :
      ( ~ ( ord_less_rat @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_rat @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_3072_linorder__cases,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_num @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_num @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_3073_linorder__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_3074_linorder__cases,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_3075_antisym__conv3,axiom,
    ! [Y2: real,X: real] :
      ( ~ ( ord_less_real @ Y2 @ X )
     => ( ( ~ ( ord_less_real @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_3076_antisym__conv3,axiom,
    ! [Y2: rat,X: rat] :
      ( ~ ( ord_less_rat @ Y2 @ X )
     => ( ( ~ ( ord_less_rat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_3077_antisym__conv3,axiom,
    ! [Y2: num,X: num] :
      ( ~ ( ord_less_num @ Y2 @ X )
     => ( ( ~ ( ord_less_num @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_3078_antisym__conv3,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_3079_antisym__conv3,axiom,
    ! [Y2: int,X: int] :
      ( ~ ( ord_less_int @ Y2 @ X )
     => ( ( ~ ( ord_less_int @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_3080_less__induct,axiom,
    ! [P3: nat > $o,A: nat] :
      ( ! [X5: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X5 )
             => ( P3 @ Y6 ) )
         => ( P3 @ X5 ) )
     => ( P3 @ A ) ) ).

% less_induct
thf(fact_3081_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_3082_ord__less__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_3083_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_3084_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_3085_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_3086_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_3087_ord__eq__less__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_3088_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_3089_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_3090_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_3091_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_3092_order_Oasym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order.asym
thf(fact_3093_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_3094_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_3095_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_3096_less__imp__neq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_3097_less__imp__neq,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_3098_less__imp__neq,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_3099_less__imp__neq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_3100_less__imp__neq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_3101_dense,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ? [Z: real] :
          ( ( ord_less_real @ X @ Z )
          & ( ord_less_real @ Z @ Y2 ) ) ) ).

% dense
thf(fact_3102_dense,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ? [Z: rat] :
          ( ( ord_less_rat @ X @ Z )
          & ( ord_less_rat @ Z @ Y2 ) ) ) ).

% dense
thf(fact_3103_gt__ex,axiom,
    ! [X: real] :
    ? [X_12: real] : ( ord_less_real @ X @ X_12 ) ).

% gt_ex
thf(fact_3104_gt__ex,axiom,
    ! [X: rat] :
    ? [X_12: rat] : ( ord_less_rat @ X @ X_12 ) ).

% gt_ex
thf(fact_3105_gt__ex,axiom,
    ! [X: nat] :
    ? [X_12: nat] : ( ord_less_nat @ X @ X_12 ) ).

% gt_ex
thf(fact_3106_gt__ex,axiom,
    ! [X: int] :
    ? [X_12: int] : ( ord_less_int @ X @ X_12 ) ).

% gt_ex
thf(fact_3107_lt__ex,axiom,
    ! [X: real] :
    ? [Y5: real] : ( ord_less_real @ Y5 @ X ) ).

% lt_ex
thf(fact_3108_lt__ex,axiom,
    ! [X: rat] :
    ? [Y5: rat] : ( ord_less_rat @ Y5 @ X ) ).

% lt_ex
thf(fact_3109_lt__ex,axiom,
    ! [X: int] :
    ? [Y5: int] : ( ord_less_int @ Y5 @ X ) ).

% lt_ex
thf(fact_3110_VEBT__internal_Onaive__member_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [A3: $o,B2: $o,X5: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ X5 ) )
     => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) @ Ux ) )
       => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT,X5: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ X5 ) ) ) ) ).

% VEBT_internal.naive_member.cases
thf(fact_3111_VEBT__internal_Oelim__dead_Ocases,axiom,
    ! [X: produc7272778201969148633d_enat] :
      ( ! [A3: $o,B2: $o,Uu2: extended_enat] :
          ( X
         != ( produc581526299967858633d_enat @ ( vEBT_Leaf @ A3 @ B2 ) @ Uu2 ) )
     => ( ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
            ( X
           != ( produc581526299967858633d_enat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) @ extend5688581933313929465d_enat ) )
       => ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,L2: nat] :
              ( X
             != ( produc581526299967858633d_enat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) @ ( extended_enat2 @ L2 ) ) ) ) ) ).

% VEBT_internal.elim_dead.cases
thf(fact_3112_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_real @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_3113_order__le__imp__less__or__eq,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y2 )
     => ( ( ord_less_set_int @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_3114_order__le__imp__less__or__eq,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ( ord_less_rat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_3115_order__le__imp__less__or__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_num @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_3116_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_3117_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_int @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_3118_linorder__le__less__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
      | ( ord_less_real @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_3119_linorder__le__less__linear,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
      | ( ord_less_rat @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_3120_linorder__le__less__linear,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
      | ( ord_less_num @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_3121_linorder__le__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_3122_linorder__le__less__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
      | ( ord_less_int @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_3123_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3124_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3125_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3126_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3127_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3128_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3129_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3130_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3131_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3132_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > rat,C: rat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_3133_order__less__le__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3134_order__less__le__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3135_order__less__le__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3136_order__less__le__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3137_order__less__le__subst1,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3138_order__less__le__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3139_order__less__le__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3140_order__less__le__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3141_order__less__le__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3142_order__less__le__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_3143_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3144_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3145_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3146_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3147_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3148_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3149_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3150_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3151_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3152_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_3153_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3154_order__le__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3155_order__le__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3156_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3157_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3158_order__le__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3159_order__le__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3160_order__le__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3161_order__le__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3162_order__le__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_3163_order__less__le__trans,axiom,
    ! [X: real,Y2: real,Z3: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_3164_order__less__le__trans,axiom,
    ! [X: set_int,Y2: set_int,Z3: set_int] :
      ( ( ord_less_set_int @ X @ Y2 )
     => ( ( ord_less_eq_set_int @ Y2 @ Z3 )
       => ( ord_less_set_int @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_3165_order__less__le__trans,axiom,
    ! [X: rat,Y2: rat,Z3: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( ( ord_less_eq_rat @ Y2 @ Z3 )
       => ( ord_less_rat @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_3166_order__less__le__trans,axiom,
    ! [X: num,Y2: num,Z3: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ Z3 )
       => ( ord_less_num @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_3167_order__less__le__trans,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_3168_order__less__le__trans,axiom,
    ! [X: int,Y2: int,Z3: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_3169_order__le__less__trans,axiom,
    ! [X: real,Y2: real,Z3: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_3170_order__le__less__trans,axiom,
    ! [X: set_int,Y2: set_int,Z3: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y2 )
     => ( ( ord_less_set_int @ Y2 @ Z3 )
       => ( ord_less_set_int @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_3171_order__le__less__trans,axiom,
    ! [X: rat,Y2: rat,Z3: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ( ord_less_rat @ Y2 @ Z3 )
       => ( ord_less_rat @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_3172_order__le__less__trans,axiom,
    ! [X: num,Y2: num,Z3: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_num @ Y2 @ Z3 )
       => ( ord_less_num @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_3173_order__le__less__trans,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_3174_order__le__less__trans,axiom,
    ! [X: int,Y2: int,Z3: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_3175_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_3176_order__neq__le__trans,axiom,
    ! [A: set_int,B: set_int] :
      ( ( A != B )
     => ( ( ord_less_eq_set_int @ A @ B )
       => ( ord_less_set_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_3177_order__neq__le__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( A != B )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_3178_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_3179_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_3180_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_3181_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_3182_order__le__neq__trans,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_3183_order__le__neq__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( A != B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_3184_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_3185_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_3186_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_3187_order__less__imp__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_3188_order__less__imp__le,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_less_set_int @ X @ Y2 )
     => ( ord_less_eq_set_int @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_3189_order__less__imp__le,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( ord_less_eq_rat @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_3190_order__less__imp__le,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ord_less_eq_num @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_3191_order__less__imp__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_3192_order__less__imp__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ord_less_eq_int @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_3193_linorder__not__less,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X @ Y2 ) )
      = ( ord_less_eq_real @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_3194_linorder__not__less,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ~ ( ord_less_rat @ X @ Y2 ) )
      = ( ord_less_eq_rat @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_3195_linorder__not__less,axiom,
    ! [X: num,Y2: num] :
      ( ( ~ ( ord_less_num @ X @ Y2 ) )
      = ( ord_less_eq_num @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_3196_linorder__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_3197_linorder__not__less,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X @ Y2 ) )
      = ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_3198_linorder__not__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y2 ) )
      = ( ord_less_real @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_3199_linorder__not__le,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ~ ( ord_less_eq_rat @ X @ Y2 ) )
      = ( ord_less_rat @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_3200_linorder__not__le,axiom,
    ! [X: num,Y2: num] :
      ( ( ~ ( ord_less_eq_num @ X @ Y2 ) )
      = ( ord_less_num @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_3201_linorder__not__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_3202_linorder__not__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y2 ) )
      = ( ord_less_int @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_3203_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y: real] :
          ( ( ord_less_eq_real @ X4 @ Y )
          & ( X4 != Y ) ) ) ) ).

% order_less_le
thf(fact_3204_order__less__le,axiom,
    ( ord_less_set_int
    = ( ^ [X4: set_int,Y: set_int] :
          ( ( ord_less_eq_set_int @ X4 @ Y )
          & ( X4 != Y ) ) ) ) ).

% order_less_le
thf(fact_3205_order__less__le,axiom,
    ( ord_less_rat
    = ( ^ [X4: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X4 @ Y )
          & ( X4 != Y ) ) ) ) ).

% order_less_le
thf(fact_3206_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X4: num,Y: num] :
          ( ( ord_less_eq_num @ X4 @ Y )
          & ( X4 != Y ) ) ) ) ).

% order_less_le
thf(fact_3207_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y )
          & ( X4 != Y ) ) ) ) ).

% order_less_le
thf(fact_3208_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y: int] :
          ( ( ord_less_eq_int @ X4 @ Y )
          & ( X4 != Y ) ) ) ) ).

% order_less_le
thf(fact_3209_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y: real] :
          ( ( ord_less_real @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% order_le_less
thf(fact_3210_order__le__less,axiom,
    ( ord_less_eq_set_int
    = ( ^ [X4: set_int,Y: set_int] :
          ( ( ord_less_set_int @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% order_le_less
thf(fact_3211_order__le__less,axiom,
    ( ord_less_eq_rat
    = ( ^ [X4: rat,Y: rat] :
          ( ( ord_less_rat @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% order_le_less
thf(fact_3212_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X4: num,Y: num] :
          ( ( ord_less_num @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% order_le_less
thf(fact_3213_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y: nat] :
          ( ( ord_less_nat @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% order_le_less
thf(fact_3214_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Y: int] :
          ( ( ord_less_int @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% order_le_less
thf(fact_3215_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_3216_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_int,A: set_int] :
      ( ( ord_less_set_int @ B @ A )
     => ( ord_less_eq_set_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_3217_dual__order_Ostrict__implies__order,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_3218_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_3219_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_3220_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_3221_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_3222_order_Ostrict__implies__order,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_set_int @ A @ B )
     => ( ord_less_eq_set_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_3223_order_Ostrict__implies__order,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_3224_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_3225_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_3226_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_3227_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ~ ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_3228_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_int
    = ( ^ [B3: set_int,A4: set_int] :
          ( ( ord_less_eq_set_int @ B3 @ A4 )
          & ~ ( ord_less_eq_set_int @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_3229_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B3 @ A4 )
          & ~ ( ord_less_eq_rat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_3230_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ~ ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_3231_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_3232_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ~ ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_3233_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_3234_dual__order_Ostrict__trans2,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ C @ B )
       => ( ord_less_set_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_3235_dual__order_Ostrict__trans2,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_3236_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_3237_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_3238_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_3239_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_3240_dual__order_Ostrict__trans1,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_set_int @ C @ B )
       => ( ord_less_set_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_3241_dual__order_Ostrict__trans1,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_3242_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_3243_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_3244_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_3245_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_3246_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_int
    = ( ^ [B3: set_int,A4: set_int] :
          ( ( ord_less_eq_set_int @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_3247_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_3248_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_3249_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_3250_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_3251_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_real @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_3252_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_int
    = ( ^ [B3: set_int,A4: set_int] :
          ( ( ord_less_set_int @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_3253_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_less_rat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_3254_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_num @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_3255_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_3256_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_int @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_3257_dense__le__bounded,axiom,
    ! [X: real,Y2: real,Z3: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ! [W2: real] :
            ( ( ord_less_real @ X @ W2 )
           => ( ( ord_less_real @ W2 @ Y2 )
             => ( ord_less_eq_real @ W2 @ Z3 ) ) )
       => ( ord_less_eq_real @ Y2 @ Z3 ) ) ) ).

% dense_le_bounded
thf(fact_3258_dense__le__bounded,axiom,
    ! [X: rat,Y2: rat,Z3: rat] :
      ( ( ord_less_rat @ X @ Y2 )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ X @ W2 )
           => ( ( ord_less_rat @ W2 @ Y2 )
             => ( ord_less_eq_rat @ W2 @ Z3 ) ) )
       => ( ord_less_eq_rat @ Y2 @ Z3 ) ) ) ).

% dense_le_bounded
thf(fact_3259_dense__ge__bounded,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( ord_less_real @ Z3 @ X )
     => ( ! [W2: real] :
            ( ( ord_less_real @ Z3 @ W2 )
           => ( ( ord_less_real @ W2 @ X )
             => ( ord_less_eq_real @ Y2 @ W2 ) ) )
       => ( ord_less_eq_real @ Y2 @ Z3 ) ) ) ).

% dense_ge_bounded
thf(fact_3260_dense__ge__bounded,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( ord_less_rat @ Z3 @ X )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ Z3 @ W2 )
           => ( ( ord_less_rat @ W2 @ X )
             => ( ord_less_eq_rat @ Y2 @ W2 ) ) )
       => ( ord_less_eq_rat @ Y2 @ Z3 ) ) ) ).

% dense_ge_bounded
thf(fact_3261_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ~ ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_3262_order_Ostrict__iff__not,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B3: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B3 )
          & ~ ( ord_less_eq_set_int @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_3263_order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ A4 @ B3 )
          & ~ ( ord_less_eq_rat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_3264_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ~ ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_3265_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_3266_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ~ ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_3267_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_3268_order_Ostrict__trans2,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_set_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_3269_order_Ostrict__trans2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_3270_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_3271_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_3272_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_3273_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_3274_order_Ostrict__trans1,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_set_int @ B @ C )
       => ( ord_less_set_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_3275_order_Ostrict__trans1,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_3276_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_3277_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_3278_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_3279_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_3280_order_Ostrict__iff__order,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B3: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_3281_order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_3282_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_3283_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_3284_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_3285_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_real @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_3286_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A4: set_int,B3: set_int] :
          ( ( ord_less_set_int @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_3287_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_rat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_3288_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_num @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_3289_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_3290_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_int @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_3291_not__le__imp__less,axiom,
    ! [Y2: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y2 @ X )
     => ( ord_less_real @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_3292_not__le__imp__less,axiom,
    ! [Y2: rat,X: rat] :
      ( ~ ( ord_less_eq_rat @ Y2 @ X )
     => ( ord_less_rat @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_3293_not__le__imp__less,axiom,
    ! [Y2: num,X: num] :
      ( ~ ( ord_less_eq_num @ Y2 @ X )
     => ( ord_less_num @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_3294_not__le__imp__less,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X )
     => ( ord_less_nat @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_3295_not__le__imp__less,axiom,
    ! [Y2: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y2 @ X )
     => ( ord_less_int @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_3296_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y: real] :
          ( ( ord_less_eq_real @ X4 @ Y )
          & ~ ( ord_less_eq_real @ Y @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_3297_less__le__not__le,axiom,
    ( ord_less_set_int
    = ( ^ [X4: set_int,Y: set_int] :
          ( ( ord_less_eq_set_int @ X4 @ Y )
          & ~ ( ord_less_eq_set_int @ Y @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_3298_less__le__not__le,axiom,
    ( ord_less_rat
    = ( ^ [X4: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X4 @ Y )
          & ~ ( ord_less_eq_rat @ Y @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_3299_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X4: num,Y: num] :
          ( ( ord_less_eq_num @ X4 @ Y )
          & ~ ( ord_less_eq_num @ Y @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_3300_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_3301_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y: int] :
          ( ( ord_less_eq_int @ X4 @ Y )
          & ~ ( ord_less_eq_int @ Y @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_3302_dense__le,axiom,
    ! [Y2: real,Z3: real] :
      ( ! [X5: real] :
          ( ( ord_less_real @ X5 @ Y2 )
         => ( ord_less_eq_real @ X5 @ Z3 ) )
     => ( ord_less_eq_real @ Y2 @ Z3 ) ) ).

% dense_le
thf(fact_3303_dense__le,axiom,
    ! [Y2: rat,Z3: rat] :
      ( ! [X5: rat] :
          ( ( ord_less_rat @ X5 @ Y2 )
         => ( ord_less_eq_rat @ X5 @ Z3 ) )
     => ( ord_less_eq_rat @ Y2 @ Z3 ) ) ).

% dense_le
thf(fact_3304_dense__ge,axiom,
    ! [Z3: real,Y2: real] :
      ( ! [X5: real] :
          ( ( ord_less_real @ Z3 @ X5 )
         => ( ord_less_eq_real @ Y2 @ X5 ) )
     => ( ord_less_eq_real @ Y2 @ Z3 ) ) ).

% dense_ge
thf(fact_3305_dense__ge,axiom,
    ! [Z3: rat,Y2: rat] :
      ( ! [X5: rat] :
          ( ( ord_less_rat @ Z3 @ X5 )
         => ( ord_less_eq_rat @ Y2 @ X5 ) )
     => ( ord_less_eq_rat @ Y2 @ Z3 ) ) ).

% dense_ge
thf(fact_3306_antisym__conv2,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ~ ( ord_less_real @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_3307_antisym__conv2,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y2 )
     => ( ( ~ ( ord_less_set_int @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_3308_antisym__conv2,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ( ~ ( ord_less_rat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_3309_antisym__conv2,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ~ ( ord_less_num @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_3310_antisym__conv2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_3311_antisym__conv2,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ~ ( ord_less_int @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_3312_antisym__conv1,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_3313_antisym__conv1,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ~ ( ord_less_set_int @ X @ Y2 )
     => ( ( ord_less_eq_set_int @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_3314_antisym__conv1,axiom,
    ! [X: rat,Y2: rat] :
      ( ~ ( ord_less_rat @ X @ Y2 )
     => ( ( ord_less_eq_rat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_3315_antisym__conv1,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_3316_antisym__conv1,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_3317_antisym__conv1,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_3318_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_3319_nless__le,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ~ ( ord_less_set_int @ A @ B ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_3320_nless__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_3321_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_3322_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_3323_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_3324_leI,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ord_less_eq_real @ Y2 @ X ) ) ).

% leI
thf(fact_3325_leI,axiom,
    ! [X: rat,Y2: rat] :
      ( ~ ( ord_less_rat @ X @ Y2 )
     => ( ord_less_eq_rat @ Y2 @ X ) ) ).

% leI
thf(fact_3326_leI,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_num @ X @ Y2 )
     => ( ord_less_eq_num @ Y2 @ X ) ) ).

% leI
thf(fact_3327_leI,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% leI
thf(fact_3328_leI,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X ) ) ).

% leI
thf(fact_3329_leD,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ Y2 @ X )
     => ~ ( ord_less_real @ X @ Y2 ) ) ).

% leD
thf(fact_3330_leD,axiom,
    ! [Y2: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ X )
     => ~ ( ord_less_set_int @ X @ Y2 ) ) ).

% leD
thf(fact_3331_leD,axiom,
    ! [Y2: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y2 @ X )
     => ~ ( ord_less_rat @ X @ Y2 ) ) ).

% leD
thf(fact_3332_leD,axiom,
    ! [Y2: num,X: num] :
      ( ( ord_less_eq_num @ Y2 @ X )
     => ~ ( ord_less_num @ X @ Y2 ) ) ).

% leD
thf(fact_3333_leD,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ~ ( ord_less_nat @ X @ Y2 ) ) ).

% leD
thf(fact_3334_leD,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ Y2 @ X )
     => ~ ( ord_less_int @ X @ Y2 ) ) ).

% leD
thf(fact_3335_Euclid__induct,axiom,
    ! [P3: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( P3 @ A3 @ B2 )
          = ( P3 @ B2 @ A3 ) )
     => ( ! [A3: nat] : ( P3 @ A3 @ zero_zero_nat )
       => ( ! [A3: nat,B2: nat] :
              ( ( P3 @ A3 @ B2 )
             => ( P3 @ A3 @ ( plus_plus_nat @ A3 @ B2 ) ) )
         => ( P3 @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_3336_VEBT__internal_Omembermima_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,Uw: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw ) )
     => ( ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz2: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz2 ) )
       => ( ! [Mi3: nat,Ma3: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT,X5: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ X5 ) )
         => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X5: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ X5 ) )
           => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT,X5: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) @ X5 ) ) ) ) ) ) ).

% VEBT_internal.membermima.cases
thf(fact_3337_mult__less__iff1,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ Y2 @ Z3 ) )
        = ( ord_less_real @ X @ Y2 ) ) ) ).

% mult_less_iff1
thf(fact_3338_mult__less__iff1,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z3 )
     => ( ( ord_less_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ Y2 @ Z3 ) )
        = ( ord_less_rat @ X @ Y2 ) ) ) ).

% mult_less_iff1
thf(fact_3339_mult__less__iff1,axiom,
    ! [Z3: int,X: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_int @ ( times_times_int @ X @ Z3 ) @ ( times_times_int @ Y2 @ Z3 ) )
        = ( ord_less_int @ X @ Y2 ) ) ) ).

% mult_less_iff1
thf(fact_3340_pos__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q: int,R: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q @ R ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R ) ) ) ) ) ) ).

% pos_eucl_rel_int_mult_2
thf(fact_3341_VEBT__internal_Oelim__dead_Opelims,axiom,
    ! [X: vEBT_VEBT,Xa: extended_enat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_VEBT_elim_dead @ X @ Xa )
        = Y2 )
     => ( ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ X @ Xa ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( Y2
                  = ( vEBT_Leaf @ A3 @ B2 ) )
               => ~ ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( Xa = extend5688581933313929465d_enat )
                 => ( ( Y2
                      = ( vEBT_Node @ Info2 @ Deg2
                        @ ( map_VE8901447254227204932T_VEBT
                          @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          @ TreeList2 )
                        @ ( vEBT_VEBT_elim_dead @ Summary2 @ extend5688581933313929465d_enat ) ) )
                   => ~ ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) @ extend5688581933313929465d_enat ) ) ) ) )
           => ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
                 => ! [L2: nat] :
                      ( ( Xa
                        = ( extended_enat2 @ L2 ) )
                     => ( ( Y2
                          = ( vEBT_Node @ Info2 @ Deg2
                            @ ( take_VEBT_VEBT @ ( divide_divide_nat @ L2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                              @ ( map_VE8901447254227204932T_VEBT
                                @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                @ TreeList2 ) )
                            @ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extended_enat2 @ ( divide_divide_nat @ L2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) @ ( extended_enat2 @ L2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.elim_dead.pelims
thf(fact_3342_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y2: $o] :
      ( ( ( vEBT_VEBT_membermima @ X @ Xa )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ~ Y2
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) ) )
         => ( ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) )
               => ( ~ Y2
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Xa ) ) ) )
           => ( ! [Mi3: nat,Ma3: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
                 => ( ( Y2
                      = ( ( Xa = Mi3 )
                        | ( Xa = Ma3 ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ Xa ) ) ) )
             => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
                   => ( ( Y2
                        = ( ( Xa = Mi3 )
                          | ( Xa = Ma3 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ Xa ) ) ) )
               => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) )
                     => ( ( Y2
                          = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(1)
thf(fact_3343_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) )
         => ( ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Xa ) ) )
           => ( ! [Mi3: nat,Ma3: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ Xa ) )
                   => ( ( Xa = Mi3 )
                      | ( Xa = Ma3 ) ) ) )
             => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
                   => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ Xa ) )
                     => ( ( Xa = Mi3 )
                        | ( Xa = Ma3 )
                        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
               => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) @ Xa ) )
                       => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(3)
thf(fact_3344_option_Osize__gen_I2_J,axiom,
    ! [X: product_prod_nat_nat > nat,X23: product_prod_nat_nat] :
      ( ( size_o8335143837870341156at_nat @ X @ ( some_P7363390416028606310at_nat @ X23 ) )
      = ( plus_plus_nat @ ( X @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_3345_option_Osize__gen_I2_J,axiom,
    ! [X: num > nat,X23: num] :
      ( ( size_option_num @ X @ ( some_num @ X23 ) )
      = ( plus_plus_nat @ ( X @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_3346_even__succ__mod__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3347_even__succ__mod__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3348_even__succ__mod__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3349_even__succ__div__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_3350_even__succ__div__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_3351_even__succ__div__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_3352_signed__take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_3353_signed__take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_3354_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Mi3: nat,Ma3: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ Xa ) )
               => ~ ( ( Xa = Mi3 )
                    | ( Xa = Ma3 ) ) ) )
         => ( ! [Mi3: nat,Ma3: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ Xa ) )
                 => ~ ( ( Xa = Mi3 )
                      | ( Xa = Ma3 )
                      | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
           => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd ) @ Xa ) )
                   => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(2)
thf(fact_3355_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_3356_dvd__add__triv__left__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3357_dvd__add__triv__left__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3358_dvd__add__triv__left__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3359_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3360_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_3361_dvd__add__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3362_dvd__add__triv__right__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3363_dvd__add__triv__right__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3364_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3365_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_3366_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_3367_dvd__1__left,axiom,
    ! [K2: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K2 ) ).

% dvd_1_left
thf(fact_3368_div__dvd__div,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
          = ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_3369_div__dvd__div,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_3370_div__dvd__div,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_3371_nat__mult__dvd__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
      = ( ( K2 = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_3372_signed__take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_3373_dvd__mult__cancel__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3374_dvd__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3375_dvd__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3376_dvd__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3377_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3378_dvd__mult__cancel__right,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3379_dvd__mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3380_dvd__mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3381_dvd__mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3382_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3383_dvd__times__left__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3384_dvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3385_dvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3386_dvd__times__right__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3387_dvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3388_dvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3389_unit__prod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_prod
thf(fact_3390_unit__prod,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_prod
thf(fact_3391_unit__prod,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_prod
thf(fact_3392_dvd__add__times__triv__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3393_dvd__add__times__triv__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3394_dvd__add__times__triv__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3395_dvd__add__times__triv__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3396_dvd__add__times__triv__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_3397_dvd__add__times__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3398_dvd__add__times__triv__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3399_dvd__add__times__triv__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3400_dvd__add__times__triv__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3401_dvd__add__times__triv__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_3402_dvd__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_3403_dvd__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_3404_dvd__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_3405_dvd__mult__div__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_3406_dvd__mult__div__cancel,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_3407_dvd__mult__div__cancel,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_3408_unit__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_div
thf(fact_3409_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_3410_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_3411_unit__div__1__unit,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).

% unit_div_1_unit
thf(fact_3412_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_3413_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_3414_unit__div__1__div__1,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_3415_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_3416_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_3417_div__add,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_3418_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_3419_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_3420_dvd__imp__mod__0,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( modulo_modulo_nat @ B @ A )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_3421_dvd__imp__mod__0,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( modulo_modulo_int @ B @ A )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_3422_dvd__imp__mod__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( modulo364778990260209775nteger @ B @ A )
        = zero_z3403309356797280102nteger ) ) ).

% dvd_imp_mod_0
thf(fact_3423_signed__take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_3424_signed__take__bit__numeral__of__1,axiom,
    ! [K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K2 ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_3425_unit__mult__div__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = ( divide6298287555418463151nteger @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_3426_unit__mult__div__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
        = ( divide_divide_nat @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_3427_unit__mult__div__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_3428_unit__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_3429_unit__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_3430_unit__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_3431_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_3432_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_3433_pow__divides__pow__iff,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_3434_pow__divides__pow__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_3435_even__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3436_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3437_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3438_odd__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_3439_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_3440_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_3441_even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_3442_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_3443_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_3444_even__mod__2__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3445_even__mod__2__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3446_even__mod__2__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3447_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_3448_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_3449_signed__take__bit__Suc__bit0,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_bit0
thf(fact_3450_zero__le__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_3451_zero__le__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_3452_zero__le__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_3453_power__less__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_3454_power__less__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq
thf(fact_3455_power__less__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_3456_power__less__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_3457_power__less__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_3458_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_3459_even__plus__one__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_3460_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_3461_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_3462_zero__less__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_3463_zero__less__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_3464_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_3465_even__succ__div__2,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_3466_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_3467_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_3468_odd__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% odd_succ_div_two
thf(fact_3469_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_3470_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_3471_even__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_3472_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_3473_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_3474_even__power,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_3475_even__power,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_3476_even__power,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_3477_odd__two__times__div__two__succ,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3478_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3479_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3480_power__le__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_3481_power__le__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_3482_power__le__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_3483_dvd__field__iff,axiom,
    ( dvd_dvd_complex
    = ( ^ [A4: complex,B3: complex] :
          ( ( A4 = zero_zero_complex )
         => ( B3 = zero_zero_complex ) ) ) ) ).

% dvd_field_iff
thf(fact_3484_dvd__field__iff,axiom,
    ( dvd_dvd_real
    = ( ^ [A4: real,B3: real] :
          ( ( A4 = zero_zero_real )
         => ( B3 = zero_zero_real ) ) ) ) ).

% dvd_field_iff
thf(fact_3485_dvd__field__iff,axiom,
    ( dvd_dvd_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( A4 = zero_zero_rat )
         => ( B3 = zero_zero_rat ) ) ) ) ).

% dvd_field_iff
thf(fact_3486_dvdE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ~ ! [K: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ B @ K ) ) ) ).

% dvdE
thf(fact_3487_dvdE,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ~ ! [K: real] :
            ( A
           != ( times_times_real @ B @ K ) ) ) ).

% dvdE
thf(fact_3488_dvdE,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ~ ! [K: rat] :
            ( A
           != ( times_times_rat @ B @ K ) ) ) ).

% dvdE
thf(fact_3489_dvdE,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ~ ! [K: nat] :
            ( A
           != ( times_times_nat @ B @ K ) ) ) ).

% dvdE
thf(fact_3490_dvdE,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ~ ! [K: int] :
            ( A
           != ( times_times_int @ B @ K ) ) ) ).

% dvdE
thf(fact_3491_dvdI,axiom,
    ! [A: code_integer,B: code_integer,K2: code_integer] :
      ( ( A
        = ( times_3573771949741848930nteger @ B @ K2 ) )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% dvdI
thf(fact_3492_dvdI,axiom,
    ! [A: real,B: real,K2: real] :
      ( ( A
        = ( times_times_real @ B @ K2 ) )
     => ( dvd_dvd_real @ B @ A ) ) ).

% dvdI
thf(fact_3493_dvdI,axiom,
    ! [A: rat,B: rat,K2: rat] :
      ( ( A
        = ( times_times_rat @ B @ K2 ) )
     => ( dvd_dvd_rat @ B @ A ) ) ).

% dvdI
thf(fact_3494_dvdI,axiom,
    ! [A: nat,B: nat,K2: nat] :
      ( ( A
        = ( times_times_nat @ B @ K2 ) )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% dvdI
thf(fact_3495_dvdI,axiom,
    ! [A: int,B: int,K2: int] :
      ( ( A
        = ( times_times_int @ B @ K2 ) )
     => ( dvd_dvd_int @ B @ A ) ) ).

% dvdI
thf(fact_3496_dvd__def,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [B3: code_integer,A4: code_integer] :
        ? [K3: code_integer] :
          ( A4
          = ( times_3573771949741848930nteger @ B3 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_3497_dvd__def,axiom,
    ( dvd_dvd_real
    = ( ^ [B3: real,A4: real] :
        ? [K3: real] :
          ( A4
          = ( times_times_real @ B3 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_3498_dvd__def,axiom,
    ( dvd_dvd_rat
    = ( ^ [B3: rat,A4: rat] :
        ? [K3: rat] :
          ( A4
          = ( times_times_rat @ B3 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_3499_dvd__def,axiom,
    ( dvd_dvd_nat
    = ( ^ [B3: nat,A4: nat] :
        ? [K3: nat] :
          ( A4
          = ( times_times_nat @ B3 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_3500_dvd__def,axiom,
    ( dvd_dvd_int
    = ( ^ [B3: int,A4: int] :
        ? [K3: int] :
          ( A4
          = ( times_times_int @ B3 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_3501_dvd__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3502_dvd__mult,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3503_dvd__mult,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3504_dvd__mult,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3505_dvd__mult,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult
thf(fact_3506_dvd__mult2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3507_dvd__mult2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3508_dvd__mult2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3509_dvd__mult2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3510_dvd__mult2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_3511_dvd__mult__left,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3512_dvd__mult__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3513_dvd__mult__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3514_dvd__mult__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3515_dvd__mult__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ A @ C ) ) ).

% dvd_mult_left
thf(fact_3516_dvd__triv__left,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3517_dvd__triv__left,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3518_dvd__triv__left,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3519_dvd__triv__left,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3520_dvd__triv__left,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).

% dvd_triv_left
thf(fact_3521_mult__dvd__mono,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ C @ D )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_3522_mult__dvd__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ C @ D )
       => ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_3523_mult__dvd__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ C @ D )
       => ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_3524_mult__dvd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ C @ D )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_3525_mult__dvd__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ C @ D )
       => ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_3526_dvd__mult__right,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3527_dvd__mult__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3528_dvd__mult__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3529_dvd__mult__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3530_dvd__mult__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ B @ C ) ) ).

% dvd_mult_right
thf(fact_3531_dvd__triv__right,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3532_dvd__triv__right,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3533_dvd__triv__right,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3534_dvd__triv__right,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3535_dvd__triv__right,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).

% dvd_triv_right
thf(fact_3536_division__decomp,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
     => ? [B7: nat,C5: nat] :
          ( ( A
            = ( times_times_nat @ B7 @ C5 ) )
          & ( dvd_dvd_nat @ B7 @ B )
          & ( dvd_dvd_nat @ C5 @ C ) ) ) ).

% division_decomp
thf(fact_3537_division__decomp,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
     => ? [B7: int,C5: int] :
          ( ( A
            = ( times_times_int @ B7 @ C5 ) )
          & ( dvd_dvd_int @ B7 @ B )
          & ( dvd_dvd_int @ C5 @ C ) ) ) ).

% division_decomp
thf(fact_3538_dvd__productE,axiom,
    ! [P5: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ P5 @ ( times_times_nat @ A @ B ) )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( P5
              = ( times_times_nat @ X5 @ Y5 ) )
           => ( ( dvd_dvd_nat @ X5 @ A )
             => ~ ( dvd_dvd_nat @ Y5 @ B ) ) ) ) ).

% dvd_productE
thf(fact_3539_dvd__productE,axiom,
    ! [P5: int,A: int,B: int] :
      ( ( dvd_dvd_int @ P5 @ ( times_times_int @ A @ B ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( P5
              = ( times_times_int @ X5 @ Y5 ) )
           => ( ( dvd_dvd_int @ X5 @ A )
             => ~ ( dvd_dvd_int @ Y5 @ B ) ) ) ) ).

% dvd_productE
thf(fact_3540_one__dvd,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).

% one_dvd
thf(fact_3541_one__dvd,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).

% one_dvd
thf(fact_3542_one__dvd,axiom,
    ! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).

% one_dvd
thf(fact_3543_one__dvd,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).

% one_dvd
thf(fact_3544_one__dvd,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).

% one_dvd
thf(fact_3545_one__dvd,axiom,
    ! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).

% one_dvd
thf(fact_3546_unit__imp__dvd,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_3547_unit__imp__dvd,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_3548_unit__imp__dvd,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_3549_dvd__unit__imp__unit,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).

% dvd_unit_imp_unit
thf(fact_3550_dvd__unit__imp__unit,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_3551_dvd__unit__imp__unit,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_3552_dvd__add,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3553_dvd__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ C )
       => ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3554_dvd__add,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ C )
       => ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3555_dvd__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3556_dvd__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_3557_dvd__add__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3558_dvd__add__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3559_dvd__add__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3560_dvd__add__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3561_dvd__add__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_3562_dvd__add__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3563_dvd__add__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3564_dvd__add__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3565_dvd__add__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3566_dvd__add__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_3567_dvd__div__eq__iff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( ( divide6298287555418463151nteger @ A @ C )
            = ( divide6298287555418463151nteger @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3568_dvd__div__eq__iff,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ C @ A )
     => ( ( dvd_dvd_complex @ C @ B )
       => ( ( ( divide1717551699836669952omplex @ A @ C )
            = ( divide1717551699836669952omplex @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3569_dvd__div__eq__iff,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ C @ A )
     => ( ( dvd_dvd_real @ C @ B )
       => ( ( ( divide_divide_real @ A @ C )
            = ( divide_divide_real @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3570_dvd__div__eq__iff,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ C @ A )
     => ( ( dvd_dvd_rat @ C @ B )
       => ( ( ( divide_divide_rat @ A @ C )
            = ( divide_divide_rat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3571_dvd__div__eq__iff,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( ( divide_divide_nat @ A @ C )
            = ( divide_divide_nat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3572_dvd__div__eq__iff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( ( divide_divide_int @ A @ C )
            = ( divide_divide_int @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_3573_dvd__div__eq__cancel,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ C )
        = ( divide6298287555418463151nteger @ B @ C ) )
     => ( ( dvd_dvd_Code_integer @ C @ A )
       => ( ( dvd_dvd_Code_integer @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3574_dvd__div__eq__cancel,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
     => ( ( dvd_dvd_complex @ C @ A )
       => ( ( dvd_dvd_complex @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3575_dvd__div__eq__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
     => ( ( dvd_dvd_real @ C @ A )
       => ( ( dvd_dvd_real @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3576_dvd__div__eq__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
     => ( ( dvd_dvd_rat @ C @ A )
       => ( ( dvd_dvd_rat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3577_dvd__div__eq__cancel,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( divide_divide_nat @ A @ C )
        = ( divide_divide_nat @ B @ C ) )
     => ( ( dvd_dvd_nat @ C @ A )
       => ( ( dvd_dvd_nat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3578_dvd__div__eq__cancel,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( divide_divide_int @ A @ C )
        = ( divide_divide_int @ B @ C ) )
     => ( ( dvd_dvd_int @ C @ A )
       => ( ( dvd_dvd_int @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_3579_div__div__div__same,axiom,
    ! [D: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D ) @ ( divide6298287555418463151nteger @ B @ D ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_3580_div__div__div__same,axiom,
    ! [D: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ D @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_3581_div__div__div__same,axiom,
    ! [D: int,B: int,A: int] :
      ( ( dvd_dvd_int @ D @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_3582_dvd__power__same,axiom,
    ! [X: code_integer,Y2: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ X @ Y2 )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_3583_dvd__power__same,axiom,
    ! [X: nat,Y2: nat,N: nat] :
      ( ( dvd_dvd_nat @ X @ Y2 )
     => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_3584_dvd__power__same,axiom,
    ! [X: real,Y2: real,N: nat] :
      ( ( dvd_dvd_real @ X @ Y2 )
     => ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_3585_dvd__power__same,axiom,
    ! [X: int,Y2: int,N: nat] :
      ( ( dvd_dvd_int @ X @ Y2 )
     => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_3586_dvd__power__same,axiom,
    ! [X: complex,Y2: complex,N: nat] :
      ( ( dvd_dvd_complex @ X @ Y2 )
     => ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_3587_mod__mod__cancel,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
        = ( modulo_modulo_nat @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3588_mod__mod__cancel,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
        = ( modulo_modulo_int @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3589_mod__mod__cancel,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
        = ( modulo364778990260209775nteger @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3590_dvd__mod,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ M )
     => ( ( dvd_dvd_nat @ K2 @ N )
       => ( dvd_dvd_nat @ K2 @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3591_dvd__mod,axiom,
    ! [K2: int,M: int,N: int] :
      ( ( dvd_dvd_int @ K2 @ M )
     => ( ( dvd_dvd_int @ K2 @ N )
       => ( dvd_dvd_int @ K2 @ ( modulo_modulo_int @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3592_dvd__mod,axiom,
    ! [K2: code_integer,M: code_integer,N: code_integer] :
      ( ( dvd_dvd_Code_integer @ K2 @ M )
     => ( ( dvd_dvd_Code_integer @ K2 @ N )
       => ( dvd_dvd_Code_integer @ K2 @ ( modulo364778990260209775nteger @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3593_dvd__mod__iff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
        = ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3594_dvd__mod__iff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
        = ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3595_dvd__mod__iff,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
        = ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3596_dvd__mod__imp__dvd,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3597_dvd__mod__imp__dvd,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
     => ( ( dvd_dvd_int @ C @ B )
       => ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3598_dvd__mod__imp__dvd,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3599_signed__take__bit__mult,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K2 @ L ) ) ) ).

% signed_take_bit_mult
thf(fact_3600_signed__take__bit__add,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K2 @ L ) ) ) ).

% signed_take_bit_add
thf(fact_3601_subset__divisors__dvd,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_le211207098394363844omplex
        @ ( collect_complex
          @ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ A ) )
        @ ( collect_complex
          @ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ B ) ) )
      = ( dvd_dvd_complex @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_3602_subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat
        @ ( collect_nat
          @ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A ) )
        @ ( collect_nat
          @ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_3603_subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le7084787975880047091nteger
        @ ( collect_Code_integer
          @ ^ [C2: code_integer] : ( dvd_dvd_Code_integer @ C2 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C2: code_integer] : ( dvd_dvd_Code_integer @ C2 @ B ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_3604_subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int
        @ ( collect_int
          @ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A ) )
        @ ( collect_int
          @ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_3605_strict__subset__divisors__dvd,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_set_complex
        @ ( collect_complex
          @ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ A ) )
        @ ( collect_complex
          @ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ B ) ) )
      = ( ( dvd_dvd_complex @ A @ B )
        & ~ ( dvd_dvd_complex @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_3606_strict__subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_set_nat
        @ ( collect_nat
          @ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A ) )
        @ ( collect_nat
          @ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_3607_strict__subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_set_int
        @ ( collect_int
          @ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A ) )
        @ ( collect_int
          @ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
      = ( ( dvd_dvd_int @ A @ B )
        & ~ ( dvd_dvd_int @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_3608_strict__subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le1307284697595431911nteger
        @ ( collect_Code_integer
          @ ^ [C2: code_integer] : ( dvd_dvd_Code_integer @ C2 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C2: code_integer] : ( dvd_dvd_Code_integer @ C2 @ B ) ) )
      = ( ( dvd_dvd_Code_integer @ A @ B )
        & ~ ( dvd_dvd_Code_integer @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_3609_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_3610_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_3611_mod__int__unique,axiom,
    ! [K2: int,L: int,Q: int,R: int] :
      ( ( eucl_rel_int @ K2 @ L @ ( product_Pair_int_int @ Q @ R ) )
     => ( ( modulo_modulo_int @ K2 @ L )
        = R ) ) ).

% mod_int_unique
thf(fact_3612_not__is__unit__0,axiom,
    ~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).

% not_is_unit_0
thf(fact_3613_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_3614_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_3615_minf_I10_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X2 @ Z )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_3616_minf_I10_J,axiom,
    ! [D: real,S: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_3617_minf_I10_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_3618_minf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_3619_minf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_3620_minf_I9_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X2 @ Z )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) ) ) ) ).

% minf(9)
thf(fact_3621_minf_I9_J,axiom,
    ! [D: real,S: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) ) ) ) ).

% minf(9)
thf(fact_3622_minf_I9_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) ) ) ) ).

% minf(9)
thf(fact_3623_minf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) ) ) ) ).

% minf(9)
thf(fact_3624_minf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) ) ) ) ).

% minf(9)
thf(fact_3625_pinf_I10_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z @ X2 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_3626_pinf_I10_J,axiom,
    ! [D: real,S: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_3627_pinf_I10_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_3628_pinf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_3629_pinf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_3630_pinf_I9_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z @ X2 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S ) ) ) ) ).

% pinf(9)
thf(fact_3631_pinf_I9_J,axiom,
    ! [D: real,S: real] :
    ? [Z: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S ) ) ) ) ).

% pinf(9)
thf(fact_3632_pinf_I9_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S ) ) ) ) ).

% pinf(9)
thf(fact_3633_pinf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S ) ) ) ) ).

% pinf(9)
thf(fact_3634_pinf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S ) ) ) ) ).

% pinf(9)
thf(fact_3635_dvd__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_3636_dvd__div__eq__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_3637_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_3638_dvd__div__eq__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( ( divide_divide_rat @ A @ B )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_3639_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_3640_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_3641_unit__mult__right__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ B @ A )
          = ( times_3573771949741848930nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_3642_unit__mult__right__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ B @ A )
          = ( times_times_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_3643_unit__mult__right__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ B @ A )
          = ( times_times_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_3644_unit__mult__left__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ A @ B )
          = ( times_3573771949741848930nteger @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_3645_unit__mult__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ A @ B )
          = ( times_times_nat @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_3646_unit__mult__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ A @ B )
          = ( times_times_int @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_3647_mult__unit__dvd__iff_H,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_3648_mult__unit__dvd__iff_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_3649_mult__unit__dvd__iff_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_3650_dvd__mult__unit__iff_H,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_3651_dvd__mult__unit__iff_H,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_3652_dvd__mult__unit__iff_H,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_3653_mult__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_3654_mult__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_3655_mult__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_3656_dvd__mult__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_3657_dvd__mult__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_3658_dvd__mult__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_3659_is__unit__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        & ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).

% is_unit_mult_iff
thf(fact_3660_is__unit__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        & ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).

% is_unit_mult_iff
thf(fact_3661_is__unit__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        & ( dvd_dvd_int @ B @ one_one_int ) ) ) ).

% is_unit_mult_iff
thf(fact_3662_dvd__div__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_3663_dvd__div__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
        = ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_3664_dvd__div__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
        = ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_3665_div__mult__swap,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_3666_div__mult__swap,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_3667_div__mult__swap,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_3668_div__div__eq__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_3669_div__div__eq__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_3670_div__div__eq__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_3671_dvd__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_3672_dvd__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_3673_dvd__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_3674_dvd__mult__imp__div,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
     => ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_3675_dvd__mult__imp__div,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
     => ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_3676_dvd__mult__imp__div,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
     => ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_3677_div__mult__div__if__dvd,axiom,
    ! [B: code_integer,A: code_integer,D: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( dvd_dvd_Code_integer @ D @ C )
       => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D ) )
          = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_3678_div__mult__div__if__dvd,axiom,
    ! [B: nat,A: nat,D: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( dvd_dvd_nat @ D @ C )
       => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
          = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_3679_div__mult__div__if__dvd,axiom,
    ! [B: int,A: int,D: int,C: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( dvd_dvd_int @ D @ C )
       => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
          = ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_3680_unit__div__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ B @ A )
          = ( divide6298287555418463151nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_3681_unit__div__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A )
          = ( divide_divide_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_3682_unit__div__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A )
          = ( divide_divide_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_3683_div__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_3684_div__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_3685_div__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_3686_dvd__div__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_3687_dvd__div__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_3688_dvd__div__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_3689_div__plus__div__distrib__dvd__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_3690_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_3691_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_3692_div__plus__div__distrib__dvd__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_3693_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_3694_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_3695_div__power,axiom,
    ! [B: code_integer,A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
        = ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% div_power
thf(fact_3696_div__power,axiom,
    ! [B: nat,A: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_3697_div__power,axiom,
    ! [B: int,A: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_3698_mod__eq__0__iff__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3699_mod__eq__0__iff__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3700_mod__eq__0__iff__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3701_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( modulo_modulo_nat @ B3 @ A4 )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3702_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A4: int,B3: int] :
          ( ( modulo_modulo_int @ B3 @ A4 )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3703_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [A4: code_integer,B3: code_integer] :
          ( ( modulo364778990260209775nteger @ B3 @ A4 )
          = zero_z3403309356797280102nteger ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3704_mod__0__imp__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3705_mod__0__imp__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3706_mod__0__imp__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3707_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3708_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3709_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3710_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3711_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3712_power__le__dvd,axiom,
    ! [A: code_integer,N: nat,B: code_integer,M: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3713_power__le__dvd,axiom,
    ! [A: nat,N: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3714_power__le__dvd,axiom,
    ! [A: real,N: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3715_power__le__dvd,axiom,
    ! [A: int,N: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3716_power__le__dvd,axiom,
    ! [A: complex,N: nat,B: complex,M: nat] :
      ( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3717_dvd__power__le,axiom,
    ! [X: code_integer,Y2: code_integer,N: nat,M: nat] :
      ( ( dvd_dvd_Code_integer @ X @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3718_dvd__power__le,axiom,
    ! [X: nat,Y2: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3719_dvd__power__le,axiom,
    ! [X: real,Y2: real,N: nat,M: nat] :
      ( ( dvd_dvd_real @ X @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3720_dvd__power__le,axiom,
    ! [X: int,Y2: int,N: nat,M: nat] :
      ( ( dvd_dvd_int @ X @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3721_dvd__power__le,axiom,
    ! [X: complex,Y2: complex,N: nat,M: nat] :
      ( ( dvd_dvd_complex @ X @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3722_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_3723_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_3724_zdvd__antisym__nonneg,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ N )
       => ( ( dvd_dvd_int @ M @ N )
         => ( ( dvd_dvd_int @ N @ M )
           => ( M = N ) ) ) ) ) ).

% zdvd_antisym_nonneg
thf(fact_3725_zdvd__mono,axiom,
    ! [K2: int,M: int,T: int] :
      ( ( K2 != zero_zero_int )
     => ( ( dvd_dvd_int @ M @ T )
        = ( dvd_dvd_int @ ( times_times_int @ K2 @ M ) @ ( times_times_int @ K2 @ T ) ) ) ) ).

% zdvd_mono
thf(fact_3726_zdvd__mult__cancel,axiom,
    ! [K2: int,M: int,N: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ K2 @ M ) @ ( times_times_int @ K2 @ N ) )
     => ( ( K2 != zero_zero_int )
       => ( dvd_dvd_int @ M @ N ) ) ) ).

% zdvd_mult_cancel
thf(fact_3727_bezout__add__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D2: nat,X5: nat,Y5: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
      & ( dvd_dvd_nat @ D2 @ B )
      & ( ( ( times_times_nat @ A @ X5 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y5 ) @ D2 ) )
        | ( ( times_times_nat @ B @ X5 )
          = ( plus_plus_nat @ ( times_times_nat @ A @ Y5 ) @ D2 ) ) ) ) ).

% bezout_add_nat
thf(fact_3728_bezout__lemma__nat,axiom,
    ! [D: nat,A: nat,B: nat,X: nat,Y2: nat] :
      ( ( dvd_dvd_nat @ D @ A )
     => ( ( dvd_dvd_nat @ D @ B )
       => ( ( ( ( times_times_nat @ A @ X )
              = ( plus_plus_nat @ ( times_times_nat @ B @ Y2 ) @ D ) )
            | ( ( times_times_nat @ B @ X )
              = ( plus_plus_nat @ ( times_times_nat @ A @ Y2 ) @ D ) ) )
         => ? [X5: nat,Y5: nat] :
              ( ( dvd_dvd_nat @ D @ A )
              & ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
              & ( ( ( times_times_nat @ A @ X5 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y5 ) @ D ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X5 )
                  = ( plus_plus_nat @ ( times_times_nat @ A @ Y5 ) @ D ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_3729_zdvd__reduce,axiom,
    ! [K2: int,N: int,M: int] :
      ( ( dvd_dvd_int @ K2 @ ( plus_plus_int @ N @ ( times_times_int @ K2 @ M ) ) )
      = ( dvd_dvd_int @ K2 @ N ) ) ).

% zdvd_reduce
thf(fact_3730_zdvd__period,axiom,
    ! [A: int,D: int,X: int,T: int,C: int] :
      ( ( dvd_dvd_int @ A @ D )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X @ T ) )
        = ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).

% zdvd_period
thf(fact_3731_unit__dvdE,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [C3: code_integer] :
              ( B
             != ( times_3573771949741848930nteger @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_3732_unit__dvdE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [C3: nat] :
              ( B
             != ( times_times_nat @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_3733_unit__dvdE,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [C3: int] :
              ( B
             != ( times_times_int @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_3734_unity__coeff__ex,axiom,
    ! [P3: code_integer > $o,L: code_integer] :
      ( ( ? [X4: code_integer] : ( P3 @ ( times_3573771949741848930nteger @ L @ X4 ) ) )
      = ( ? [X4: code_integer] :
            ( ( dvd_dvd_Code_integer @ L @ ( plus_p5714425477246183910nteger @ X4 @ zero_z3403309356797280102nteger ) )
            & ( P3 @ X4 ) ) ) ) ).

% unity_coeff_ex
thf(fact_3735_unity__coeff__ex,axiom,
    ! [P3: complex > $o,L: complex] :
      ( ( ? [X4: complex] : ( P3 @ ( times_times_complex @ L @ X4 ) ) )
      = ( ? [X4: complex] :
            ( ( dvd_dvd_complex @ L @ ( plus_plus_complex @ X4 @ zero_zero_complex ) )
            & ( P3 @ X4 ) ) ) ) ).

% unity_coeff_ex
thf(fact_3736_unity__coeff__ex,axiom,
    ! [P3: real > $o,L: real] :
      ( ( ? [X4: real] : ( P3 @ ( times_times_real @ L @ X4 ) ) )
      = ( ? [X4: real] :
            ( ( dvd_dvd_real @ L @ ( plus_plus_real @ X4 @ zero_zero_real ) )
            & ( P3 @ X4 ) ) ) ) ).

% unity_coeff_ex
thf(fact_3737_unity__coeff__ex,axiom,
    ! [P3: rat > $o,L: rat] :
      ( ( ? [X4: rat] : ( P3 @ ( times_times_rat @ L @ X4 ) ) )
      = ( ? [X4: rat] :
            ( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X4 @ zero_zero_rat ) )
            & ( P3 @ X4 ) ) ) ) ).

% unity_coeff_ex
thf(fact_3738_unity__coeff__ex,axiom,
    ! [P3: nat > $o,L: nat] :
      ( ( ? [X4: nat] : ( P3 @ ( times_times_nat @ L @ X4 ) ) )
      = ( ? [X4: nat] :
            ( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X4 @ zero_zero_nat ) )
            & ( P3 @ X4 ) ) ) ) ).

% unity_coeff_ex
thf(fact_3739_unity__coeff__ex,axiom,
    ! [P3: int > $o,L: int] :
      ( ( ? [X4: int] : ( P3 @ ( times_times_int @ L @ X4 ) ) )
      = ( ? [X4: int] :
            ( ( dvd_dvd_int @ L @ ( plus_plus_int @ X4 @ zero_zero_int ) )
            & ( P3 @ X4 ) ) ) ) ).

% unity_coeff_ex
thf(fact_3740_dvd__div__eq__mult,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ A @ B )
       => ( ( ( divide6298287555418463151nteger @ B @ A )
            = C )
          = ( B
            = ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_3741_dvd__div__eq__mult,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( ( divide_divide_nat @ B @ A )
            = C )
          = ( B
            = ( times_times_nat @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_3742_dvd__div__eq__mult,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ A @ B )
       => ( ( ( divide_divide_int @ B @ A )
            = C )
          = ( B
            = ( times_times_int @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_3743_div__dvd__iff__mult,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( B != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
          = ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_3744_div__dvd__iff__mult,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
          = ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_3745_div__dvd__iff__mult,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
          = ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_3746_dvd__div__iff__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( C != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_3747_dvd__div__iff__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( C != zero_zero_nat )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_3748_dvd__div__iff__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( C != zero_zero_int )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_3749_dvd__div__div__eq__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( C != zero_z3403309356797280102nteger )
       => ( ( dvd_dvd_Code_integer @ A @ B )
         => ( ( dvd_dvd_Code_integer @ C @ D )
           => ( ( ( divide6298287555418463151nteger @ B @ A )
                = ( divide6298287555418463151nteger @ D @ C ) )
              = ( ( times_3573771949741848930nteger @ B @ C )
                = ( times_3573771949741848930nteger @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_3750_dvd__div__div__eq__mult,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( A != zero_zero_nat )
     => ( ( C != zero_zero_nat )
       => ( ( dvd_dvd_nat @ A @ B )
         => ( ( dvd_dvd_nat @ C @ D )
           => ( ( ( divide_divide_nat @ B @ A )
                = ( divide_divide_nat @ D @ C ) )
              = ( ( times_times_nat @ B @ C )
                = ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_3751_dvd__div__div__eq__mult,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( A != zero_zero_int )
     => ( ( C != zero_zero_int )
       => ( ( dvd_dvd_int @ A @ B )
         => ( ( dvd_dvd_int @ C @ D )
           => ( ( ( divide_divide_int @ B @ A )
                = ( divide_divide_int @ D @ C ) )
              = ( ( times_times_int @ B @ C )
                = ( times_times_int @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_3752_unit__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% unit_div_eq_0_iff
thf(fact_3753_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_3754_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_3755_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_3756_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_3757_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_3758_unit__eq__div1,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = C )
        = ( A
          = ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_3759_unit__eq__div1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = C )
        = ( A
          = ( times_times_nat @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_3760_unit__eq__div1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = C )
        = ( A
          = ( times_times_int @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_3761_unit__eq__div2,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( A
          = ( divide6298287555418463151nteger @ C @ B ) )
        = ( ( times_3573771949741848930nteger @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_3762_unit__eq__div2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( A
          = ( divide_divide_nat @ C @ B ) )
        = ( ( times_times_nat @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_3763_unit__eq__div2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( A
          = ( divide_divide_int @ C @ B ) )
        = ( ( times_times_int @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_3764_div__mult__unit2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_3765_div__mult__unit2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_3766_div__mult__unit2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_3767_unit__div__commute,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_3768_unit__div__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_3769_unit__div__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_3770_unit__div__mult__swap,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_3771_unit__div__mult__swap,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_3772_unit__div__mult__swap,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_3773_is__unit__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_3774_is__unit__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ C @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_3775_is__unit__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ C @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_3776_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_3777_unit__imp__mod__eq__0,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_3778_unit__imp__mod__eq__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% unit_imp_mod_eq_0
thf(fact_3779_is__unit__power__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_3780_is__unit__power__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_3781_is__unit__power__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_3782_eucl__rel__int__dividesI,axiom,
    ! [L: int,K2: int,Q: int] :
      ( ( L != zero_zero_int )
     => ( ( K2
          = ( times_times_int @ Q @ L ) )
       => ( eucl_rel_int @ K2 @ L @ ( product_Pair_int_int @ Q @ zero_zero_int ) ) ) ) ).

% eucl_rel_int_dividesI
thf(fact_3783_dvd__imp__le,axiom,
    ! [K2: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K2 @ N ) ) ) ).

% dvd_imp_le
thf(fact_3784_dvd__mult__cancel,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_mult_cancel
thf(fact_3785_nat__mult__dvd__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
        = ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_3786_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D2: nat,X5: nat,Y5: nat] :
          ( ( dvd_dvd_nat @ D2 @ A )
          & ( dvd_dvd_nat @ D2 @ B )
          & ( ( times_times_nat @ A @ X5 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y5 ) @ D2 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_3787_zdvd__imp__le,axiom,
    ! [Z3: int,N: int] :
      ( ( dvd_dvd_int @ Z3 @ N )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int @ Z3 @ N ) ) ) ).

% zdvd_imp_le
thf(fact_3788_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_3789_eucl__rel__int,axiom,
    ! [K2: int,L: int] : ( eucl_rel_int @ K2 @ L @ ( product_Pair_int_int @ ( divide_divide_int @ K2 @ L ) @ ( modulo_modulo_int @ K2 @ L ) ) ) ).

% eucl_rel_int
thf(fact_3790_even__zero,axiom,
    dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).

% even_zero
thf(fact_3791_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_3792_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_3793_is__unitE,axiom,
    ! [A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [B2: code_integer] :
              ( ( B2 != zero_z3403309356797280102nteger )
             => ( ( dvd_dvd_Code_integer @ B2 @ one_one_Code_integer )
               => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
                    = B2 )
                 => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B2 )
                      = A )
                   => ( ( ( times_3573771949741848930nteger @ A @ B2 )
                        = one_one_Code_integer )
                     => ( ( divide6298287555418463151nteger @ C @ A )
                       != ( times_3573771949741848930nteger @ C @ B2 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_3794_is__unitE,axiom,
    ! [A: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [B2: nat] :
              ( ( B2 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ B2 @ one_one_nat )
               => ( ( ( divide_divide_nat @ one_one_nat @ A )
                    = B2 )
                 => ( ( ( divide_divide_nat @ one_one_nat @ B2 )
                      = A )
                   => ( ( ( times_times_nat @ A @ B2 )
                        = one_one_nat )
                     => ( ( divide_divide_nat @ C @ A )
                       != ( times_times_nat @ C @ B2 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_3795_is__unitE,axiom,
    ! [A: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [B2: int] :
              ( ( B2 != zero_zero_int )
             => ( ( dvd_dvd_int @ B2 @ one_one_int )
               => ( ( ( divide_divide_int @ one_one_int @ A )
                    = B2 )
                 => ( ( ( divide_divide_int @ one_one_int @ B2 )
                      = A )
                   => ( ( ( times_times_int @ A @ B2 )
                        = one_one_int )
                     => ( ( divide_divide_int @ C @ A )
                       != ( times_times_int @ C @ B2 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_3796_is__unit__div__mult__cancel__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_3797_is__unit__div__mult__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_3798_is__unit__div__mult__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_3799_is__unit__div__mult__cancel__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_3800_is__unit__div__mult__cancel__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_3801_is__unit__div__mult__cancel__right,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_3802_evenE,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) ) ) ).

% evenE
thf(fact_3803_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) ) ) ).

% evenE
thf(fact_3804_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) ) ) ).

% evenE
thf(fact_3805_odd__one,axiom,
    ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).

% odd_one
thf(fact_3806_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_3807_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_3808_odd__even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_3809_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_3810_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_3811_bit__eq__rec,axiom,
    ( ( ^ [Y3: code_integer,Z2: code_integer] : ( Y3 = Z2 ) )
    = ( ^ [A4: code_integer,B3: code_integer] :
          ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = ( divide6298287555418463151nteger @ B3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_3812_bit__eq__rec,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_3813_bit__eq__rec,axiom,
    ( ( ^ [Y3: int,Z2: int] : ( Y3 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_3814_dvd__power__iff,axiom,
    ! [X: code_integer,M: nat,N: nat] :
      ( ( X != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ M ) @ ( power_8256067586552552935nteger @ X @ N ) )
        = ( ( dvd_dvd_Code_integer @ X @ one_one_Code_integer )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_3815_dvd__power__iff,axiom,
    ! [X: nat,M: nat,N: nat] :
      ( ( X != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N ) )
        = ( ( dvd_dvd_nat @ X @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_3816_dvd__power__iff,axiom,
    ! [X: int,M: nat,N: nat] :
      ( ( X != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N ) )
        = ( ( dvd_dvd_int @ X @ one_one_int )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_3817_dvd__power,axiom,
    ! [N: nat,X: code_integer] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_Code_integer ) )
     => ( dvd_dvd_Code_integer @ X @ ( power_8256067586552552935nteger @ X @ N ) ) ) ).

% dvd_power
thf(fact_3818_dvd__power,axiom,
    ! [N: nat,X: rat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_rat ) )
     => ( dvd_dvd_rat @ X @ ( power_power_rat @ X @ N ) ) ) ).

% dvd_power
thf(fact_3819_dvd__power,axiom,
    ! [N: nat,X: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_nat ) )
     => ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N ) ) ) ).

% dvd_power
thf(fact_3820_dvd__power,axiom,
    ! [N: nat,X: real] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_real ) )
     => ( dvd_dvd_real @ X @ ( power_power_real @ X @ N ) ) ) ).

% dvd_power
thf(fact_3821_dvd__power,axiom,
    ! [N: nat,X: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_int ) )
     => ( dvd_dvd_int @ X @ ( power_power_int @ X @ N ) ) ) ).

% dvd_power
thf(fact_3822_dvd__power,axiom,
    ! [N: nat,X: complex] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_complex ) )
     => ( dvd_dvd_complex @ X @ ( power_power_complex @ X @ N ) ) ) ).

% dvd_power
thf(fact_3823_even__even__mod__4__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_3824_dvd__mult__cancel1,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_3825_dvd__mult__cancel2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_3826_power__dvd__imp__le,axiom,
    ! [I2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
     => ( ( ord_less_nat @ one_one_nat @ I2 )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_dvd_imp_le
thf(fact_3827_mod__int__pos__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K2 @ L ) )
      = ( ( dvd_dvd_int @ L @ K2 )
        | ( ( L = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K2 ) )
        | ( ord_less_int @ zero_zero_int @ L ) ) ) ).

% mod_int_pos_iff
thf(fact_3828_even__two__times__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_3829_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_3830_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_3831_even__iff__mod__2__eq__zero,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3832_even__iff__mod__2__eq__zero,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3833_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3834_odd__iff__mod__2__eq__one,axiom,
    ! [A: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3835_odd__iff__mod__2__eq__one,axiom,
    ! [A: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3836_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3837_power__mono__odd,axiom,
    ! [N: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_3838_power__mono__odd,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_3839_power__mono__odd,axiom,
    ! [N: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_3840_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_3841_dvd__power__iff__le,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K2 @ M ) @ ( power_power_nat @ K2 @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% dvd_power_iff_le
thf(fact_3842_signed__take__bit__int__less__exp,axiom,
    ! [N: nat,K2: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% signed_take_bit_int_less_exp
thf(fact_3843_even__unset__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_3844_even__unset__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_3845_even__unset__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_3846_even__set__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_3847_even__set__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_3848_even__set__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_3849_even__flip__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_3850_even__flip__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_3851_even__flip__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_3852_oddE,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: code_integer] :
            ( A
           != ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) @ one_one_Code_integer ) ) ) ).

% oddE
thf(fact_3853_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_3854_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_3855_mod2__eq__if,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_3856_mod2__eq__if,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_3857_mod2__eq__if,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = zero_z3403309356797280102nteger ) )
      & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = one_one_Code_integer ) ) ) ).

% mod2_eq_if
thf(fact_3858_parity__cases,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_3859_parity__cases,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_3860_parity__cases,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
         != zero_z3403309356797280102nteger ) )
     => ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
           != one_one_Code_integer ) ) ) ).

% parity_cases
thf(fact_3861_zero__le__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_3862_zero__le__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_3863_zero__le__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_3864_zero__le__odd__power,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_3865_zero__le__odd__power,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
        = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).

% zero_le_odd_power
thf(fact_3866_zero__le__odd__power,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_3867_zero__le__even__power,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_3868_zero__le__even__power,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_3869_zero__le__even__power,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_3870_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ K2 @ ( bit_ri631733984087533419it_int @ N @ K2 ) )
      = ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_3871_signed__take__bit__int__less__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ K2 )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K2 ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_3872_zero__less__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_3873_zero__less__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_3874_zero__less__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_3875_eucl__rel__int__iff,axiom,
    ! [K2: int,L: int,Q: int,R: int] :
      ( ( eucl_rel_int @ K2 @ L @ ( product_Pair_int_int @ Q @ R ) )
      = ( ( K2
          = ( plus_plus_int @ ( times_times_int @ L @ Q ) @ R ) )
        & ( ( ord_less_int @ zero_zero_int @ L )
         => ( ( ord_less_eq_int @ zero_zero_int @ R )
            & ( ord_less_int @ R @ L ) ) )
        & ( ~ ( ord_less_int @ zero_zero_int @ L )
         => ( ( ( ord_less_int @ L @ zero_zero_int )
             => ( ( ord_less_int @ L @ R )
                & ( ord_less_eq_int @ R @ zero_zero_int ) ) )
            & ( ~ ( ord_less_int @ L @ zero_zero_int )
             => ( Q = zero_zero_int ) ) ) ) ) ) ).

% eucl_rel_int_iff
thf(fact_3876_power__le__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_3877_power__le__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_3878_power__le__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_3879_option_Osize__gen_I1_J,axiom,
    ! [X: product_prod_nat_nat > nat] :
      ( ( size_o8335143837870341156at_nat @ X @ none_P5556105721700978146at_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_3880_option_Osize__gen_I1_J,axiom,
    ! [X: num > nat] :
      ( ( size_option_num @ X @ none_num )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_3881_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa ) )
               => ( ( ( Xa = zero_zero_nat )
                   => A3 )
                  & ( ( Xa != zero_zero_nat )
                   => ( ( ( Xa = one_one_nat )
                       => B2 )
                      & ( Xa = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) @ Xa ) ) )
           => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ Xa ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(3)
thf(fact_3882_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa ) )
               => ~ ( ( ( Xa = zero_zero_nat )
                     => A3 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B2 )
                        & ( Xa = one_one_nat ) ) ) ) ) )
         => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ Xa ) )
                 => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(2)
thf(fact_3883_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y2: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X @ Xa )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( Y2
                  = ( ( ( Xa = zero_zero_nat )
                     => A3 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B2 )
                        & ( Xa = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) )
               => ( ~ Y2
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw ) @ Xa ) ) ) )
           => ~ ! [Uy: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
                 => ( ( Y2
                      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ Xa ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(1)
thf(fact_3884_div2__even__ext__nat,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
          = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y2 ) )
       => ( X = Y2 ) ) ) ).

% div2_even_ext_nat
thf(fact_3885_vebt__buildup_Oelims,axiom,
    ! [X: nat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X )
        = Y2 )
     => ( ( ( X = zero_zero_nat )
         => ( Y2
           != ( vEBT_Leaf @ $false @ $false ) ) )
       => ( ( ( X
              = ( suc @ zero_zero_nat ) )
           => ( Y2
             != ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Va: nat] :
                ( ( X
                  = ( suc @ ( suc @ Va ) ) )
               => ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                     => ( Y2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                    & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                     => ( Y2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.elims
thf(fact_3886_neg__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q: int,R: int] :
      ( ( ord_less_eq_int @ B @ zero_zero_int )
     => ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q @ R ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R ) @ one_one_int ) ) ) ) ) ).

% neg_eucl_rel_int_mult_2
thf(fact_3887_flip__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
      = ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_3888_flip__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_3889_flip__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_3890_add__scale__eq__noteq,axiom,
    ! [R: complex,A: complex,B: complex,C: complex,D: complex] :
      ( ( R != zero_zero_complex )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_complex @ A @ ( times_times_complex @ R @ C ) )
         != ( plus_plus_complex @ B @ ( times_times_complex @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_3891_add__scale__eq__noteq,axiom,
    ! [R: real,A: real,B: real,C: real,D: real] :
      ( ( R != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_3892_add__scale__eq__noteq,axiom,
    ! [R: rat,A: rat,B: rat,C: rat,D: rat] :
      ( ( R != zero_zero_rat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_rat @ A @ ( times_times_rat @ R @ C ) )
         != ( plus_plus_rat @ B @ ( times_times_rat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_3893_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_3894_add__scale__eq__noteq,axiom,
    ! [R: int,A: int,B: int,C: int,D: int] :
      ( ( R != zero_zero_int )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_int @ A @ ( times_times_int @ R @ C ) )
         != ( plus_plus_int @ B @ ( times_times_int @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_3895_intind,axiom,
    ! [I2: nat,N: nat,P3: nat > $o,X: nat] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( P3 @ X )
       => ( P3 @ ( nth_nat @ ( replicate_nat @ N @ X ) @ I2 ) ) ) ) ).

% intind
thf(fact_3896_intind,axiom,
    ! [I2: nat,N: nat,P3: int > $o,X: int] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( P3 @ X )
       => ( P3 @ ( nth_int @ ( replicate_int @ N @ X ) @ I2 ) ) ) ) ).

% intind
thf(fact_3897_intind,axiom,
    ! [I2: nat,N: nat,P3: vEBT_VEBT > $o,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( P3 @ X )
       => ( P3 @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) @ I2 ) ) ) ) ).

% intind
thf(fact_3898_diff__self,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ A )
      = zero_zero_complex ) ).

% diff_self
thf(fact_3899_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_3900_diff__self,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% diff_self
thf(fact_3901_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_3902_diff__0__right,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ zero_zero_complex )
      = A ) ).

% diff_0_right
thf(fact_3903_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_3904_diff__0__right,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_0_right
thf(fact_3905_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_3906_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_3907_diff__zero,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ zero_zero_complex )
      = A ) ).

% diff_zero
thf(fact_3908_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_3909_diff__zero,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_zero
thf(fact_3910_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_3911_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_3912_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ A )
      = zero_zero_complex ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_3913_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_3914_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_3915_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_3916_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_3917_add__diff__cancel__right_H,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_3918_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_3919_add__diff__cancel__right_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_3920_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_3921_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_3922_add__diff__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( minus_minus_complex @ ( plus_plus_complex @ A @ C ) @ ( plus_plus_complex @ B @ C ) )
      = ( minus_minus_complex @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_3923_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_3924_add__diff__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_3925_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_3926_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_3927_add__diff__cancel__left_H,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_3928_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_3929_add__diff__cancel__left_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_3930_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_3931_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_3932_add__diff__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( minus_minus_complex @ ( plus_plus_complex @ C @ A ) @ ( plus_plus_complex @ C @ B ) )
      = ( minus_minus_complex @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_3933_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_3934_add__diff__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_3935_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_3936_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_3937_diff__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( minus_minus_complex @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_3938_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_3939_diff__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_3940_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_3941_add__diff__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_3942_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_3943_add__diff__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_3944_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_3945_minus__mod__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mod_self2
thf(fact_3946_minus__mod__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mod_self2
thf(fact_3947_of__bool__less__eq__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) @ ( zero_n2052037380579107095ol_rat @ Q2 ) )
      = ( P3
       => Q2 ) ) ).

% of_bool_less_eq_iff
thf(fact_3948_of__bool__less__eq__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) @ ( zero_n2687167440665602831ol_nat @ Q2 ) )
      = ( P3
       => Q2 ) ) ).

% of_bool_less_eq_iff
thf(fact_3949_of__bool__less__eq__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P3 ) @ ( zero_n2684676970156552555ol_int @ Q2 ) )
      = ( P3
       => Q2 ) ) ).

% of_bool_less_eq_iff
thf(fact_3950_of__bool__less__eq__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P3 ) @ ( zero_n356916108424825756nteger @ Q2 ) )
      = ( P3
       => Q2 ) ) ).

% of_bool_less_eq_iff
thf(fact_3951_of__bool__less__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P3 ) @ ( zero_n3304061248610475627l_real @ Q2 ) )
      = ( ~ P3
        & Q2 ) ) ).

% of_bool_less_iff
thf(fact_3952_of__bool__less__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) @ ( zero_n2052037380579107095ol_rat @ Q2 ) )
      = ( ~ P3
        & Q2 ) ) ).

% of_bool_less_iff
thf(fact_3953_of__bool__less__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) @ ( zero_n2687167440665602831ol_nat @ Q2 ) )
      = ( ~ P3
        & Q2 ) ) ).

% of_bool_less_iff
thf(fact_3954_of__bool__less__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P3 ) @ ( zero_n2684676970156552555ol_int @ Q2 ) )
      = ( ~ P3
        & Q2 ) ) ).

% of_bool_less_iff
thf(fact_3955_of__bool__less__iff,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P3 ) @ ( zero_n356916108424825756nteger @ Q2 ) )
      = ( ~ P3
        & Q2 ) ) ).

% of_bool_less_iff
thf(fact_3956_of__bool__eq__1__iff,axiom,
    ! [P3: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P3 )
        = one_one_complex )
      = P3 ) ).

% of_bool_eq_1_iff
thf(fact_3957_of__bool__eq__1__iff,axiom,
    ! [P3: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P3 )
        = one_one_real )
      = P3 ) ).

% of_bool_eq_1_iff
thf(fact_3958_of__bool__eq__1__iff,axiom,
    ! [P3: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P3 )
        = one_one_rat )
      = P3 ) ).

% of_bool_eq_1_iff
thf(fact_3959_of__bool__eq__1__iff,axiom,
    ! [P3: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P3 )
        = one_one_nat )
      = P3 ) ).

% of_bool_eq_1_iff
thf(fact_3960_of__bool__eq__1__iff,axiom,
    ! [P3: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P3 )
        = one_one_int )
      = P3 ) ).

% of_bool_eq_1_iff
thf(fact_3961_of__bool__eq__1__iff,axiom,
    ! [P3: $o] :
      ( ( ( zero_n356916108424825756nteger @ P3 )
        = one_one_Code_integer )
      = P3 ) ).

% of_bool_eq_1_iff
thf(fact_3962_of__bool__eq_I2_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $true )
    = one_one_complex ) ).

% of_bool_eq(2)
thf(fact_3963_of__bool__eq_I2_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $true )
    = one_one_real ) ).

% of_bool_eq(2)
thf(fact_3964_of__bool__eq_I2_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $true )
    = one_one_rat ) ).

% of_bool_eq(2)
thf(fact_3965_of__bool__eq_I2_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $true )
    = one_one_nat ) ).

% of_bool_eq(2)
thf(fact_3966_of__bool__eq_I2_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $true )
    = one_one_int ) ).

% of_bool_eq(2)
thf(fact_3967_of__bool__eq_I2_J,axiom,
    ( ( zero_n356916108424825756nteger @ $true )
    = one_one_Code_integer ) ).

% of_bool_eq(2)
thf(fact_3968_replicate__eq__replicate,axiom,
    ! [M: nat,X: vEBT_VEBT,N: nat,Y2: vEBT_VEBT] :
      ( ( ( replicate_VEBT_VEBT @ M @ X )
        = ( replicate_VEBT_VEBT @ N @ Y2 ) )
      = ( ( M = N )
        & ( ( M != zero_zero_nat )
         => ( X = Y2 ) ) ) ) ).

% replicate_eq_replicate
thf(fact_3969_length__replicate,axiom,
    ! [N: nat,X: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_3970_length__replicate,axiom,
    ! [N: nat,X: $o] :
      ( ( size_size_list_o @ ( replicate_o @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_3971_length__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( size_size_list_nat @ ( replicate_nat @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_3972_length__replicate,axiom,
    ! [N: nat,X: int] :
      ( ( size_size_list_int @ ( replicate_int @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_3973_map__replicate,axiom,
    ! [F: nat > nat,N: nat,X: nat] :
      ( ( map_nat_nat @ F @ ( replicate_nat @ N @ X ) )
      = ( replicate_nat @ N @ ( F @ X ) ) ) ).

% map_replicate
thf(fact_3974_map__replicate,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,N: nat,X: vEBT_VEBT] :
      ( ( map_VE8901447254227204932T_VEBT @ F @ ( replicate_VEBT_VEBT @ N @ X ) )
      = ( replicate_VEBT_VEBT @ N @ ( F @ X ) ) ) ).

% map_replicate
thf(fact_3975_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_3976_diff__ge__0__iff__ge,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_3977_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_3978_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_3979_diff__gt__0__iff__gt,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_rat @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_3980_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_3981_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_3982_le__add__diff__inverse2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_3983_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_3984_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_3985_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_3986_le__add__diff__inverse,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_3987_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_3988_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_3989_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ one_one_complex )
    = zero_zero_complex ) ).

% diff_numeral_special(9)
thf(fact_3990_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_3991_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ one_one_rat )
    = zero_zero_rat ) ).

% diff_numeral_special(9)
thf(fact_3992_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_3993_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_3994_right__diff__distrib__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3995_right__diff__distrib__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3996_right__diff__distrib__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3997_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3998_left__diff__distrib__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_3999_left__diff__distrib__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_4000_left__diff__distrib__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_4001_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_4002_div__diff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_4003_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_4004_zero__less__of__bool__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P3 ) )
      = P3 ) ).

% zero_less_of_bool_iff
thf(fact_4005_zero__less__of__bool__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) )
      = P3 ) ).

% zero_less_of_bool_iff
thf(fact_4006_zero__less__of__bool__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) )
      = P3 ) ).

% zero_less_of_bool_iff
thf(fact_4007_zero__less__of__bool__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P3 ) )
      = P3 ) ).

% zero_less_of_bool_iff
thf(fact_4008_zero__less__of__bool__iff,axiom,
    ! [P3: $o] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P3 ) )
      = P3 ) ).

% zero_less_of_bool_iff
thf(fact_4009_of__bool__less__one__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P3 ) @ one_one_real )
      = ~ P3 ) ).

% of_bool_less_one_iff
thf(fact_4010_of__bool__less__one__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) @ one_one_rat )
      = ~ P3 ) ).

% of_bool_less_one_iff
thf(fact_4011_of__bool__less__one__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) @ one_one_nat )
      = ~ P3 ) ).

% of_bool_less_one_iff
thf(fact_4012_of__bool__less__one__iff,axiom,
    ! [P3: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P3 ) @ one_one_int )
      = ~ P3 ) ).

% of_bool_less_one_iff
thf(fact_4013_of__bool__less__one__iff,axiom,
    ! [P3: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P3 ) @ one_one_Code_integer )
      = ~ P3 ) ).

% of_bool_less_one_iff
thf(fact_4014_of__bool__not__iff,axiom,
    ! [P3: $o] :
      ( ( zero_n1201886186963655149omplex @ ~ P3 )
      = ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P3 ) ) ) ).

% of_bool_not_iff
thf(fact_4015_of__bool__not__iff,axiom,
    ! [P3: $o] :
      ( ( zero_n3304061248610475627l_real @ ~ P3 )
      = ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P3 ) ) ) ).

% of_bool_not_iff
thf(fact_4016_of__bool__not__iff,axiom,
    ! [P3: $o] :
      ( ( zero_n2052037380579107095ol_rat @ ~ P3 )
      = ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) ) ) ).

% of_bool_not_iff
thf(fact_4017_of__bool__not__iff,axiom,
    ! [P3: $o] :
      ( ( zero_n2684676970156552555ol_int @ ~ P3 )
      = ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P3 ) ) ) ).

% of_bool_not_iff
thf(fact_4018_of__bool__not__iff,axiom,
    ! [P3: $o] :
      ( ( zero_n356916108424825756nteger @ ~ P3 )
      = ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P3 ) ) ) ).

% of_bool_not_iff
thf(fact_4019_Suc__0__mod__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( zero_n2687167440665602831ol_nat
        @ ( N
         != ( suc @ zero_zero_nat ) ) ) ) ).

% Suc_0_mod_eq
thf(fact_4020_in__set__replicate,axiom,
    ! [X: complex,N: nat,Y2: complex] :
      ( ( member_complex @ X @ ( set_complex2 @ ( replicate_complex @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4021_in__set__replicate,axiom,
    ! [X: real,N: nat,Y2: real] :
      ( ( member_real @ X @ ( set_real2 @ ( replicate_real @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4022_in__set__replicate,axiom,
    ! [X: set_nat,N: nat,Y2: set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ ( replicate_set_nat @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4023_in__set__replicate,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4024_in__set__replicate,axiom,
    ! [X: int,N: nat,Y2: int] :
      ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4025_in__set__replicate,axiom,
    ! [X: vEBT_VEBT,N: nat,Y2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_4026_Bex__set__replicate,axiom,
    ! [N: nat,A: nat,P3: nat > $o] :
      ( ( ? [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
            & ( P3 @ X4 ) ) )
      = ( ( P3 @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_4027_Bex__set__replicate,axiom,
    ! [N: nat,A: int,P3: int > $o] :
      ( ( ? [X4: int] :
            ( ( member_int @ X4 @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
            & ( P3 @ X4 ) ) )
      = ( ( P3 @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_4028_Bex__set__replicate,axiom,
    ! [N: nat,A: vEBT_VEBT,P3: vEBT_VEBT > $o] :
      ( ( ? [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
            & ( P3 @ X4 ) ) )
      = ( ( P3 @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_4029_Ball__set__replicate,axiom,
    ! [N: nat,A: nat,P3: nat > $o] :
      ( ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
           => ( P3 @ X4 ) ) )
      = ( ( P3 @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_4030_Ball__set__replicate,axiom,
    ! [N: nat,A: int,P3: int > $o] :
      ( ( ! [X4: int] :
            ( ( member_int @ X4 @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
           => ( P3 @ X4 ) ) )
      = ( ( P3 @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_4031_Ball__set__replicate,axiom,
    ! [N: nat,A: vEBT_VEBT,P3: vEBT_VEBT > $o] :
      ( ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
           => ( P3 @ X4 ) ) )
      = ( ( P3 @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_4032_nth__replicate,axiom,
    ! [I2: nat,N: nat,X: nat] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( nth_nat @ ( replicate_nat @ N @ X ) @ I2 )
        = X ) ) ).

% nth_replicate
thf(fact_4033_nth__replicate,axiom,
    ! [I2: nat,N: nat,X: int] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( nth_int @ ( replicate_int @ N @ X ) @ I2 )
        = X ) ) ).

% nth_replicate
thf(fact_4034_nth__replicate,axiom,
    ! [I2: nat,N: nat,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ N )
     => ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) @ I2 )
        = X ) ) ).

% nth_replicate
thf(fact_4035_zle__diff1__eq,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z3 @ one_one_int ) )
      = ( ord_less_int @ W @ Z3 ) ) ).

% zle_diff1_eq
thf(fact_4036_odd__of__bool__self,axiom,
    ! [P5: $o] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P5 ) ) )
      = P5 ) ).

% odd_of_bool_self
thf(fact_4037_odd__of__bool__self,axiom,
    ! [P5: $o] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P5 ) ) )
      = P5 ) ).

% odd_of_bool_self
thf(fact_4038_odd__of__bool__self,axiom,
    ! [P5: $o] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P5 ) ) )
      = P5 ) ).

% odd_of_bool_self
thf(fact_4039_even__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).

% even_diff
thf(fact_4040_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_4041_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% of_bool_half_eq_0
thf(fact_4042_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = zero_zero_int ) ).

% of_bool_half_eq_0
thf(fact_4043_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = zero_z3403309356797280102nteger ) ).

% of_bool_half_eq_0
thf(fact_4044_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_4045_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_4046_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_4047_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_4048_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_4049_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_4050_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_4051_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_4052_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_4053_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_4054_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_4055_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_4056_signed__take__bit__diff,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K2 @ L ) ) ) ).

% signed_take_bit_diff
thf(fact_4057_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_4058_diff__eq__diff__eq,axiom,
    ! [A: complex,B: complex,C: complex,D: complex] :
      ( ( ( minus_minus_complex @ A @ B )
        = ( minus_minus_complex @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_4059_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_4060_diff__eq__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_4061_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_4062_diff__right__commute,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( minus_minus_complex @ ( minus_minus_complex @ A @ C ) @ B )
      = ( minus_minus_complex @ ( minus_minus_complex @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_4063_diff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_4064_diff__right__commute,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_4065_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_4066_diff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_4067_of__bool__conj,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( zero_n3304061248610475627l_real
        @ ( P3
          & Q2 ) )
      = ( times_times_real @ ( zero_n3304061248610475627l_real @ P3 ) @ ( zero_n3304061248610475627l_real @ Q2 ) ) ) ).

% of_bool_conj
thf(fact_4068_of__bool__conj,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( zero_n2052037380579107095ol_rat
        @ ( P3
          & Q2 ) )
      = ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) @ ( zero_n2052037380579107095ol_rat @ Q2 ) ) ) ).

% of_bool_conj
thf(fact_4069_of__bool__conj,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P3
          & Q2 ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) @ ( zero_n2687167440665602831ol_nat @ Q2 ) ) ) ).

% of_bool_conj
thf(fact_4070_of__bool__conj,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P3
          & Q2 ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ P3 ) @ ( zero_n2684676970156552555ol_int @ Q2 ) ) ) ).

% of_bool_conj
thf(fact_4071_of__bool__conj,axiom,
    ! [P3: $o,Q2: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P3
          & Q2 ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P3 ) @ ( zero_n356916108424825756nteger @ Q2 ) ) ) ).

% of_bool_conj
thf(fact_4072_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_4073_diff__eq__diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_eq_rat @ A @ B )
        = ( ord_less_eq_rat @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_4074_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_4075_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_4076_diff__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_4077_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_4078_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_4079_diff__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_4080_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_4081_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_4082_diff__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ D @ C )
       => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_4083_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_4084_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: complex,Z2: complex] : ( Y3 = Z2 ) )
    = ( ^ [A4: complex,B3: complex] :
          ( ( minus_minus_complex @ A4 @ B3 )
          = zero_zero_complex ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_4085_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: real,Z2: real] : ( Y3 = Z2 ) )
    = ( ^ [A4: real,B3: real] :
          ( ( minus_minus_real @ A4 @ B3 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_4086_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: rat,Z2: rat] : ( Y3 = Z2 ) )
    = ( ^ [A4: rat,B3: rat] :
          ( ( minus_minus_rat @ A4 @ B3 )
          = zero_zero_rat ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_4087_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: int,Z2: int] : ( Y3 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( minus_minus_int @ A4 @ B3 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_4088_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_4089_diff__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_4090_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_4091_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_4092_diff__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_4093_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_4094_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_4095_diff__eq__diff__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_rat @ A @ B )
        = ( ord_less_rat @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_4096_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_4097_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_4098_diff__strict__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ D @ C )
       => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_4099_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_4100_right__diff__distrib_H,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ B ) @ ( times_times_complex @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_4101_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_4102_right__diff__distrib_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_4103_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_4104_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_4105_left__diff__distrib_H,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( times_times_complex @ ( minus_minus_complex @ B @ C ) @ A )
      = ( minus_minus_complex @ ( times_times_complex @ B @ A ) @ ( times_times_complex @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_4106_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_4107_left__diff__distrib_H,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
      = ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_4108_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_4109_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_4110_right__diff__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ B ) @ ( times_times_complex @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_4111_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_4112_right__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_4113_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_4114_left__diff__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_4115_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_4116_left__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_4117_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_4118_inf__period_I2_J,axiom,
    ! [P3: complex > $o,D3: complex,Q2: complex > $o] :
      ( ! [X5: complex,K: complex] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_complex @ X5 @ ( times_times_complex @ K @ D3 ) ) ) )
     => ( ! [X5: complex,K: complex] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_complex @ X5 @ ( times_times_complex @ K @ D3 ) ) ) )
       => ! [X2: complex,K4: complex] :
            ( ( ( P3 @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_complex @ X2 @ ( times_times_complex @ K4 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_complex @ X2 @ ( times_times_complex @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4119_inf__period_I2_J,axiom,
    ! [P3: real > $o,D3: real,Q2: real > $o] :
      ( ! [X5: real,K: real] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_real @ X5 @ ( times_times_real @ K @ D3 ) ) ) )
     => ( ! [X5: real,K: real] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_real @ X5 @ ( times_times_real @ K @ D3 ) ) ) )
       => ! [X2: real,K4: real] :
            ( ( ( P3 @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4120_inf__period_I2_J,axiom,
    ! [P3: rat > $o,D3: rat,Q2: rat > $o] :
      ( ! [X5: rat,K: rat] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K @ D3 ) ) ) )
     => ( ! [X5: rat,K: rat] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K @ D3 ) ) ) )
       => ! [X2: rat,K4: rat] :
            ( ( ( P3 @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4121_inf__period_I2_J,axiom,
    ! [P3: int > $o,D3: int,Q2: int > $o] :
      ( ! [X5: int,K: int] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D3 ) ) ) )
     => ( ! [X5: int,K: int] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D3 ) ) ) )
       => ! [X2: int,K4: int] :
            ( ( ( P3 @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4122_inf__period_I1_J,axiom,
    ! [P3: complex > $o,D3: complex,Q2: complex > $o] :
      ( ! [X5: complex,K: complex] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_complex @ X5 @ ( times_times_complex @ K @ D3 ) ) ) )
     => ( ! [X5: complex,K: complex] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_complex @ X5 @ ( times_times_complex @ K @ D3 ) ) ) )
       => ! [X2: complex,K4: complex] :
            ( ( ( P3 @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_complex @ X2 @ ( times_times_complex @ K4 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_complex @ X2 @ ( times_times_complex @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4123_inf__period_I1_J,axiom,
    ! [P3: real > $o,D3: real,Q2: real > $o] :
      ( ! [X5: real,K: real] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_real @ X5 @ ( times_times_real @ K @ D3 ) ) ) )
     => ( ! [X5: real,K: real] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_real @ X5 @ ( times_times_real @ K @ D3 ) ) ) )
       => ! [X2: real,K4: real] :
            ( ( ( P3 @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4124_inf__period_I1_J,axiom,
    ! [P3: rat > $o,D3: rat,Q2: rat > $o] :
      ( ! [X5: rat,K: rat] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K @ D3 ) ) ) )
     => ( ! [X5: rat,K: rat] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K @ D3 ) ) ) )
       => ! [X2: rat,K4: rat] :
            ( ( ( P3 @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4125_inf__period_I1_J,axiom,
    ! [P3: int > $o,D3: int,Q2: int > $o] :
      ( ! [X5: int,K: int] :
          ( ( P3 @ X5 )
          = ( P3 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D3 ) ) ) )
     => ( ! [X5: int,K: int] :
            ( ( Q2 @ X5 )
            = ( Q2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D3 ) ) ) )
       => ! [X2: int,K4: int] :
            ( ( ( P3 @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P3 @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4126_diff__diff__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( minus_minus_complex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_4127_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_4128_diff__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_4129_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_4130_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_4131_add__implies__diff,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( ( plus_plus_complex @ C @ B )
        = A )
     => ( C
        = ( minus_minus_complex @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_4132_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_4133_add__implies__diff,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ( plus_plus_rat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_rat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_4134_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_4135_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_4136_diff__add__eq__diff__diff__swap,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( minus_minus_complex @ A @ ( plus_plus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( minus_minus_complex @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_4137_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_4138_diff__add__eq__diff__diff__swap,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_4139_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_4140_diff__add__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( plus_plus_complex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( plus_plus_complex @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_4141_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_4142_diff__add__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_4143_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_4144_diff__diff__eq2,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( minus_minus_complex @ A @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_4145_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_4146_diff__diff__eq2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_4147_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_4148_add__diff__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( plus_plus_complex @ A @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_4149_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_4150_add__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_4151_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_4152_eq__diff__eq,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( A
        = ( minus_minus_complex @ C @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_4153_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_4154_eq__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( A
        = ( minus_minus_rat @ C @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_4155_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_4156_diff__eq__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( ( minus_minus_complex @ A @ B )
        = C )
      = ( A
        = ( plus_plus_complex @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_4157_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_4158_diff__eq__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = C )
      = ( A
        = ( plus_plus_rat @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_4159_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_4160_group__cancel_Osub1,axiom,
    ! [A2: complex,K2: complex,A: complex,B: complex] :
      ( ( A2
        = ( plus_plus_complex @ K2 @ A ) )
     => ( ( minus_minus_complex @ A2 @ B )
        = ( plus_plus_complex @ K2 @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_4161_group__cancel_Osub1,axiom,
    ! [A2: real,K2: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K2 @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K2 @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_4162_group__cancel_Osub1,axiom,
    ! [A2: rat,K2: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K2 @ A ) )
     => ( ( minus_minus_rat @ A2 @ B )
        = ( plus_plus_rat @ K2 @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_4163_group__cancel_Osub1,axiom,
    ! [A2: int,K2: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K2 @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K2 @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_4164_add__diff__add,axiom,
    ! [A: complex,C: complex,B: complex,D: complex] :
      ( ( minus_minus_complex @ ( plus_plus_complex @ A @ C ) @ ( plus_plus_complex @ B @ D ) )
      = ( plus_plus_complex @ ( minus_minus_complex @ A @ B ) @ ( minus_minus_complex @ C @ D ) ) ) ).

% add_diff_add
thf(fact_4165_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_4166_add__diff__add,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
      = ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).

% add_diff_add
thf(fact_4167_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).

% add_diff_add
thf(fact_4168_diff__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_4169_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_4170_diff__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_4171_dvd__diff__commute,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
      = ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_4172_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_4173_mod__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_4174_mod__diff__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_4175_mod__diff__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B5: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B5 @ C ) )
       => ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( minus_minus_int @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_4176_mod__diff__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B5: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B5 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A5 @ B5 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_4177_mod__diff__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_4178_mod__diff__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_4179_mod__diff__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_4180_mod__diff__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_4181_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_4182_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(3)
thf(fact_4183_zero__less__eq__of__bool,axiom,
    ! [P3: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P3 ) ) ).

% zero_less_eq_of_bool
thf(fact_4184_zero__less__eq__of__bool,axiom,
    ! [P3: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) ) ).

% zero_less_eq_of_bool
thf(fact_4185_zero__less__eq__of__bool,axiom,
    ! [P3: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) ) ).

% zero_less_eq_of_bool
thf(fact_4186_zero__less__eq__of__bool,axiom,
    ! [P3: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P3 ) ) ).

% zero_less_eq_of_bool
thf(fact_4187_zero__less__eq__of__bool,axiom,
    ! [P3: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P3 ) ) ).

% zero_less_eq_of_bool
thf(fact_4188_of__bool__less__eq__one,axiom,
    ! [P3: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P3 ) @ one_one_real ) ).

% of_bool_less_eq_one
thf(fact_4189_of__bool__less__eq__one,axiom,
    ! [P3: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P3 ) @ one_one_rat ) ).

% of_bool_less_eq_one
thf(fact_4190_of__bool__less__eq__one,axiom,
    ! [P3: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) @ one_one_nat ) ).

% of_bool_less_eq_one
thf(fact_4191_of__bool__less__eq__one,axiom,
    ! [P3: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P3 ) @ one_one_int ) ).

% of_bool_less_eq_one
thf(fact_4192_of__bool__less__eq__one,axiom,
    ! [P3: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P3 ) @ one_one_Code_integer ) ).

% of_bool_less_eq_one
thf(fact_4193_of__bool__def,axiom,
    ( zero_n1201886186963655149omplex
    = ( ^ [P4: $o] : ( if_complex @ P4 @ one_one_complex @ zero_zero_complex ) ) ) ).

% of_bool_def
thf(fact_4194_of__bool__def,axiom,
    ( zero_n3304061248610475627l_real
    = ( ^ [P4: $o] : ( if_real @ P4 @ one_one_real @ zero_zero_real ) ) ) ).

% of_bool_def
thf(fact_4195_of__bool__def,axiom,
    ( zero_n2052037380579107095ol_rat
    = ( ^ [P4: $o] : ( if_rat @ P4 @ one_one_rat @ zero_zero_rat ) ) ) ).

% of_bool_def
thf(fact_4196_of__bool__def,axiom,
    ( zero_n2687167440665602831ol_nat
    = ( ^ [P4: $o] : ( if_nat @ P4 @ one_one_nat @ zero_zero_nat ) ) ) ).

% of_bool_def
thf(fact_4197_of__bool__def,axiom,
    ( zero_n2684676970156552555ol_int
    = ( ^ [P4: $o] : ( if_int @ P4 @ one_one_int @ zero_zero_int ) ) ) ).

% of_bool_def
thf(fact_4198_of__bool__def,axiom,
    ( zero_n356916108424825756nteger
    = ( ^ [P4: $o] : ( if_Code_integer @ P4 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).

% of_bool_def
thf(fact_4199_split__of__bool,axiom,
    ! [P3: complex > $o,P5: $o] :
      ( ( P3 @ ( zero_n1201886186963655149omplex @ P5 ) )
      = ( ( P5
         => ( P3 @ one_one_complex ) )
        & ( ~ P5
         => ( P3 @ zero_zero_complex ) ) ) ) ).

% split_of_bool
thf(fact_4200_split__of__bool,axiom,
    ! [P3: real > $o,P5: $o] :
      ( ( P3 @ ( zero_n3304061248610475627l_real @ P5 ) )
      = ( ( P5
         => ( P3 @ one_one_real ) )
        & ( ~ P5
         => ( P3 @ zero_zero_real ) ) ) ) ).

% split_of_bool
thf(fact_4201_split__of__bool,axiom,
    ! [P3: rat > $o,P5: $o] :
      ( ( P3 @ ( zero_n2052037380579107095ol_rat @ P5 ) )
      = ( ( P5
         => ( P3 @ one_one_rat ) )
        & ( ~ P5
         => ( P3 @ zero_zero_rat ) ) ) ) ).

% split_of_bool
thf(fact_4202_split__of__bool,axiom,
    ! [P3: nat > $o,P5: $o] :
      ( ( P3 @ ( zero_n2687167440665602831ol_nat @ P5 ) )
      = ( ( P5
         => ( P3 @ one_one_nat ) )
        & ( ~ P5
         => ( P3 @ zero_zero_nat ) ) ) ) ).

% split_of_bool
thf(fact_4203_split__of__bool,axiom,
    ! [P3: int > $o,P5: $o] :
      ( ( P3 @ ( zero_n2684676970156552555ol_int @ P5 ) )
      = ( ( P5
         => ( P3 @ one_one_int ) )
        & ( ~ P5
         => ( P3 @ zero_zero_int ) ) ) ) ).

% split_of_bool
thf(fact_4204_split__of__bool,axiom,
    ! [P3: code_integer > $o,P5: $o] :
      ( ( P3 @ ( zero_n356916108424825756nteger @ P5 ) )
      = ( ( P5
         => ( P3 @ one_one_Code_integer ) )
        & ( ~ P5
         => ( P3 @ zero_z3403309356797280102nteger ) ) ) ) ).

% split_of_bool
thf(fact_4205_split__of__bool__asm,axiom,
    ! [P3: complex > $o,P5: $o] :
      ( ( P3 @ ( zero_n1201886186963655149omplex @ P5 ) )
      = ( ~ ( ( P5
              & ~ ( P3 @ one_one_complex ) )
            | ( ~ P5
              & ~ ( P3 @ zero_zero_complex ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4206_split__of__bool__asm,axiom,
    ! [P3: real > $o,P5: $o] :
      ( ( P3 @ ( zero_n3304061248610475627l_real @ P5 ) )
      = ( ~ ( ( P5
              & ~ ( P3 @ one_one_real ) )
            | ( ~ P5
              & ~ ( P3 @ zero_zero_real ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4207_split__of__bool__asm,axiom,
    ! [P3: rat > $o,P5: $o] :
      ( ( P3 @ ( zero_n2052037380579107095ol_rat @ P5 ) )
      = ( ~ ( ( P5
              & ~ ( P3 @ one_one_rat ) )
            | ( ~ P5
              & ~ ( P3 @ zero_zero_rat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4208_split__of__bool__asm,axiom,
    ! [P3: nat > $o,P5: $o] :
      ( ( P3 @ ( zero_n2687167440665602831ol_nat @ P5 ) )
      = ( ~ ( ( P5
              & ~ ( P3 @ one_one_nat ) )
            | ( ~ P5
              & ~ ( P3 @ zero_zero_nat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4209_split__of__bool__asm,axiom,
    ! [P3: int > $o,P5: $o] :
      ( ( P3 @ ( zero_n2684676970156552555ol_int @ P5 ) )
      = ( ~ ( ( P5
              & ~ ( P3 @ one_one_int ) )
            | ( ~ P5
              & ~ ( P3 @ zero_zero_int ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4210_split__of__bool__asm,axiom,
    ! [P3: code_integer > $o,P5: $o] :
      ( ( P3 @ ( zero_n356916108424825756nteger @ P5 ) )
      = ( ~ ( ( P5
              & ~ ( P3 @ one_one_Code_integer ) )
            | ( ~ P5
              & ~ ( P3 @ zero_z3403309356797280102nteger ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_4211_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A4 @ B3 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_4212_le__iff__diff__le__0,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B3: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A4 @ B3 ) @ zero_zero_rat ) ) ) ).

% le_iff_diff_le_0
thf(fact_4213_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A4 @ B3 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_4214_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] : ( ord_less_real @ ( minus_minus_real @ A4 @ B3 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_4215_less__iff__diff__less__0,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B3: rat] : ( ord_less_rat @ ( minus_minus_rat @ A4 @ B3 ) @ zero_zero_rat ) ) ) ).

% less_iff_diff_less_0
thf(fact_4216_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] : ( ord_less_int @ ( minus_minus_int @ A4 @ B3 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_4217_add__le__add__imp__diff__le,axiom,
    ! [I2: real,K2: real,N: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K2 ) @ N )
     => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K2 ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K2 ) @ N )
         => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K2 ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_4218_add__le__add__imp__diff__le,axiom,
    ! [I2: rat,K2: rat,N: rat,J: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K2 ) @ N )
     => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K2 ) )
       => ( ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K2 ) @ N )
         => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K2 ) )
           => ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_4219_add__le__add__imp__diff__le,axiom,
    ! [I2: nat,K2: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K2 ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K2 ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_4220_add__le__add__imp__diff__le,axiom,
    ! [I2: int,K2: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K2 ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K2 ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K2 ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K2 ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_4221_add__le__imp__le__diff,axiom,
    ! [I2: real,K2: real,N: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K2 ) @ N )
     => ( ord_less_eq_real @ I2 @ ( minus_minus_real @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_4222_add__le__imp__le__diff,axiom,
    ! [I2: rat,K2: rat,N: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K2 ) @ N )
     => ( ord_less_eq_rat @ I2 @ ( minus_minus_rat @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_4223_add__le__imp__le__diff,axiom,
    ! [I2: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ N )
     => ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_4224_add__le__imp__le__diff,axiom,
    ! [I2: int,K2: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K2 ) @ N )
     => ( ord_less_eq_int @ I2 @ ( minus_minus_int @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_4225_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_4226_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_4227_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_4228_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_4229_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_4230_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_4231_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_4232_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_4233_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_4234_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_4235_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_4236_le__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_4237_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_4238_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_4239_diff__le__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_4240_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_4241_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_4242_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ~ ( ord_less_rat @ A @ B )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_4243_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_4244_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_4245_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_4246_less__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_4247_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_4248_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_4249_diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_4250_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_4251_square__diff__square__factored,axiom,
    ! [X: complex,Y2: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X @ X ) @ ( times_times_complex @ Y2 @ Y2 ) )
      = ( times_times_complex @ ( plus_plus_complex @ X @ Y2 ) @ ( minus_minus_complex @ X @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_4252_square__diff__square__factored,axiom,
    ! [X: real,Y2: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) )
      = ( times_times_real @ ( plus_plus_real @ X @ Y2 ) @ ( minus_minus_real @ X @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_4253_square__diff__square__factored,axiom,
    ! [X: rat,Y2: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y2 @ Y2 ) )
      = ( times_times_rat @ ( plus_plus_rat @ X @ Y2 ) @ ( minus_minus_rat @ X @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_4254_square__diff__square__factored,axiom,
    ! [X: int,Y2: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y2 @ Y2 ) )
      = ( times_times_int @ ( plus_plus_int @ X @ Y2 ) @ ( minus_minus_int @ X @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_4255_eq__add__iff2,axiom,
    ! [A: complex,E: complex,C: complex,B: complex,D: complex] :
      ( ( ( plus_plus_complex @ ( times_times_complex @ A @ E ) @ C )
        = ( plus_plus_complex @ ( times_times_complex @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_complex @ ( times_times_complex @ ( minus_minus_complex @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_4256_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_4257_eq__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_4258_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_4259_eq__add__iff1,axiom,
    ! [A: complex,E: complex,C: complex,B: complex,D: complex] :
      ( ( ( plus_plus_complex @ ( times_times_complex @ A @ E ) @ C )
        = ( plus_plus_complex @ ( times_times_complex @ B @ E ) @ D ) )
      = ( ( plus_plus_complex @ ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_4260_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_4261_eq__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_4262_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_4263_mult__diff__mult,axiom,
    ! [X: complex,Y2: complex,A: complex,B: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X @ Y2 ) @ ( times_times_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ X @ ( minus_minus_complex @ Y2 @ B ) ) @ ( times_times_complex @ ( minus_minus_complex @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_4264_mult__diff__mult,axiom,
    ! [X: real,Y2: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ Y2 ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X @ ( minus_minus_real @ Y2 @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_4265_mult__diff__mult,axiom,
    ! [X: rat,Y2: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ Y2 ) @ ( times_times_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ X @ ( minus_minus_rat @ Y2 @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_4266_mult__diff__mult,axiom,
    ! [X: int,Y2: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ Y2 ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X @ ( minus_minus_int @ Y2 @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_4267_replicate__eqI,axiom,
    ! [Xs: list_complex,N: nat,X: complex] :
      ( ( ( size_s3451745648224563538omplex @ Xs )
        = N )
     => ( ! [Y5: complex] :
            ( ( member_complex @ Y5 @ ( set_complex2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_complex @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4268_replicate__eqI,axiom,
    ! [Xs: list_real,N: nat,X: real] :
      ( ( ( size_size_list_real @ Xs )
        = N )
     => ( ! [Y5: real] :
            ( ( member_real @ Y5 @ ( set_real2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_real @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4269_replicate__eqI,axiom,
    ! [Xs: list_set_nat,N: nat,X: set_nat] :
      ( ( ( size_s3254054031482475050et_nat @ Xs )
        = N )
     => ( ! [Y5: set_nat] :
            ( ( member_set_nat @ Y5 @ ( set_set_nat2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_set_nat @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4270_replicate__eqI,axiom,
    ! [Xs: list_VEBT_VEBT,N: nat,X: vEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs )
        = N )
     => ( ! [Y5: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ Y5 @ ( set_VEBT_VEBT2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_VEBT_VEBT @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4271_replicate__eqI,axiom,
    ! [Xs: list_o,N: nat,X: $o] :
      ( ( ( size_size_list_o @ Xs )
        = N )
     => ( ! [Y5: $o] :
            ( ( member_o @ Y5 @ ( set_o2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_o @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4272_replicate__eqI,axiom,
    ! [Xs: list_nat,N: nat,X: nat] :
      ( ( ( size_size_list_nat @ Xs )
        = N )
     => ( ! [Y5: nat] :
            ( ( member_nat @ Y5 @ ( set_nat2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_nat @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4273_replicate__eqI,axiom,
    ! [Xs: list_int,N: nat,X: int] :
      ( ( ( size_size_list_int @ Xs )
        = N )
     => ( ! [Y5: int] :
            ( ( member_int @ Y5 @ ( set_int2 @ Xs ) )
           => ( Y5 = X ) )
       => ( Xs
          = ( replicate_int @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_4274_replicate__length__same,axiom,
    ! [Xs: list_VEBT_VEBT,X: vEBT_VEBT] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs ) )
         => ( X5 = X ) )
     => ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs ) @ X )
        = Xs ) ) ).

% replicate_length_same
thf(fact_4275_replicate__length__same,axiom,
    ! [Xs: list_o,X: $o] :
      ( ! [X5: $o] :
          ( ( member_o @ X5 @ ( set_o2 @ Xs ) )
         => ( X5 = X ) )
     => ( ( replicate_o @ ( size_size_list_o @ Xs ) @ X )
        = Xs ) ) ).

% replicate_length_same
thf(fact_4276_replicate__length__same,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ ( set_nat2 @ Xs ) )
         => ( X5 = X ) )
     => ( ( replicate_nat @ ( size_size_list_nat @ Xs ) @ X )
        = Xs ) ) ).

% replicate_length_same
thf(fact_4277_replicate__length__same,axiom,
    ! [Xs: list_int,X: int] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ ( set_int2 @ Xs ) )
         => ( X5 = X ) )
     => ( ( replicate_int @ ( size_size_list_int @ Xs ) @ X )
        = Xs ) ) ).

% replicate_length_same
thf(fact_4278_mod__eq__dvd__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
      = ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_4279_mod__eq__dvd__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
      = ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_4280_dvd__minus__mod,axiom,
    ! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4281_dvd__minus__mod,axiom,
    ! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4282_dvd__minus__mod,axiom,
    ! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4283_int__le__induct,axiom,
    ! [I2: int,K2: int,P3: int > $o] :
      ( ( ord_less_eq_int @ I2 @ K2 )
     => ( ( P3 @ K2 )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K2 )
             => ( ( P3 @ I3 )
               => ( P3 @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% int_le_induct
thf(fact_4284_int__less__induct,axiom,
    ! [I2: int,K2: int,P3: int > $o] :
      ( ( ord_less_int @ I2 @ K2 )
     => ( ( P3 @ ( minus_minus_int @ K2 @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K2 )
             => ( ( P3 @ I3 )
               => ( P3 @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% int_less_induct
thf(fact_4285_map__replicate__const,axiom,
    ! [K2: vEBT_VEBT,Lst: list_VEBT_VEBT] :
      ( ( map_VE8901447254227204932T_VEBT
        @ ^ [X4: vEBT_VEBT] : K2
        @ Lst )
      = ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Lst ) @ K2 ) ) ).

% map_replicate_const
thf(fact_4286_map__replicate__const,axiom,
    ! [K2: vEBT_VEBT,Lst: list_o] :
      ( ( map_o_VEBT_VEBT
        @ ^ [X4: $o] : K2
        @ Lst )
      = ( replicate_VEBT_VEBT @ ( size_size_list_o @ Lst ) @ K2 ) ) ).

% map_replicate_const
thf(fact_4287_map__replicate__const,axiom,
    ! [K2: nat,Lst: list_nat] :
      ( ( map_nat_nat
        @ ^ [X4: nat] : K2
        @ Lst )
      = ( replicate_nat @ ( size_size_list_nat @ Lst ) @ K2 ) ) ).

% map_replicate_const
thf(fact_4288_map__replicate__const,axiom,
    ! [K2: vEBT_VEBT,Lst: list_nat] :
      ( ( map_nat_VEBT_VEBT
        @ ^ [X4: nat] : K2
        @ Lst )
      = ( replicate_VEBT_VEBT @ ( size_size_list_nat @ Lst ) @ K2 ) ) ).

% map_replicate_const
thf(fact_4289_map__replicate__const,axiom,
    ! [K2: vEBT_VEBT,Lst: list_int] :
      ( ( map_int_VEBT_VEBT
        @ ^ [X4: int] : K2
        @ Lst )
      = ( replicate_VEBT_VEBT @ ( size_size_list_int @ Lst ) @ K2 ) ) ).

% map_replicate_const
thf(fact_4290_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_4291_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_4292_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_4293_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_4294_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_4295_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_4296_less__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_4297_less__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_4298_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_4299_less__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_4300_less__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_4301_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_4302_divide__diff__eq__iff,axiom,
    ! [Z3: complex,X: complex,Y2: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Z3 ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ X @ ( times_times_complex @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% divide_diff_eq_iff
thf(fact_4303_divide__diff__eq__iff,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( Z3 != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X @ Z3 ) @ Y2 )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% divide_diff_eq_iff
thf(fact_4304_divide__diff__eq__iff,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( Z3 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Z3 ) @ Y2 )
        = ( divide_divide_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% divide_diff_eq_iff
thf(fact_4305_diff__divide__eq__iff,axiom,
    ! [Z3: complex,X: complex,Y2: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( minus_minus_complex @ X @ ( divide1717551699836669952omplex @ Y2 @ Z3 ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z3 ) @ Y2 ) @ Z3 ) ) ) ).

% diff_divide_eq_iff
thf(fact_4306_diff__divide__eq__iff,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( Z3 != zero_zero_real )
     => ( ( minus_minus_real @ X @ ( divide_divide_real @ Y2 @ Z3 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z3 ) @ Y2 ) @ Z3 ) ) ) ).

% diff_divide_eq_iff
thf(fact_4307_diff__divide__eq__iff,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( Z3 != zero_zero_rat )
     => ( ( minus_minus_rat @ X @ ( divide_divide_rat @ Y2 @ Z3 ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z3 ) @ Y2 ) @ Z3 ) ) ) ).

% diff_divide_eq_iff
thf(fact_4308_diff__frac__eq,axiom,
    ! [Y2: complex,Z3: complex,X: complex,W: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( Z3 != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Y2 ) @ ( divide1717551699836669952omplex @ W @ Z3 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z3 ) @ ( times_times_complex @ W @ Y2 ) ) @ ( times_times_complex @ Y2 @ Z3 ) ) ) ) ) ).

% diff_frac_eq
thf(fact_4309_diff__frac__eq,axiom,
    ! [Y2: real,Z3: real,X: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z3 != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X @ Y2 ) @ ( divide_divide_real @ W @ Z3 ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z3 ) ) ) ) ) ).

% diff_frac_eq
thf(fact_4310_diff__frac__eq,axiom,
    ! [Y2: rat,Z3: rat,X: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z3 != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Y2 ) @ ( divide_divide_rat @ W @ Z3 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z3 ) ) ) ) ) ).

% diff_frac_eq
thf(fact_4311_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z3: complex,A: complex,B: complex] :
      ( ( ( Z3 = zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z3 ) )
          = A ) )
      & ( ( Z3 != zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z3 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z3 ) @ B ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_4312_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z3: real,A: real,B: real] :
      ( ( ( Z3 = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z3 ) )
          = A ) )
      & ( ( Z3 != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z3 ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z3 ) @ B ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_4313_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z3: rat,A: rat,B: rat] :
      ( ( ( Z3 = zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z3 ) )
          = A ) )
      & ( ( Z3 != zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z3 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z3 ) @ B ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_4314_square__diff__one__factored,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X @ X ) @ one_one_complex )
      = ( times_times_complex @ ( plus_plus_complex @ X @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ).

% square_diff_one_factored
thf(fact_4315_square__diff__one__factored,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ one_one_real )
      = ( times_times_real @ ( plus_plus_real @ X @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% square_diff_one_factored
thf(fact_4316_square__diff__one__factored,axiom,
    ! [X: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ one_one_rat )
      = ( times_times_rat @ ( plus_plus_rat @ X @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ).

% square_diff_one_factored
thf(fact_4317_square__diff__one__factored,axiom,
    ! [X: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_4318_inf__period_I3_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X2: code_integer,K4: code_integer] :
          ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ T ) )
          = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X2 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4319_inf__period_I3_J,axiom,
    ! [D: complex,D3: complex,T: complex] :
      ( ( dvd_dvd_complex @ D @ D3 )
     => ! [X2: complex,K4: complex] :
          ( ( dvd_dvd_complex @ D @ ( plus_plus_complex @ X2 @ T ) )
          = ( dvd_dvd_complex @ D @ ( plus_plus_complex @ ( minus_minus_complex @ X2 @ ( times_times_complex @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4320_inf__period_I3_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X2: real,K4: real] :
          ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ T ) )
          = ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4321_inf__period_I3_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X2: rat,K4: rat] :
          ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ T ) )
          = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4322_inf__period_I3_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int,K4: int] :
          ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
          = ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4323_inf__period_I4_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X2: code_integer,K4: code_integer] :
          ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X2 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4324_inf__period_I4_J,axiom,
    ! [D: complex,D3: complex,T: complex] :
      ( ( dvd_dvd_complex @ D @ D3 )
     => ! [X2: complex,K4: complex] :
          ( ( ~ ( dvd_dvd_complex @ D @ ( plus_plus_complex @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_complex @ D @ ( plus_plus_complex @ ( minus_minus_complex @ X2 @ ( times_times_complex @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4325_inf__period_I4_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X2: real,K4: real] :
          ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4326_inf__period_I4_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X2: rat,K4: rat] :
          ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4327_inf__period_I4_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int,K4: int] :
          ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4328_minus__mult__div__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_4329_minus__mult__div__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_4330_minus__mult__div__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_4331_minus__mod__eq__mult__div,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_4332_minus__mod__eq__mult__div,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_4333_minus__mod__eq__mult__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_4334_minus__mod__eq__div__mult,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_4335_minus__mod__eq__div__mult,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_4336_minus__mod__eq__div__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_4337_minus__div__mult__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_4338_minus__div__mult__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_4339_minus__div__mult__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_4340_plusinfinity,axiom,
    ! [D: int,P6: int > $o,P3: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int,K: int] :
            ( ( P6 @ X5 )
            = ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D ) ) ) )
       => ( ? [Z4: int] :
            ! [X5: int] :
              ( ( ord_less_int @ Z4 @ X5 )
             => ( ( P3 @ X5 )
                = ( P6 @ X5 ) ) )
         => ( ? [X_1: int] : ( P6 @ X_1 )
           => ? [X_12: int] : ( P3 @ X_12 ) ) ) ) ) ).

% plusinfinity
thf(fact_4341_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P3: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int,K: int] :
            ( ( P1 @ X5 )
            = ( P1 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D ) ) ) )
       => ( ? [Z4: int] :
            ! [X5: int] :
              ( ( ord_less_int @ X5 @ Z4 )
             => ( ( P3 @ X5 )
                = ( P1 @ X5 ) ) )
         => ( ? [X_1: int] : ( P1 @ X_1 )
           => ? [X_12: int] : ( P3 @ X_12 ) ) ) ) ) ).

% minusinfinity
thf(fact_4342_int__induct,axiom,
    ! [P3: int > $o,K2: int,I2: int] :
      ( ( P3 @ K2 )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K2 @ I3 )
           => ( ( P3 @ I3 )
             => ( P3 @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K2 )
             => ( ( P3 @ I3 )
               => ( P3 @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P3 @ I2 ) ) ) ) ).

% int_induct
thf(fact_4343_frac__le__eq,axiom,
    ! [Y2: real,Z3: real,X: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z3 != zero_zero_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ X @ Y2 ) @ ( divide_divide_real @ W @ Z3 ) )
          = ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z3 ) ) @ zero_zero_real ) ) ) ) ).

% frac_le_eq
thf(fact_4344_frac__le__eq,axiom,
    ! [Y2: rat,Z3: rat,X: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z3 != zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y2 ) @ ( divide_divide_rat @ W @ Z3 ) )
          = ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z3 ) ) @ zero_zero_rat ) ) ) ) ).

% frac_le_eq
thf(fact_4345_frac__less__eq,axiom,
    ! [Y2: real,Z3: real,X: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z3 != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X @ Y2 ) @ ( divide_divide_real @ W @ Z3 ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z3 ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_4346_frac__less__eq,axiom,
    ! [Y2: rat,Z3: rat,X: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z3 != zero_zero_rat )
       => ( ( ord_less_rat @ ( divide_divide_rat @ X @ Y2 ) @ ( divide_divide_rat @ W @ Z3 ) )
          = ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z3 ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z3 ) ) @ zero_zero_rat ) ) ) ) ).

% frac_less_eq
thf(fact_4347_power2__commute,axiom,
    ! [X: complex,Y2: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ ( minus_minus_complex @ Y2 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_4348_power2__commute,axiom,
    ! [X: real,Y2: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y2 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_4349_power2__commute,axiom,
    ! [X: rat,Y2: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ ( minus_minus_rat @ Y2 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_4350_power2__commute,axiom,
    ! [X: int,Y2: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y2 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_4351_even__diff__iff,axiom,
    ! [K2: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K2 @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K2 @ L ) ) ) ).

% even_diff_iff
thf(fact_4352_decr__mult__lemma,axiom,
    ! [D: int,P3: int > $o,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int] :
            ( ( P3 @ X5 )
           => ( P3 @ ( minus_minus_int @ X5 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K2 )
         => ! [X2: int] :
              ( ( P3 @ X2 )
             => ( P3 @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_4353_mod__pos__geq,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K2 )
       => ( ( modulo_modulo_int @ K2 @ L )
          = ( modulo_modulo_int @ ( minus_minus_int @ K2 @ L ) @ L ) ) ) ) ).

% mod_pos_geq
thf(fact_4354_of__bool__odd__eq__mod__2,axiom,
    ! [A: nat] :
      ( ( zero_n2687167440665602831ol_nat
        @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_4355_of__bool__odd__eq__mod__2,axiom,
    ! [A: int] :
      ( ( zero_n2684676970156552555ol_int
        @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_4356_of__bool__odd__eq__mod__2,axiom,
    ! [A: code_integer] :
      ( ( zero_n356916108424825756nteger
        @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_4357_scaling__mono,axiom,
    ! [U: real,V: real,R: real,S: real] :
      ( ( ord_less_eq_real @ U @ V )
     => ( ( ord_less_eq_real @ zero_zero_real @ R )
       => ( ( ord_less_eq_real @ R @ S )
         => ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R @ ( minus_minus_real @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_4358_scaling__mono,axiom,
    ! [U: rat,V: rat,R: rat,S: rat] :
      ( ( ord_less_eq_rat @ U @ V )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ R )
       => ( ( ord_less_eq_rat @ R @ S )
         => ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R @ ( minus_minus_rat @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_4359_bits__induct,axiom,
    ! [P3: nat > $o,A: nat] :
      ( ! [A3: nat] :
          ( ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = A3 )
         => ( P3 @ A3 ) )
     => ( ! [A3: nat,B2: $o] :
            ( ( P3 @ A3 )
           => ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                = A3 )
             => ( P3 @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 ) ) ) ) )
       => ( P3 @ A ) ) ) ).

% bits_induct
thf(fact_4360_bits__induct,axiom,
    ! [P3: int > $o,A: int] :
      ( ! [A3: int] :
          ( ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = A3 )
         => ( P3 @ A3 ) )
     => ( ! [A3: int,B2: $o] :
            ( ( P3 @ A3 )
           => ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B2 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = A3 )
             => ( P3 @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B2 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 ) ) ) ) )
       => ( P3 @ A ) ) ) ).

% bits_induct
thf(fact_4361_bits__induct,axiom,
    ! [P3: code_integer > $o,A: code_integer] :
      ( ! [A3: code_integer] :
          ( ( ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = A3 )
         => ( P3 @ A3 ) )
     => ( ! [A3: code_integer,B2: $o] :
            ( ( P3 @ A3 )
           => ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B2 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
                = A3 )
             => ( P3 @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B2 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 ) ) ) ) )
       => ( P3 @ A ) ) ) ).

% bits_induct
thf(fact_4362_signed__take__bit__int__less__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K2 )
     => ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( minus_minus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).

% signed_take_bit_int_less_eq
thf(fact_4363_div__pos__geq,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K2 )
       => ( ( divide_divide_int @ K2 @ L )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K2 @ L ) @ L ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_4364_add__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( B
        = ( plus_plus_complex @ B @ A ) )
      = ( A = zero_zero_complex ) ) ).

% add_0_iff
thf(fact_4365_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_4366_add__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( B
        = ( plus_plus_rat @ B @ A ) )
      = ( A = zero_zero_rat ) ) ).

% add_0_iff
thf(fact_4367_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_4368_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_4369_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_4370_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_4371_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_4372_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_4373_crossproduct__noteq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
       != ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_4374_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_4375_crossproduct__noteq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
       != ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_4376_crossproduct__eq,axiom,
    ! [W: real,Y2: real,X: real,Z3: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y2 ) @ ( times_times_real @ X @ Z3 ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z3 ) @ ( times_times_real @ X @ Y2 ) ) )
      = ( ( W = X )
        | ( Y2 = Z3 ) ) ) ).

% crossproduct_eq
thf(fact_4377_crossproduct__eq,axiom,
    ! [W: rat,Y2: rat,X: rat,Z3: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y2 ) @ ( times_times_rat @ X @ Z3 ) )
        = ( plus_plus_rat @ ( times_times_rat @ W @ Z3 ) @ ( times_times_rat @ X @ Y2 ) ) )
      = ( ( W = X )
        | ( Y2 = Z3 ) ) ) ).

% crossproduct_eq
thf(fact_4378_crossproduct__eq,axiom,
    ! [W: nat,Y2: nat,X: nat,Z3: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y2 ) @ ( times_times_nat @ X @ Z3 ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z3 ) @ ( times_times_nat @ X @ Y2 ) ) )
      = ( ( W = X )
        | ( Y2 = Z3 ) ) ) ).

% crossproduct_eq
thf(fact_4379_crossproduct__eq,axiom,
    ! [W: int,Y2: int,X: int,Z3: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W @ Y2 ) @ ( times_times_int @ X @ Z3 ) )
        = ( plus_plus_int @ ( times_times_int @ W @ Z3 ) @ ( times_times_int @ X @ Y2 ) ) )
      = ( ( W = X )
        | ( Y2 = Z3 ) ) ) ).

% crossproduct_eq
thf(fact_4380_power2__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_4381_power2__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_4382_power2__diff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_4383_power2__diff,axiom,
    ! [X: int,Y2: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_4384_divmod__digit__1_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_4385_divmod__digit__1_I2_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_4386_divmod__digit__1_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_4387_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_4388_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_4389_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_4390_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_4391_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_4392_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_4393_neg__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).

% neg_zmod_mult_2
thf(fact_4394_vebt__buildup_Osimps_I3_J,axiom,
    ! [Va3: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va3 ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va3 ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.simps(3)
thf(fact_4395_divmod__step__eq,axiom,
    ! [L: num,R: nat,Q: nat] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R )
       => ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q @ R ) )
          = ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q ) @ one_one_nat ) @ ( minus_minus_nat @ R @ ( numeral_numeral_nat @ L ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R )
       => ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q @ R ) )
          = ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q ) @ R ) ) ) ) ).

% divmod_step_eq
thf(fact_4396_divmod__step__eq,axiom,
    ! [L: num,R: int,Q: int] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R )
       => ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q @ R ) )
          = ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q ) @ one_one_int ) @ ( minus_minus_int @ R @ ( numeral_numeral_int @ L ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R )
       => ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q @ R ) )
          = ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q ) @ R ) ) ) ) ).

% divmod_step_eq
thf(fact_4397_divmod__step__eq,axiom,
    ! [L: num,R: code_integer,Q: code_integer] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R )
       => ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q @ R ) )
          = ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R @ ( numera6620942414471956472nteger @ L ) ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R )
       => ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q @ R ) )
          = ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q ) @ R ) ) ) ) ).

% divmod_step_eq
thf(fact_4398_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N2: nat] : ( divide_divide_nat @ ( times_times_nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_4399_vebt__buildup_Opelims,axiom,
    ! [X: nat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X )
        = Y2 )
     => ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X )
       => ( ( ( X = zero_zero_nat )
           => ( ( Y2
                = ( vEBT_Leaf @ $false @ $false ) )
             => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
         => ( ( ( X
                = ( suc @ zero_zero_nat ) )
             => ( ( Y2
                  = ( vEBT_Leaf @ $false @ $false ) )
               => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
           => ~ ! [Va: nat] :
                  ( ( X
                    = ( suc @ ( suc @ Va ) ) )
                 => ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                       => ( Y2
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                       => ( Y2
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                   => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.pelims
thf(fact_4400_set__decode__Suc,axiom,
    ! [N: nat,X: nat] :
      ( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X ) )
      = ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_decode_Suc
thf(fact_4401_set__decode__0,axiom,
    ! [X: nat] :
      ( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) ) ).

% set_decode_0
thf(fact_4402_set__decode__def,axiom,
    ( nat_set_decode
    = ( ^ [X4: nat] :
          ( collect_nat
          @ ^ [N2: nat] :
              ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% set_decode_def
thf(fact_4403_even__mult__exp__div__exp__iff,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4404_even__mult__exp__div__exp__iff,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4405_even__mult__exp__div__exp__iff,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4406_idiff__infinity,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ extend5688581933313929465d_enat @ N )
      = extend5688581933313929465d_enat ) ).

% idiff_infinity
thf(fact_4407_idiff__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_4408_idiff__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
      = N ) ).

% idiff_0_right
thf(fact_4409_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K2 ) ) ).

% Suc_diff_diff
thf(fact_4410_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_4411_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_4412_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_4413_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_4414_diff__diff__left,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K2 )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% diff_diff_left
thf(fact_4415_idiff__enat__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ zero_zero_nat ) @ N )
      = ( extended_enat2 @ zero_zero_nat ) ) ).

% idiff_enat_0
thf(fact_4416_idiff__enat__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ ( extended_enat2 @ zero_zero_nat ) )
      = N ) ).

% idiff_enat_0_right
thf(fact_4417_idiff__enat__enat,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ A ) @ ( extended_enat2 @ B ) )
      = ( extended_enat2 @ ( minus_minus_nat @ A @ B ) ) ) ).

% idiff_enat_enat
thf(fact_4418_idiff__self,axiom,
    ! [N: extended_enat] :
      ( ( N != extend5688581933313929465d_enat )
     => ( ( minus_3235023915231533773d_enat @ N @ N )
        = zero_z5237406670263579293d_enat ) ) ).

% idiff_self
thf(fact_4419_add__diff__cancel__enat,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( X != extend5688581933313929465d_enat )
     => ( ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y2 ) @ X )
        = Y2 ) ) ).

% add_diff_cancel_enat
thf(fact_4420_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_4421_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_4422_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_4423_Nat_Odiff__diff__right,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K2 ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_4424_Nat_Oadd__diff__assoc2,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K2 ) @ I2 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K2 ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_4425_Nat_Oadd__diff__assoc,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K2 ) ) ) ).

% Nat.add_diff_assoc
thf(fact_4426_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_4427_idiff__infinity__right,axiom,
    ! [A: nat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ A ) @ extend5688581933313929465d_enat )
      = zero_z5237406670263579293d_enat ) ).

% idiff_infinity_right
thf(fact_4428_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_4429_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_4430_diff__Suc__diff__eq1,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J @ K2 ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K2 ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_4431_diff__Suc__diff__eq2,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K2 ) ) @ I2 )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K2 @ I2 ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_4432_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_4433_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_4434_even__diff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% even_diff_nat
thf(fact_4435_odd__two__times__div__two__nat,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_4436_diff__commute,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K2 )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K2 ) @ J ) ) ).

% diff_commute
thf(fact_4437_zero__induct__lemma,axiom,
    ! [P3: nat > $o,K2: nat,I2: nat] :
      ( ( P3 @ K2 )
     => ( ! [N3: nat] :
            ( ( P3 @ ( suc @ N3 ) )
           => ( P3 @ N3 ) )
       => ( P3 @ ( minus_minus_nat @ K2 @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_4438_Diff__mono,axiom,
    ! [A2: set_int,C4: set_int,D3: set_int,B4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ C4 )
     => ( ( ord_less_eq_set_int @ D3 @ B4 )
       => ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B4 ) @ ( minus_minus_set_int @ C4 @ D3 ) ) ) ) ).

% Diff_mono
thf(fact_4439_Diff__subset,axiom,
    ! [A2: set_int,B4: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B4 ) @ A2 ) ).

% Diff_subset
thf(fact_4440_double__diff,axiom,
    ! [A2: set_int,B4: set_int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ( ord_less_eq_set_int @ B4 @ C4 )
       => ( ( minus_minus_set_int @ B4 @ ( minus_minus_set_int @ C4 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_4441_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_4442_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_4443_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_4444_less__imp__diff__less,axiom,
    ! [J: nat,K2: nat,N: nat] :
      ( ( ord_less_nat @ J @ K2 )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K2 ) ) ).

% less_imp_diff_less
thf(fact_4445_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_4446_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_4447_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_4448_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_4449_Nat_Odiff__diff__eq,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_4450_le__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_4451_eq__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ( minus_minus_nat @ M @ K2 )
            = ( minus_minus_nat @ N @ K2 ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_4452_Nat_Odiff__cancel,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_4453_diff__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K2 ) @ ( plus_plus_nat @ N @ K2 ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_4454_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_4455_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_4456_diff__mult__distrib2,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K2 @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_4457_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K2 )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) ) ) ).

% diff_mult_distrib
thf(fact_4458_dvd__diff__nat,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ M )
     => ( ( dvd_dvd_nat @ K2 @ N )
       => ( dvd_dvd_nat @ K2 @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_4459_subset__decode__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% subset_decode_imp_le
thf(fact_4460_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_4461_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_4462_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_4463_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_4464_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_4465_less__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_4466_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_4467_less__diff__conv,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J @ K2 ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ J ) ) ).

% less_diff_conv
thf(fact_4468_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_4469_Nat_Ole__imp__diff__is__add,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( minus_minus_nat @ J @ I2 )
          = K2 )
        = ( J
          = ( plus_plus_nat @ K2 @ I2 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_4470_Nat_Odiff__add__assoc2,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K2 )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K2 ) @ I2 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_4471_Nat_Odiff__add__assoc,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K2 )
        = ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K2 ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_4472_Nat_Ole__diff__conv2,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J @ K2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K2 ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_4473_le__diff__conv,axiom,
    ! [J: nat,K2: nat,I2: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K2 ) @ I2 )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I2 @ K2 ) ) ) ).

% le_diff_conv
thf(fact_4474_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_4475_dvd__minus__self,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
      = ( ( ord_less_nat @ N @ M )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_minus_self
thf(fact_4476_dvd__diffD,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K2 @ N )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K2 @ M ) ) ) ) ).

% dvd_diffD
thf(fact_4477_dvd__diffD1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K2 @ M )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K2 @ N ) ) ) ) ).

% dvd_diffD1
thf(fact_4478_less__eq__dvd__minus,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( dvd_dvd_nat @ M @ N )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_4479_bezout1__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D2: nat,X5: nat,Y5: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
      & ( dvd_dvd_nat @ D2 @ B )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y5 ) )
          = D2 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y5 ) )
          = D2 ) ) ) ).

% bezout1_nat
thf(fact_4480_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M2: nat,N2: nat] : ( if_nat @ ( ord_less_nat @ M2 @ N2 ) @ M2 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M2 @ N2 ) @ N2 ) ) ) ) ).

% mod_if
thf(fact_4481_mod__geq,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% mod_geq
thf(fact_4482_le__mod__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% le_mod_geq
thf(fact_4483_diff__enat__def,axiom,
    ( minus_3235023915231533773d_enat
    = ( ^ [A4: extended_enat,B3: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [X4: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [Y: nat] : ( extended_enat2 @ ( minus_minus_nat @ X4 @ Y ) )
              @ zero_z5237406670263579293d_enat
              @ B3 )
          @ extend5688581933313929465d_enat
          @ A4 ) ) ) ).

% diff_enat_def
thf(fact_4484_add__diff__assoc__enat,axiom,
    ! [Z3: extended_enat,Y2: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z3 @ Y2 )
     => ( ( plus_p3455044024723400733d_enat @ X @ ( minus_3235023915231533773d_enat @ Y2 @ Z3 ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y2 ) @ Z3 ) ) ) ).

% add_diff_assoc_enat
thf(fact_4485_diff__Suc__less,axiom,
    ! [N: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_4486_nat__diff__split,axiom,
    ! [P3: nat > $o,A: nat,B: nat] :
      ( ( P3 @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P3 @ zero_zero_nat ) )
        & ! [D4: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D4 ) )
           => ( P3 @ D4 ) ) ) ) ).

% nat_diff_split
thf(fact_4487_nat__diff__split__asm,axiom,
    ! [P3: nat > $o,A: nat,B: nat] :
      ( ( P3 @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P3 @ zero_zero_nat ) )
            | ? [D4: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D4 ) )
                & ~ ( P3 @ D4 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_4488_less__diff__conv2,axiom,
    ! [K2: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K2 ) @ I2 )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I2 @ K2 ) ) ) ) ).

% less_diff_conv2
thf(fact_4489_nat__eq__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_4490_nat__eq__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_4491_nat__le__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_4492_nat__le__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_4493_nat__diff__add__eq1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_4494_nat__diff__add__eq2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_4495_mod__eq__dvd__iff__nat,axiom,
    ! [N: nat,M: nat,Q: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( ( modulo_modulo_nat @ M @ Q )
          = ( modulo_modulo_nat @ N @ Q ) )
        = ( dvd_dvd_nat @ Q @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% mod_eq_dvd_iff_nat
thf(fact_4496_modulo__nat__def,axiom,
    ( modulo_modulo_nat
    = ( ^ [M2: nat,N2: nat] : ( minus_minus_nat @ M2 @ ( times_times_nat @ ( divide_divide_nat @ M2 @ N2 ) @ N2 ) ) ) ) ).

% modulo_nat_def
thf(fact_4497_power__diff,axiom,
    ! [A: complex,N: nat,M: nat] :
      ( ( A != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4498_power__diff,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4499_power__diff,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( A != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4500_power__diff,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4501_power__diff,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4502_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_4503_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_4504_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M2: nat,N2: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M2 @ N2 )
            | ( N2 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M2 @ N2 ) @ N2 ) ) ) ) ) ).

% div_if
thf(fact_4505_div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% div_geq
thf(fact_4506_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M2: nat,N2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ N2 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N2 ) ) ) ) ) ).

% add_eq_if
thf(fact_4507_nat__less__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_4508_nat__less__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_4509_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M2: nat,N2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N2 ) ) ) ) ) ).

% mult_eq_if
thf(fact_4510_dvd__minus__add,axiom,
    ! [Q: nat,N: nat,R: nat,M: nat] :
      ( ( ord_less_eq_nat @ Q @ N )
     => ( ( ord_less_eq_nat @ Q @ ( times_times_nat @ R @ M ) )
       => ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q ) )
          = ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R @ M ) @ Q ) ) ) ) ) ) ).

% dvd_minus_add
thf(fact_4511_mod__nat__eqI,axiom,
    ! [R: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ R @ N )
     => ( ( ord_less_eq_nat @ R @ M )
       => ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R ) )
         => ( ( modulo_modulo_nat @ M @ N )
            = R ) ) ) ) ).

% mod_nat_eqI
thf(fact_4512_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_4513_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_4514_power__diff__power__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_4515_power__diff__power__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_4516_power__eq__if,axiom,
    ( power_power_complex
    = ( ^ [P4: complex,M2: nat] : ( if_complex @ ( M2 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P4 @ ( power_power_complex @ P4 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4517_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P4: real,M2: nat] : ( if_real @ ( M2 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P4 @ ( power_power_real @ P4 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4518_power__eq__if,axiom,
    ( power_power_rat
    = ( ^ [P4: rat,M2: nat] : ( if_rat @ ( M2 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P4 @ ( power_power_rat @ P4 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4519_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P4: nat,M2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P4 @ ( power_power_nat @ P4 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4520_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P4: int,M2: nat] : ( if_int @ ( M2 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P4 @ ( power_power_int @ P4 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4521_power__minus__mult,axiom,
    ! [N: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_complex @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4522_power__minus__mult,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4523_power__minus__mult,axiom,
    ! [N: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4524_power__minus__mult,axiom,
    ! [N: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4525_power__minus__mult,axiom,
    ! [N: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4526_diff__le__diff__pow,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K2 @ M ) @ ( power_power_nat @ K2 @ N ) ) ) ) ).

% diff_le_diff_pow
thf(fact_4527_le__div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% le_div_geq
thf(fact_4528_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_4529_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_4530_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
        = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_4531_int__power__div__base,axiom,
    ! [M: nat,K2: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K2 )
       => ( ( divide_divide_int @ ( power_power_int @ K2 @ M ) @ K2 )
          = ( power_power_int @ K2 @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_4532_even__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( suc @ zero_zero_nat ) )
     => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_mod_4_div_2
thf(fact_4533_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat
        @ ( zero_n2687167440665602831ol_nat
          @ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
             != zero_zero_nat )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_4534_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int
        @ ( zero_n2684676970156552555ol_int
          @ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
             != zero_zero_int )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_4535_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger
        @ ( zero_n356916108424825756nteger
          @ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
             != zero_z3403309356797280102nteger )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_4536_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_4537_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_4538_signed__take__bit__rec,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N2: nat,A4: code_integer] : ( if_Code_integer @ ( N2 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_4539_signed__take__bit__rec,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,A4: int] : ( if_int @ ( N2 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_4540_Bolzano,axiom,
    ! [A: real,B: real,P3: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A3: real,B2: real,C3: real] :
            ( ( P3 @ A3 @ B2 )
           => ( ( P3 @ B2 @ C3 )
             => ( ( ord_less_eq_real @ A3 @ B2 )
               => ( ( ord_less_eq_real @ B2 @ C3 )
                 => ( P3 @ A3 @ C3 ) ) ) ) )
       => ( ! [X5: real] :
              ( ( ord_less_eq_real @ A @ X5 )
             => ( ( ord_less_eq_real @ X5 @ B )
               => ? [D5: real] :
                    ( ( ord_less_real @ zero_zero_real @ D5 )
                    & ! [A3: real,B2: real] :
                        ( ( ( ord_less_eq_real @ A3 @ X5 )
                          & ( ord_less_eq_real @ X5 @ B2 )
                          & ( ord_less_real @ ( minus_minus_real @ B2 @ A3 ) @ D5 ) )
                       => ( P3 @ A3 @ B2 ) ) ) ) )
         => ( P3 @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_4541_divmod__step__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L3: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q5: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L3 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L3 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_4542_divmod__step__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L3: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q5: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L3 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L3 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_4543_divmod__step__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L3: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q5: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L3 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L3 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_4544_signed__take__bit__Suc__bit1,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_bit1
thf(fact_4545_take__bit__rec,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N2: nat,A4: code_integer] : ( if_Code_integer @ ( N2 = zero_zero_nat ) @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4546_take__bit__rec,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N2: nat,A4: int] : ( if_int @ ( N2 = zero_zero_nat ) @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4547_take__bit__rec,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N2: nat,A4: nat] : ( if_nat @ ( N2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4548_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4549_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4550_verit__minus__simplify_I4_J,axiom,
    ! [B: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4551_verit__minus__simplify_I4_J,axiom,
    ! [B: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4552_verit__minus__simplify_I4_J,axiom,
    ! [B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4553_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4554_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4555_add_Oinverse__inverse,axiom,
    ! [A: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4556_add_Oinverse__inverse,axiom,
    ! [A: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4557_add_Oinverse__inverse,axiom,
    ! [A: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4558_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4559_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4560_neg__equal__iff__equal,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = ( uminus1482373934393186551omplex @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4561_neg__equal__iff__equal,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4562_neg__equal__iff__equal,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4563_Compl__subset__Compl__iff,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( uminus1532241313380277803et_int @ B4 ) )
      = ( ord_less_eq_set_int @ B4 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_4564_Compl__anti__mono,axiom,
    ! [A2: set_int,B4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B4 )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ B4 ) @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_4565_verit__eq__simplify_I9_J,axiom,
    ! [X32: num,Y32: num] :
      ( ( ( bit1 @ X32 )
        = ( bit1 @ Y32 ) )
      = ( X32 = Y32 ) ) ).

% verit_eq_simplify(9)
thf(fact_4566_semiring__norm_I90_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(90)
thf(fact_4567_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4568_neg__le__iff__le,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4569_neg__le__iff__le,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4570_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4571_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_4572_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_4573_add_Oinverse__neutral,axiom,
    ( ( uminus1482373934393186551omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% add.inverse_neutral
thf(fact_4574_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% add.inverse_neutral
thf(fact_4575_add_Oinverse__neutral,axiom,
    ( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% add.inverse_neutral
thf(fact_4576_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4577_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4578_neg__0__equal__iff__equal,axiom,
    ! [A: complex] :
      ( ( zero_zero_complex
        = ( uminus1482373934393186551omplex @ A ) )
      = ( zero_zero_complex = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4579_neg__0__equal__iff__equal,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( uminus_uminus_rat @ A ) )
      = ( zero_zero_rat = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4580_neg__0__equal__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( uminus1351360451143612070nteger @ A ) )
      = ( zero_z3403309356797280102nteger = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4581_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_4582_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_4583_neg__equal__0__iff__equal,axiom,
    ! [A: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% neg_equal_0_iff_equal
thf(fact_4584_neg__equal__0__iff__equal,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_0_iff_equal
thf(fact_4585_neg__equal__0__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_0_iff_equal
thf(fact_4586_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_4587_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_4588_equal__neg__zero,axiom,
    ! [A: rat] :
      ( ( A
        = ( uminus_uminus_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% equal_neg_zero
thf(fact_4589_equal__neg__zero,axiom,
    ! [A: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% equal_neg_zero
thf(fact_4590_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_4591_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_4592_neg__equal__zero,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = A )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_zero
thf(fact_4593_neg__equal__zero,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_zero
thf(fact_4594_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4595_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4596_neg__less__iff__less,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4597_neg__less__iff__less,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4598_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4599_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4600_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4601_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4602_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4603_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4604_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4605_mult__minus__right,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4606_mult__minus__right,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4607_mult__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4608_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4609_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4610_minus__mult__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( times_times_complex @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4611_minus__mult__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( times_times_rat @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4612_minus__mult__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( times_3573771949741848930nteger @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4613_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4614_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4615_mult__minus__left,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4616_mult__minus__left,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4617_mult__minus__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4618_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_4619_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_4620_minus__add__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_add_distrib
thf(fact_4621_minus__add__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_add_distrib
thf(fact_4622_minus__add__distrib,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_add_distrib
thf(fact_4623_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4624_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4625_minus__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4626_minus__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4627_minus__add__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4628_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4629_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4630_add__minus__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4631_add__minus__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4632_add__minus__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4633_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4634_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4635_minus__diff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
      = ( minus_minus_complex @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4636_minus__diff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
      = ( minus_minus_rat @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4637_minus__diff__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4638_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_4639_div__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ A @ B ) ) ).

% div_minus_minus
thf(fact_4640_semiring__norm_I88_J,axiom,
    ! [M: num,N: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N ) ) ).

% semiring_norm(88)
thf(fact_4641_semiring__norm_I89_J,axiom,
    ! [M: num,N: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N ) ) ).

% semiring_norm(89)
thf(fact_4642_semiring__norm_I84_J,axiom,
    ! [N: num] :
      ( one
     != ( bit1 @ N ) ) ).

% semiring_norm(84)
thf(fact_4643_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_4644_mod__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_4645_mod__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_4646_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% take_bit_of_0
thf(fact_4647_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% take_bit_of_0
thf(fact_4648_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_4649_concat__bit__of__zero__2,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_concat_bit @ N @ K2 @ zero_zero_int )
      = ( bit_se2923211474154528505it_int @ N @ K2 ) ) ).

% concat_bit_of_zero_2
thf(fact_4650_semiring__norm_I73_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(73)
thf(fact_4651_semiring__norm_I80_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(80)
thf(fact_4652_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_4653_neg__0__le__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_le_iff_le
thf(fact_4654_neg__0__le__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% neg_0_le_iff_le
thf(fact_4655_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_4656_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4657_neg__le__0__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4658_neg__le__0__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4659_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4660_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_4661_less__eq__neg__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_eq_neg_nonpos
thf(fact_4662_less__eq__neg__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% less_eq_neg_nonpos
thf(fact_4663_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_4664_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4665_neg__less__eq__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4666_neg__less__eq__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4667_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4668_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4669_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4670_neg__less__0__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4671_neg__less__0__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4672_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_4673_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_4674_neg__0__less__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% neg_0_less_iff_less
thf(fact_4675_neg__0__less__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_less_iff_less
thf(fact_4676_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_4677_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_4678_neg__less__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_pos
thf(fact_4679_neg__less__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_pos
thf(fact_4680_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_4681_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_4682_less__neg__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% less_neg_neg
thf(fact_4683_less__neg__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_neg_neg
thf(fact_4684_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_4685_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_4686_ab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_left_minus
thf(fact_4687_ab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_left_minus
thf(fact_4688_ab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_left_minus
thf(fact_4689_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_4690_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_4691_add_Oright__inverse,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
      = zero_zero_complex ) ).

% add.right_inverse
thf(fact_4692_add_Oright__inverse,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
      = zero_zero_rat ) ).

% add.right_inverse
thf(fact_4693_add_Oright__inverse,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = zero_z3403309356797280102nteger ) ).

% add.right_inverse
thf(fact_4694_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_4695_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_4696_diff__0,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ A )
      = ( uminus1482373934393186551omplex @ A ) ) ).

% diff_0
thf(fact_4697_diff__0,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ A )
      = ( uminus_uminus_rat @ A ) ) ).

% diff_0
thf(fact_4698_diff__0,axiom,
    ! [A: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% diff_0
thf(fact_4699_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4700_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4701_verit__minus__simplify_I3_J,axiom,
    ! [B: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4702_verit__minus__simplify_I3_J,axiom,
    ! [B: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4703_verit__minus__simplify_I3_J,axiom,
    ! [B: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4704_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4705_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4706_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4707_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4708_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4709_mult__minus1__right,axiom,
    ! [Z3: real] :
      ( ( times_times_real @ Z3 @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z3 ) ) ).

% mult_minus1_right
thf(fact_4710_mult__minus1__right,axiom,
    ! [Z3: int] :
      ( ( times_times_int @ Z3 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z3 ) ) ).

% mult_minus1_right
thf(fact_4711_mult__minus1__right,axiom,
    ! [Z3: complex] :
      ( ( times_times_complex @ Z3 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ Z3 ) ) ).

% mult_minus1_right
thf(fact_4712_mult__minus1__right,axiom,
    ! [Z3: rat] :
      ( ( times_times_rat @ Z3 @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ Z3 ) ) ).

% mult_minus1_right
thf(fact_4713_mult__minus1__right,axiom,
    ! [Z3: code_integer] :
      ( ( times_3573771949741848930nteger @ Z3 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ Z3 ) ) ).

% mult_minus1_right
thf(fact_4714_mult__minus1,axiom,
    ! [Z3: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z3 )
      = ( uminus_uminus_real @ Z3 ) ) ).

% mult_minus1
thf(fact_4715_mult__minus1,axiom,
    ! [Z3: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z3 )
      = ( uminus_uminus_int @ Z3 ) ) ).

% mult_minus1
thf(fact_4716_mult__minus1,axiom,
    ! [Z3: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z3 )
      = ( uminus1482373934393186551omplex @ Z3 ) ) ).

% mult_minus1
thf(fact_4717_mult__minus1,axiom,
    ! [Z3: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z3 )
      = ( uminus_uminus_rat @ Z3 ) ) ).

% mult_minus1
thf(fact_4718_mult__minus1,axiom,
    ! [Z3: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z3 )
      = ( uminus1351360451143612070nteger @ Z3 ) ) ).

% mult_minus1
thf(fact_4719_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4720_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4721_diff__minus__eq__add,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( plus_plus_complex @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4722_diff__minus__eq__add,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( plus_plus_rat @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4723_diff__minus__eq__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( plus_p5714425477246183910nteger @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4724_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4725_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4726_uminus__add__conv__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( minus_minus_complex @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4727_uminus__add__conv__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( minus_minus_rat @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4728_uminus__add__conv__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4729_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_4730_div__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% div_minus1_right
thf(fact_4731_divide__minus1,axiom,
    ! [X: real] :
      ( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X ) ) ).

% divide_minus1
thf(fact_4732_divide__minus1,axiom,
    ! [X: complex] :
      ( ( divide1717551699836669952omplex @ X @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% divide_minus1
thf(fact_4733_divide__minus1,axiom,
    ! [X: rat] :
      ( ( divide_divide_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ X ) ) ).

% divide_minus1
thf(fact_4734_minus__mod__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_4735_minus__mod__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_4736_take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ zero_zero_nat @ A )
      = zero_zero_int ) ).

% take_bit_0
thf(fact_4737_take__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% take_bit_0
thf(fact_4738_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% take_bit_Suc_1
thf(fact_4739_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_Suc_1
thf(fact_4740_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ one_one_int )
      = one_one_int ) ).

% take_bit_numeral_1
thf(fact_4741_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_numeral_1
thf(fact_4742_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% signed_take_bit_of_minus_1
thf(fact_4743_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_4744_semiring__norm_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(9)
thf(fact_4745_semiring__norm_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(7)
thf(fact_4746_semiring__norm_I15_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).

% semiring_norm(15)
thf(fact_4747_semiring__norm_I14_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).

% semiring_norm(14)
thf(fact_4748_semiring__norm_I72_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(72)
thf(fact_4749_semiring__norm_I81_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(81)
thf(fact_4750_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_4751_semiring__norm_I77_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).

% semiring_norm(77)
thf(fact_4752_dbl__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K2 ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K2 ) ) ) ) ).

% dbl_simps(1)
thf(fact_4753_dbl__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K2 ) ) ) ) ).

% dbl_simps(1)
thf(fact_4754_dbl__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K2 ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K2 ) ) ) ) ).

% dbl_simps(1)
thf(fact_4755_dbl__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K2 ) ) )
      = ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K2 ) ) ) ) ).

% dbl_simps(1)
thf(fact_4756_dbl__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K2 ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K2 ) ) ) ) ).

% dbl_simps(1)
thf(fact_4757_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_4758_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_4759_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = zero_zero_complex ) ).

% add_neg_numeral_special(8)
thf(fact_4760_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = zero_zero_rat ) ).

% add_neg_numeral_special(8)
thf(fact_4761_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(8)
thf(fact_4762_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_4763_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_4764_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% add_neg_numeral_special(7)
thf(fact_4765_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% add_neg_numeral_special(7)
thf(fact_4766_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(7)
thf(fact_4767_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_4768_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_4769_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% diff_numeral_special(12)
thf(fact_4770_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% diff_numeral_special(12)
thf(fact_4771_diff__numeral__special_I12_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% diff_numeral_special(12)
thf(fact_4772_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4773_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4774_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4775_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4776_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4777_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4778_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4779_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ one_one_complex )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4780_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ one_one_rat )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4781_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4782_left__minus__one__mult__self,axiom,
    ! [N: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4783_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4784_left__minus__one__mult__self,axiom,
    ! [N: nat,A: complex] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4785_left__minus__one__mult__self,axiom,
    ! [N: nat,A: rat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4786_left__minus__one__mult__self,axiom,
    ! [N: nat,A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4787_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_4788_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_4789_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
      = one_one_complex ) ).

% minus_one_mult_self
thf(fact_4790_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
      = one_one_rat ) ).

% minus_one_mult_self
thf(fact_4791_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
      = one_one_Code_integer ) ).

% minus_one_mult_self
thf(fact_4792_mod__minus1__right,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_4793_mod__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = zero_z3403309356797280102nteger ) ).

% mod_minus1_right
thf(fact_4794_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_4795_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_4796_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_4797_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_4798_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_4799_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_4800_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_4801_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4802_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4803_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4804_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4805_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4806_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4807_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4808_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4809_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4810_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4811_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_4812_semiring__norm_I3_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% semiring_norm(3)
thf(fact_4813_semiring__norm_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).

% semiring_norm(4)
thf(fact_4814_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_4815_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_4816_semiring__norm_I10_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_4817_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4818_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4819_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4820_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4821_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4822_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4823_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4824_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4825_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4826_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4827_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4828_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4829_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4830_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4831_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4832_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y2 ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_4833_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y2 ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_4834_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y2 ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_4835_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y2 ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_4836_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y2 ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_4837_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_4838_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_4839_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_4840_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_4841_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_4842_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_4843_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_4844_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_4845_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_4846_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
      = ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_4847_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4848_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4849_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4850_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4851_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4852_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4853_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4854_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4855_take__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_Suc_0
thf(fact_4856_semiring__norm_I16_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_4857_semiring__norm_I79_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(79)
thf(fact_4858_semiring__norm_I74_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(74)
thf(fact_4859_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4860_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4861_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4862_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4863_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4864_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4865_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4866_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4867_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4868_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
            = B ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4869_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4870_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4871_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
        = A )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4872_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4873_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4874_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4875_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4876_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4877_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4878_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4879_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4880_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4881_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4882_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4883_power2__minus,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4884_power2__minus,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4885_power2__minus,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4886_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ one_one_Code_integer )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_4887_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_4888_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_4889_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4890_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4891_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4892_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4893_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4894_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4895_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4896_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4897_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4898_diff__numeral__special_I10_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4899_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4900_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4901_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4902_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4903_diff__numeral__special_I11_J,axiom,
    ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4904_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_4905_minus__1__div__2__eq,axiom,
    ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% minus_1_div_2_eq
thf(fact_4906_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_4907_minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% minus_1_mod_2_eq
thf(fact_4908_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_4909_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_minus_1_mod_2_eq
thf(fact_4910_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4911_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4912_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4913_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4914_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4915_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4916_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4917_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: complex] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( power_power_complex @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4918_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4919_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4920_power__minus__odd,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4921_power__minus__odd,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4922_power__minus__odd,axiom,
    ! [N: nat,A: complex] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4923_power__minus__odd,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4924_power__minus__odd,axiom,
    ! [N: nat,A: code_integer] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4925_even__take__bit__eq,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1745604003318907178nteger @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_4926_even__take__bit__eq,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_4927_even__take__bit__eq,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_4928_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4929_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4930_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4931_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4932_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4933_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4934_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4935_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4936_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4937_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4938_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_4939_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_4940_Suc__mod__eq__add3__mod__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_mod_eq_add3_mod_numeral
thf(fact_4941_mod__Suc__eq__mod__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% mod_Suc_eq_mod_add3
thf(fact_4942_signed__take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_minus_bit0
thf(fact_4943_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4944_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4945_dbl__simps_I4_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4946_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4947_dbl__simps_I4_J,axiom,
    ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4948_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_4949_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_4950_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_complex ) ).

% power_minus1_even
thf(fact_4951_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_rat ) ).

% power_minus1_even
thf(fact_4952_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_Code_integer ) ).

% power_minus1_even
thf(fact_4953_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = one_one_real ) ) ).

% neg_one_even_power
thf(fact_4954_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_4955_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = one_one_complex ) ) ).

% neg_one_even_power
thf(fact_4956_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = one_one_rat ) ) ).

% neg_one_even_power
thf(fact_4957_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = one_one_Code_integer ) ) ).

% neg_one_even_power
thf(fact_4958_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% neg_one_odd_power
thf(fact_4959_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_4960_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% neg_one_odd_power
thf(fact_4961_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% neg_one_odd_power
thf(fact_4962_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% neg_one_odd_power
thf(fact_4963_take__bit__Suc__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4964_take__bit__Suc__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4965_take__bit__Suc__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4966_signed__take__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_4967_signed__take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_4968_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1745604003318907178nteger @ M @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ N @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_4969_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se2923211474154528505it_int @ M @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ N @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_4970_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se2925701944663578781it_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ N @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_4971_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_4972_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_4973_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_4974_zmod__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).

% zmod_numeral_Bit1
thf(fact_4975_signed__take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_minus_bit1
thf(fact_4976_minus__set__def,axiom,
    ( minus_minus_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( collect_real
          @ ( minus_minus_real_o
            @ ^ [X4: real] : ( member_real @ X4 @ A6 )
            @ ^ [X4: real] : ( member_real @ X4 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_4977_minus__set__def,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A6: set_complex,B6: set_complex] :
          ( collect_complex
          @ ( minus_8727706125548526216plex_o
            @ ^ [X4: complex] : ( member_complex @ X4 @ A6 )
            @ ^ [X4: complex] : ( member_complex @ X4 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_4978_minus__set__def,axiom,
    ( minus_7954133019191499631st_nat
    = ( ^ [A6: set_list_nat,B6: set_list_nat] :
          ( collect_list_nat
          @ ( minus_1139252259498527702_nat_o
            @ ^ [X4: list_nat] : ( member_list_nat @ X4 @ A6 )
            @ ^ [X4: list_nat] : ( member_list_nat @ X4 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_4979_minus__set__def,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A6: set_set_nat,B6: set_set_nat] :
          ( collect_set_nat
          @ ( minus_6910147592129066416_nat_o
            @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ A6 )
            @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_4980_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X4: nat] : ( member_nat @ X4 @ A6 )
            @ ^ [X4: nat] : ( member_nat @ X4 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_4981_minus__set__def,axiom,
    ( minus_minus_set_int
    = ( ^ [A6: set_int,B6: set_int] :
          ( collect_int
          @ ( minus_minus_int_o
            @ ^ [X4: int] : ( member_int @ X4 @ A6 )
            @ ^ [X4: int] : ( member_int @ X4 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_4982_set__diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( collect_real
          @ ^ [X4: real] :
              ( ( member_real @ X4 @ A6 )
              & ~ ( member_real @ X4 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_4983_set__diff__eq,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A6: set_complex,B6: set_complex] :
          ( collect_complex
          @ ^ [X4: complex] :
              ( ( member_complex @ X4 @ A6 )
              & ~ ( member_complex @ X4 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_4984_set__diff__eq,axiom,
    ( minus_7954133019191499631st_nat
    = ( ^ [A6: set_list_nat,B6: set_list_nat] :
          ( collect_list_nat
          @ ^ [X4: list_nat] :
              ( ( member_list_nat @ X4 @ A6 )
              & ~ ( member_list_nat @ X4 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_4985_set__diff__eq,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A6: set_set_nat,B6: set_set_nat] :
          ( collect_set_nat
          @ ^ [X4: set_nat] :
              ( ( member_set_nat @ X4 @ A6 )
              & ~ ( member_set_nat @ X4 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_4986_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X4: nat] :
              ( ( member_nat @ X4 @ A6 )
              & ~ ( member_nat @ X4 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_4987_set__diff__eq,axiom,
    ( minus_minus_set_int
    = ( ^ [A6: set_int,B6: set_int] :
          ( collect_int
          @ ^ [X4: int] :
              ( ( member_int @ X4 @ A6 )
              & ~ ( member_int @ X4 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_4988_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4989_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4990_verit__negate__coefficient_I3_J,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
     => ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4991_verit__negate__coefficient_I3_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A = B )
     => ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4992_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_4993_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_4994_equation__minus__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% equation_minus_iff
thf(fact_4995_equation__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% equation_minus_iff
thf(fact_4996_equation__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% equation_minus_iff
thf(fact_4997_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4998_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4999_minus__equation__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( uminus1482373934393186551omplex @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_5000_minus__equation__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( uminus_uminus_rat @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_5001_minus__equation__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( uminus1351360451143612070nteger @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_5002_power__minus__Bit1,axiom,
    ! [X: real,K2: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( uminus_uminus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5003_power__minus__Bit1,axiom,
    ! [X: int,K2: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( uminus_uminus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5004_power__minus__Bit1,axiom,
    ! [X: complex,K2: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( uminus1482373934393186551omplex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5005_power__minus__Bit1,axiom,
    ! [X: rat,K2: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( uminus_uminus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5006_power__minus__Bit1,axiom,
    ! [X: code_integer,K2: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5007_take__bit__add,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ A @ B ) ) ) ).

% take_bit_add
thf(fact_5008_take__bit__add,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) )
      = ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ A @ B ) ) ) ).

% take_bit_add
thf(fact_5009_take__bit__tightened,axiom,
    ! [N: nat,A: int,B: int,M: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2923211474154528505it_int @ M @ A )
          = ( bit_se2923211474154528505it_int @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_5010_take__bit__tightened,axiom,
    ! [N: nat,A: nat,B: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = ( bit_se2925701944663578781it_nat @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2925701944663578781it_nat @ M @ A )
          = ( bit_se2925701944663578781it_nat @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_5011_take__bit__nat__less__eq__self,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).

% take_bit_nat_less_eq_self
thf(fact_5012_take__bit__tightened__less__eq__nat,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q ) @ ( bit_se2925701944663578781it_nat @ N @ Q ) ) ) ).

% take_bit_tightened_less_eq_nat
thf(fact_5013_take__bit__mult,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K2 @ L ) ) ) ).

% take_bit_mult
thf(fact_5014_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5015_le__imp__neg__le,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5016_le__imp__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5017_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5018_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5019_minus__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5020_minus__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5021_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5022_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_5023_le__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_minus_iff
thf(fact_5024_le__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% le_minus_iff
thf(fact_5025_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_5026_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5027_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5028_minus__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5029_minus__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5030_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_5031_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_5032_less__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% less_minus_iff
thf(fact_5033_less__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% less_minus_iff
thf(fact_5034_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5035_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5036_verit__negate__coefficient_I2_J,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5037_verit__negate__coefficient_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5038_verit__eq__simplify_I14_J,axiom,
    ! [X23: num,X32: num] :
      ( ( bit0 @ X23 )
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(14)
thf(fact_5039_verit__eq__simplify_I12_J,axiom,
    ! [X32: num] :
      ( one
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(12)
thf(fact_5040_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5041_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5042_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6690914467698888265omplex @ M )
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5043_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_rat @ M )
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5044_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6620942414471956472nteger @ M )
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5045_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_5046_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_5047_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
     != ( numera6690914467698888265omplex @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_5048_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
     != ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_5049_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
     != ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_5050_minus__mult__commute,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_mult_commute
thf(fact_5051_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_5052_minus__mult__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_mult_commute
thf(fact_5053_minus__mult__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_mult_commute
thf(fact_5054_minus__mult__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_mult_commute
thf(fact_5055_square__eq__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ A )
        = ( times_times_real @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5056_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5057_square__eq__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ A )
        = ( times_times_complex @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5058_square__eq__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ A )
        = ( times_times_rat @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5059_square__eq__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( times_3573771949741848930nteger @ A @ A )
        = ( times_3573771949741848930nteger @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1351360451143612070nteger @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5060_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_5061_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_5062_one__neq__neg__one,axiom,
    ( one_one_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% one_neq_neg_one
thf(fact_5063_one__neq__neg__one,axiom,
    ( one_one_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% one_neq_neg_one
thf(fact_5064_one__neq__neg__one,axiom,
    ( one_one_Code_integer
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% one_neq_neg_one
thf(fact_5065_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5066_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5067_add_Oinverse__distrib__swap,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5068_add_Oinverse__distrib__swap,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5069_add_Oinverse__distrib__swap,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5070_group__cancel_Oneg1,axiom,
    ! [A2: real,K2: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K2 @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K2 ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5071_group__cancel_Oneg1,axiom,
    ! [A2: int,K2: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K2 @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K2 ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5072_group__cancel_Oneg1,axiom,
    ! [A2: complex,K2: complex,A: complex] :
      ( ( A2
        = ( plus_plus_complex @ K2 @ A ) )
     => ( ( uminus1482373934393186551omplex @ A2 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K2 ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5073_group__cancel_Oneg1,axiom,
    ! [A2: rat,K2: rat,A: rat] :
      ( ( A2
        = ( plus_plus_rat @ K2 @ A ) )
     => ( ( uminus_uminus_rat @ A2 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K2 ) @ ( uminus_uminus_rat @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5074_group__cancel_Oneg1,axiom,
    ! [A2: code_integer,K2: code_integer,A: code_integer] :
      ( ( A2
        = ( plus_p5714425477246183910nteger @ K2 @ A ) )
     => ( ( uminus1351360451143612070nteger @ A2 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K2 ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5075_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5076_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5077_is__num__normalize_I8_J,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5078_is__num__normalize_I8_J,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5079_is__num__normalize_I8_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5080_take__bit__diff,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K2 @ L ) ) ) ).

% take_bit_diff
thf(fact_5081_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5082_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5083_minus__diff__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5084_minus__diff__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5085_minus__diff__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5086_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5087_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5088_minus__diff__commute,axiom,
    ! [B: complex,A: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
      = ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5089_minus__diff__commute,axiom,
    ! [B: rat,A: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
      = ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5090_minus__diff__commute,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
      = ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5091_div__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% div_minus_right
thf(fact_5092_div__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% div_minus_right
thf(fact_5093_minus__divide__left,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_5094_minus__divide__left,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_5095_minus__divide__left,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_5096_minus__divide__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( divide_divide_real @ A @ B ) ) ).

% minus_divide_divide
thf(fact_5097_minus__divide__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( divide1717551699836669952omplex @ A @ B ) ) ).

% minus_divide_divide
thf(fact_5098_minus__divide__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( divide_divide_rat @ A @ B ) ) ).

% minus_divide_divide
thf(fact_5099_minus__divide__right,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_divide_right
thf(fact_5100_minus__divide__right,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_divide_right
thf(fact_5101_minus__divide__right,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_divide_right
thf(fact_5102_mod__minus__eq,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_5103_mod__minus__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_5104_mod__minus__cong,axiom,
    ! [A: int,B: int,A5: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = ( modulo_modulo_int @ A5 @ B ) )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
        = ( modulo_modulo_int @ ( uminus_uminus_int @ A5 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_5105_mod__minus__cong,axiom,
    ! [A: code_integer,B: code_integer,A5: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = ( modulo364778990260209775nteger @ A5 @ B ) )
     => ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A5 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_5106_mod__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_5107_mod__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_5108_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X4: real,Y: real] : ( plus_plus_real @ X4 @ ( uminus_uminus_real @ Y ) ) ) ) ).

% minus_real_def
thf(fact_5109_concat__bit__eq__iff,axiom,
    ! [N: nat,K2: int,L: int,R: int,S: int] :
      ( ( ( bit_concat_bit @ N @ K2 @ L )
        = ( bit_concat_bit @ N @ R @ S ) )
      = ( ( ( bit_se2923211474154528505it_int @ N @ K2 )
          = ( bit_se2923211474154528505it_int @ N @ R ) )
        & ( L = S ) ) ) ).

% concat_bit_eq_iff
thf(fact_5110_concat__bit__take__bit__eq,axiom,
    ! [N: nat,B: int] :
      ( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
      = ( bit_concat_bit @ N @ B ) ) ).

% concat_bit_take_bit_eq
thf(fact_5111_signed__take__bit__minus,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K2 ) ) ) ).

% signed_take_bit_minus
thf(fact_5112_take__bit__tightened__less__eq__int,axiom,
    ! [M: nat,N: nat,K2: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K2 ) @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% take_bit_tightened_less_eq_int
thf(fact_5113_take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ K2 )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% take_bit_int_less_eq_self_iff
thf(fact_5114_take__bit__nonnegative,axiom,
    ! [N: nat,K2: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ).

% take_bit_nonnegative
thf(fact_5115_take__bit__int__greater__self__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ K2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% take_bit_int_greater_self_iff
thf(fact_5116_not__take__bit__negative,axiom,
    ! [N: nat,K2: int] :
      ~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ zero_zero_int ) ).

% not_take_bit_negative
thf(fact_5117_signed__take__bit__eq__iff__take__bit__eq,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_ri631733984087533419it_int @ N @ B ) )
      = ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
        = ( bit_se2923211474154528505it_int @ ( suc @ N ) @ B ) ) ) ).

% signed_take_bit_eq_iff_take_bit_eq
thf(fact_5118_signed__take__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( if_int_int @ ( ord_less_eq_nat @ N @ M ) @ ( bit_se2923211474154528505it_int @ N ) @ ( bit_ri631733984087533419it_int @ M ) @ A ) ) ).

% signed_take_bit_take_bit
thf(fact_5119_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5120_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5121_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5122_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5123_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5124_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5125_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5126_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5127_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5128_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5129_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5130_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5131_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_z3403309356797280102nteger
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5132_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5133_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5134_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5135_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5136_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5137_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5138_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5139_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5140_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_5141_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(4)
thf(fact_5142_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(4)
thf(fact_5143_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_5144_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_5145_le__minus__one__simps_I2_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% le_minus_one_simps(2)
thf(fact_5146_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% le_minus_one_simps(2)
thf(fact_5147_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_5148_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_5149_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_5150_zero__neq__neg__one,axiom,
    ( zero_zero_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% zero_neq_neg_one
thf(fact_5151_zero__neq__neg__one,axiom,
    ( zero_zero_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% zero_neq_neg_one
thf(fact_5152_zero__neq__neg__one,axiom,
    ( zero_z3403309356797280102nteger
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% zero_neq_neg_one
thf(fact_5153_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5154_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5155_neg__eq__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5156_neg__eq__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5157_neg__eq__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5158_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5159_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5160_eq__neg__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5161_eq__neg__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5162_eq__neg__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5163_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5164_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5165_add_Oinverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5166_add_Oinverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
     => ( ( uminus_uminus_rat @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5167_add_Oinverse__unique,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( ( uminus1351360451143612070nteger @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5168_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5169_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5170_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5171_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5172_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5173_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5174_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5175_add__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5176_add__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5177_add__eq__0__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5178_xor__num_Ocases,axiom,
    ! [X: product_prod_num_num] :
      ( ( X
       != ( product_Pair_num_num @ one @ one ) )
     => ( ! [N3: num] :
            ( X
           != ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) )
       => ( ! [N3: num] :
              ( X
             != ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) )
         => ( ! [M4: num] :
                ( X
               != ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) )
           => ( ! [M4: num,N3: num] :
                  ( X
                 != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N3 ) ) )
             => ( ! [M4: num,N3: num] :
                    ( X
                   != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N3 ) ) )
               => ( ! [M4: num] :
                      ( X
                     != ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) )
                 => ( ! [M4: num,N3: num] :
                        ( X
                       != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N3 ) ) )
                   => ~ ! [M4: num,N3: num] :
                          ( X
                         != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.cases
thf(fact_5179_num_Oexhaust,axiom,
    ! [Y2: num] :
      ( ( Y2 != one )
     => ( ! [X24: num] :
            ( Y2
           != ( bit0 @ X24 ) )
       => ~ ! [X33: num] :
              ( Y2
             != ( bit1 @ X33 ) ) ) ) ).

% num.exhaust
thf(fact_5180_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_5181_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_5182_less__minus__one__simps_I2_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% less_minus_one_simps(2)
thf(fact_5183_less__minus__one__simps_I2_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% less_minus_one_simps(2)
thf(fact_5184_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_5185_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_5186_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(4)
thf(fact_5187_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(4)
thf(fact_5188_numeral__times__minus__swap,axiom,
    ! [W: num,X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X ) )
      = ( times_times_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5189_numeral__times__minus__swap,axiom,
    ! [W: num,X: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
      = ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5190_numeral__times__minus__swap,axiom,
    ! [W: num,X: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X ) )
      = ( times_times_complex @ X @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5191_numeral__times__minus__swap,axiom,
    ! [W: num,X: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X ) )
      = ( times_times_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5192_numeral__times__minus__swap,axiom,
    ! [W: num,X: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X ) )
      = ( times_3573771949741848930nteger @ X @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5193_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5194_nonzero__minus__divide__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5195_nonzero__minus__divide__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5196_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5197_nonzero__minus__divide__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5198_nonzero__minus__divide__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5199_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5200_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5201_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5202_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5203_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_Code_integer
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5204_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ N )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_5205_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_5206_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ N )
     != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% numeral_neq_neg_one
thf(fact_5207_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ N )
     != ( uminus_uminus_rat @ one_one_rat ) ) ).

% numeral_neq_neg_one
thf(fact_5208_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6620942414471956472nteger @ N )
     != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% numeral_neq_neg_one
thf(fact_5209_square__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( times_times_real @ X @ X )
        = one_one_real )
      = ( ( X = one_one_real )
        | ( X
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% square_eq_1_iff
thf(fact_5210_square__eq__1__iff,axiom,
    ! [X: int] :
      ( ( ( times_times_int @ X @ X )
        = one_one_int )
      = ( ( X = one_one_int )
        | ( X
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_5211_square__eq__1__iff,axiom,
    ! [X: complex] :
      ( ( ( times_times_complex @ X @ X )
        = one_one_complex )
      = ( ( X = one_one_complex )
        | ( X
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% square_eq_1_iff
thf(fact_5212_square__eq__1__iff,axiom,
    ! [X: rat] :
      ( ( ( times_times_rat @ X @ X )
        = one_one_rat )
      = ( ( X = one_one_rat )
        | ( X
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% square_eq_1_iff
thf(fact_5213_square__eq__1__iff,axiom,
    ! [X: code_integer] :
      ( ( ( times_3573771949741848930nteger @ X @ X )
        = one_one_Code_integer )
      = ( ( X = one_one_Code_integer )
        | ( X
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% square_eq_1_iff
thf(fact_5214_group__cancel_Osub2,axiom,
    ! [B4: real,K2: real,B: real,A: real] :
      ( ( B4
        = ( plus_plus_real @ K2 @ B ) )
     => ( ( minus_minus_real @ A @ B4 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K2 ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5215_group__cancel_Osub2,axiom,
    ! [B4: int,K2: int,B: int,A: int] :
      ( ( B4
        = ( plus_plus_int @ K2 @ B ) )
     => ( ( minus_minus_int @ A @ B4 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K2 ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5216_group__cancel_Osub2,axiom,
    ! [B4: complex,K2: complex,B: complex,A: complex] :
      ( ( B4
        = ( plus_plus_complex @ K2 @ B ) )
     => ( ( minus_minus_complex @ A @ B4 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K2 ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5217_group__cancel_Osub2,axiom,
    ! [B4: rat,K2: rat,B: rat,A: rat] :
      ( ( B4
        = ( plus_plus_rat @ K2 @ B ) )
     => ( ( minus_minus_rat @ A @ B4 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K2 ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5218_group__cancel_Osub2,axiom,
    ! [B4: code_integer,K2: code_integer,B: code_integer,A: code_integer] :
      ( ( B4
        = ( plus_p5714425477246183910nteger @ K2 @ B ) )
     => ( ( minus_8373710615458151222nteger @ A @ B4 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K2 ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5219_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ A4 @ ( uminus_uminus_real @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5220_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5221_diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A4: complex,B3: complex] : ( plus_plus_complex @ A4 @ ( uminus1482373934393186551omplex @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5222_diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A4: rat,B3: rat] : ( plus_plus_rat @ A4 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5223_diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A4: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A4 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5224_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ A4 @ ( uminus_uminus_real @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5225_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5226_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A4: complex,B3: complex] : ( plus_plus_complex @ A4 @ ( uminus1482373934393186551omplex @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5227_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A4: rat,B3: rat] : ( plus_plus_rat @ A4 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5228_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A4: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A4 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5229_take__bit__unset__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
          = ( bit_se4203085406695923979it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_unset_bit_eq
thf(fact_5230_take__bit__unset__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
          = ( bit_se4205575877204974255it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_unset_bit_eq
thf(fact_5231_take__bit__set__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
          = ( bit_se7879613467334960850it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_set_bit_eq
thf(fact_5232_take__bit__set__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
          = ( bit_se7882103937844011126it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_set_bit_eq
thf(fact_5233_take__bit__flip__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
          = ( bit_se2159334234014336723it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_flip_bit_eq
thf(fact_5234_take__bit__flip__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
          = ( bit_se2161824704523386999it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_flip_bit_eq
thf(fact_5235_dvd__div__neg,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5236_dvd__div__neg,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5237_dvd__div__neg,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5238_dvd__div__neg,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5239_dvd__div__neg,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5240_dvd__neg__div,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5241_dvd__neg__div,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5242_dvd__neg__div,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5243_dvd__neg__div,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5244_dvd__neg__div,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5245_real__minus__mult__self__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_5246_zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_5247_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_5248_zmod__zminus2__not__zero,axiom,
    ! [K2: int,L: int] :
      ( ( ( modulo_modulo_int @ K2 @ ( uminus_uminus_int @ L ) )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K2 @ L )
       != zero_zero_int ) ) ).

% zmod_zminus2_not_zero
thf(fact_5249_zmod__zminus1__not__zero,axiom,
    ! [K2: int,L: int] :
      ( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K2 ) @ L )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K2 @ L )
       != zero_zero_int ) ) ).

% zmod_zminus1_not_zero
thf(fact_5250_take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_minus_bit0
thf(fact_5251_take__bit__signed__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri631733984087533419it_int @ N @ A ) )
        = ( bit_se2923211474154528505it_int @ M @ A ) ) ) ).

% take_bit_signed_take_bit
thf(fact_5252_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5253_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5254_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5255_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5256_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_5257_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_le_zero
thf(fact_5258_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_le_zero
thf(fact_5259_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_5260_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5261_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5262_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5263_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5264_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_5265_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_5266_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_less_zero
thf(fact_5267_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_less_zero
thf(fact_5268_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_5269_le__minus__one__simps_I1_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% le_minus_one_simps(1)
thf(fact_5270_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% le_minus_one_simps(1)
thf(fact_5271_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_5272_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_5273_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(3)
thf(fact_5274_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(3)
thf(fact_5275_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_5276_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_Bit1
thf(fact_5277_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_Bit1
thf(fact_5278_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_Bit1
thf(fact_5279_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_Bit1
thf(fact_5280_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_Bit1
thf(fact_5281_take__bit__decr__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K2 )
       != zero_zero_int )
     => ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K2 @ one_one_int ) )
        = ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ one_one_int ) ) ) ).

% take_bit_decr_eq
thf(fact_5282_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_5283_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_5284_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(3)
thf(fact_5285_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(3)
thf(fact_5286_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_5287_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_5288_less__minus__one__simps_I1_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% less_minus_one_simps(1)
thf(fact_5289_less__minus__one__simps_I1_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% less_minus_one_simps(1)
thf(fact_5290_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5291_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5292_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5293_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5294_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_5295_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_le_neg_one
thf(fact_5296_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_le_neg_one
thf(fact_5297_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_5298_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_5299_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% neg_numeral_le_neg_one
thf(fact_5300_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% neg_numeral_le_neg_one
thf(fact_5301_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_5302_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_5303_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_le_numeral
thf(fact_5304_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_le_numeral
thf(fact_5305_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_5306_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_5307_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_le_one
thf(fact_5308_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_le_one
thf(fact_5309_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_5310_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5311_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5312_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5313_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5314_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5315_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5316_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5317_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5318_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_5319_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_5320_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_less_neg_one
thf(fact_5321_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_less_neg_one
thf(fact_5322_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_5323_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_5324_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_less_numeral
thf(fact_5325_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_less_numeral
thf(fact_5326_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_5327_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_5328_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_less_one
thf(fact_5329_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_less_one
thf(fact_5330_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5331_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( C
          = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ( times_times_complex @ C @ B )
          = ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5332_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( C
          = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
        = ( ( times_times_rat @ C @ B )
          = ( uminus_uminus_rat @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5333_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5334_nonzero__neg__divide__eq__eq,axiom,
    ! [B: complex,A: complex,C: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
          = C )
        = ( ( uminus1482373934393186551omplex @ A )
          = ( times_times_complex @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5335_nonzero__neg__divide__eq__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
          = C )
        = ( ( uminus_uminus_rat @ A )
          = ( times_times_rat @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5336_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5337_minus__divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ B )
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5338_minus__divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( ( uminus_uminus_rat @ B )
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5339_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5340_eq__minus__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = ( uminus1482373934393186551omplex @ B ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5341_eq__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = ( uminus_uminus_rat @ B ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5342_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5343_divide__eq__minus__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( B != zero_zero_complex )
        & ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5344_divide__eq__minus__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ( B != zero_zero_rat )
        & ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5345_mult__1s__ring__1_I1_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5346_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5347_mult__1s__ring__1_I1_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5348_mult__1s__ring__1_I1_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5349_mult__1s__ring__1_I1_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5350_mult__1s__ring__1_I2_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5351_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5352_mult__1s__ring__1_I2_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5353_mult__1s__ring__1_I2_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5354_mult__1s__ring__1_I2_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5355_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_5356_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_5357_uminus__numeral__One,axiom,
    ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% uminus_numeral_One
thf(fact_5358_uminus__numeral__One,axiom,
    ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% uminus_numeral_One
thf(fact_5359_uminus__numeral__One,axiom,
    ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% uminus_numeral_One
thf(fact_5360_eval__nat__numeral_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_5361_power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).

% power_minus
thf(fact_5362_power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).

% power_minus
thf(fact_5363_power__minus,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_minus
thf(fact_5364_power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_minus
thf(fact_5365_power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_minus
thf(fact_5366_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5367_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5368_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5369_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5370_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5371_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5372_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5373_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5374_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5375_power__minus__Bit0,axiom,
    ! [X: real,K2: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ) ).

% power_minus_Bit0
thf(fact_5376_power__minus__Bit0,axiom,
    ! [X: int,K2: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ) ).

% power_minus_Bit0
thf(fact_5377_power__minus__Bit0,axiom,
    ! [X: complex,K2: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ) ).

% power_minus_Bit0
thf(fact_5378_power__minus__Bit0,axiom,
    ! [X: rat,K2: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ) ).

% power_minus_Bit0
thf(fact_5379_power__minus__Bit0,axiom,
    ! [X: code_integer,K2: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ) ).

% power_minus_Bit0
thf(fact_5380_take__bit__Suc__bit1,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_bit1
thf(fact_5381_take__bit__Suc__bit1,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).

% take_bit_Suc_bit1
thf(fact_5382_take__bit__Suc__minus__1__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_Code_integer ) ) ).

% take_bit_Suc_minus_1_eq
thf(fact_5383_take__bit__Suc__minus__1__eq,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_1_eq
thf(fact_5384_take__bit__numeral__minus__1__eq,axiom,
    ! [K2: num] :
      ( ( bit_se1745604003318907178nteger @ ( numeral_numeral_nat @ K2 ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K2 ) ) @ one_one_Code_integer ) ) ).

% take_bit_numeral_minus_1_eq
thf(fact_5385_take__bit__numeral__minus__1__eq,axiom,
    ! [K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ K2 ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K2 ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_1_eq
thf(fact_5386_real__0__less__add__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).

% real_0_less_add_iff
thf(fact_5387_real__add__less__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
      = ( ord_less_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_5388_real__add__le__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_5389_real__0__le__add__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).

% real_0_le_add_iff
thf(fact_5390_zmod__zminus2__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).

% zmod_zminus2_eq_if
thf(fact_5391_zmod__zminus1__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% zmod_zminus1_eq_if
thf(fact_5392_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_code(3)
thf(fact_5393_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_code(3)
thf(fact_5394_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_code(3)
thf(fact_5395_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_code(3)
thf(fact_5396_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_code(3)
thf(fact_5397_power__numeral__odd,axiom,
    ! [Z3: complex,W: num] :
      ( ( power_power_complex @ Z3 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_complex @ ( times_times_complex @ Z3 @ ( power_power_complex @ Z3 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5398_power__numeral__odd,axiom,
    ! [Z3: real,W: num] :
      ( ( power_power_real @ Z3 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_real @ ( times_times_real @ Z3 @ ( power_power_real @ Z3 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5399_power__numeral__odd,axiom,
    ! [Z3: rat,W: num] :
      ( ( power_power_rat @ Z3 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_rat @ ( times_times_rat @ Z3 @ ( power_power_rat @ Z3 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5400_power__numeral__odd,axiom,
    ! [Z3: nat,W: num] :
      ( ( power_power_nat @ Z3 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_nat @ ( times_times_nat @ Z3 @ ( power_power_nat @ Z3 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5401_power__numeral__odd,axiom,
    ! [Z3: int,W: num] :
      ( ( power_power_int @ Z3 @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_int @ ( times_times_int @ Z3 @ ( power_power_int @ Z3 @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z3 @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_5402_take__bit__minus__small__eq,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K2 ) )
          = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K2 ) ) ) ) ).

% take_bit_minus_small_eq
thf(fact_5403_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_5404_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_5405_pos__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5406_pos__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5407_pos__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5408_pos__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5409_neg__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5410_neg__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5411_neg__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5412_neg__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5413_minus__divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5414_minus__divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5415_less__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5416_less__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5417_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5418_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5419_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5420_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5421_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5422_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5423_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_5424_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_5425_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_5426_minus__divide__add__eq__iff,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( Z3 != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z3 ) ) @ Y2 )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5427_minus__divide__add__eq__iff,axiom,
    ! [Z3: complex,X: complex,Y2: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z3 ) ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5428_minus__divide__add__eq__iff,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( Z3 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z3 ) ) @ Y2 )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5429_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z3: real,A: real,B: real] :
      ( ( ( Z3 = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z3 ) ) @ B )
          = B ) )
      & ( ( Z3 != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z3 ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5430_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z3: complex,A: complex,B: complex] :
      ( ( ( Z3 = zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z3 ) ) @ B )
          = B ) )
      & ( ( Z3 != zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z3 ) ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5431_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z3: rat,A: rat,B: rat] :
      ( ( ( Z3 = zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z3 ) ) @ B )
          = B ) )
      & ( ( Z3 != zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z3 ) ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5432_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != zero_zero_nat ) ).

% cong_exp_iff_simps(3)
thf(fact_5433_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != zero_zero_int ) ).

% cong_exp_iff_simps(3)
thf(fact_5434_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
     != zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(3)
thf(fact_5435_minus__divide__diff__eq__iff,axiom,
    ! [Z3: real,X: real,Y2: real] :
      ( ( Z3 != zero_zero_real )
     => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z3 ) ) @ Y2 )
        = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5436_minus__divide__diff__eq__iff,axiom,
    ! [Z3: complex,X: complex,Y2: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z3 ) ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5437_minus__divide__diff__eq__iff,axiom,
    ! [Z3: rat,X: rat,Y2: rat] :
      ( ( Z3 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z3 ) ) @ Y2 )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y2 @ Z3 ) ) @ Z3 ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5438_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z3: real,A: real,B: real] :
      ( ( ( Z3 = zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z3 ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z3 != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z3 ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5439_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z3: complex,A: complex,B: complex] :
      ( ( ( Z3 = zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z3 ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z3 != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z3 ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5440_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z3: rat,A: rat,B: rat] :
      ( ( ( Z3 = zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z3 ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z3 != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z3 ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5441_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z3: real,A: real,B: real] :
      ( ( ( Z3 = zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z3 ) ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z3 != zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z3 ) ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5442_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z3: complex,A: complex,B: complex] :
      ( ( ( Z3 = zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z3 ) ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z3 != zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z3 ) ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5443_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z3: rat,A: rat,B: rat] :
      ( ( ( Z3 = zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z3 ) ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z3 != zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z3 ) ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z3 ) ) @ Z3 ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5444_power3__eq__cube,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5445_power3__eq__cube,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5446_power3__eq__cube,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5447_power3__eq__cube,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5448_power3__eq__cube,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_5449_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5450_even__minus,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5451_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_5452_power2__eq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus_uminus_real @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_5453_power2__eq__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus_uminus_int @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_5454_power2__eq__iff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus1482373934393186551omplex @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_5455_power2__eq__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus_uminus_rat @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_5456_power2__eq__iff,axiom,
    ! [X: code_integer,Y2: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus1351360451143612070nteger @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_5457_Suc3__eq__add__3,axiom,
    ! [N: nat] :
      ( ( suc @ ( suc @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).

% Suc3_eq_add_3
thf(fact_5458_verit__less__mono__div__int2,axiom,
    ! [A2: int,B4: int,N: int] :
      ( ( ord_less_eq_int @ A2 @ B4 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B4 @ N ) @ ( divide_divide_int @ A2 @ N ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_5459_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_5460_take__bit__Suc__bit0,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_bit0
thf(fact_5461_take__bit__Suc__bit0,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_bit0
thf(fact_5462_take__bit__eq__mod,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N2: nat,A4: code_integer] : ( modulo364778990260209775nteger @ A4 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_5463_take__bit__eq__mod,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N2: nat,A4: int] : ( modulo_modulo_int @ A4 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_5464_take__bit__eq__mod,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N2: nat,A4: nat] : ( modulo_modulo_nat @ A4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_5465_mult__commute__abs,axiom,
    ! [C: real] :
      ( ( ^ [X4: real] : ( times_times_real @ X4 @ C ) )
      = ( times_times_real @ C ) ) ).

% mult_commute_abs
thf(fact_5466_mult__commute__abs,axiom,
    ! [C: rat] :
      ( ( ^ [X4: rat] : ( times_times_rat @ X4 @ C ) )
      = ( times_times_rat @ C ) ) ).

% mult_commute_abs
thf(fact_5467_mult__commute__abs,axiom,
    ! [C: nat] :
      ( ( ^ [X4: nat] : ( times_times_nat @ X4 @ C ) )
      = ( times_times_nat @ C ) ) ).

% mult_commute_abs
thf(fact_5468_mult__commute__abs,axiom,
    ! [C: int] :
      ( ( ^ [X4: int] : ( times_times_int @ X4 @ C ) )
      = ( times_times_int @ C ) ) ).

% mult_commute_abs
thf(fact_5469_take__bit__nat__eq__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M )
      = ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_nat_eq_self_iff
thf(fact_5470_take__bit__nat__less__exp,axiom,
    ! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_nat_less_exp
thf(fact_5471_take__bit__nat__eq__self,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M ) ) ).

% take_bit_nat_eq_self
thf(fact_5472_num_Osize_I6_J,axiom,
    ! [X32: num] :
      ( ( size_size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(6)
thf(fact_5473_take__bit__nat__def,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N2: nat,M2: nat] : ( modulo_modulo_nat @ M2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_nat_def
thf(fact_5474_take__bit__int__less__exp,axiom,
    ! [N: nat,K2: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_int_less_exp
thf(fact_5475_pos__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5476_pos__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5477_pos__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5478_pos__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5479_neg__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5480_neg__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5481_neg__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5482_neg__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5483_minus__divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5484_minus__divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5485_le__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5486_le__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5487_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5488_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5489_divide__less__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5490_divide__less__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5491_take__bit__int__def,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N2: nat,K3: int] : ( modulo_modulo_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_int_def
thf(fact_5492_cong__exp__iff__simps_I7_J,axiom,
    ! [Q: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(7)
thf(fact_5493_cong__exp__iff__simps_I7_J,axiom,
    ! [Q: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(7)
thf(fact_5494_cong__exp__iff__simps_I7_J,axiom,
    ! [Q: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(7)
thf(fact_5495_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(11)
thf(fact_5496_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(11)
thf(fact_5497_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(11)
thf(fact_5498_power2__eq__1__iff,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( A = one_one_real )
        | ( A
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5499_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5500_power2__eq__1__iff,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
      = ( ( A = one_one_complex )
        | ( A
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5501_power2__eq__1__iff,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( A = one_one_rat )
        | ( A
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5502_power2__eq__1__iff,axiom,
    ! [A: code_integer] :
      ( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( A = one_one_Code_integer )
        | ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5503_uminus__power__if,axiom,
    ! [N: nat,A: real] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( power_power_real @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5504_uminus__power__if,axiom,
    ! [N: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( power_power_int @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5505_uminus__power__if,axiom,
    ! [N: nat,A: complex] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( power_power_complex @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5506_uminus__power__if,axiom,
    ! [N: nat,A: rat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( power_power_rat @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5507_uminus__power__if,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( power_8256067586552552935nteger @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5508_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_div_eq_add3_div
thf(fact_5509_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K2 ) )
        = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5510_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K2 ) )
        = ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5511_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K2 ) )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5512_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K2 ) )
        = ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5513_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K2 ) )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5514_Suc__mod__eq__add3__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_mod_eq_add3_mod
thf(fact_5515_realpow__square__minus__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_5516_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( bit_se1745604003318907178nteger @ N @ A )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_5517_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = zero_zero_int )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_5518_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_5519_minus__mod__int__eq,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ K2 ) @ L )
        = ( minus_minus_int @ ( minus_minus_int @ L @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K2 @ one_one_int ) @ L ) ) ) ) ).

% minus_mod_int_eq
thf(fact_5520_zmod__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( minus_minus_int @ B @ one_one_int ) ) ) ).

% zmod_minus1
thf(fact_5521_zdiv__zminus2__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus2_eq_if
thf(fact_5522_zdiv__zminus1__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus1_eq_if
thf(fact_5523_take__bit__nat__less__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).

% take_bit_nat_less_self_iff
thf(fact_5524_zminus1__lemma,axiom,
    ! [A: int,B: int,Q: int,R: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q @ R ) )
     => ( ( B != zero_zero_int )
       => ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R = zero_zero_int ) @ ( uminus_uminus_int @ Q ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q ) @ one_one_int ) ) @ ( if_int @ ( R = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R ) ) ) ) ) ) ).

% zminus1_lemma
thf(fact_5525_take__bit__int__less__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ K2 )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K2 ) ) ).

% take_bit_int_less_self_iff
thf(fact_5526_take__bit__int__greater__eq__self__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ K2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) )
      = ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_int_greater_eq_self_iff
thf(fact_5527_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5528_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5529_divide__le__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5530_divide__le__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5531_square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).

% square_le_1
thf(fact_5532_square__le__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
     => ( ( ord_le3102999989581377725nteger @ X @ one_one_Code_integer )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% square_le_1
thf(fact_5533_square__le__1,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X )
     => ( ( ord_less_eq_rat @ X @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).

% square_le_1
thf(fact_5534_square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X )
     => ( ( ord_less_eq_int @ X @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% square_le_1
thf(fact_5535_minus__power__mult__self,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5536_minus__power__mult__self,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5537_minus__power__mult__self,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5538_minus__power__mult__self,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5539_minus__power__mult__self,axiom,
    ! [A: code_integer,N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5540_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% minus_one_power_iff
thf(fact_5541_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_5542_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = one_one_complex ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% minus_one_power_iff
thf(fact_5543_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = one_one_rat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% minus_one_power_iff
thf(fact_5544_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = one_one_Code_integer ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% minus_one_power_iff
thf(fact_5545_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_5546_div__pos__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K2 @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K2 @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_5547_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ K2 )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K2 ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_5548_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N: nat,K2: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K2 ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_5549_signed__take__bit__int__greater__self__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ K2 @ ( bit_ri631733984087533419it_int @ N @ K2 ) )
      = ( ord_less_int @ K2 @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_5550_take__bit__int__eq__self,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ K2 )
          = K2 ) ) ) ).

% take_bit_int_eq_self
thf(fact_5551_take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K2 )
        = K2 )
      = ( ( ord_less_eq_int @ zero_zero_int @ K2 )
        & ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% take_bit_int_eq_self_iff
thf(fact_5552_take__bit__incr__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K2 )
       != ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
     => ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K2 @ one_one_int ) )
        = ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ) ).

% take_bit_incr_eq
thf(fact_5553_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_real @ one_one_real ) ) ).

% power_minus1_odd
thf(fact_5554_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% power_minus1_odd
thf(fact_5555_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power_minus1_odd
thf(fact_5556_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_rat @ one_one_rat ) ) ).

% power_minus1_odd
thf(fact_5557_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% power_minus1_odd
thf(fact_5558_take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_5559_take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_5560_take__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_5561_int__bit__induct,axiom,
    ! [P3: int > $o,K2: int] :
      ( ( P3 @ zero_zero_int )
     => ( ( P3 @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K: int] :
              ( ( P3 @ K )
             => ( ( K != zero_zero_int )
               => ( P3 @ ( times_times_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K: int] :
                ( ( P3 @ K )
               => ( ( K
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P3 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P3 @ K2 ) ) ) ) ) ).

% int_bit_induct
thf(fact_5562_signed__take__bit__int__eq__self,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K2 )
     => ( ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_ri631733984087533419it_int @ N @ K2 )
          = K2 ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_5563_signed__take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ K2 )
        = K2 )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K2 )
        & ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_5564_take__bit__int__less__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) @ ( minus_minus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% take_bit_int_less_eq
thf(fact_5565_take__bit__int__greater__eq,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ K2 @ zero_zero_int )
     => ( ord_less_eq_int @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% take_bit_int_greater_eq
thf(fact_5566_signed__take__bit__eq__take__bit__shift,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( plus_plus_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% signed_take_bit_eq_take_bit_shift
thf(fact_5567_stable__imp__take__bit__eq,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se1745604003318907178nteger @ N @ A )
            = zero_z3403309356797280102nteger ) )
        & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se1745604003318907178nteger @ N @ A )
            = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_5568_stable__imp__take__bit__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2923211474154528505it_int @ N @ A )
            = zero_zero_int ) )
        & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2923211474154528505it_int @ N @ A )
            = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_5569_stable__imp__take__bit__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2925701944663578781it_nat @ N @ A )
            = zero_zero_nat ) )
        & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2925701944663578781it_nat @ N @ A )
            = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_5570_divmod__step__nat__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L3: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q5: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L3 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L3 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_nat_def
thf(fact_5571_divmod__step__int__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L3: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q5: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L3 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L3 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_int_def
thf(fact_5572_odd__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) )
     => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% odd_mod_4_div_2
thf(fact_5573_signed__take__bit__int__greater__eq,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ K2 @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K2 ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_5574_mod__exhaust__less__4,axiom,
    ! [M: nat] :
      ( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = zero_zero_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = one_one_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).

% mod_exhaust_less_4
thf(fact_5575_case__prod__conv,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,A: nat,B: nat] :
      ( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5576_case__prod__conv,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat] :
      ( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5577_case__prod__conv,axiom,
    ! [F: int > int > product_prod_int_int,A: int,B: int] :
      ( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5578_case__prod__conv,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5579_case__prod__conv,axiom,
    ! [F: int > int > int,A: int,B: int] :
      ( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5580_compl__le__compl__iff,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ ( uminus1532241313380277803et_int @ Y2 ) )
      = ( ord_less_eq_set_int @ Y2 @ X ) ) ).

% compl_le_compl_iff
thf(fact_5581_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q5: int,R5: int] : ( product_Pair_int_int @ Q5 @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) @ one_one_int ) )
        @ ( unique5052692396658037445od_int @ M @ N ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5582_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q5: nat,R5: nat] : ( product_Pair_nat_nat @ Q5 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) @ one_one_nat ) )
        @ ( unique5055182867167087721od_nat @ M @ N ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5583_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q5: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q5 @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) @ one_one_Code_integer ) )
        @ ( unique3479559517661332726nteger @ M @ N ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5584_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5585_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5586_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5587_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5588_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_5589_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5590_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5591_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5592_case__prodI2,axiom,
    ! [P5: produc6271795597528267376eger_o,C: code_integer > $o > $o] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P5
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc7828578312038201481er_o_o @ C @ P5 ) ) ).

% case_prodI2
thf(fact_5593_case__prodI2,axiom,
    ! [P5: product_prod_num_num,C: num > num > $o] :
      ( ! [A3: num,B2: num] :
          ( ( P5
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc5703948589228662326_num_o @ C @ P5 ) ) ).

% case_prodI2
thf(fact_5594_case__prodI2,axiom,
    ! [P5: product_prod_nat_num,C: nat > num > $o] :
      ( ! [A3: nat,B2: num] :
          ( ( P5
            = ( product_Pair_nat_num @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc4927758841916487424_num_o @ C @ P5 ) ) ).

% case_prodI2
thf(fact_5595_case__prodI2,axiom,
    ! [P5: product_prod_nat_nat,C: nat > nat > $o] :
      ( ! [A3: nat,B2: nat] :
          ( ( P5
            = ( product_Pair_nat_nat @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc6081775807080527818_nat_o @ C @ P5 ) ) ).

% case_prodI2
thf(fact_5596_case__prodI2,axiom,
    ! [P5: product_prod_int_int,C: int > int > $o] :
      ( ! [A3: int,B2: int] :
          ( ( P5
            = ( product_Pair_int_int @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc4947309494688390418_int_o @ C @ P5 ) ) ).

% case_prodI2
thf(fact_5597_case__prodI,axiom,
    ! [F: code_integer > $o > $o,A: code_integer,B: $o] :
      ( ( F @ A @ B )
     => ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ).

% case_prodI
thf(fact_5598_case__prodI,axiom,
    ! [F: num > num > $o,A: num,B: num] :
      ( ( F @ A @ B )
     => ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) ) ) ).

% case_prodI
thf(fact_5599_case__prodI,axiom,
    ! [F: nat > num > $o,A: nat,B: num] :
      ( ( F @ A @ B )
     => ( produc4927758841916487424_num_o @ F @ ( product_Pair_nat_num @ A @ B ) ) ) ).

% case_prodI
thf(fact_5600_case__prodI,axiom,
    ! [F: nat > nat > $o,A: nat,B: nat] :
      ( ( F @ A @ B )
     => ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% case_prodI
thf(fact_5601_case__prodI,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( F @ A @ B )
     => ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) ) ) ).

% case_prodI
thf(fact_5602_mem__case__prodI2,axiom,
    ! [P5: produc6271795597528267376eger_o,Z3: complex,C: code_integer > $o > set_complex] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P5
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_complex @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_complex @ Z3 @ ( produc1043322548047392435omplex @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5603_mem__case__prodI2,axiom,
    ! [P5: produc6271795597528267376eger_o,Z3: real,C: code_integer > $o > set_real] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P5
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_real @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_real @ Z3 @ ( produc242741666403216561t_real @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5604_mem__case__prodI2,axiom,
    ! [P5: produc6271795597528267376eger_o,Z3: nat,C: code_integer > $o > set_nat] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P5
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_nat @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_nat @ Z3 @ ( produc5431169771168744661et_nat @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5605_mem__case__prodI2,axiom,
    ! [P5: produc6271795597528267376eger_o,Z3: int,C: code_integer > $o > set_int] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P5
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_int @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_int @ Z3 @ ( produc1253318751659547953et_int @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5606_mem__case__prodI2,axiom,
    ! [P5: product_prod_num_num,Z3: complex,C: num > num > set_complex] :
      ( ! [A3: num,B2: num] :
          ( ( P5
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_complex @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_complex @ Z3 @ ( produc2866383454006189126omplex @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5607_mem__case__prodI2,axiom,
    ! [P5: product_prod_num_num,Z3: real,C: num > num > set_real] :
      ( ! [A3: num,B2: num] :
          ( ( P5
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_real @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_real @ Z3 @ ( produc8296048397933160132t_real @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5608_mem__case__prodI2,axiom,
    ! [P5: product_prod_num_num,Z3: nat,C: num > num > set_nat] :
      ( ! [A3: num,B2: num] :
          ( ( P5
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_nat @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_nat @ Z3 @ ( produc1361121860356118632et_nat @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5609_mem__case__prodI2,axiom,
    ! [P5: product_prod_num_num,Z3: int,C: num > num > set_int] :
      ( ! [A3: num,B2: num] :
          ( ( P5
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_int @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_int @ Z3 @ ( produc6406642877701697732et_int @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5610_mem__case__prodI2,axiom,
    ! [P5: product_prod_nat_num,Z3: complex,C: nat > num > set_complex] :
      ( ! [A3: nat,B2: num] :
          ( ( P5
            = ( product_Pair_nat_num @ A3 @ B2 ) )
         => ( member_complex @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_complex @ Z3 @ ( produc6231982587499038204omplex @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5611_mem__case__prodI2,axiom,
    ! [P5: product_prod_nat_num,Z3: real,C: nat > num > set_real] :
      ( ! [A3: nat,B2: num] :
          ( ( P5
            = ( product_Pair_nat_num @ A3 @ B2 ) )
         => ( member_real @ Z3 @ ( C @ A3 @ B2 ) ) )
     => ( member_real @ Z3 @ ( produc1435849484188172666t_real @ C @ P5 ) ) ) ).

% mem_case_prodI2
thf(fact_5612_mem__case__prodI,axiom,
    ! [Z3: complex,C: code_integer > $o > set_complex,A: code_integer,B: $o] :
      ( ( member_complex @ Z3 @ ( C @ A @ B ) )
     => ( member_complex @ Z3 @ ( produc1043322548047392435omplex @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5613_mem__case__prodI,axiom,
    ! [Z3: real,C: code_integer > $o > set_real,A: code_integer,B: $o] :
      ( ( member_real @ Z3 @ ( C @ A @ B ) )
     => ( member_real @ Z3 @ ( produc242741666403216561t_real @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5614_mem__case__prodI,axiom,
    ! [Z3: nat,C: code_integer > $o > set_nat,A: code_integer,B: $o] :
      ( ( member_nat @ Z3 @ ( C @ A @ B ) )
     => ( member_nat @ Z3 @ ( produc5431169771168744661et_nat @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5615_mem__case__prodI,axiom,
    ! [Z3: int,C: code_integer > $o > set_int,A: code_integer,B: $o] :
      ( ( member_int @ Z3 @ ( C @ A @ B ) )
     => ( member_int @ Z3 @ ( produc1253318751659547953et_int @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5616_mem__case__prodI,axiom,
    ! [Z3: complex,C: num > num > set_complex,A: num,B: num] :
      ( ( member_complex @ Z3 @ ( C @ A @ B ) )
     => ( member_complex @ Z3 @ ( produc2866383454006189126omplex @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5617_mem__case__prodI,axiom,
    ! [Z3: real,C: num > num > set_real,A: num,B: num] :
      ( ( member_real @ Z3 @ ( C @ A @ B ) )
     => ( member_real @ Z3 @ ( produc8296048397933160132t_real @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5618_mem__case__prodI,axiom,
    ! [Z3: nat,C: num > num > set_nat,A: num,B: num] :
      ( ( member_nat @ Z3 @ ( C @ A @ B ) )
     => ( member_nat @ Z3 @ ( produc1361121860356118632et_nat @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5619_mem__case__prodI,axiom,
    ! [Z3: int,C: num > num > set_int,A: num,B: num] :
      ( ( member_int @ Z3 @ ( C @ A @ B ) )
     => ( member_int @ Z3 @ ( produc6406642877701697732et_int @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5620_mem__case__prodI,axiom,
    ! [Z3: complex,C: nat > num > set_complex,A: nat,B: num] :
      ( ( member_complex @ Z3 @ ( C @ A @ B ) )
     => ( member_complex @ Z3 @ ( produc6231982587499038204omplex @ C @ ( product_Pair_nat_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5621_mem__case__prodI,axiom,
    ! [Z3: real,C: nat > num > set_real,A: nat,B: num] :
      ( ( member_real @ Z3 @ ( C @ A @ B ) )
     => ( member_real @ Z3 @ ( produc1435849484188172666t_real @ C @ ( product_Pair_nat_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_5622_case__prodI2_H,axiom,
    ! [P5: product_prod_nat_nat,C: nat > nat > product_prod_nat_nat > $o,X: product_prod_nat_nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ( product_Pair_nat_nat @ A3 @ B2 )
            = P5 )
         => ( C @ A3 @ B2 @ X ) )
     => ( produc8739625826339149834_nat_o @ C @ P5 @ X ) ) ).

% case_prodI2'
thf(fact_5623_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ one_one_complex )
    = one_one_complex ) ).

% dbl_dec_simps(3)
thf(fact_5624_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_5625_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
    = one_one_rat ) ).

% dbl_dec_simps(3)
thf(fact_5626_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_5627_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_5628_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_5629_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_dec_simps(2)
thf(fact_5630_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_dec_simps(2)
thf(fact_5631_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_dec_simps(2)
thf(fact_5632_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ M @ one )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).

% divmod_algorithm_code(2)
thf(fact_5633_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5055182867167087721od_nat @ M @ one )
      = ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).

% divmod_algorithm_code(2)
thf(fact_5634_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique3479559517661332726nteger @ M @ one )
      = ( produc1086072967326762835nteger @ ( numera6620942414471956472nteger @ M ) @ zero_z3403309356797280102nteger ) ) ).

% divmod_algorithm_code(2)
thf(fact_5635_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit0 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5636_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5637_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit0 @ N ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5638_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit1 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5639_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5640_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit1 @ N ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5641_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q5: int,R5: int] : ( product_Pair_int_int @ Q5 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5052692396658037445od_int @ M @ N ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_5642_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q5: nat,R5: nat] : ( product_Pair_nat_nat @ Q5 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5055182867167087721od_nat @ M @ N ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_5643_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q5: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q5 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique3479559517661332726nteger @ M @ N ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_5644_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5645_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5646_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5647_uminus__set__def,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A6: set_real] :
          ( collect_real
          @ ( uminus_uminus_real_o
            @ ^ [X4: real] : ( member_real @ X4 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_5648_uminus__set__def,axiom,
    ( uminus8566677241136511917omplex
    = ( ^ [A6: set_complex] :
          ( collect_complex
          @ ( uminus1680532995456772888plex_o
            @ ^ [X4: complex] : ( member_complex @ X4 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_5649_uminus__set__def,axiom,
    ( uminus3195874150345416415st_nat
    = ( ^ [A6: set_list_nat] :
          ( collect_list_nat
          @ ( uminus5770388063884162150_nat_o
            @ ^ [X4: list_nat] : ( member_list_nat @ X4 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_5650_uminus__set__def,axiom,
    ( uminus613421341184616069et_nat
    = ( ^ [A6: set_set_nat] :
          ( collect_set_nat
          @ ( uminus6401447641752708672_nat_o
            @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_5651_uminus__set__def,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A6: set_nat] :
          ( collect_nat
          @ ( uminus_uminus_nat_o
            @ ^ [X4: nat] : ( member_nat @ X4 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_5652_uminus__set__def,axiom,
    ( uminus1532241313380277803et_int
    = ( ^ [A6: set_int] :
          ( collect_int
          @ ( uminus_uminus_int_o
            @ ^ [X4: int] : ( member_int @ X4 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_5653_take__bit__minus,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K2 ) ) ) ).

% take_bit_minus
thf(fact_5654_Collect__neg__eq,axiom,
    ! [P3: complex > $o] :
      ( ( collect_complex
        @ ^ [X4: complex] :
            ~ ( P3 @ X4 ) )
      = ( uminus8566677241136511917omplex @ ( collect_complex @ P3 ) ) ) ).

% Collect_neg_eq
thf(fact_5655_Collect__neg__eq,axiom,
    ! [P3: list_nat > $o] :
      ( ( collect_list_nat
        @ ^ [X4: list_nat] :
            ~ ( P3 @ X4 ) )
      = ( uminus3195874150345416415st_nat @ ( collect_list_nat @ P3 ) ) ) ).

% Collect_neg_eq
thf(fact_5656_Collect__neg__eq,axiom,
    ! [P3: set_nat > $o] :
      ( ( collect_set_nat
        @ ^ [X4: set_nat] :
            ~ ( P3 @ X4 ) )
      = ( uminus613421341184616069et_nat @ ( collect_set_nat @ P3 ) ) ) ).

% Collect_neg_eq
thf(fact_5657_Collect__neg__eq,axiom,
    ! [P3: nat > $o] :
      ( ( collect_nat
        @ ^ [X4: nat] :
            ~ ( P3 @ X4 ) )
      = ( uminus5710092332889474511et_nat @ ( collect_nat @ P3 ) ) ) ).

% Collect_neg_eq
thf(fact_5658_Collect__neg__eq,axiom,
    ! [P3: int > $o] :
      ( ( collect_int
        @ ^ [X4: int] :
            ~ ( P3 @ X4 ) )
      = ( uminus1532241313380277803et_int @ ( collect_int @ P3 ) ) ) ).

% Collect_neg_eq
thf(fact_5659_Compl__eq,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A6: set_real] :
          ( collect_real
          @ ^ [X4: real] :
              ~ ( member_real @ X4 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_5660_Compl__eq,axiom,
    ( uminus8566677241136511917omplex
    = ( ^ [A6: set_complex] :
          ( collect_complex
          @ ^ [X4: complex] :
              ~ ( member_complex @ X4 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_5661_Compl__eq,axiom,
    ( uminus3195874150345416415st_nat
    = ( ^ [A6: set_list_nat] :
          ( collect_list_nat
          @ ^ [X4: list_nat] :
              ~ ( member_list_nat @ X4 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_5662_Compl__eq,axiom,
    ( uminus613421341184616069et_nat
    = ( ^ [A6: set_set_nat] :
          ( collect_set_nat
          @ ^ [X4: set_nat] :
              ~ ( member_set_nat @ X4 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_5663_Compl__eq,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A6: set_nat] :
          ( collect_nat
          @ ^ [X4: nat] :
              ~ ( member_nat @ X4 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_5664_Compl__eq,axiom,
    ( uminus1532241313380277803et_int
    = ( ^ [A6: set_int] :
          ( collect_int
          @ ^ [X4: int] :
              ~ ( member_int @ X4 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_5665_case__prodD,axiom,
    ! [F: code_integer > $o > $o,A: code_integer,B: $o] :
      ( ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_5666_case__prodD,axiom,
    ! [F: num > num > $o,A: num,B: num] :
      ( ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_5667_case__prodD,axiom,
    ! [F: nat > num > $o,A: nat,B: num] :
      ( ( produc4927758841916487424_num_o @ F @ ( product_Pair_nat_num @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_5668_case__prodD,axiom,
    ! [F: nat > nat > $o,A: nat,B: nat] :
      ( ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_5669_case__prodD,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_5670_case__prodE,axiom,
    ! [C: code_integer > $o > $o,P5: produc6271795597528267376eger_o] :
      ( ( produc7828578312038201481er_o_o @ C @ P5 )
     => ~ ! [X5: code_integer,Y5: $o] :
            ( ( P5
              = ( produc6677183202524767010eger_o @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_5671_case__prodE,axiom,
    ! [C: num > num > $o,P5: product_prod_num_num] :
      ( ( produc5703948589228662326_num_o @ C @ P5 )
     => ~ ! [X5: num,Y5: num] :
            ( ( P5
              = ( product_Pair_num_num @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_5672_case__prodE,axiom,
    ! [C: nat > num > $o,P5: product_prod_nat_num] :
      ( ( produc4927758841916487424_num_o @ C @ P5 )
     => ~ ! [X5: nat,Y5: num] :
            ( ( P5
              = ( product_Pair_nat_num @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_5673_case__prodE,axiom,
    ! [C: nat > nat > $o,P5: product_prod_nat_nat] :
      ( ( produc6081775807080527818_nat_o @ C @ P5 )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( P5
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_5674_case__prodE,axiom,
    ! [C: int > int > $o,P5: product_prod_int_int] :
      ( ( produc4947309494688390418_int_o @ C @ P5 )
     => ~ ! [X5: int,Y5: int] :
            ( ( P5
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_5675_case__prodE_H,axiom,
    ! [C: nat > nat > product_prod_nat_nat > $o,P5: product_prod_nat_nat,Z3: product_prod_nat_nat] :
      ( ( produc8739625826339149834_nat_o @ C @ P5 @ Z3 )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( P5
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 @ Z3 ) ) ) ).

% case_prodE'
thf(fact_5676_case__prodD_H,axiom,
    ! [R4: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat,C: product_prod_nat_nat] :
      ( ( produc8739625826339149834_nat_o @ R4 @ ( product_Pair_nat_nat @ A @ B ) @ C )
     => ( R4 @ A @ B @ C ) ) ).

% case_prodD'
thf(fact_5677_prod_Ocase__distrib,axiom,
    ! [H2: $o > $o,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5678_prod_Ocase__distrib,axiom,
    ! [H2: $o > int,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5679_prod_Ocase__distrib,axiom,
    ! [H2: int > $o,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5680_prod_Ocase__distrib,axiom,
    ! [H2: int > int,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5681_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > $o,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5682_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5683_prod_Ocase__distrib,axiom,
    ! [H2: $o > product_prod_int_int,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5684_prod_Ocase__distrib,axiom,
    ! [H2: int > product_prod_int_int,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5685_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > product_prod_int_int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X1: int,X25: int] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5686_prod_Ocase__distrib,axiom,
    ! [H2: ( product_prod_nat_nat > $o ) > product_prod_nat_nat > $o,F: nat > nat > product_prod_nat_nat > $o,Prod: product_prod_nat_nat] :
      ( ( H2 @ ( produc8739625826339149834_nat_o @ F @ Prod ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X1: nat,X25: nat] : ( H2 @ ( F @ X1 @ X25 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5687_divmod__int__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M2: num,N2: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M2 ) @ ( numeral_numeral_int @ N2 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M2 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% divmod_int_def
thf(fact_5688_divmod__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M2: num,N2: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M2 ) @ ( numeral_numeral_int @ N2 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M2 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% divmod_def
thf(fact_5689_divmod__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M2: num,N2: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M2 ) @ ( numeral_numeral_nat @ N2 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).

% divmod_def
thf(fact_5690_divmod__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M2: num,N2: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M2 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M2 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ) ).

% divmod_def
thf(fact_5691_divmod_H__nat__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M2: num,N2: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M2 ) @ ( numeral_numeral_nat @ N2 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).

% divmod'_nat_def
thf(fact_5692_dbl__dec__def,axiom,
    ( neg_nu6511756317524482435omplex
    = ( ^ [X4: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X4 @ X4 ) @ one_one_complex ) ) ) ).

% dbl_dec_def
thf(fact_5693_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X4: real] : ( minus_minus_real @ ( plus_plus_real @ X4 @ X4 ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_5694_dbl__dec__def,axiom,
    ( neg_nu3179335615603231917ec_rat
    = ( ^ [X4: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X4 @ X4 ) @ one_one_rat ) ) ) ).

% dbl_dec_def
thf(fact_5695_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X4: int] : ( minus_minus_int @ ( plus_plus_int @ X4 @ X4 ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_5696_compl__mono,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y2 )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y2 ) @ ( uminus1532241313380277803et_int @ X ) ) ) ).

% compl_mono
thf(fact_5697_compl__le__swap1,axiom,
    ! [Y2: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ ( uminus1532241313380277803et_int @ X ) )
     => ( ord_less_eq_set_int @ X @ ( uminus1532241313380277803et_int @ Y2 ) ) ) ).

% compl_le_swap1
thf(fact_5698_compl__le__swap2,axiom,
    ! [Y2: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y2 ) @ X )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ Y2 ) ) ).

% compl_le_swap2
thf(fact_5699_cond__case__prod__eta,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,G: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
      ( ! [X5: nat,Y5: nat] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_nat_nat @ X5 @ Y5 ) ) )
     => ( ( produc27273713700761075at_nat @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5700_cond__case__prod__eta,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,G: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ! [X5: nat,Y5: nat] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_nat_nat @ X5 @ Y5 ) ) )
     => ( ( produc8739625826339149834_nat_o @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5701_cond__case__prod__eta,axiom,
    ! [F: int > int > product_prod_int_int,G: product_prod_int_int > product_prod_int_int] :
      ( ! [X5: int,Y5: int] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_int_int @ X5 @ Y5 ) ) )
     => ( ( produc4245557441103728435nt_int @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5702_cond__case__prod__eta,axiom,
    ! [F: int > int > $o,G: product_prod_int_int > $o] :
      ( ! [X5: int,Y5: int] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_int_int @ X5 @ Y5 ) ) )
     => ( ( produc4947309494688390418_int_o @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5703_cond__case__prod__eta,axiom,
    ! [F: int > int > int,G: product_prod_int_int > int] :
      ( ! [X5: int,Y5: int] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_int_int @ X5 @ Y5 ) ) )
     => ( ( produc8211389475949308722nt_int @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5704_case__prod__eta,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
      ( ( produc27273713700761075at_nat
        @ ^ [X4: nat,Y: nat] : ( F @ ( product_Pair_nat_nat @ X4 @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5705_case__prod__eta,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( produc8739625826339149834_nat_o
        @ ^ [X4: nat,Y: nat] : ( F @ ( product_Pair_nat_nat @ X4 @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5706_case__prod__eta,axiom,
    ! [F: product_prod_int_int > product_prod_int_int] :
      ( ( produc4245557441103728435nt_int
        @ ^ [X4: int,Y: int] : ( F @ ( product_Pair_int_int @ X4 @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5707_case__prod__eta,axiom,
    ! [F: product_prod_int_int > $o] :
      ( ( produc4947309494688390418_int_o
        @ ^ [X4: int,Y: int] : ( F @ ( product_Pair_int_int @ X4 @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5708_case__prod__eta,axiom,
    ! [F: product_prod_int_int > int] :
      ( ( produc8211389475949308722nt_int
        @ ^ [X4: int,Y: int] : ( F @ ( product_Pair_int_int @ X4 @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5709_case__prodE2,axiom,
    ! [Q2: ( product_prod_nat_nat > product_prod_nat_nat ) > $o,P3: nat > nat > product_prod_nat_nat > product_prod_nat_nat,Z3: product_prod_nat_nat] :
      ( ( Q2 @ ( produc27273713700761075at_nat @ P3 @ Z3 ) )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( Z3
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( Q2 @ ( P3 @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5710_case__prodE2,axiom,
    ! [Q2: ( product_prod_nat_nat > $o ) > $o,P3: nat > nat > product_prod_nat_nat > $o,Z3: product_prod_nat_nat] :
      ( ( Q2 @ ( produc8739625826339149834_nat_o @ P3 @ Z3 ) )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( Z3
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( Q2 @ ( P3 @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5711_case__prodE2,axiom,
    ! [Q2: product_prod_int_int > $o,P3: int > int > product_prod_int_int,Z3: product_prod_int_int] :
      ( ( Q2 @ ( produc4245557441103728435nt_int @ P3 @ Z3 ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( Z3
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( Q2 @ ( P3 @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5712_case__prodE2,axiom,
    ! [Q2: $o > $o,P3: int > int > $o,Z3: product_prod_int_int] :
      ( ( Q2 @ ( produc4947309494688390418_int_o @ P3 @ Z3 ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( Z3
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( Q2 @ ( P3 @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5713_case__prodE2,axiom,
    ! [Q2: int > $o,P3: int > int > int,Z3: product_prod_int_int] :
      ( ( Q2 @ ( produc8211389475949308722nt_int @ P3 @ Z3 ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( Z3
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( Q2 @ ( P3 @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5714_divmod__divmod__step,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M2: num,N2: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M2 @ N2 ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M2 ) ) @ ( unique5026877609467782581ep_nat @ N2 @ ( unique5055182867167087721od_nat @ M2 @ ( bit0 @ N2 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5715_divmod__divmod__step,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M2: num,N2: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M2 @ N2 ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M2 ) ) @ ( unique5024387138958732305ep_int @ N2 @ ( unique5052692396658037445od_int @ M2 @ ( bit0 @ N2 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5716_divmod__divmod__step,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M2: num,N2: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M2 @ N2 ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M2 ) ) @ ( unique4921790084139445826nteger @ N2 @ ( unique3479559517661332726nteger @ M2 @ ( bit0 @ N2 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5717_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( unique6319869463603278526ux_int @ ( unique5052692396658037445od_int @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5718_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( unique6322359934112328802ux_nat @ ( unique5055182867167087721od_nat @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5719_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) )
      = ( unique5706413561485394159nteger @ ( unique3479559517661332726nteger @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5720_one__div__minus__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% one_div_minus_numeral
thf(fact_5721_minus__one__div__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_div_numeral
thf(fact_5722_signed__take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_minus_bit1
thf(fact_5723_divmod__nat__if,axiom,
    ( divmod_nat
    = ( ^ [M2: nat,N2: nat] :
          ( if_Pro6206227464963214023at_nat
          @ ( ( N2 = zero_zero_nat )
            | ( ord_less_nat @ M2 @ N2 ) )
          @ ( product_Pair_nat_nat @ zero_zero_nat @ M2 )
          @ ( produc2626176000494625587at_nat
            @ ^ [Q5: nat] : ( product_Pair_nat_nat @ ( suc @ Q5 ) )
            @ ( divmod_nat @ ( minus_minus_nat @ M2 @ N2 ) @ N2 ) ) ) ) ) ).

% divmod_nat_if
thf(fact_5724_take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K2 ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_bit1
thf(fact_5725_signed__take__bit__numeral__bit1,axiom,
    ! [L: num,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_bit1
thf(fact_5726_split__part,axiom,
    ! [P3: $o,Q2: int > int > $o] :
      ( ( produc4947309494688390418_int_o
        @ ^ [A4: int,B3: int] :
            ( P3
            & ( Q2 @ A4 @ B3 ) ) )
      = ( ^ [Ab: product_prod_int_int] :
            ( P3
            & ( produc4947309494688390418_int_o @ Q2 @ Ab ) ) ) ) ).

% split_part
thf(fact_5727_pred__numeral__simps_I1_J,axiom,
    ( ( pred_numeral @ one )
    = zero_zero_nat ) ).

% pred_numeral_simps(1)
thf(fact_5728_eq__numeral__Suc,axiom,
    ! [K2: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K2 )
        = ( suc @ N ) )
      = ( ( pred_numeral @ K2 )
        = N ) ) ).

% eq_numeral_Suc
thf(fact_5729_Suc__eq__numeral,axiom,
    ! [N: nat,K2: num] :
      ( ( ( suc @ N )
        = ( numeral_numeral_nat @ K2 ) )
      = ( N
        = ( pred_numeral @ K2 ) ) ) ).

% Suc_eq_numeral
thf(fact_5730_pred__numeral__inc,axiom,
    ! [K2: num] :
      ( ( pred_numeral @ ( inc @ K2 ) )
      = ( numeral_numeral_nat @ K2 ) ) ).

% pred_numeral_inc
thf(fact_5731_pred__numeral__simps_I3_J,axiom,
    ! [K2: num] :
      ( ( pred_numeral @ ( bit1 @ K2 ) )
      = ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ).

% pred_numeral_simps(3)
thf(fact_5732_less__numeral__Suc,axiom,
    ! [K2: num,N: nat] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ K2 ) @ ( suc @ N ) )
      = ( ord_less_nat @ ( pred_numeral @ K2 ) @ N ) ) ).

% less_numeral_Suc
thf(fact_5733_less__Suc__numeral,axiom,
    ! [N: nat,K2: num] :
      ( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K2 ) )
      = ( ord_less_nat @ N @ ( pred_numeral @ K2 ) ) ) ).

% less_Suc_numeral
thf(fact_5734_le__numeral__Suc,axiom,
    ! [K2: num,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K2 ) @ ( suc @ N ) )
      = ( ord_less_eq_nat @ ( pred_numeral @ K2 ) @ N ) ) ).

% le_numeral_Suc
thf(fact_5735_le__Suc__numeral,axiom,
    ! [N: nat,K2: num] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K2 ) )
      = ( ord_less_eq_nat @ N @ ( pred_numeral @ K2 ) ) ) ).

% le_Suc_numeral
thf(fact_5736_diff__numeral__Suc,axiom,
    ! [K2: num,N: nat] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ K2 ) @ ( suc @ N ) )
      = ( minus_minus_nat @ ( pred_numeral @ K2 ) @ N ) ) ).

% diff_numeral_Suc
thf(fact_5737_diff__Suc__numeral,axiom,
    ! [N: nat,K2: num] :
      ( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K2 ) )
      = ( minus_minus_nat @ N @ ( pred_numeral @ K2 ) ) ) ).

% diff_Suc_numeral
thf(fact_5738_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_5739_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_5740_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_5741_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_5742_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_5743_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_5744_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_5745_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_5746_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_5747_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_5748_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( numeral_numeral_real @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_5749_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_5750_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_5751_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( numeral_numeral_rat @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_5752_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_5753_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_5754_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_5755_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_5756_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_5757_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_5758_signed__take__bit__numeral__bit0,axiom,
    ! [L: num,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_bit0
thf(fact_5759_signed__take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_minus_bit0
thf(fact_5760_Collect__case__prod__mono,axiom,
    ! [A2: int > int > $o,B4: int > int > $o] :
      ( ( ord_le6741204236512500942_int_o @ A2 @ B4 )
     => ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ A2 ) ) @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ B4 ) ) ) ) ).

% Collect_case_prod_mono
thf(fact_5761_prod_Odisc__eq__case,axiom,
    ! [Prod: product_prod_int_int] :
      ( produc4947309494688390418_int_o
      @ ^ [Uu3: int,Uv3: int] : $true
      @ Prod ) ).

% prod.disc_eq_case
thf(fact_5762_num__induct,axiom,
    ! [P3: num > $o,X: num] :
      ( ( P3 @ one )
     => ( ! [X5: num] :
            ( ( P3 @ X5 )
           => ( P3 @ ( inc @ X5 ) ) )
       => ( P3 @ X ) ) ) ).

% num_induct
thf(fact_5763_add__inc,axiom,
    ! [X: num,Y2: num] :
      ( ( plus_plus_num @ X @ ( inc @ Y2 ) )
      = ( inc @ ( plus_plus_num @ X @ Y2 ) ) ) ).

% add_inc
thf(fact_5764_numeral__eq__Suc,axiom,
    ( numeral_numeral_nat
    = ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).

% numeral_eq_Suc
thf(fact_5765_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_5766_inc_Osimps_I2_J,axiom,
    ! [X: num] :
      ( ( inc @ ( bit0 @ X ) )
      = ( bit1 @ X ) ) ).

% inc.simps(2)
thf(fact_5767_inc_Osimps_I3_J,axiom,
    ! [X: num] :
      ( ( inc @ ( bit1 @ X ) )
      = ( bit0 @ ( inc @ X ) ) ) ).

% inc.simps(3)
thf(fact_5768_add__One,axiom,
    ! [X: num] :
      ( ( plus_plus_num @ X @ one )
      = ( inc @ X ) ) ).

% add_One
thf(fact_5769_mult__inc,axiom,
    ! [X: num,Y2: num] :
      ( ( times_times_num @ X @ ( inc @ Y2 ) )
      = ( plus_plus_num @ ( times_times_num @ X @ Y2 ) @ X ) ) ).

% mult_inc
thf(fact_5770_pred__numeral__def,axiom,
    ( pred_numeral
    = ( ^ [K3: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K3 ) @ one_one_nat ) ) ) ).

% pred_numeral_def
thf(fact_5771_numeral__inc,axiom,
    ! [X: num] :
      ( ( numera6690914467698888265omplex @ ( inc @ X ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).

% numeral_inc
thf(fact_5772_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_real @ ( inc @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% numeral_inc
thf(fact_5773_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_rat @ ( inc @ X ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).

% numeral_inc
thf(fact_5774_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_nat @ ( inc @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% numeral_inc
thf(fact_5775_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_int @ ( inc @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% numeral_inc
thf(fact_5776_Divides_Oadjust__div__def,axiom,
    ( adjust_div
    = ( produc8211389475949308722nt_int
      @ ^ [Q5: int,R5: int] : ( plus_plus_int @ Q5 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).

% Divides.adjust_div_def
thf(fact_5777_take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K2 ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_bit1
thf(fact_5778_take__bit__numeral__bit0,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_bit0
thf(fact_5779_take__bit__numeral__bit0,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_bit0
thf(fact_5780_divmod__nat__def,axiom,
    ( divmod_nat
    = ( ^ [M2: nat,N2: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M2 @ N2 ) @ ( modulo_modulo_nat @ M2 @ N2 ) ) ) ) ).

% divmod_nat_def
thf(fact_5781_take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_minus_bit0
thf(fact_5782_take__bit__numeral__bit1,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_bit1
thf(fact_5783_take__bit__numeral__bit1,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K2 ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).

% take_bit_numeral_bit1
thf(fact_5784_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5785_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5786_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5787_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5788_divmod__BitM__2__eq,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
      = ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).

% divmod_BitM_2_eq
thf(fact_5789_of__int__code__if,axiom,
    ( ring_1_of_int_real
    = ( ^ [K3: int] :
          ( if_real @ ( K3 = zero_zero_int ) @ zero_zero_real
          @ ( if_real @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_real @ ( ring_1_of_int_real @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_real
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_real ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5790_of__int__code__if,axiom,
    ( ring_1_of_int_int
    = ( ^ [K3: int] :
          ( if_int @ ( K3 = zero_zero_int ) @ zero_zero_int
          @ ( if_int @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_int @ ( ring_1_of_int_int @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_int
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_int ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5791_of__int__code__if,axiom,
    ( ring_17405671764205052669omplex
    = ( ^ [K3: int] :
          ( if_complex @ ( K3 = zero_zero_int ) @ zero_zero_complex
          @ ( if_complex @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_complex
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_complex ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5792_of__int__code__if,axiom,
    ( ring_1_of_int_rat
    = ( ^ [K3: int] :
          ( if_rat @ ( K3 = zero_zero_int ) @ zero_zero_rat
          @ ( if_rat @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_rat
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_rat ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5793_of__int__code__if,axiom,
    ( ring_18347121197199848620nteger
    = ( ^ [K3: int] :
          ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
          @ ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_5794_int__ge__less__than2__def,axiom,
    ( int_ge_less_than2
    = ( ^ [D4: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z5: int,Z6: int] :
                ( ( ord_less_eq_int @ D4 @ Z6 )
                & ( ord_less_int @ Z5 @ Z6 ) ) ) ) ) ) ).

% int_ge_less_than2_def
thf(fact_5795_int__ge__less__than__def,axiom,
    ( int_ge_less_than
    = ( ^ [D4: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z5: int,Z6: int] :
                ( ( ord_less_eq_int @ D4 @ Z5 )
                & ( ord_less_int @ Z5 @ Z6 ) ) ) ) ) ) ).

% int_ge_less_than_def
thf(fact_5796_dbl__dec__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K2 ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K2 ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5797_dbl__dec__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K2 ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5798_dbl__dec__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K2 ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K2 ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5799_dbl__dec__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K2 ) ) )
      = ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K2 ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5800_dbl__dec__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K2 ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K2 ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_5801_dbl__inc__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K2 ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K2 ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5802_dbl__inc__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K2 ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5803_dbl__inc__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K2 ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K2 ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5804_dbl__inc__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K2 ) ) )
      = ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K2 ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5805_dbl__inc__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K2 ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K2 ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_5806_of__int__le__iff,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_eq_int @ W @ Z3 ) ) ).

% of_int_le_iff
thf(fact_5807_of__int__le__iff,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_eq_int @ W @ Z3 ) ) ).

% of_int_le_iff
thf(fact_5808_of__int__le__iff,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_eq_int @ W @ Z3 ) ) ).

% of_int_le_iff
thf(fact_5809_of__int__numeral,axiom,
    ! [K2: num] :
      ( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K2 ) )
      = ( numera6690914467698888265omplex @ K2 ) ) ).

% of_int_numeral
thf(fact_5810_of__int__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_real @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_real @ K2 ) ) ).

% of_int_numeral
thf(fact_5811_of__int__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_rat @ K2 ) ) ).

% of_int_numeral
thf(fact_5812_of__int__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_int @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_int @ K2 ) ) ).

% of_int_numeral
thf(fact_5813_of__int__eq__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ( ring_17405671764205052669omplex @ Z3 )
        = ( numera6690914467698888265omplex @ N ) )
      = ( Z3
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5814_of__int__eq__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ( ring_1_of_int_real @ Z3 )
        = ( numeral_numeral_real @ N ) )
      = ( Z3
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5815_of__int__eq__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ( ring_1_of_int_rat @ Z3 )
        = ( numeral_numeral_rat @ N ) )
      = ( Z3
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5816_of__int__eq__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ( ring_1_of_int_int @ Z3 )
        = ( numeral_numeral_int @ N ) )
      = ( Z3
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_5817_of__int__less__iff,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_int @ W @ Z3 ) ) ).

% of_int_less_iff
thf(fact_5818_of__int__less__iff,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_int @ W @ Z3 ) ) ).

% of_int_less_iff
thf(fact_5819_of__int__less__iff,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_int @ W @ Z3 ) ) ).

% of_int_less_iff
thf(fact_5820_of__int__1,axiom,
    ( ( ring_17405671764205052669omplex @ one_one_int )
    = one_one_complex ) ).

% of_int_1
thf(fact_5821_of__int__1,axiom,
    ( ( ring_1_of_int_int @ one_one_int )
    = one_one_int ) ).

% of_int_1
thf(fact_5822_of__int__1,axiom,
    ( ( ring_1_of_int_real @ one_one_int )
    = one_one_real ) ).

% of_int_1
thf(fact_5823_of__int__1,axiom,
    ( ( ring_1_of_int_rat @ one_one_int )
    = one_one_rat ) ).

% of_int_1
thf(fact_5824_of__int__eq__1__iff,axiom,
    ! [Z3: int] :
      ( ( ( ring_17405671764205052669omplex @ Z3 )
        = one_one_complex )
      = ( Z3 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_5825_of__int__eq__1__iff,axiom,
    ! [Z3: int] :
      ( ( ( ring_1_of_int_int @ Z3 )
        = one_one_int )
      = ( Z3 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_5826_of__int__eq__1__iff,axiom,
    ! [Z3: int] :
      ( ( ( ring_1_of_int_real @ Z3 )
        = one_one_real )
      = ( Z3 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_5827_of__int__eq__1__iff,axiom,
    ! [Z3: int] :
      ( ( ( ring_1_of_int_rat @ Z3 )
        = one_one_rat )
      = ( Z3 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_5828_of__int__mult,axiom,
    ! [W: int,Z3: int] :
      ( ( ring_1_of_int_real @ ( times_times_int @ W @ Z3 ) )
      = ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z3 ) ) ) ).

% of_int_mult
thf(fact_5829_of__int__mult,axiom,
    ! [W: int,Z3: int] :
      ( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z3 ) )
      = ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z3 ) ) ) ).

% of_int_mult
thf(fact_5830_of__int__mult,axiom,
    ! [W: int,Z3: int] :
      ( ( ring_1_of_int_int @ ( times_times_int @ W @ Z3 ) )
      = ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z3 ) ) ) ).

% of_int_mult
thf(fact_5831_of__int__add,axiom,
    ! [W: int,Z3: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z3 ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z3 ) ) ) ).

% of_int_add
thf(fact_5832_of__int__add,axiom,
    ! [W: int,Z3: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z3 ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z3 ) ) ) ).

% of_int_add
thf(fact_5833_of__int__add,axiom,
    ! [W: int,Z3: int] :
      ( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z3 ) )
      = ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z3 ) ) ) ).

% of_int_add
thf(fact_5834_of__int__power,axiom,
    ! [Z3: int,N: nat] :
      ( ( ring_1_of_int_rat @ ( power_power_int @ Z3 @ N ) )
      = ( power_power_rat @ ( ring_1_of_int_rat @ Z3 ) @ N ) ) ).

% of_int_power
thf(fact_5835_of__int__power,axiom,
    ! [Z3: int,N: nat] :
      ( ( ring_1_of_int_real @ ( power_power_int @ Z3 @ N ) )
      = ( power_power_real @ ( ring_1_of_int_real @ Z3 ) @ N ) ) ).

% of_int_power
thf(fact_5836_of__int__power,axiom,
    ! [Z3: int,N: nat] :
      ( ( ring_1_of_int_int @ ( power_power_int @ Z3 @ N ) )
      = ( power_power_int @ ( ring_1_of_int_int @ Z3 ) @ N ) ) ).

% of_int_power
thf(fact_5837_of__int__power,axiom,
    ! [Z3: int,N: nat] :
      ( ( ring_17405671764205052669omplex @ ( power_power_int @ Z3 @ N ) )
      = ( power_power_complex @ ( ring_17405671764205052669omplex @ Z3 ) @ N ) ) ).

% of_int_power
thf(fact_5838_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
        = ( ring_1_of_int_rat @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5839_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
        = ( ring_1_of_int_real @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5840_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
        = ( ring_1_of_int_int @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5841_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
        = ( ring_17405671764205052669omplex @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_5842_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_rat @ X )
        = ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_5843_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_real @ X )
        = ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_5844_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_int @ X )
        = ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_5845_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_17405671764205052669omplex @ X )
        = ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_5846_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
    = one_one_complex ) ).

% dbl_inc_simps(2)
thf(fact_5847_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_5848_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
    = one_one_rat ) ).

% dbl_inc_simps(2)
thf(fact_5849_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_5850_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_5851_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_5852_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_inc_simps(4)
thf(fact_5853_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_inc_simps(4)
thf(fact_5854_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_inc_simps(4)
thf(fact_5855_dbl__inc__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K2 ) )
      = ( numera6690914467698888265omplex @ ( bit1 @ K2 ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5856_dbl__inc__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K2 ) )
      = ( numeral_numeral_real @ ( bit1 @ K2 ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5857_dbl__inc__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K2 ) )
      = ( numeral_numeral_rat @ ( bit1 @ K2 ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5858_dbl__inc__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5859_dbl__dec__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K2 ) )
      = ( numera6690914467698888265omplex @ ( bitM @ K2 ) ) ) ).

% dbl_dec_simps(5)
thf(fact_5860_dbl__dec__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K2 ) )
      = ( numeral_numeral_real @ ( bitM @ K2 ) ) ) ).

% dbl_dec_simps(5)
thf(fact_5861_dbl__dec__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K2 ) )
      = ( numeral_numeral_rat @ ( bitM @ K2 ) ) ) ).

% dbl_dec_simps(5)
thf(fact_5862_dbl__dec__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_int @ ( bitM @ K2 ) ) ) ).

% dbl_dec_simps(5)
thf(fact_5863_pred__numeral__simps_I2_J,axiom,
    ! [K2: num] :
      ( ( pred_numeral @ ( bit0 @ K2 ) )
      = ( numeral_numeral_nat @ ( bitM @ K2 ) ) ) ).

% pred_numeral_simps(2)
thf(fact_5864_of__int__0__le__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z3 ) ) ).

% of_int_0_le_iff
thf(fact_5865_of__int__0__le__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z3 ) ) ).

% of_int_0_le_iff
thf(fact_5866_of__int__0__le__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z3 ) ) ).

% of_int_0_le_iff
thf(fact_5867_of__int__le__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ zero_zero_real )
      = ( ord_less_eq_int @ Z3 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_5868_of__int__le__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ zero_zero_rat )
      = ( ord_less_eq_int @ Z3 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_5869_of__int__le__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z3 ) @ zero_zero_int )
      = ( ord_less_eq_int @ Z3 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_5870_of__int__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ zero_zero_real )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_5871_of__int__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ zero_zero_rat )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_5872_of__int__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z3 ) @ zero_zero_int )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_5873_of__int__0__less__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% of_int_0_less_iff
thf(fact_5874_of__int__0__less__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% of_int_0_less_iff
thf(fact_5875_of__int__0__less__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% of_int_0_less_iff
thf(fact_5876_of__int__le__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_int @ Z3 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_5877_of__int__le__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_int @ Z3 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_5878_of__int__le__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z3 ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_int @ Z3 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_5879_of__int__numeral__le__iff,axiom,
    ! [N: num,Z3: int] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z3 ) ) ).

% of_int_numeral_le_iff
thf(fact_5880_of__int__numeral__le__iff,axiom,
    ! [N: num,Z3: int] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z3 ) ) ).

% of_int_numeral_le_iff
thf(fact_5881_of__int__numeral__le__iff,axiom,
    ! [N: num,Z3: int] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z3 ) ) ).

% of_int_numeral_le_iff
thf(fact_5882_of__int__less__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_int @ Z3 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_5883_of__int__less__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_int @ Z3 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_5884_of__int__less__numeral__iff,axiom,
    ! [Z3: int,N: num] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z3 ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_int @ Z3 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_5885_of__int__numeral__less__iff,axiom,
    ! [N: num,Z3: int] :
      ( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z3 ) ) ).

% of_int_numeral_less_iff
thf(fact_5886_of__int__numeral__less__iff,axiom,
    ! [N: num,Z3: int] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z3 ) ) ).

% of_int_numeral_less_iff
thf(fact_5887_of__int__numeral__less__iff,axiom,
    ! [N: num,Z3: int] :
      ( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z3 ) ) ).

% of_int_numeral_less_iff
thf(fact_5888_of__int__1__le__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_eq_int @ one_one_int @ Z3 ) ) ).

% of_int_1_le_iff
thf(fact_5889_of__int__1__le__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_eq_int @ one_one_int @ Z3 ) ) ).

% of_int_1_le_iff
thf(fact_5890_of__int__1__le__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_eq_int @ one_one_int @ Z3 ) ) ).

% of_int_1_le_iff
thf(fact_5891_of__int__le__1__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real )
      = ( ord_less_eq_int @ Z3 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_5892_of__int__le__1__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat )
      = ( ord_less_eq_int @ Z3 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_5893_of__int__le__1__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z3 ) @ one_one_int )
      = ( ord_less_eq_int @ Z3 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_5894_of__int__less__1__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real )
      = ( ord_less_int @ Z3 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_5895_of__int__less__1__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat )
      = ( ord_less_int @ Z3 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_5896_of__int__less__1__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z3 ) @ one_one_int )
      = ( ord_less_int @ Z3 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_5897_of__int__1__less__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z3 ) )
      = ( ord_less_int @ one_one_int @ Z3 ) ) ).

% of_int_1_less_iff
thf(fact_5898_of__int__1__less__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z3 ) )
      = ( ord_less_int @ one_one_int @ Z3 ) ) ).

% of_int_1_less_iff
thf(fact_5899_of__int__1__less__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z3 ) )
      = ( ord_less_int @ one_one_int @ Z3 ) ) ).

% of_int_1_less_iff
thf(fact_5900_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_5901_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_5902_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_5903_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_5904_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_5905_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ X ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_5906_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
        = ( ring_17405671764205052669omplex @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_5907_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
        = ( ring_1_of_int_real @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_5908_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
        = ( ring_1_of_int_rat @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_5909_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = ( ring_1_of_int_int @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_5910_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y2 )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_5911_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y2 )
        = ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_5912_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y2 )
        = ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_5913_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y2 )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_5914_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_5915_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_5916_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_5917_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ X ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_5918_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ X ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_5919_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ X ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_5920_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_5921_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_5922_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_5923_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_5924_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_5925_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_5926_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_5927_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_5928_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_5929_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_5930_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_5931_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_5932_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N )
        = ( ring_1_of_int_real @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5933_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = ( ring_1_of_int_int @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5934_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X ) ) @ N )
        = ( ring_17405671764205052669omplex @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5935_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N )
        = ( ring_1_of_int_rat @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5936_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N )
        = ( ring_18347121197199848620nteger @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5937_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y2 )
        = ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5938_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y2 )
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5939_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y2 )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5940_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y2 )
        = ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5941_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( ring_18347121197199848620nteger @ Y2 )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5942_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5943_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5944_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5945_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5946_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5947_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5948_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5949_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5950_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5951_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5952_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5953_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5954_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5955_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5956_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5957_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5958_mult__of__int__commute,axiom,
    ! [X: int,Y2: real] :
      ( ( times_times_real @ ( ring_1_of_int_real @ X ) @ Y2 )
      = ( times_times_real @ Y2 @ ( ring_1_of_int_real @ X ) ) ) ).

% mult_of_int_commute
thf(fact_5959_mult__of__int__commute,axiom,
    ! [X: int,Y2: rat] :
      ( ( times_times_rat @ ( ring_1_of_int_rat @ X ) @ Y2 )
      = ( times_times_rat @ Y2 @ ( ring_1_of_int_rat @ X ) ) ) ).

% mult_of_int_commute
thf(fact_5960_mult__of__int__commute,axiom,
    ! [X: int,Y2: int] :
      ( ( times_times_int @ ( ring_1_of_int_int @ X ) @ Y2 )
      = ( times_times_int @ Y2 @ ( ring_1_of_int_int @ X ) ) ) ).

% mult_of_int_commute
thf(fact_5961_semiring__norm_I26_J,axiom,
    ( ( bitM @ one )
    = one ) ).

% semiring_norm(26)
thf(fact_5962_take__bit__of__int,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( ring_1_of_int_int @ K2 ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% take_bit_of_int
thf(fact_5963_semiring__norm_I28_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit1 @ N ) )
      = ( bit1 @ ( bit0 @ N ) ) ) ).

% semiring_norm(28)
thf(fact_5964_semiring__norm_I27_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit0 @ N ) )
      = ( bit1 @ ( bitM @ N ) ) ) ).

% semiring_norm(27)
thf(fact_5965_inc__BitM__eq,axiom,
    ! [N: num] :
      ( ( inc @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% inc_BitM_eq
thf(fact_5966_BitM__inc__eq,axiom,
    ! [N: num] :
      ( ( bitM @ ( inc @ N ) )
      = ( bit1 @ N ) ) ).

% BitM_inc_eq
thf(fact_5967_real__of__int__div4,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).

% real_of_int_div4
thf(fact_5968_real__of__int__div,axiom,
    ! [D: int,N: int] :
      ( ( dvd_dvd_int @ D @ N )
     => ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D ) )
        = ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div
thf(fact_5969_eval__nat__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).

% eval_nat_numeral(2)
thf(fact_5970_BitM__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ ( bitM @ N ) @ one )
      = ( bit0 @ N ) ) ).

% BitM_plus_one
thf(fact_5971_one__plus__BitM,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% one_plus_BitM
thf(fact_5972_of__int__nonneg,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z3 ) ) ) ).

% of_int_nonneg
thf(fact_5973_of__int__nonneg,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z3 ) ) ) ).

% of_int_nonneg
thf(fact_5974_of__int__nonneg,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z3 ) ) ) ).

% of_int_nonneg
thf(fact_5975_of__int__pos,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z3 ) ) ) ).

% of_int_pos
thf(fact_5976_of__int__pos,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z3 ) ) ) ).

% of_int_pos
thf(fact_5977_of__int__pos,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z3 ) ) ) ).

% of_int_pos
thf(fact_5978_of__int__neg__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ K2 ) ) ) ).

% of_int_neg_numeral
thf(fact_5979_of__int__neg__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) ).

% of_int_neg_numeral
thf(fact_5980_of__int__neg__numeral,axiom,
    ! [K2: num] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K2 ) ) ) ).

% of_int_neg_numeral
thf(fact_5981_of__int__neg__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ K2 ) ) ) ).

% of_int_neg_numeral
thf(fact_5982_of__int__neg__numeral,axiom,
    ! [K2: num] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K2 ) ) ) ).

% of_int_neg_numeral
thf(fact_5983_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N2: int,M2: int] : ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M2 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_5984_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N2: int,M2: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) @ ( ring_1_of_int_real @ M2 ) ) ) ) ).

% int_less_real_le
thf(fact_5985_dbl__inc__def,axiom,
    ( neg_nu8557863876264182079omplex
    = ( ^ [X4: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X4 @ X4 ) @ one_one_complex ) ) ) ).

% dbl_inc_def
thf(fact_5986_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X4: real] : ( plus_plus_real @ ( plus_plus_real @ X4 @ X4 ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_5987_dbl__inc__def,axiom,
    ( neg_nu5219082963157363817nc_rat
    = ( ^ [X4: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X4 @ X4 ) @ one_one_rat ) ) ) ).

% dbl_inc_def
thf(fact_5988_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X4: int] : ( plus_plus_int @ ( plus_plus_int @ X4 @ X4 ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_5989_real__of__int__div__aux,axiom,
    ! [X: int,D: int] :
      ( ( divide_divide_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ D ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div_aux
thf(fact_5990_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bitM @ N ) )
      = ( minus_minus_complex @ ( numera6690914467698888265omplex @ ( bit0 @ N ) ) @ one_one_complex ) ) ).

% numeral_BitM
thf(fact_5991_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bitM @ N ) )
      = ( minus_minus_real @ ( numeral_numeral_real @ ( bit0 @ N ) ) @ one_one_real ) ) ).

% numeral_BitM
thf(fact_5992_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bitM @ N ) )
      = ( minus_minus_rat @ ( numeral_numeral_rat @ ( bit0 @ N ) ) @ one_one_rat ) ) ).

% numeral_BitM
thf(fact_5993_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bitM @ N ) )
      = ( minus_minus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ one_one_int ) ) ).

% numeral_BitM
thf(fact_5994_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_5995_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_5996_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_5997_real__of__int__div2,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) ) ).

% real_of_int_div2
thf(fact_5998_real__of__int__div3,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) @ one_one_real ) ).

% real_of_int_div3
thf(fact_5999_even__of__int__iff,axiom,
    ! [K2: int] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ K2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) ).

% even_of_int_iff
thf(fact_6000_even__of__int__iff,axiom,
    ! [K2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) ).

% even_of_int_iff
thf(fact_6001_floor__exists,axiom,
    ! [X: real] :
    ? [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_6002_floor__exists,axiom,
    ! [X: rat] :
    ? [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X )
      & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_6003_floor__exists1,axiom,
    ! [X: real] :
    ? [X5: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X5 ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ X5 @ one_one_int ) ) )
      & ! [Y6: int] :
          ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y6 ) @ X )
            & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Y6 @ one_one_int ) ) ) )
         => ( Y6 = X5 ) ) ) ).

% floor_exists1
thf(fact_6004_floor__exists1,axiom,
    ! [X: rat] :
    ? [X5: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X5 ) @ X )
      & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ X5 @ one_one_int ) ) )
      & ! [Y6: int] :
          ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y6 ) @ X )
            & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y6 @ one_one_int ) ) ) )
         => ( Y6 = X5 ) ) ) ).

% floor_exists1
thf(fact_6005_pred__subset__eq2,axiom,
    ! [R4: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
      ( ( ord_le2162486998276636481er_o_o
        @ ^ [X4: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X4 @ Y ) @ R4 )
        @ ^ [X4: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X4 @ Y ) @ S3 ) )
      = ( ord_le8980329558974975238eger_o @ R4 @ S3 ) ) ).

% pred_subset_eq2
thf(fact_6006_pred__subset__eq2,axiom,
    ! [R4: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
      ( ( ord_le6124364862034508274_num_o
        @ ^ [X4: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X4 @ Y ) @ R4 )
        @ ^ [X4: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X4 @ Y ) @ S3 ) )
      = ( ord_le880128212290418581um_num @ R4 @ S3 ) ) ).

% pred_subset_eq2
thf(fact_6007_pred__subset__eq2,axiom,
    ! [R4: set_Pr6200539531224447659at_num,S3: set_Pr6200539531224447659at_num] :
      ( ( ord_le3404735783095501756_num_o
        @ ^ [X4: nat,Y: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X4 @ Y ) @ R4 )
        @ ^ [X4: nat,Y: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X4 @ Y ) @ S3 ) )
      = ( ord_le8085105155179020875at_num @ R4 @ S3 ) ) ).

% pred_subset_eq2
thf(fact_6008_pred__subset__eq2,axiom,
    ! [R4: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
      ( ( ord_le2646555220125990790_nat_o
        @ ^ [X4: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X4 @ Y ) @ R4 )
        @ ^ [X4: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X4 @ Y ) @ S3 ) )
      = ( ord_le3146513528884898305at_nat @ R4 @ S3 ) ) ).

% pred_subset_eq2
thf(fact_6009_pred__subset__eq2,axiom,
    ! [R4: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
      ( ( ord_le6741204236512500942_int_o
        @ ^ [X4: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X4 @ Y ) @ R4 )
        @ ^ [X4: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X4 @ Y ) @ S3 ) )
      = ( ord_le2843351958646193337nt_int @ R4 @ S3 ) ) ).

% pred_subset_eq2
thf(fact_6010_accp__subset,axiom,
    ! [R1: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o,R22: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o] :
      ( ( ord_le1077754993875142464_nat_o @ R1 @ R22 )
     => ( ord_le7812727212727832188_nat_o @ ( accp_P2887432264394892906BT_nat @ R22 ) @ ( accp_P2887432264394892906BT_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_6011_accp__subset,axiom,
    ! [R1: product_prod_num_num > product_prod_num_num > $o,R22: product_prod_num_num > product_prod_num_num > $o] :
      ( ( ord_le2556027599737686990_num_o @ R1 @ R22 )
     => ( ord_le2239182809043710856_num_o @ ( accp_P3113834385874906142um_num @ R22 ) @ ( accp_P3113834385874906142um_num @ R1 ) ) ) ).

% accp_subset
thf(fact_6012_accp__subset,axiom,
    ! [R1: product_prod_nat_nat > product_prod_nat_nat > $o,R22: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( ord_le5604493270027003598_nat_o @ R1 @ R22 )
     => ( ord_le704812498762024988_nat_o @ ( accp_P4275260045618599050at_nat @ R22 ) @ ( accp_P4275260045618599050at_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_6013_accp__subset,axiom,
    ! [R1: product_prod_int_int > product_prod_int_int > $o,R22: product_prod_int_int > product_prod_int_int > $o] :
      ( ( ord_le1598226405681992910_int_o @ R1 @ R22 )
     => ( ord_le8369615600986905444_int_o @ ( accp_P1096762738010456898nt_int @ R22 ) @ ( accp_P1096762738010456898nt_int @ R1 ) ) ) ).

% accp_subset
thf(fact_6014_accp__subset,axiom,
    ! [R1: nat > nat > $o,R22: nat > nat > $o] :
      ( ( ord_le2646555220125990790_nat_o @ R1 @ R22 )
     => ( ord_less_eq_nat_o @ ( accp_nat @ R22 ) @ ( accp_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_6015_signed__take__bit__eq__take__bit__minus,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ K3 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N2 ) ) ) ) ) ) ).

% signed_take_bit_eq_take_bit_minus
thf(fact_6016_mask__numeral,axiom,
    ! [N: num] :
      ( ( bit_se2002935070580805687sk_nat @ ( numeral_numeral_nat @ N ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ ( pred_numeral @ N ) ) ) ) ) ).

% mask_numeral
thf(fact_6017_mask__numeral,axiom,
    ! [N: num] :
      ( ( bit_se2000444600071755411sk_int @ ( numeral_numeral_nat @ N ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ ( pred_numeral @ N ) ) ) ) ) ).

% mask_numeral
thf(fact_6018_mask__nat__positive__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% mask_nat_positive_iff
thf(fact_6019_mask__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% mask_0
thf(fact_6020_mask__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
    = zero_zero_int ) ).

% mask_0
thf(fact_6021_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2002935070580805687sk_nat @ N )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_6022_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2000444600071755411sk_int @ N )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_6023_bit__numeral__Bit0__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N ) ) ).

% bit_numeral_Bit0_Suc_iff
thf(fact_6024_bit__numeral__Bit0__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_Bit0_Suc_iff
thf(fact_6025_bit__numeral__Bit1__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N ) ) ).

% bit_numeral_Bit1_Suc_iff
thf(fact_6026_bit__numeral__Bit1__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_Bit1_Suc_iff
thf(fact_6027_mask__Suc__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% mask_Suc_0
thf(fact_6028_mask__Suc__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% mask_Suc_0
thf(fact_6029_take__bit__minus__one__eq__mask,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_se2119862282449309892nteger @ N ) ) ).

% take_bit_minus_one_eq_mask
thf(fact_6030_take__bit__minus__one__eq__mask,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% take_bit_minus_one_eq_mask
thf(fact_6031_signed__take__bit__nonnegative__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) )
      = ( ~ ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) ).

% signed_take_bit_nonnegative_iff
thf(fact_6032_signed__take__bit__negative__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ zero_zero_int )
      = ( bit_se1146084159140164899it_int @ K2 @ N ) ) ).

% signed_take_bit_negative_iff
thf(fact_6033_bit__numeral__simps_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(2)
thf(fact_6034_bit__numeral__simps_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit0 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(2)
thf(fact_6035_bit__minus__numeral__Bit0__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).

% bit_minus_numeral_Bit0_Suc_iff
thf(fact_6036_bit__numeral__simps_I3_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(3)
thf(fact_6037_bit__numeral__simps_I3_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit1 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(3)
thf(fact_6038_bit__minus__numeral__Bit1__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).

% bit_minus_numeral_Bit1_Suc_iff
thf(fact_6039_bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se9216721137139052372nteger @ A @ zero_zero_nat )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_0
thf(fact_6040_bit__0,axiom,
    ! [A: int] :
      ( ( bit_se1146084159140164899it_int @ A @ zero_zero_nat )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_0
thf(fact_6041_bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se1148574629649215175it_nat @ A @ zero_zero_nat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_0
thf(fact_6042_bit__minus__numeral__int_I1_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).

% bit_minus_numeral_int(1)
thf(fact_6043_bit__minus__numeral__int_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).

% bit_minus_numeral_int(2)
thf(fact_6044_bit__mod__2__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( bit_se9216721137139052372nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6045_bit__mod__2__iff,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6046_bit__mod__2__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6047_of__int__mask__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_int @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_int_mask_eq
thf(fact_6048_bit__numeral__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_iff
thf(fact_6049_bit__numeral__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_iff
thf(fact_6050_bit__disjunctive__add__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( bit_se1146084159140164899it_int @ A @ N3 )
          | ~ ( bit_se1146084159140164899it_int @ B @ N3 ) )
     => ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ A @ B ) @ N )
        = ( ( bit_se1146084159140164899it_int @ A @ N )
          | ( bit_se1146084159140164899it_int @ B @ N ) ) ) ) ).

% bit_disjunctive_add_iff
thf(fact_6051_bit__disjunctive__add__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( bit_se1148574629649215175it_nat @ A @ N3 )
          | ~ ( bit_se1148574629649215175it_nat @ B @ N3 ) )
     => ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ A @ B ) @ N )
        = ( ( bit_se1148574629649215175it_nat @ A @ N )
          | ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ) ).

% bit_disjunctive_add_iff
thf(fact_6052_bit__unset__bit__iff,axiom,
    ! [M: nat,A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se4203085406695923979it_int @ M @ A ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
        & ( M != N ) ) ) ).

% bit_unset_bit_iff
thf(fact_6053_bit__unset__bit__iff,axiom,
    ! [M: nat,A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se4205575877204974255it_nat @ M @ A ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
        & ( M != N ) ) ) ).

% bit_unset_bit_iff
thf(fact_6054_less__eq__mask,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).

% less_eq_mask
thf(fact_6055_not__bit__1__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1146084159140164899it_int @ one_one_int @ ( suc @ N ) ) ).

% not_bit_1_Suc
thf(fact_6056_not__bit__1__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1148574629649215175it_nat @ one_one_nat @ ( suc @ N ) ) ).

% not_bit_1_Suc
thf(fact_6057_bit__1__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1146084159140164899it_int @ one_one_int @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_1_iff
thf(fact_6058_bit__1__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1148574629649215175it_nat @ one_one_nat @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_1_iff
thf(fact_6059_bit__numeral__simps_I1_J,axiom,
    ! [N: num] :
      ~ ( bit_se1146084159140164899it_int @ one_one_int @ ( numeral_numeral_nat @ N ) ) ).

% bit_numeral_simps(1)
thf(fact_6060_bit__numeral__simps_I1_J,axiom,
    ! [N: num] :
      ~ ( bit_se1148574629649215175it_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% bit_numeral_simps(1)
thf(fact_6061_bit__take__bit__iff,axiom,
    ! [M: nat,A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se2923211474154528505it_int @ M @ A ) @ N )
      = ( ( ord_less_nat @ N @ M )
        & ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% bit_take_bit_iff
thf(fact_6062_bit__take__bit__iff,axiom,
    ! [M: nat,A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se2925701944663578781it_nat @ M @ A ) @ N )
      = ( ( ord_less_nat @ N @ M )
        & ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).

% bit_take_bit_iff
thf(fact_6063_bit__of__bool__iff,axiom,
    ! [B: $o,N: nat] :
      ( ( bit_se9216721137139052372nteger @ ( zero_n356916108424825756nteger @ B ) @ N )
      = ( B
        & ( N = zero_zero_nat ) ) ) ).

% bit_of_bool_iff
thf(fact_6064_bit__of__bool__iff,axiom,
    ! [B: $o,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( zero_n2684676970156552555ol_int @ B ) @ N )
      = ( B
        & ( N = zero_zero_nat ) ) ) ).

% bit_of_bool_iff
thf(fact_6065_bit__of__bool__iff,axiom,
    ! [B: $o,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ N )
      = ( B
        & ( N = zero_zero_nat ) ) ) ).

% bit_of_bool_iff
thf(fact_6066_signed__take__bit__eq__if__positive,axiom,
    ! [A: int,N: nat] :
      ( ~ ( bit_se1146084159140164899it_int @ A @ N )
     => ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ A ) ) ) ).

% signed_take_bit_eq_if_positive
thf(fact_6067_mask__nonnegative__int,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).

% mask_nonnegative_int
thf(fact_6068_not__mask__negative__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_6069_bit__not__int__iff_H,axiom,
    ! [K2: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K2 ) @ one_one_int ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) ).

% bit_not_int_iff'
thf(fact_6070_flip__bit__eq__if,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N2: nat,A4: int] : ( if_nat_int_int @ ( bit_se1146084159140164899it_int @ A4 @ N2 ) @ bit_se4203085406695923979it_int @ bit_se7879613467334960850it_int @ N2 @ A4 ) ) ) ).

% flip_bit_eq_if
thf(fact_6071_flip__bit__eq__if,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [N2: nat,A4: nat] : ( if_nat_nat_nat @ ( bit_se1148574629649215175it_nat @ A4 @ N2 ) @ bit_se4205575877204974255it_nat @ bit_se7882103937844011126it_nat @ N2 @ A4 ) ) ) ).

% flip_bit_eq_if
thf(fact_6072_less__mask,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% less_mask
thf(fact_6073_bit__imp__take__bit__positive,axiom,
    ! [N: nat,M: nat,K2: int] :
      ( ( ord_less_nat @ N @ M )
     => ( ( bit_se1146084159140164899it_int @ K2 @ N )
       => ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K2 ) ) ) ) ).

% bit_imp_take_bit_positive
thf(fact_6074_bit__concat__bit__iff,axiom,
    ! [M: nat,K2: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K2 @ L ) @ N )
      = ( ( ( ord_less_nat @ N @ M )
          & ( bit_se1146084159140164899it_int @ K2 @ N ) )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( bit_se1146084159140164899it_int @ L @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% bit_concat_bit_iff
thf(fact_6075_signed__take__bit__eq__concat__bit,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,K3: int] : ( bit_concat_bit @ N2 @ K3 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N2 ) ) ) ) ) ) ).

% signed_take_bit_eq_concat_bit
thf(fact_6076_exp__eq__0__imp__not__bit,axiom,
    ! [N: nat,A: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
        = zero_zero_int )
     => ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ).

% exp_eq_0_imp_not_bit
thf(fact_6077_exp__eq__0__imp__not__bit,axiom,
    ! [N: nat,A: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        = zero_zero_nat )
     => ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ).

% exp_eq_0_imp_not_bit
thf(fact_6078_bit__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ A @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ N ) ) ).

% bit_Suc
thf(fact_6079_bit__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ A @ ( suc @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N ) ) ).

% bit_Suc
thf(fact_6080_stable__imp__bit__iff__odd,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se9216721137139052372nteger @ A @ N )
        = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% stable_imp_bit_iff_odd
thf(fact_6081_stable__imp__bit__iff__odd,axiom,
    ! [A: int,N: nat] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se1146084159140164899it_int @ A @ N )
        = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% stable_imp_bit_iff_odd
thf(fact_6082_stable__imp__bit__iff__odd,axiom,
    ! [A: nat,N: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se1148574629649215175it_nat @ A @ N )
        = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% stable_imp_bit_iff_odd
thf(fact_6083_bit__iff__idd__imp__stable,axiom,
    ! [A: code_integer] :
      ( ! [N3: nat] :
          ( ( bit_se9216721137139052372nteger @ A @ N3 )
          = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
     => ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A ) ) ).

% bit_iff_idd_imp_stable
thf(fact_6084_bit__iff__idd__imp__stable,axiom,
    ! [A: int] :
      ( ! [N3: nat] :
          ( ( bit_se1146084159140164899it_int @ A @ N3 )
          = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
     => ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A ) ) ).

% bit_iff_idd_imp_stable
thf(fact_6085_bit__iff__idd__imp__stable,axiom,
    ! [A: nat] :
      ( ! [N3: nat] :
          ( ( bit_se1148574629649215175it_nat @ A @ N3 )
          = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
     => ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A ) ) ).

% bit_iff_idd_imp_stable
thf(fact_6086_pred__equals__eq2,axiom,
    ! [R4: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
      ( ( ( ^ [X4: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X4 @ Y ) @ R4 ) )
        = ( ^ [X4: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X4 @ Y ) @ S3 ) ) )
      = ( R4 = S3 ) ) ).

% pred_equals_eq2
thf(fact_6087_pred__equals__eq2,axiom,
    ! [R4: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
      ( ( ( ^ [X4: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X4 @ Y ) @ R4 ) )
        = ( ^ [X4: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X4 @ Y ) @ S3 ) ) )
      = ( R4 = S3 ) ) ).

% pred_equals_eq2
thf(fact_6088_pred__equals__eq2,axiom,
    ! [R4: set_Pr6200539531224447659at_num,S3: set_Pr6200539531224447659at_num] :
      ( ( ( ^ [X4: nat,Y: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X4 @ Y ) @ R4 ) )
        = ( ^ [X4: nat,Y: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X4 @ Y ) @ S3 ) ) )
      = ( R4 = S3 ) ) ).

% pred_equals_eq2
thf(fact_6089_pred__equals__eq2,axiom,
    ! [R4: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
      ( ( ( ^ [X4: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X4 @ Y ) @ R4 ) )
        = ( ^ [X4: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X4 @ Y ) @ S3 ) ) )
      = ( R4 = S3 ) ) ).

% pred_equals_eq2
thf(fact_6090_pred__equals__eq2,axiom,
    ! [R4: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
      ( ( ( ^ [X4: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X4 @ Y ) @ R4 ) )
        = ( ^ [X4: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X4 @ Y ) @ S3 ) ) )
      = ( R4 = S3 ) ) ).

% pred_equals_eq2
thf(fact_6091_take__bit__eq__mask__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K2 )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K2 @ one_one_int ) )
        = zero_zero_int ) ) ).

% take_bit_eq_mask_iff
thf(fact_6092_int__bit__bound,axiom,
    ! [K2: int] :
      ~ ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ N3 @ M3 )
             => ( ( bit_se1146084159140164899it_int @ K2 @ M3 )
                = ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) )
         => ~ ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( bit_se1146084159140164899it_int @ K2 @ ( minus_minus_nat @ N3 @ one_one_nat ) )
                = ( ~ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) ) ) ) ).

% int_bit_bound
thf(fact_6093_bit__iff__odd,axiom,
    ( bit_se9216721137139052372nteger
    = ( ^ [A4: code_integer,N2: nat] :
          ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A4 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_iff_odd
thf(fact_6094_bit__iff__odd,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A4: int,N2: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A4 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_iff_odd
thf(fact_6095_bit__iff__odd,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A4: nat,N2: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_iff_odd
thf(fact_6096_Suc__mask__eq__exp,axiom,
    ! [N: nat] :
      ( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_mask_eq_exp
thf(fact_6097_mask__nat__less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% mask_nat_less_exp
thf(fact_6098_bit__int__def,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [K3: int,N2: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_int_def
thf(fact_6099_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2119862282449309892nteger @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_6100_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_6101_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_6102_even__bit__succ__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se9216721137139052372nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ N )
        = ( ( bit_se9216721137139052372nteger @ A @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% even_bit_succ_iff
thf(fact_6103_even__bit__succ__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ one_one_int @ A ) @ N )
        = ( ( bit_se1146084159140164899it_int @ A @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% even_bit_succ_iff
thf(fact_6104_even__bit__succ__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ N )
        = ( ( bit_se1148574629649215175it_nat @ A @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% even_bit_succ_iff
thf(fact_6105_odd__bit__iff__bit__pred,axiom,
    ! [A: code_integer,N: nat] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se9216721137139052372nteger @ A @ N )
        = ( ( bit_se9216721137139052372nteger @ ( minus_8373710615458151222nteger @ A @ one_one_Code_integer ) @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% odd_bit_iff_bit_pred
thf(fact_6106_odd__bit__iff__bit__pred,axiom,
    ! [A: int,N: nat] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1146084159140164899it_int @ A @ N )
        = ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ A @ one_one_int ) @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% odd_bit_iff_bit_pred
thf(fact_6107_odd__bit__iff__bit__pred,axiom,
    ! [A: nat,N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1148574629649215175it_nat @ A @ N )
        = ( ( bit_se1148574629649215175it_nat @ ( minus_minus_nat @ A @ one_one_nat ) @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% odd_bit_iff_bit_pred
thf(fact_6108_mask__nat__def,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N2: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ).

% mask_nat_def
thf(fact_6109_mask__half__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% mask_half_int
thf(fact_6110_mask__int__def,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N2: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) ) ) ).

% mask_int_def
thf(fact_6111_ex__le__of__int,axiom,
    ! [X: real] :
    ? [Z: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z ) ) ).

% ex_le_of_int
thf(fact_6112_ex__le__of__int,axiom,
    ! [X: rat] :
    ? [Z: int] : ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z ) ) ).

% ex_le_of_int
thf(fact_6113_ex__of__int__less,axiom,
    ! [X: real] :
    ? [Z: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ X ) ).

% ex_of_int_less
thf(fact_6114_ex__of__int__less,axiom,
    ! [X: rat] :
    ? [Z: int] : ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ X ) ).

% ex_of_int_less
thf(fact_6115_ex__less__of__int,axiom,
    ! [X: real] :
    ? [Z: int] : ( ord_less_real @ X @ ( ring_1_of_int_real @ Z ) ) ).

% ex_less_of_int
thf(fact_6116_ex__less__of__int,axiom,
    ! [X: rat] :
    ? [Z: int] : ( ord_less_rat @ X @ ( ring_1_of_int_rat @ Z ) ) ).

% ex_less_of_int
thf(fact_6117_subrelI,axiom,
    ! [R: set_Pr448751882837621926eger_o,S: set_Pr448751882837621926eger_o] :
      ( ! [X5: code_integer,Y5: $o] :
          ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X5 @ Y5 ) @ R )
         => ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X5 @ Y5 ) @ S ) )
     => ( ord_le8980329558974975238eger_o @ R @ S ) ) ).

% subrelI
thf(fact_6118_subrelI,axiom,
    ! [R: set_Pr8218934625190621173um_num,S: set_Pr8218934625190621173um_num] :
      ( ! [X5: num,Y5: num] :
          ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X5 @ Y5 ) @ R )
         => ( member7279096912039735102um_num @ ( product_Pair_num_num @ X5 @ Y5 ) @ S ) )
     => ( ord_le880128212290418581um_num @ R @ S ) ) ).

% subrelI
thf(fact_6119_subrelI,axiom,
    ! [R: set_Pr6200539531224447659at_num,S: set_Pr6200539531224447659at_num] :
      ( ! [X5: nat,Y5: num] :
          ( ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X5 @ Y5 ) @ R )
         => ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X5 @ Y5 ) @ S ) )
     => ( ord_le8085105155179020875at_num @ R @ S ) ) ).

% subrelI
thf(fact_6120_subrelI,axiom,
    ! [R: set_Pr1261947904930325089at_nat,S: set_Pr1261947904930325089at_nat] :
      ( ! [X5: nat,Y5: nat] :
          ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X5 @ Y5 ) @ R )
         => ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X5 @ Y5 ) @ S ) )
     => ( ord_le3146513528884898305at_nat @ R @ S ) ) ).

% subrelI
thf(fact_6121_subrelI,axiom,
    ! [R: set_Pr958786334691620121nt_int,S: set_Pr958786334691620121nt_int] :
      ( ! [X5: int,Y5: int] :
          ( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X5 @ Y5 ) @ R )
         => ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X5 @ Y5 ) @ S ) )
     => ( ord_le2843351958646193337nt_int @ R @ S ) ) ).

% subrelI
thf(fact_6122_bit__sum__mult__2__cases,axiom,
    ! [A: code_integer,B: code_integer,N: nat] :
      ( ! [J2: nat] :
          ~ ( bit_se9216721137139052372nteger @ A @ ( suc @ J2 ) )
     => ( ( bit_se9216721137139052372nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ N )
        = ( ( ( N = zero_zero_nat )
           => ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
          & ( ( N != zero_zero_nat )
           => ( bit_se9216721137139052372nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).

% bit_sum_mult_2_cases
thf(fact_6123_bit__sum__mult__2__cases,axiom,
    ! [A: int,B: int,N: nat] :
      ( ! [J2: nat] :
          ~ ( bit_se1146084159140164899it_int @ A @ ( suc @ J2 ) )
     => ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ N )
        = ( ( ( N = zero_zero_nat )
           => ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
          & ( ( N != zero_zero_nat )
           => ( bit_se1146084159140164899it_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).

% bit_sum_mult_2_cases
thf(fact_6124_bit__sum__mult__2__cases,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ! [J2: nat] :
          ~ ( bit_se1148574629649215175it_nat @ A @ ( suc @ J2 ) )
     => ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ N )
        = ( ( ( N = zero_zero_nat )
           => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
          & ( ( N != zero_zero_nat )
           => ( bit_se1148574629649215175it_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).

% bit_sum_mult_2_cases
thf(fact_6125_bit__rec,axiom,
    ( bit_se9216721137139052372nteger
    = ( ^ [A4: code_integer,N2: nat] :
          ( ( ( N2 = zero_zero_nat )
           => ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) )
          & ( ( N2 != zero_zero_nat )
           => ( bit_se9216721137139052372nteger @ ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% bit_rec
thf(fact_6126_bit__rec,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A4: int,N2: nat] :
          ( ( ( N2 = zero_zero_nat )
           => ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) )
          & ( ( N2 != zero_zero_nat )
           => ( bit_se1146084159140164899it_int @ ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% bit_rec
thf(fact_6127_bit__rec,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A4: nat,N2: nat] :
          ( ( ( N2 = zero_zero_nat )
           => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) )
          & ( ( N2 != zero_zero_nat )
           => ( bit_se1148574629649215175it_nat @ ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% bit_rec
thf(fact_6128_mask__eq__exp__minus__1,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N2: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_6129_mask__eq__exp__minus__1,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N2: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_6130_accp__subset__induct,axiom,
    ! [D3: produc9072475918466114483BT_nat > $o,R4: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o,X: produc9072475918466114483BT_nat,P3: produc9072475918466114483BT_nat > $o] :
      ( ( ord_le7812727212727832188_nat_o @ D3 @ ( accp_P2887432264394892906BT_nat @ R4 ) )
     => ( ! [X5: produc9072475918466114483BT_nat,Z: produc9072475918466114483BT_nat] :
            ( ( D3 @ X5 )
           => ( ( R4 @ Z @ X5 )
             => ( D3 @ Z ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: produc9072475918466114483BT_nat] :
                ( ( D3 @ X5 )
               => ( ! [Z4: produc9072475918466114483BT_nat] :
                      ( ( R4 @ Z4 @ X5 )
                     => ( P3 @ Z4 ) )
                 => ( P3 @ X5 ) ) )
           => ( P3 @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_6131_accp__subset__induct,axiom,
    ! [D3: product_prod_num_num > $o,R4: product_prod_num_num > product_prod_num_num > $o,X: product_prod_num_num,P3: product_prod_num_num > $o] :
      ( ( ord_le2239182809043710856_num_o @ D3 @ ( accp_P3113834385874906142um_num @ R4 ) )
     => ( ! [X5: product_prod_num_num,Z: product_prod_num_num] :
            ( ( D3 @ X5 )
           => ( ( R4 @ Z @ X5 )
             => ( D3 @ Z ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: product_prod_num_num] :
                ( ( D3 @ X5 )
               => ( ! [Z4: product_prod_num_num] :
                      ( ( R4 @ Z4 @ X5 )
                     => ( P3 @ Z4 ) )
                 => ( P3 @ X5 ) ) )
           => ( P3 @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_6132_accp__subset__induct,axiom,
    ! [D3: product_prod_nat_nat > $o,R4: product_prod_nat_nat > product_prod_nat_nat > $o,X: product_prod_nat_nat,P3: product_prod_nat_nat > $o] :
      ( ( ord_le704812498762024988_nat_o @ D3 @ ( accp_P4275260045618599050at_nat @ R4 ) )
     => ( ! [X5: product_prod_nat_nat,Z: product_prod_nat_nat] :
            ( ( D3 @ X5 )
           => ( ( R4 @ Z @ X5 )
             => ( D3 @ Z ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: product_prod_nat_nat] :
                ( ( D3 @ X5 )
               => ( ! [Z4: product_prod_nat_nat] :
                      ( ( R4 @ Z4 @ X5 )
                     => ( P3 @ Z4 ) )
                 => ( P3 @ X5 ) ) )
           => ( P3 @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_6133_accp__subset__induct,axiom,
    ! [D3: product_prod_int_int > $o,R4: product_prod_int_int > product_prod_int_int > $o,X: product_prod_int_int,P3: product_prod_int_int > $o] :
      ( ( ord_le8369615600986905444_int_o @ D3 @ ( accp_P1096762738010456898nt_int @ R4 ) )
     => ( ! [X5: product_prod_int_int,Z: product_prod_int_int] :
            ( ( D3 @ X5 )
           => ( ( R4 @ Z @ X5 )
             => ( D3 @ Z ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: product_prod_int_int] :
                ( ( D3 @ X5 )
               => ( ! [Z4: product_prod_int_int] :
                      ( ( R4 @ Z4 @ X5 )
                     => ( P3 @ Z4 ) )
                 => ( P3 @ X5 ) ) )
           => ( P3 @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_6134_accp__subset__induct,axiom,
    ! [D3: nat > $o,R4: nat > nat > $o,X: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat_o @ D3 @ ( accp_nat @ R4 ) )
     => ( ! [X5: nat,Z: nat] :
            ( ( D3 @ X5 )
           => ( ( R4 @ Z @ X5 )
             => ( D3 @ Z ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: nat] :
                ( ( D3 @ X5 )
               => ( ! [Z4: nat] :
                      ( ( R4 @ Z4 @ X5 )
                     => ( P3 @ Z4 ) )
                 => ( P3 @ X5 ) ) )
           => ( P3 @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_6135_set__bit__eq,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N2: nat,K3: int] :
          ( plus_plus_int @ K3
          @ ( times_times_int
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( bit_se1146084159140164899it_int @ K3 @ N2 ) )
            @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% set_bit_eq
thf(fact_6136_unset__bit__eq,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N2: nat,K3: int] : ( minus_minus_int @ K3 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% unset_bit_eq
thf(fact_6137_take__bit__Suc__from__most,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K2 )
      = ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% take_bit_Suc_from_most
thf(fact_6138_pred__subset__eq,axiom,
    ! [R4: set_complex,S3: set_complex] :
      ( ( ord_le4573692005234683329plex_o
        @ ^ [X4: complex] : ( member_complex @ X4 @ R4 )
        @ ^ [X4: complex] : ( member_complex @ X4 @ S3 ) )
      = ( ord_le211207098394363844omplex @ R4 @ S3 ) ) ).

% pred_subset_eq
thf(fact_6139_pred__subset__eq,axiom,
    ! [R4: set_real,S3: set_real] :
      ( ( ord_less_eq_real_o
        @ ^ [X4: real] : ( member_real @ X4 @ R4 )
        @ ^ [X4: real] : ( member_real @ X4 @ S3 ) )
      = ( ord_less_eq_set_real @ R4 @ S3 ) ) ).

% pred_subset_eq
thf(fact_6140_pred__subset__eq,axiom,
    ! [R4: set_set_nat,S3: set_set_nat] :
      ( ( ord_le3964352015994296041_nat_o
        @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ R4 )
        @ ^ [X4: set_nat] : ( member_set_nat @ X4 @ S3 ) )
      = ( ord_le6893508408891458716et_nat @ R4 @ S3 ) ) ).

% pred_subset_eq
thf(fact_6141_pred__subset__eq,axiom,
    ! [R4: set_nat,S3: set_nat] :
      ( ( ord_less_eq_nat_o
        @ ^ [X4: nat] : ( member_nat @ X4 @ R4 )
        @ ^ [X4: nat] : ( member_nat @ X4 @ S3 ) )
      = ( ord_less_eq_set_nat @ R4 @ S3 ) ) ).

% pred_subset_eq
thf(fact_6142_pred__subset__eq,axiom,
    ! [R4: set_int,S3: set_int] :
      ( ( ord_less_eq_int_o
        @ ^ [X4: int] : ( member_int @ X4 @ R4 )
        @ ^ [X4: int] : ( member_int @ X4 @ S3 ) )
      = ( ord_less_eq_set_int @ R4 @ S3 ) ) ).

% pred_subset_eq
thf(fact_6143_take__bit__eq__mask__iff__exp__dvd,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K2 )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K2 @ one_one_int ) ) ) ).

% take_bit_eq_mask_iff_exp_dvd
thf(fact_6144_round__unique,axiom,
    ! [X: real,Y2: int] :
      ( ( ord_less_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y2 ) )
     => ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y2 ) @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( archim8280529875227126926d_real @ X )
          = Y2 ) ) ) ).

% round_unique
thf(fact_6145_round__unique,axiom,
    ! [X: rat,Y2: int] :
      ( ( ord_less_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y2 ) )
     => ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y2 ) @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
       => ( ( archim7778729529865785530nd_rat @ X )
          = Y2 ) ) ) ).

% round_unique
thf(fact_6146_in__measure,axiom,
    ! [X: num,Y2: num,F: num > nat] :
      ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y2 ) @ ( measure_num @ F ) )
      = ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_6147_in__measure,axiom,
    ! [X: nat,Y2: nat,F: nat > nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y2 ) @ ( measure_nat @ F ) )
      = ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_6148_in__measure,axiom,
    ! [X: int,Y2: int,F: int > nat] :
      ( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y2 ) @ ( measure_int @ F ) )
      = ( ord_less_nat @ ( F @ X ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_6149_of__int__round__gt,axiom,
    ! [X: real] : ( ord_less_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) ) ).

% of_int_round_gt
thf(fact_6150_of__int__round__gt,axiom,
    ! [X: rat] : ( ord_less_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) ) ).

% of_int_round_gt
thf(fact_6151_of__int__round__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) ) ).

% of_int_round_ge
thf(fact_6152_of__int__round__ge,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) ) ).

% of_int_round_ge
thf(fact_6153_of__int__round__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_6154_of__int__round__le,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_6155_upto_Opinduct,axiom,
    ! [A0: int,A12: int,P3: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A12 ) )
     => ( ! [I3: int,J2: int] :
            ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
           => ( ( ( ord_less_eq_int @ I3 @ J2 )
               => ( P3 @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
             => ( P3 @ I3 @ J2 ) ) )
       => ( P3 @ A0 @ A12 ) ) ) ).

% upto.pinduct
thf(fact_6156_round__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_6157_round__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_6158_round__1,axiom,
    ( ( archim8280529875227126926d_real @ one_one_real )
    = one_one_int ) ).

% round_1
thf(fact_6159_round__1,axiom,
    ( ( archim7778729529865785530nd_rat @ one_one_rat )
    = one_one_int ) ).

% round_1
thf(fact_6160_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_6161_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_6162_not__bit__Suc__0__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).

% not_bit_Suc_0_Suc
thf(fact_6163_bit__Suc__0__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_Suc_0_iff
thf(fact_6164_not__bit__Suc__0__numeral,axiom,
    ! [N: num] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).

% not_bit_Suc_0_numeral
thf(fact_6165_round__mono,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X ) @ ( archim7778729529865785530nd_rat @ Y2 ) ) ) ).

% round_mono
thf(fact_6166_bit__nat__def,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [M2: nat,N2: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_nat_def
thf(fact_6167_num_Osize__gen_I3_J,axiom,
    ! [X32: num] :
      ( ( size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(3)
thf(fact_6168_num_Osize__gen_I2_J,axiom,
    ! [X23: num] :
      ( ( size_num @ ( bit0 @ X23 ) )
      = ( plus_plus_nat @ ( size_num @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_6169_fold__atLeastAtMost__nat_Opinduct,axiom,
    ! [A0: nat > num > num,A12: nat,A23: nat,A32: num,P3: ( nat > num > num ) > nat > nat > num > $o] :
      ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ A0 @ ( produc1195630363706982562at_num @ A12 @ ( product_Pair_nat_num @ A23 @ A32 ) ) ) )
     => ( ! [F3: nat > num > num,A3: nat,B2: nat,Acc: num] :
            ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ F3 @ ( produc1195630363706982562at_num @ A3 @ ( product_Pair_nat_num @ B2 @ Acc ) ) ) )
           => ( ( ~ ( ord_less_nat @ B2 @ A3 )
               => ( P3 @ F3 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B2 @ ( F3 @ A3 @ Acc ) ) )
             => ( P3 @ F3 @ A3 @ B2 @ Acc ) ) )
       => ( P3 @ A0 @ A12 @ A23 @ A32 ) ) ) ).

% fold_atLeastAtMost_nat.pinduct
thf(fact_6170_fold__atLeastAtMost__nat_Opinduct,axiom,
    ! [A0: nat > nat > nat,A12: nat,A23: nat,A32: nat,P3: ( nat > nat > nat ) > nat > nat > nat > $o] :
      ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ A0 @ ( produc487386426758144856at_nat @ A12 @ ( product_Pair_nat_nat @ A23 @ A32 ) ) ) )
     => ( ! [F3: nat > nat > nat,A3: nat,B2: nat,Acc: nat] :
            ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F3 @ ( produc487386426758144856at_nat @ A3 @ ( product_Pair_nat_nat @ B2 @ Acc ) ) ) )
           => ( ( ~ ( ord_less_nat @ B2 @ A3 )
               => ( P3 @ F3 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B2 @ ( F3 @ A3 @ Acc ) ) )
             => ( P3 @ F3 @ A3 @ B2 @ Acc ) ) )
       => ( P3 @ A0 @ A12 @ A23 @ A32 ) ) ) ).

% fold_atLeastAtMost_nat.pinduct
thf(fact_6171_and__int__unfold,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L3: int] :
          ( if_int
          @ ( ( K3 = zero_zero_int )
            | ( L3 = zero_zero_int ) )
          @ zero_zero_int
          @ ( if_int
            @ ( K3
              = ( uminus_uminus_int @ one_one_int ) )
            @ L3
            @ ( if_int
              @ ( L3
                = ( uminus_uminus_int @ one_one_int ) )
              @ K3
              @ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% and_int_unfold
thf(fact_6172_exp__lower__Taylor__quadratic,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( divide_divide_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X ) ) ) ).

% exp_lower_Taylor_quadratic
thf(fact_6173_sqrt__sum__squares__half__less,axiom,
    ! [X: real,U: real,Y2: real] :
      ( ( ord_less_real @ X @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
           => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).

% sqrt_sum_squares_half_less
thf(fact_6174_and_Oidem,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ A )
      = A ) ).

% and.idem
thf(fact_6175_and_Oidem,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ A )
      = A ) ).

% and.idem
thf(fact_6176_and_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ A @ B ) ) ).

% and.left_idem
thf(fact_6177_and_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ A @ B ) ) ).

% and.left_idem
thf(fact_6178_and_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ B )
      = ( bit_se725231765392027082nd_int @ A @ B ) ) ).

% and.right_idem
thf(fact_6179_and_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ B )
      = ( bit_se727722235901077358nd_nat @ A @ B ) ) ).

% and.right_idem
thf(fact_6180_real__sqrt__eq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( sqrt @ X )
        = ( sqrt @ Y2 ) )
      = ( X = Y2 ) ) ).

% real_sqrt_eq_iff
thf(fact_6181_and__zero__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% and_zero_eq
thf(fact_6182_and__zero__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% and_zero_eq
thf(fact_6183_zero__and__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% zero_and_eq
thf(fact_6184_zero__and__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_and_eq
thf(fact_6185_bit_Oconj__zero__left,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ zero_zero_int @ X )
      = zero_zero_int ) ).

% bit.conj_zero_left
thf(fact_6186_bit_Oconj__zero__right,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ X @ zero_zero_int )
      = zero_zero_int ) ).

% bit.conj_zero_right
thf(fact_6187_real__sqrt__eq__zero__cancel__iff,axiom,
    ! [X: real] :
      ( ( ( sqrt @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% real_sqrt_eq_zero_cancel_iff
thf(fact_6188_real__sqrt__zero,axiom,
    ( ( sqrt @ zero_zero_real )
    = zero_zero_real ) ).

% real_sqrt_zero
thf(fact_6189_real__sqrt__less__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) )
      = ( ord_less_real @ X @ Y2 ) ) ).

% real_sqrt_less_iff
thf(fact_6190_real__sqrt__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) )
      = ( ord_less_eq_real @ X @ Y2 ) ) ).

% real_sqrt_le_iff
thf(fact_6191_real__sqrt__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( sqrt @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% real_sqrt_eq_1_iff
thf(fact_6192_real__sqrt__one,axiom,
    ( ( sqrt @ one_one_real )
    = one_one_real ) ).

% real_sqrt_one
thf(fact_6193_take__bit__and,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_and
thf(fact_6194_take__bit__and,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_and
thf(fact_6195_bit_Oconj__one__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se3949692690581998587nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = X ) ).

% bit.conj_one_right
thf(fact_6196_bit_Oconj__one__right,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( uminus_uminus_int @ one_one_int ) )
      = X ) ).

% bit.conj_one_right
thf(fact_6197_and_Oright__neutral,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = A ) ).

% and.right_neutral
thf(fact_6198_and_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = A ) ).

% and.right_neutral
thf(fact_6199_and_Oleft__neutral,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ A )
      = A ) ).

% and.left_neutral
thf(fact_6200_and_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ one_one_int ) @ A )
      = A ) ).

% and.left_neutral
thf(fact_6201_real__sqrt__lt__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ zero_zero_real )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% real_sqrt_lt_0_iff
thf(fact_6202_real__sqrt__gt__0__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y2 ) )
      = ( ord_less_real @ zero_zero_real @ Y2 ) ) ).

% real_sqrt_gt_0_iff
thf(fact_6203_real__sqrt__ge__0__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ).

% real_sqrt_ge_0_iff
thf(fact_6204_real__sqrt__le__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% real_sqrt_le_0_iff
thf(fact_6205_real__sqrt__gt__1__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ one_one_real @ ( sqrt @ Y2 ) )
      = ( ord_less_real @ one_one_real @ Y2 ) ) ).

% real_sqrt_gt_1_iff
thf(fact_6206_real__sqrt__lt__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ one_one_real )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% real_sqrt_lt_1_iff
thf(fact_6207_real__sqrt__ge__1__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y2 ) )
      = ( ord_less_eq_real @ one_one_real @ Y2 ) ) ).

% real_sqrt_ge_1_iff
thf(fact_6208_real__sqrt__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ one_one_real )
      = ( ord_less_eq_real @ X @ one_one_real ) ) ).

% real_sqrt_le_1_iff
thf(fact_6209_and__nonnegative__int__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K2 @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K2 )
        | ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% and_nonnegative_int_iff
thf(fact_6210_and__negative__int__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K2 @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K2 @ zero_zero_int )
        & ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% and_negative_int_iff
thf(fact_6211_and__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
      = one_one_int ) ).

% and_numerals(8)
thf(fact_6212_and__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
      = one_one_nat ) ).

% and_numerals(8)
thf(fact_6213_and__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = one_one_int ) ).

% and_numerals(2)
thf(fact_6214_and__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = one_one_nat ) ).

% and_numerals(2)
thf(fact_6215_real__sqrt__four,axiom,
    ( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% real_sqrt_four
thf(fact_6216_and__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = zero_zero_int ) ).

% and_numerals(1)
thf(fact_6217_and__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = zero_zero_nat ) ).

% and_numerals(1)
thf(fact_6218_and__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_numerals(5)
thf(fact_6219_and__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
      = zero_zero_nat ) ).

% and_numerals(5)
thf(fact_6220_and__numerals_I3_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% and_numerals(3)
thf(fact_6221_and__numerals_I3_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% and_numerals(3)
thf(fact_6222_and__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = one_one_int ) ).

% and_minus_numerals(6)
thf(fact_6223_and__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = one_one_int ) ).

% and_minus_numerals(2)
thf(fact_6224_and__numerals_I4_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% and_numerals(4)
thf(fact_6225_and__numerals_I4_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% and_numerals(4)
thf(fact_6226_and__numerals_I6_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% and_numerals(6)
thf(fact_6227_and__numerals_I6_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% and_numerals(6)
thf(fact_6228_and__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_minus_numerals(5)
thf(fact_6229_and__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = zero_zero_int ) ).

% and_minus_numerals(1)
thf(fact_6230_real__sqrt__pow2__iff,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% real_sqrt_pow2_iff
thf(fact_6231_real__sqrt__pow2,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X ) ) ).

% real_sqrt_pow2
thf(fact_6232_real__sqrt__sum__squares__mult__squared__eq,axiom,
    ! [X: real,Y2: real,Xa: real,Ya: real] :
      ( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_squared_eq
thf(fact_6233_and__numerals_I7_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% and_numerals(7)
thf(fact_6234_and__numerals_I7_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% and_numerals(7)
thf(fact_6235_and_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ C )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).

% and.assoc
thf(fact_6236_and_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ C )
      = ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).

% and.assoc
thf(fact_6237_and_Ocommute,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [A4: int,B3: int] : ( bit_se725231765392027082nd_int @ B3 @ A4 ) ) ) ).

% and.commute
thf(fact_6238_and_Ocommute,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [A4: nat,B3: nat] : ( bit_se727722235901077358nd_nat @ B3 @ A4 ) ) ) ).

% and.commute
thf(fact_6239_and_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se725231765392027082nd_int @ B @ ( bit_se725231765392027082nd_int @ A @ C ) )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).

% and.left_commute
thf(fact_6240_and_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se727722235901077358nd_nat @ B @ ( bit_se727722235901077358nd_nat @ A @ C ) )
      = ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).

% and.left_commute
thf(fact_6241_of__int__and__eq,axiom,
    ! [K2: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se725231765392027082nd_int @ K2 @ L ) )
      = ( bit_se725231765392027082nd_int @ ( ring_1_of_int_int @ K2 ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_and_eq
thf(fact_6242_real__sqrt__less__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_less_mono
thf(fact_6243_real__sqrt__le__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_le_mono
thf(fact_6244_real__sqrt__divide,axiom,
    ! [X: real,Y2: real] :
      ( ( sqrt @ ( divide_divide_real @ X @ Y2 ) )
      = ( divide_divide_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_divide
thf(fact_6245_real__sqrt__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( sqrt @ ( times_times_real @ X @ Y2 ) )
      = ( times_times_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_mult
thf(fact_6246_real__sqrt__power,axiom,
    ! [X: real,K2: nat] :
      ( ( sqrt @ ( power_power_real @ X @ K2 ) )
      = ( power_power_real @ ( sqrt @ X ) @ K2 ) ) ).

% real_sqrt_power
thf(fact_6247_real__sqrt__minus,axiom,
    ! [X: real] :
      ( ( sqrt @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_minus
thf(fact_6248_bit__and__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
        & ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).

% bit_and_iff
thf(fact_6249_bit__and__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
        & ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).

% bit_and_iff
thf(fact_6250_bit__and__int__iff,axiom,
    ! [K2: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K2 @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K2 @ N )
        & ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_and_int_iff
thf(fact_6251_and__eq__minus__1__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( bit_se3949692690581998587nteger @ A @ B )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
        & ( B
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% and_eq_minus_1_iff
thf(fact_6252_and__eq__minus__1__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( bit_se725231765392027082nd_int @ A @ B )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( ( A
          = ( uminus_uminus_int @ one_one_int ) )
        & ( B
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% and_eq_minus_1_iff
thf(fact_6253_real__sqrt__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_gt_zero
thf(fact_6254_real__sqrt__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_ge_zero
thf(fact_6255_real__sqrt__eq__zero__cancel,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( sqrt @ X )
          = zero_zero_real )
       => ( X = zero_zero_real ) ) ) ).

% real_sqrt_eq_zero_cancel
thf(fact_6256_real__sqrt__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ one_one_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_ge_one
thf(fact_6257_AND__upper2_H,axiom,
    ! [Y2: int,Z3: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z3 )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) @ Z3 ) ) ) ).

% AND_upper2'
thf(fact_6258_AND__upper1_H,axiom,
    ! [Y2: int,Z3: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z3 )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y2 @ Ya ) @ Z3 ) ) ) ).

% AND_upper1'
thf(fact_6259_AND__upper2,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) @ Y2 ) ) ).

% AND_upper2
thf(fact_6260_AND__upper1,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) @ X ) ) ).

% AND_upper1
thf(fact_6261_AND__lower,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) ) ) ).

% AND_lower
thf(fact_6262_take__bit__eq__mask,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N2: nat,A4: int] : ( bit_se725231765392027082nd_int @ A4 @ ( bit_se2000444600071755411sk_int @ N2 ) ) ) ) ).

% take_bit_eq_mask
thf(fact_6263_take__bit__eq__mask,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N2: nat,A4: nat] : ( bit_se727722235901077358nd_nat @ A4 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ) ) ).

% take_bit_eq_mask
thf(fact_6264_real__div__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( divide_divide_real @ X @ ( sqrt @ X ) )
        = ( sqrt @ X ) ) ) ).

% real_div_sqrt
thf(fact_6265_sqrt__add__le__add__sqrt,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X @ Y2 ) ) @ ( plus_plus_real @ ( sqrt @ X ) @ ( sqrt @ Y2 ) ) ) ) ) ).

% sqrt_add_le_add_sqrt
thf(fact_6266_le__real__sqrt__sumsq,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y2 @ Y2 ) ) ) ) ).

% le_real_sqrt_sumsq
thf(fact_6267_AND__upper2_H_H,axiom,
    ! [Y2: int,Z3: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z3 )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) @ Z3 ) ) ) ).

% AND_upper2''
thf(fact_6268_AND__upper1_H_H,axiom,
    ! [Y2: int,Z3: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z3 )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y2 @ Ya ) @ Z3 ) ) ) ).

% AND_upper1''
thf(fact_6269_and__less__eq,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K2 @ L ) @ K2 ) ) ).

% and_less_eq
thf(fact_6270_even__and__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3949692690581998587nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_6271_even__and__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_6272_even__and__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_6273_sqrt2__less__2,axiom,
    ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% sqrt2_less_2
thf(fact_6274_even__and__iff__int,axiom,
    ! [K2: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K2 @ L ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ).

% even_and_iff_int
thf(fact_6275_one__and__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ one_one_Code_integer @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_6276_one__and__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_6277_one__and__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_6278_and__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ A @ one_one_Code_integer )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_6279_and__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ one_one_int )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_6280_and__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ one_one_nat )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_6281_real__less__rsqrt,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 )
     => ( ord_less_real @ X @ ( sqrt @ Y2 ) ) ) ).

% real_less_rsqrt
thf(fact_6282_real__le__rsqrt,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 )
     => ( ord_less_eq_real @ X @ ( sqrt @ Y2 ) ) ) ).

% real_le_rsqrt
thf(fact_6283_sqrt__le__D,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ Y2 )
     => ( ord_less_eq_real @ X @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sqrt_le_D
thf(fact_6284_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_6285_and__exp__eq__0__iff__not__bit,axiom,
    ! [A: int,N: nat] :
      ( ( ( bit_se725231765392027082nd_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
        = zero_zero_int )
      = ( ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% and_exp_eq_0_iff_not_bit
thf(fact_6286_and__exp__eq__0__iff__not__bit,axiom,
    ! [A: nat,N: nat] :
      ( ( ( bit_se727722235901077358nd_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
        = zero_zero_nat )
      = ( ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).

% and_exp_eq_0_iff_not_bit
thf(fact_6287_real__sqrt__unique,axiom,
    ! [Y2: real,X: real] :
      ( ( ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( sqrt @ X )
          = Y2 ) ) ) ).

% real_sqrt_unique
thf(fact_6288_real__le__lsqrt,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ X @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sqrt @ X ) @ Y2 ) ) ) ) ).

% real_le_lsqrt
thf(fact_6289_lemma__real__divide__sqrt__less,axiom,
    ! [U: real] :
      ( ( ord_less_real @ zero_zero_real @ U )
     => ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).

% lemma_real_divide_sqrt_less
thf(fact_6290_real__sqrt__sum__squares__eq__cancel2,axiom,
    ! [X: real,Y2: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = Y2 )
     => ( X = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel2
thf(fact_6291_real__sqrt__sum__squares__eq__cancel,axiom,
    ! [X: real,Y2: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = X )
     => ( Y2 = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel
thf(fact_6292_real__sqrt__sum__squares__triangle__ineq,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_triangle_ineq
thf(fact_6293_real__sqrt__sum__squares__ge2,axiom,
    ! [Y2: real,X: real] : ( ord_less_eq_real @ Y2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge2
thf(fact_6294_real__sqrt__sum__squares__ge1,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge1
thf(fact_6295_real__less__lsqrt,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_real @ X @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sqrt @ X ) @ Y2 ) ) ) ) ).

% real_less_lsqrt
thf(fact_6296_sqrt__sum__squares__le__sum,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X @ Y2 ) ) ) ) ).

% sqrt_sum_squares_le_sum
thf(fact_6297_sqrt__even__pow2,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% sqrt_even_pow2
thf(fact_6298_real__sqrt__sum__squares__mult__ge__zero,axiom,
    ! [X: real,Y2: real,Xa: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_ge_zero
thf(fact_6299_real__sqrt__power__even,axiom,
    ! [N: nat,X: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( sqrt @ X ) @ N )
          = ( power_power_real @ X @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_power_even
thf(fact_6300_arith__geo__mean__sqrt,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X @ Y2 ) ) @ ( divide_divide_real @ ( plus_plus_real @ X @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arith_geo_mean_sqrt
thf(fact_6301_and__int__rec,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L3: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
              & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_int_rec
thf(fact_6302_one__le__exp__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% one_le_exp_iff
thf(fact_6303_exp__le__one__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X ) @ one_one_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% exp_le_one_iff
thf(fact_6304_exp__less__one__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( exp_real @ X ) @ one_one_real )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% exp_less_one_iff
thf(fact_6305_one__less__exp__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ ( exp_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% one_less_exp_iff
thf(fact_6306_real__exp__bound__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ) ) ) ).

% real_exp_bound_lemma
thf(fact_6307_exp__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% exp_bound
thf(fact_6308_exp__le__cancel__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X ) @ ( exp_real @ Y2 ) )
      = ( ord_less_eq_real @ X @ Y2 ) ) ).

% exp_le_cancel_iff
thf(fact_6309_exp__zero,axiom,
    ( ( exp_complex @ zero_zero_complex )
    = one_one_complex ) ).

% exp_zero
thf(fact_6310_exp__zero,axiom,
    ( ( exp_real @ zero_zero_real )
    = one_one_real ) ).

% exp_zero
thf(fact_6311_exp__eq__one__iff,axiom,
    ! [X: real] :
      ( ( ( exp_real @ X )
        = one_one_real )
      = ( X = zero_zero_real ) ) ).

% exp_eq_one_iff
thf(fact_6312_and__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% and_nat_numerals(3)
thf(fact_6313_and__nat__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = zero_zero_nat ) ).

% and_nat_numerals(1)
thf(fact_6314_and__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% and_nat_numerals(4)
thf(fact_6315_and__nat__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = one_one_nat ) ).

% and_nat_numerals(2)
thf(fact_6316_Suc__0__and__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Suc_0_and_eq
thf(fact_6317_and__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_Suc_0_eq
thf(fact_6318_exp__times__arg__commute,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
      = ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_6319_exp__times__arg__commute,axiom,
    ! [A2: real] :
      ( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
      = ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_6320_and__nat__unfold,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M2: nat,N2: nat] :
          ( if_nat
          @ ( ( M2 = zero_zero_nat )
            | ( N2 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_nat_unfold
thf(fact_6321_and__nat__rec,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M2: nat,N2: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 )
              & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_nat_rec
thf(fact_6322_mult__exp__exp,axiom,
    ! [X: complex,Y2: complex] :
      ( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y2 ) )
      = ( exp_complex @ ( plus_plus_complex @ X @ Y2 ) ) ) ).

% mult_exp_exp
thf(fact_6323_mult__exp__exp,axiom,
    ! [X: real,Y2: real] :
      ( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y2 ) )
      = ( exp_real @ ( plus_plus_real @ X @ Y2 ) ) ) ).

% mult_exp_exp
thf(fact_6324_exp__add__commuting,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( times_times_complex @ X @ Y2 )
        = ( times_times_complex @ Y2 @ X ) )
     => ( ( exp_complex @ ( plus_plus_complex @ X @ Y2 ) )
        = ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y2 ) ) ) ) ).

% exp_add_commuting
thf(fact_6325_exp__add__commuting,axiom,
    ! [X: real,Y2: real] :
      ( ( ( times_times_real @ X @ Y2 )
        = ( times_times_real @ Y2 @ X ) )
     => ( ( exp_real @ ( plus_plus_real @ X @ Y2 ) )
        = ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y2 ) ) ) ) ).

% exp_add_commuting
thf(fact_6326_exp__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( exp_complex @ ( minus_minus_complex @ X @ Y2 ) )
      = ( divide1717551699836669952omplex @ ( exp_complex @ X ) @ ( exp_complex @ Y2 ) ) ) ).

% exp_diff
thf(fact_6327_exp__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( exp_real @ ( minus_minus_real @ X @ Y2 ) )
      = ( divide_divide_real @ ( exp_real @ X ) @ ( exp_real @ Y2 ) ) ) ).

% exp_diff
thf(fact_6328_exp__ge__zero,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X ) ) ).

% exp_ge_zero
thf(fact_6329_not__exp__le__zero,axiom,
    ! [X: real] :
      ~ ( ord_less_eq_real @ ( exp_real @ X ) @ zero_zero_real ) ).

% not_exp_le_zero
thf(fact_6330_exp__minus__inverse,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) )
      = one_one_real ) ).

% exp_minus_inverse
thf(fact_6331_exp__minus__inverse,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) )
      = one_one_complex ) ).

% exp_minus_inverse
thf(fact_6332_exp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ one_one_real @ ( exp_real @ X ) ) ) ).

% exp_gt_one
thf(fact_6333_exp__ge__add__one__self,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ).

% exp_ge_add_one_self
thf(fact_6334_exp__ge__add__one__self__aux,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ) ).

% exp_ge_add_one_self_aux
thf(fact_6335_lemma__exp__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ one_one_real @ Y2 )
     => ? [X5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X5 )
          & ( ord_less_eq_real @ X5 @ ( minus_minus_real @ Y2 @ one_one_real ) )
          & ( ( exp_real @ X5 )
            = Y2 ) ) ) ).

% lemma_exp_total
thf(fact_6336_exp__le,axiom,
    ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).

% exp_le
thf(fact_6337_exp__double,axiom,
    ! [Z3: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z3 ) )
      = ( power_power_complex @ ( exp_complex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_6338_exp__double,axiom,
    ! [Z3: real] :
      ( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z3 ) )
      = ( power_power_real @ ( exp_real @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_6339_exp__half__le2,axiom,
    ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% exp_half_le2
thf(fact_6340_arsinh__real__aux,axiom,
    ! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% arsinh_real_aux
thf(fact_6341_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_6342_fold__atLeastAtMost__nat_Opsimps,axiom,
    ! [F: nat > num > num,A: nat,B: nat,Acc2: num] :
      ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ F @ ( produc1195630363706982562at_num @ A @ ( product_Pair_nat_num @ B @ Acc2 ) ) ) )
     => ( ( ( ord_less_nat @ B @ A )
         => ( ( set_fo8365102181078989356at_num @ F @ A @ B @ Acc2 )
            = Acc2 ) )
        & ( ~ ( ord_less_nat @ B @ A )
         => ( ( set_fo8365102181078989356at_num @ F @ A @ B @ Acc2 )
            = ( set_fo8365102181078989356at_num @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.psimps
thf(fact_6343_fold__atLeastAtMost__nat_Opsimps,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat,Acc2: nat] :
      ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F @ ( produc487386426758144856at_nat @ A @ ( product_Pair_nat_nat @ B @ Acc2 ) ) ) )
     => ( ( ( ord_less_nat @ B @ A )
         => ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
            = Acc2 ) )
        & ( ~ ( ord_less_nat @ B @ A )
         => ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
            = ( set_fo2584398358068434914at_nat @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.psimps
thf(fact_6344_fold__atLeastAtMost__nat_Opelims,axiom,
    ! [X: nat > num > num,Xa: nat,Xb: nat,Xc: num,Y2: num] :
      ( ( ( set_fo8365102181078989356at_num @ X @ Xa @ Xb @ Xc )
        = Y2 )
     => ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ X @ ( produc1195630363706982562at_num @ Xa @ ( product_Pair_nat_num @ Xb @ Xc ) ) ) )
       => ~ ( ( ( ( ord_less_nat @ Xb @ Xa )
               => ( Y2 = Xc ) )
              & ( ~ ( ord_less_nat @ Xb @ Xa )
               => ( Y2
                  = ( set_fo8365102181078989356at_num @ X @ ( plus_plus_nat @ Xa @ one_one_nat ) @ Xb @ ( X @ Xa @ Xc ) ) ) ) )
           => ~ ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ X @ ( produc1195630363706982562at_num @ Xa @ ( product_Pair_nat_num @ Xb @ Xc ) ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.pelims
thf(fact_6345_fold__atLeastAtMost__nat_Opelims,axiom,
    ! [X: nat > nat > nat,Xa: nat,Xb: nat,Xc: nat,Y2: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X @ Xa @ Xb @ Xc )
        = Y2 )
     => ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X @ ( produc487386426758144856at_nat @ Xa @ ( product_Pair_nat_nat @ Xb @ Xc ) ) ) )
       => ~ ( ( ( ( ord_less_nat @ Xb @ Xa )
               => ( Y2 = Xc ) )
              & ( ~ ( ord_less_nat @ Xb @ Xa )
               => ( Y2
                  = ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa @ one_one_nat ) @ Xb @ ( X @ Xa @ Xc ) ) ) ) )
           => ~ ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X @ ( produc487386426758144856at_nat @ Xa @ ( product_Pair_nat_nat @ Xb @ Xc ) ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.pelims
thf(fact_6346_tanh__real__altdef,axiom,
    ( tanh_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X4 ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X4 ) ) ) ) ) ) ).

% tanh_real_altdef
thf(fact_6347_ln__one__minus__pos__lower__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% ln_one_minus_pos_lower_bound
thf(fact_6348_arctan__half,axiom,
    ( arctan
    = ( ^ [X4: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X4 @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% arctan_half
thf(fact_6349_tanh__real__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X ) @ ( tanh_real @ Y2 ) )
      = ( ord_less_eq_real @ X @ Y2 ) ) ).

% tanh_real_le_iff
thf(fact_6350_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_6351_zero__le__arctan__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_arctan_iff
thf(fact_6352_arctan__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( arctan @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% arctan_le_zero_iff
thf(fact_6353_tanh__real__nonpos__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% tanh_real_nonpos_iff
thf(fact_6354_tanh__real__nonneg__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% tanh_real_nonneg_iff
thf(fact_6355_ln__le__cancel__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y2 ) )
          = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_6356_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_6357_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_6358_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_6359_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_6360_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_6361_arctan__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y2 ) )
      = ( ord_less_eq_real @ X @ Y2 ) ) ).

% arctan_le_iff
thf(fact_6362_arctan__monotone_H,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y2 ) ) ) ).

% arctan_monotone'
thf(fact_6363_tanh__real__lt__1,axiom,
    ! [X: real] : ( ord_less_real @ ( tanh_real @ X ) @ one_one_real ) ).

% tanh_real_lt_1
thf(fact_6364_ln__bound,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_bound
thf(fact_6365_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_6366_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_6367_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_6368_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_6369_tanh__real__gt__neg1,axiom,
    ! [X: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X ) ) ).

% tanh_real_gt_neg1
thf(fact_6370_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_6371_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_6372_ln__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ln_ln_real @ ( times_times_real @ X @ Y2 ) )
          = ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y2 ) ) ) ) ) ).

% ln_mult
thf(fact_6373_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_6374_ln__ge__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y2 @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ ( exp_real @ Y2 ) @ X ) ) ) ).

% ln_ge_iff
thf(fact_6375_ln__x__over__x__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y2 ) @ Y2 ) @ ( divide_divide_real @ ( ln_ln_real @ X ) @ X ) ) ) ) ).

% ln_x_over_x_mono
thf(fact_6376_ln__2__less__1,axiom,
    ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).

% ln_2_less_1
thf(fact_6377_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_6378_ln__diff__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y2 ) ) @ ( divide_divide_real @ ( minus_minus_real @ X @ Y2 ) @ Y2 ) ) ) ) ).

% ln_diff_le
thf(fact_6379_ln__add__one__self__le__self2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self2
thf(fact_6380_fold__atLeastAtMost__nat_Osimps,axiom,
    ( set_fo2584398358068434914at_nat
    = ( ^ [F4: nat > nat > nat,A4: nat,B3: nat,Acc3: nat] : ( if_nat @ ( ord_less_nat @ B3 @ A4 ) @ Acc3 @ ( set_fo2584398358068434914at_nat @ F4 @ ( plus_plus_nat @ A4 @ one_one_nat ) @ B3 @ ( F4 @ A4 @ Acc3 ) ) ) ) ) ).

% fold_atLeastAtMost_nat.simps
thf(fact_6381_fold__atLeastAtMost__nat_Oelims,axiom,
    ! [X: nat > nat > nat,Xa: nat,Xb: nat,Xc: nat,Y2: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X @ Xa @ Xb @ Xc )
        = Y2 )
     => ( ( ( ord_less_nat @ Xb @ Xa )
         => ( Y2 = Xc ) )
        & ( ~ ( ord_less_nat @ Xb @ Xa )
         => ( Y2
            = ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa @ one_one_nat ) @ Xb @ ( X @ Xa @ Xc ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.elims
thf(fact_6382_tanh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( tanh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% tanh_ln_real
thf(fact_6383_arcosh__real__def,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( arcosh_real @ X )
        = ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arcosh_real_def
thf(fact_6384_ln__one__minus__pos__upper__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_6385_ln__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( sqrt @ X ) )
        = ( divide_divide_real @ ( ln_ln_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% ln_sqrt
thf(fact_6386_tanh__altdef,axiom,
    ( tanh_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X4 ) @ ( exp_real @ ( uminus_uminus_real @ X4 ) ) ) @ ( plus_plus_real @ ( exp_real @ X4 ) @ ( exp_real @ ( uminus_uminus_real @ X4 ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_6387_tanh__altdef,axiom,
    ( tanh_complex
    = ( ^ [X4: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X4 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X4 ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X4 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X4 ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_6388_ln__one__plus__pos__lower__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( minus_minus_real @ X @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) ) ) ) ).

% ln_one_plus_pos_lower_bound
thf(fact_6389_artanh__def,axiom,
    ( artanh_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X4 ) @ ( minus_minus_real @ one_one_real @ X4 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% artanh_def
thf(fact_6390_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ zero_zero_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_6391_arsinh__real__def,axiom,
    ( arsinh_real
    = ( ^ [X4: real] : ( ln_ln_real @ ( plus_plus_real @ X4 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arsinh_real_def
thf(fact_6392_abs__ln__one__plus__x__minus__x__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound
thf(fact_6393_arctan__double,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X ) )
        = ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% arctan_double
thf(fact_6394_log__base__10__eq1,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
        = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X ) ) ) ) ).

% log_base_10_eq1
thf(fact_6395_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_6396_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_6397_abs__idempotent,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_idempotent
thf(fact_6398_abs__idempotent,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_idempotent
thf(fact_6399_abs__zero,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_zero
thf(fact_6400_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_6401_abs__zero,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_zero
thf(fact_6402_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_6403_abs__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0
thf(fact_6404_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_6405_abs__eq__0,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0
thf(fact_6406_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_6407_abs__0__eq,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( abs_abs_Code_integer @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_0_eq
thf(fact_6408_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_6409_abs__0__eq,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( abs_abs_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% abs_0_eq
thf(fact_6410_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_6411_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_numeral
thf(fact_6412_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_numeral
thf(fact_6413_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_numeral
thf(fact_6414_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_numeral
thf(fact_6415_abs__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = ( times_3573771949741848930nteger @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6416_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6417_abs__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
      = ( times_times_rat @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6418_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6419_abs__1,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_1
thf(fact_6420_abs__1,axiom,
    ( ( abs_abs_complex @ one_one_complex )
    = one_one_complex ) ).

% abs_1
thf(fact_6421_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_6422_abs__1,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_1
thf(fact_6423_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_6424_abs__add__abs,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
      = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_add_abs
thf(fact_6425_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_6426_abs__add__abs,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
      = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_add_abs
thf(fact_6427_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_6428_abs__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).

% abs_divide
thf(fact_6429_abs__divide,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_divide
thf(fact_6430_abs__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_divide
thf(fact_6431_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_6432_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_6433_abs__minus__cancel,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus_cancel
thf(fact_6434_abs__minus__cancel,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus_cancel
thf(fact_6435_abs__le__zero__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_le_zero_iff
thf(fact_6436_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_6437_abs__le__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_le_zero_iff
thf(fact_6438_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_6439_abs__le__self__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% abs_le_self_iff
thf(fact_6440_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_6441_abs__le__self__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% abs_le_self_iff
thf(fact_6442_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_6443_abs__of__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6444_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6445_abs__of__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6446_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6447_zero__less__abs__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
      = ( A != zero_z3403309356797280102nteger ) ) ).

% zero_less_abs_iff
thf(fact_6448_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_6449_zero__less__abs__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_abs_iff
thf(fact_6450_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_6451_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_neg_numeral
thf(fact_6452_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_neg_numeral
thf(fact_6453_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_neg_numeral
thf(fact_6454_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_neg_numeral
thf(fact_6455_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_6456_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_6457_abs__neg__one,axiom,
    ( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = one_one_rat ) ).

% abs_neg_one
thf(fact_6458_abs__neg__one,axiom,
    ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = one_one_Code_integer ) ).

% abs_neg_one
thf(fact_6459_abs__power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_6460_abs__power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_6461_abs__power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( abs_abs_rat @ ( power_power_rat @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_6462_abs__power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_6463_log__one,axiom,
    ! [A: real] :
      ( ( log @ A @ one_one_real )
      = zero_zero_real ) ).

% log_one
thf(fact_6464_real__sqrt__mult__self,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
      = ( abs_abs_real @ A ) ) ).

% real_sqrt_mult_self
thf(fact_6465_real__sqrt__abs2,axiom,
    ! [X: real] :
      ( ( sqrt @ ( times_times_real @ X @ X ) )
      = ( abs_abs_real @ X ) ) ).

% real_sqrt_abs2
thf(fact_6466_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_6467_divide__le__0__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
      = ( ( ord_less_eq_rat @ A @ zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_le_0_abs_iff
thf(fact_6468_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_6469_zero__le__divide__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        | ( B = zero_zero_rat ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_6470_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6471_abs__of__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6472_abs__of__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6473_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6474_zero__less__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X ) )
          = ( ord_less_real @ one_one_real @ X ) ) ) ) ).

% zero_less_log_cancel_iff
thf(fact_6475_log__less__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log @ A @ X ) @ zero_zero_real )
          = ( ord_less_real @ X @ one_one_real ) ) ) ) ).

% log_less_zero_cancel_iff
thf(fact_6476_one__less__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ one_one_real @ ( log @ A @ X ) )
          = ( ord_less_real @ A @ X ) ) ) ) ).

% one_less_log_cancel_iff
thf(fact_6477_log__less__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log @ A @ X ) @ one_one_real )
          = ( ord_less_real @ X @ A ) ) ) ) ).

% log_less_one_cancel_iff
thf(fact_6478_log__less__cancel__iff,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_real @ ( log @ A @ X ) @ ( log @ A @ Y2 ) )
            = ( ord_less_real @ X @ Y2 ) ) ) ) ) ).

% log_less_cancel_iff
thf(fact_6479_log__eq__one,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ A )
          = one_one_real ) ) ) ).

% log_eq_one
thf(fact_6480_artanh__minus__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X ) )
        = ( uminus_uminus_real @ ( artanh_real @ X ) ) ) ) ).

% artanh_minus_real
thf(fact_6481_zero__less__power__abs__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
      = ( ( A != zero_z3403309356797280102nteger )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6482_zero__less__power__abs__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
      = ( ( A != zero_zero_real )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6483_zero__less__power__abs__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
      = ( ( A != zero_zero_rat )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6484_zero__less__power__abs__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
      = ( ( A != zero_zero_int )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6485_abs__power2,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6486_abs__power2,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6487_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6488_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6489_power2__abs,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6490_power2__abs,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6491_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6492_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6493_zero__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X ) )
          = ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_6494_log__le__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ A @ X ) @ zero_zero_real )
          = ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_6495_one__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X ) )
          = ( ord_less_eq_real @ A @ X ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_6496_log__le__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ A @ X ) @ one_one_real )
          = ( ord_less_eq_real @ X @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_6497_log__le__cancel__iff,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ ( log @ A @ X ) @ ( log @ A @ Y2 ) )
            = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_6498_power__even__abs__numeral,axiom,
    ! [W: num,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6499_power__even__abs__numeral,axiom,
    ! [W: num,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6500_power__even__abs__numeral,axiom,
    ! [W: num,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6501_power__even__abs__numeral,axiom,
    ! [W: num,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6502_real__sqrt__abs,axiom,
    ! [X: real] :
      ( ( sqrt @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% real_sqrt_abs
thf(fact_6503_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_6504_abs__le__D1,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% abs_le_D1
thf(fact_6505_abs__le__D1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% abs_le_D1
thf(fact_6506_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_6507_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_6508_abs__ge__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_self
thf(fact_6509_abs__ge__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).

% abs_ge_self
thf(fact_6510_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_6511_abs__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_mult
thf(fact_6512_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_6513_abs__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_mult
thf(fact_6514_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_6515_abs__one,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_one
thf(fact_6516_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_6517_abs__one,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_one
thf(fact_6518_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_6519_abs__minus__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6520_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6521_abs__minus__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
      = ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6522_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6523_power__abs,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ N ) )
      = ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% power_abs
thf(fact_6524_power__abs,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% power_abs
thf(fact_6525_power__abs,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% power_abs
thf(fact_6526_power__abs,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% power_abs
thf(fact_6527_abs__ge__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_zero
thf(fact_6528_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_6529_abs__ge__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).

% abs_ge_zero
thf(fact_6530_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_6531_abs__of__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6532_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6533_abs__of__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6534_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6535_abs__not__less__zero,axiom,
    ! [A: code_integer] :
      ~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).

% abs_not_less_zero
thf(fact_6536_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_6537_abs__not__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).

% abs_not_less_zero
thf(fact_6538_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_6539_abs__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6540_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6541_abs__triangle__ineq,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6542_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6543_abs__mult__less,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
       => ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6544_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6545_abs__mult__less,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
     => ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
       => ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6546_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6547_abs__triangle__ineq2,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6548_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6549_abs__triangle__ineq2,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6550_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6551_abs__triangle__ineq3,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6552_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6553_abs__triangle__ineq3,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6554_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6555_abs__triangle__ineq2__sym,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6556_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6557_abs__triangle__ineq2__sym,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6558_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6559_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6560_abs__leI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
       => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6561_abs__leI,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
       => ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6562_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6563_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6564_abs__le__D2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6565_abs__le__D2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6566_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6567_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6568_abs__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le3102999989581377725nteger @ A @ B )
        & ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6569_abs__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_eq_rat @ A @ B )
        & ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6570_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6571_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_6572_abs__ge__minus__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_minus_self
thf(fact_6573_abs__ge__minus__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).

% abs_ge_minus_self
thf(fact_6574_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_6575_nonzero__abs__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_6576_nonzero__abs__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_6577_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6578_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6579_abs__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_rat @ A @ B )
        & ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6580_abs__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le6747313008572928689nteger @ A @ B )
        & ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6581_dense__eq0__I,axiom,
    ! [X: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E2 ) )
     => ( X = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_6582_dense__eq0__I,axiom,
    ! [X: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ E2 ) )
     => ( X = zero_zero_rat ) ) ).

% dense_eq0_I
thf(fact_6583_abs__eq__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
          | ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
        & ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
          | ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
     => ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
        = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6584_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6585_abs__eq__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          | ( ord_less_eq_rat @ A @ zero_zero_rat ) )
        & ( ( ord_less_eq_rat @ zero_zero_rat @ B )
          | ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
        = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6586_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6587_abs__mult__pos,axiom,
    ! [X: code_integer,Y2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
     => ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y2 ) @ X )
        = ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y2 @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6588_abs__mult__pos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ ( abs_abs_real @ Y2 ) @ X )
        = ( abs_abs_real @ ( times_times_real @ Y2 @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6589_abs__mult__pos,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( times_times_rat @ ( abs_abs_rat @ Y2 ) @ X )
        = ( abs_abs_rat @ ( times_times_rat @ Y2 @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6590_abs__mult__pos,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( times_times_int @ ( abs_abs_int @ Y2 ) @ X )
        = ( abs_abs_int @ ( times_times_int @ Y2 @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6591_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6592_abs__eq__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = B )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
        & ( ( A = B )
          | ( A
            = ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6593_abs__eq__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ( abs_abs_rat @ A )
        = B )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_rat @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6594_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6595_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6596_eq__abs__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( abs_abs_Code_integer @ B ) )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
        & ( ( B = A )
          | ( B
            = ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6597_eq__abs__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( abs_abs_rat @ B ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_rat @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6598_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6599_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_6600_abs__minus__le__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).

% abs_minus_le_zero
thf(fact_6601_abs__minus__le__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).

% abs_minus_le_zero
thf(fact_6602_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_6603_zero__le__power__abs,axiom,
    ! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_6604_zero__le__power__abs,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_6605_zero__le__power__abs,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_6606_zero__le__power__abs,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_6607_abs__div__pos,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( divide_divide_real @ ( abs_abs_real @ X ) @ Y2 )
        = ( abs_abs_real @ ( divide_divide_real @ X @ Y2 ) ) ) ) ).

% abs_div_pos
thf(fact_6608_abs__div__pos,axiom,
    ! [Y2: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( divide_divide_rat @ ( abs_abs_rat @ X ) @ Y2 )
        = ( abs_abs_rat @ ( divide_divide_rat @ X @ Y2 ) ) ) ) ).

% abs_div_pos
thf(fact_6609_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6610_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A4: int] : ( if_int @ ( ord_less_int @ A4 @ zero_zero_int ) @ ( uminus_uminus_int @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6611_abs__if,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6612_abs__if,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A4: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A4 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6613_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_6614_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_6615_abs__of__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_neg
thf(fact_6616_abs__of__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_neg
thf(fact_6617_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6618_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A4: int] : ( if_int @ ( ord_less_int @ A4 @ zero_zero_int ) @ ( uminus_uminus_int @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6619_abs__if__raw,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6620_abs__if__raw,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A4: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A4 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6621_abs__triangle__ineq4,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6622_abs__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6623_abs__triangle__ineq4,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6624_abs__triangle__ineq4,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6625_abs__diff__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6626_abs__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6627_abs__diff__triangle__ineq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6628_abs__diff__triangle__ineq,axiom,
    ! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6629_abs__diff__le__iff,axiom,
    ! [X: code_integer,A: code_integer,R: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R )
      = ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R ) @ X )
        & ( ord_le3102999989581377725nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6630_abs__diff__le__iff,axiom,
    ! [X: real,A: real,R: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R )
      = ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R ) @ X )
        & ( ord_less_eq_real @ X @ ( plus_plus_real @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6631_abs__diff__le__iff,axiom,
    ! [X: rat,A: rat,R: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R )
      = ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R ) @ X )
        & ( ord_less_eq_rat @ X @ ( plus_plus_rat @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6632_abs__diff__le__iff,axiom,
    ! [X: int,A: int,R: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R ) @ X )
        & ( ord_less_eq_int @ X @ ( plus_plus_int @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6633_abs__diff__less__iff,axiom,
    ! [X: code_integer,A: code_integer,R: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R )
      = ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R ) @ X )
        & ( ord_le6747313008572928689nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6634_abs__diff__less__iff,axiom,
    ! [X: real,A: real,R: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R )
      = ( ( ord_less_real @ ( minus_minus_real @ A @ R ) @ X )
        & ( ord_less_real @ X @ ( plus_plus_real @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6635_abs__diff__less__iff,axiom,
    ! [X: rat,A: rat,R: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R )
      = ( ( ord_less_rat @ ( minus_minus_rat @ A @ R ) @ X )
        & ( ord_less_rat @ X @ ( plus_plus_rat @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6636_abs__diff__less__iff,axiom,
    ! [X: int,A: int,R: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R )
      = ( ( ord_less_int @ ( minus_minus_int @ A @ R ) @ X )
        & ( ord_less_int @ X @ ( plus_plus_int @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6637_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_real_def
thf(fact_6638_log__ln,axiom,
    ( ln_ln_real
    = ( log @ ( exp_real @ one_one_real ) ) ) ).

% log_ln
thf(fact_6639_sin__bound__lemma,axiom,
    ! [X: real,Y2: real,U: real,V: real] :
      ( ( X = Y2 )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X @ U ) @ Y2 ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_6640_abs__add__one__gt__zero,axiom,
    ! [X: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6641_abs__add__one__gt__zero,axiom,
    ! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6642_abs__add__one__gt__zero,axiom,
    ! [X: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6643_abs__add__one__gt__zero,axiom,
    ! [X: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6644_log__base__change,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ B @ X )
          = ( divide_divide_real @ ( log @ A @ X ) @ ( log @ A @ B ) ) ) ) ) ).

% log_base_change
thf(fact_6645_of__int__leD,axiom,
    ! [N: int,X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X ) ) ) ).

% of_int_leD
thf(fact_6646_of__int__leD,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% of_int_leD
thf(fact_6647_of__int__leD,axiom,
    ! [N: int,X: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_rat @ one_one_rat @ X ) ) ) ).

% of_int_leD
thf(fact_6648_of__int__leD,axiom,
    ! [N: int,X: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_int @ one_one_int @ X ) ) ) ).

% of_int_leD
thf(fact_6649_of__int__lessD,axiom,
    ! [N: int,X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X ) ) ) ).

% of_int_lessD
thf(fact_6650_of__int__lessD,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_real @ one_one_real @ X ) ) ) ).

% of_int_lessD
thf(fact_6651_of__int__lessD,axiom,
    ! [N: int,X: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_rat @ one_one_rat @ X ) ) ) ).

% of_int_lessD
thf(fact_6652_of__int__lessD,axiom,
    ! [N: int,X: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_int @ one_one_int @ X ) ) ) ).

% of_int_lessD
thf(fact_6653_lemma__interval,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [Y6: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y6 ) ) @ D2 )
               => ( ( ord_less_eq_real @ A @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_6654_round__diff__minimal,axiom,
    ! [Z3: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z3 ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ ( ring_1_of_int_real @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_6655_round__diff__minimal,axiom,
    ! [Z3: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z3 @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z3 ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z3 @ ( ring_1_of_int_rat @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_6656_abs__le__square__iff,axiom,
    ! [X: code_integer,Y2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ ( abs_abs_Code_integer @ Y2 ) )
      = ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6657_abs__le__square__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y2 ) )
      = ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6658_abs__le__square__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ ( abs_abs_rat @ Y2 ) )
      = ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6659_abs__le__square__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6660_abs__square__eq__1,axiom,
    ! [X: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( abs_abs_Code_integer @ X )
        = one_one_Code_integer ) ) ).

% abs_square_eq_1
thf(fact_6661_abs__square__eq__1,axiom,
    ! [X: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( abs_abs_rat @ X )
        = one_one_rat ) ) ).

% abs_square_eq_1
thf(fact_6662_abs__square__eq__1,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_6663_abs__square__eq__1,axiom,
    ! [X: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_6664_power__even__abs,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_even_abs
thf(fact_6665_power__even__abs,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_even_abs
thf(fact_6666_power__even__abs,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% power_even_abs
thf(fact_6667_power__even__abs,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% power_even_abs
thf(fact_6668_log__mult,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ zero_zero_real @ Y2 )
           => ( ( log @ A @ ( times_times_real @ X @ Y2 ) )
              = ( plus_plus_real @ ( log @ A @ X ) @ ( log @ A @ Y2 ) ) ) ) ) ) ) ).

% log_mult
thf(fact_6669_log__divide,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ zero_zero_real @ Y2 )
           => ( ( log @ A @ ( divide_divide_real @ X @ Y2 ) )
              = ( minus_minus_real @ ( log @ A @ X ) @ ( log @ A @ Y2 ) ) ) ) ) ) ) ).

% log_divide
thf(fact_6670_power2__le__iff__abs__le,axiom,
    ! [Y2: code_integer,X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
     => ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_6671_power2__le__iff__abs__le,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_6672_power2__le__iff__abs__le,axiom,
    ! [Y2: rat,X: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_6673_power2__le__iff__abs__le,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_6674_abs__square__le__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).

% abs_square_le_1
thf(fact_6675_abs__square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_6676_abs__square__le__1,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).

% abs_square_le_1
thf(fact_6677_abs__square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_6678_abs__square__less__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).

% abs_square_less_1
thf(fact_6679_abs__square__less__1,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_less_1
thf(fact_6680_abs__square__less__1,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).

% abs_square_less_1
thf(fact_6681_abs__square__less__1,axiom,
    ! [X: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_less_1
thf(fact_6682_power__mono__even,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_6683_power__mono__even,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_6684_power__mono__even,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_6685_power__mono__even,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_6686_log__eq__div__ln__mult__log,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( B != one_one_real )
           => ( ( ord_less_real @ zero_zero_real @ X )
             => ( ( log @ A @ X )
                = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X ) ) ) ) ) ) ) ) ).

% log_eq_div_ln_mult_log
thf(fact_6687_sqrt__ge__absD,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ Y2 ) )
     => ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) ).

% sqrt_ge_absD
thf(fact_6688_sqrt__sum__squares__le__sum__abs,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y2 ) ) ) ).

% sqrt_sum_squares_le_sum_abs
thf(fact_6689_real__sqrt__ge__abs2,axiom,
    ! [Y2: real,X: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs2
thf(fact_6690_real__sqrt__ge__abs1,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs1
thf(fact_6691_arctan__add,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( plus_plus_real @ ( arctan @ X ) @ ( arctan @ Y2 ) )
          = ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X @ Y2 ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X @ Y2 ) ) ) ) ) ) ) ).

% arctan_add
thf(fact_6692_of__int__round__abs__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) @ X ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_6693_of__int__round__abs__le,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) @ X ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_6694_round__unique_H,axiom,
    ! [X: real,N: int] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ N ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( archim8280529875227126926d_real @ X )
        = N ) ) ).

% round_unique'
thf(fact_6695_round__unique_H,axiom,
    ! [X: rat,N: int] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ N ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
     => ( ( archim7778729529865785530nd_rat @ X )
        = N ) ) ).

% round_unique'
thf(fact_6696_cos__x__y__le__one,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).

% cos_x_y_le_one
thf(fact_6697_real__sqrt__sum__squares__less,axiom,
    ! [X: real,U: real,Y2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
     => ( ( ord_less_real @ ( abs_abs_real @ Y2 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).

% real_sqrt_sum_squares_less
thf(fact_6698_log__base__10__eq2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
        = ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X ) ) ) ) ).

% log_base_10_eq2
thf(fact_6699_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_6700_abs__sqrt__wlog,axiom,
    ! [P3: code_integer > code_integer > $o,X: code_integer] :
      ( ! [X5: code_integer] :
          ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X5 )
         => ( P3 @ X5 @ ( power_8256067586552552935nteger @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P3 @ ( abs_abs_Code_integer @ X ) @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_6701_abs__sqrt__wlog,axiom,
    ! [P3: real > real > $o,X: real] :
      ( ! [X5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X5 )
         => ( P3 @ X5 @ ( power_power_real @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P3 @ ( abs_abs_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_6702_abs__sqrt__wlog,axiom,
    ! [P3: rat > rat > $o,X: rat] :
      ( ! [X5: rat] :
          ( ( ord_less_eq_rat @ zero_zero_rat @ X5 )
         => ( P3 @ X5 @ ( power_power_rat @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P3 @ ( abs_abs_rat @ X ) @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_6703_abs__sqrt__wlog,axiom,
    ! [P3: int > int > $o,X: int] :
      ( ! [X5: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X5 )
         => ( P3 @ X5 @ ( power_power_int @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P3 @ ( abs_abs_int @ X ) @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_6704_log2__of__power__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_le
thf(fact_6705_machin,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% machin
thf(fact_6706_machin__Euler,axiom,
    ( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% machin_Euler
thf(fact_6707_exp__ge__one__minus__x__over__n__power__n,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ).

% exp_ge_one_minus_x_over_n_power_n
thf(fact_6708_exp__ge__one__plus__x__over__n__power__n,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X ) ) ) ) ).

% exp_ge_one_plus_x_over_n_power_n
thf(fact_6709_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_6710_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_6711_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ M )
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_6712_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_6713_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri681578069525770553at_rat @ N ) ) ).

% abs_of_nat
thf(fact_6714_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( semiri4939895301339042750nteger @ N ) ) ).

% abs_of_nat
thf(fact_6715_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% abs_of_nat
thf(fact_6716_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_6717_zdvd1__eq,axiom,
    ! [X: int] :
      ( ( dvd_dvd_int @ X @ one_one_int )
      = ( ( abs_abs_int @ X )
        = one_one_int ) ) ).

% zdvd1_eq
thf(fact_6718_of__nat__0,axiom,
    ( ( semiri8010041392384452111omplex @ zero_zero_nat )
    = zero_zero_complex ) ).

% of_nat_0
thf(fact_6719_of__nat__0,axiom,
    ( ( semiri681578069525770553at_rat @ zero_zero_nat )
    = zero_zero_rat ) ).

% of_nat_0
thf(fact_6720_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_6721_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_6722_of__nat__0,axiom,
    ( ( semiri4216267220026989637d_enat @ zero_zero_nat )
    = zero_z5237406670263579293d_enat ) ).

% of_nat_0
thf(fact_6723_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_6724_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_complex
        = ( semiri8010041392384452111omplex @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_6725_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_rat
        = ( semiri681578069525770553at_rat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_6726_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_6727_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_6728_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_z5237406670263579293d_enat
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_6729_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_6730_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = zero_zero_complex )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6731_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6732_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6733_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6734_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri4216267220026989637d_enat @ M )
        = zero_z5237406670263579293d_enat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6735_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_6736_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_6737_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_6738_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_6739_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_6740_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_6741_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_6742_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_6743_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_6744_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_6745_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_6746_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
      = ( numera6690914467698888265omplex @ N ) ) ).

% of_nat_numeral
thf(fact_6747_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% of_nat_numeral
thf(fact_6748_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% of_nat_numeral
thf(fact_6749_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% of_nat_numeral
thf(fact_6750_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N ) )
      = ( numera1916890842035813515d_enat @ N ) ) ).

% of_nat_numeral
thf(fact_6751_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ N ) ) ).

% of_nat_numeral
thf(fact_6752_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% of_nat_add
thf(fact_6753_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_6754_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_6755_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).

% of_nat_add
thf(fact_6756_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_6757_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% of_nat_mult
thf(fact_6758_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_mult
thf(fact_6759_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_6760_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( times_times_nat @ M @ N ) )
      = ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).

% of_nat_mult
thf(fact_6761_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_6762_of__nat__1,axiom,
    ( ( semiri8010041392384452111omplex @ one_one_nat )
    = one_one_complex ) ).

% of_nat_1
thf(fact_6763_of__nat__1,axiom,
    ( ( semiri681578069525770553at_rat @ one_one_nat )
    = one_one_rat ) ).

% of_nat_1
thf(fact_6764_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_6765_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_6766_of__nat__1,axiom,
    ( ( semiri4216267220026989637d_enat @ one_one_nat )
    = one_on7984719198319812577d_enat ) ).

% of_nat_1
thf(fact_6767_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_6768_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_complex
        = ( semiri8010041392384452111omplex @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6769_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_rat
        = ( semiri681578069525770553at_rat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6770_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6771_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6772_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_on7984719198319812577d_enat
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6773_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6774_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri8010041392384452111omplex @ N )
        = one_one_complex )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6775_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri681578069525770553at_rat @ N )
        = one_one_rat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6776_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6777_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6778_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ N )
        = one_on7984719198319812577d_enat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6779_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_6780_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri8010041392384452111omplex @ X )
        = ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6781_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6782_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6783_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri4216267220026989637d_enat @ X )
        = ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6784_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_6785_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
        = ( semiri8010041392384452111omplex @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6786_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6787_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6788_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ B ) @ W )
        = ( semiri4216267220026989637d_enat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6789_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_6790_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
      = ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).

% of_nat_power
thf(fact_6791_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).

% of_nat_power
thf(fact_6792_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_6793_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( power_power_nat @ M @ N ) )
      = ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_6794_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_6795_zabs__less__one__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z3 ) @ one_one_int )
      = ( Z3 = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_6796_of__nat__of__bool,axiom,
    ! [P3: $o] :
      ( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P3 ) )
      = ( zero_n3304061248610475627l_real @ P3 ) ) ).

% of_nat_of_bool
thf(fact_6797_of__nat__of__bool,axiom,
    ! [P3: $o] :
      ( ( semiri4216267220026989637d_enat @ ( zero_n2687167440665602831ol_nat @ P3 ) )
      = ( zero_n1046097342994218471d_enat @ P3 ) ) ).

% of_nat_of_bool
thf(fact_6798_of__nat__of__bool,axiom,
    ! [P3: $o] :
      ( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P3 ) )
      = ( zero_n2687167440665602831ol_nat @ P3 ) ) ).

% of_nat_of_bool
thf(fact_6799_of__nat__of__bool,axiom,
    ! [P3: $o] :
      ( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P3 ) )
      = ( zero_n2684676970156552555ol_int @ P3 ) ) ).

% of_nat_of_bool
thf(fact_6800_of__nat__of__bool,axiom,
    ! [P3: $o] :
      ( ( semiri4939895301339042750nteger @ ( zero_n2687167440665602831ol_nat @ P3 ) )
      = ( zero_n356916108424825756nteger @ P3 ) ) ).

% of_nat_of_bool
thf(fact_6801_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6802_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6803_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6804_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6805_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_6806_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ M ) )
      = ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).

% of_nat_Suc
thf(fact_6807_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ M ) )
      = ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).

% of_nat_Suc
thf(fact_6808_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_6809_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_6810_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri4216267220026989637d_enat @ ( suc @ M ) )
      = ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( semiri4216267220026989637d_enat @ M ) ) ) ).

% of_nat_Suc
thf(fact_6811_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_6812_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_6813_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_6814_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_6815_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( semiri4216267220026989637d_enat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_6816_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_6817_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6818_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6819_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6820_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_6821_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6822_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6823_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6824_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_6825_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6826_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6827_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6828_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_6829_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6830_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6831_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6832_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_6833_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: nat,X: num,N: nat] :
      ( ( ( semiri8010041392384452111omplex @ Y2 )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
      = ( Y2
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6834_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: nat,X: num,N: nat] :
      ( ( ( semiri681578069525770553at_rat @ Y2 )
        = ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( Y2
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6835_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: nat,X: num,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ Y2 )
        = ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( Y2
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6836_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: nat,X: num,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y2 )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( Y2
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6837_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: nat,X: num,N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ Y2 )
        = ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N ) )
      = ( Y2
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6838_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: nat,X: num,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y2 )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( Y2
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_6839_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: nat] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
        = ( semiri8010041392384452111omplex @ Y2 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6840_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: nat] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
        = ( semiri681578069525770553at_rat @ Y2 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6841_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: nat] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
        = ( semiri5074537144036343181t_real @ Y2 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6842_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = ( semiri1314217659103216013at_int @ Y2 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6843_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: nat] :
      ( ( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N )
        = ( semiri4216267220026989637d_enat @ Y2 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6844_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = ( semiri1316708129612266289at_nat @ Y2 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_6845_real__of__nat__less__numeral__iff,axiom,
    ! [N: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_6846_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_6847_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_6848_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6849_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6850_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6851_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_6852_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_6853_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_6854_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_6855_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_6856_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6857_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6858_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6859_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_6860_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6861_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6862_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6863_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_6864_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6865_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6866_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6867_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6868_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6869_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6870_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6871_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_6872_real__arch__simple,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% real_arch_simple
thf(fact_6873_real__arch__simple,axiom,
    ! [X: rat] :
    ? [N3: nat] : ( ord_less_eq_rat @ X @ ( semiri681578069525770553at_rat @ N3 ) ) ).

% real_arch_simple
thf(fact_6874_reals__Archimedean2,axiom,
    ! [X: rat] :
    ? [N3: nat] : ( ord_less_rat @ X @ ( semiri681578069525770553at_rat @ N3 ) ) ).

% reals_Archimedean2
thf(fact_6875_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% reals_Archimedean2
thf(fact_6876_mult__of__nat__commute,axiom,
    ! [X: nat,Y2: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ X ) @ Y2 )
      = ( times_times_rat @ Y2 @ ( semiri681578069525770553at_rat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_6877_mult__of__nat__commute,axiom,
    ! [X: nat,Y2: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y2 )
      = ( times_times_real @ Y2 @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_6878_mult__of__nat__commute,axiom,
    ! [X: nat,Y2: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y2 )
      = ( times_times_int @ Y2 @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_6879_mult__of__nat__commute,axiom,
    ! [X: nat,Y2: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ X ) @ Y2 )
      = ( times_7803423173614009249d_enat @ Y2 @ ( semiri4216267220026989637d_enat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_6880_mult__of__nat__commute,axiom,
    ! [X: nat,Y2: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y2 )
      = ( times_times_nat @ Y2 @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_6881_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( ring_1_of_int_rat @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_6882_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_6883_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_6884_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_6885_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ ( semiri4216267220026989637d_enat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_6886_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_6887_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_6888_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_6889_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).

% of_nat_less_0_iff
thf(fact_6890_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_6891_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_6892_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat ) ).

% of_nat_less_0_iff
thf(fact_6893_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_6894_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ N ) )
     != zero_zero_complex ) ).

% of_nat_neq_0
thf(fact_6895_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ N ) )
     != zero_zero_rat ) ).

% of_nat_neq_0
thf(fact_6896_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_6897_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_6898_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( suc @ N ) )
     != zero_z5237406670263579293d_enat ) ).

% of_nat_neq_0
thf(fact_6899_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_6900_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% div_mult2_eq'
thf(fact_6901_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% div_mult2_eq'
thf(fact_6902_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_6903_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_6904_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_6905_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_6906_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_6907_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_6908_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_6909_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_6910_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_6911_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_6912_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I2 ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_6913_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ I2 ) @ ( semiri4216267220026989637d_enat @ J ) ) ) ).

% of_nat_mono
thf(fact_6914_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I2 ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).

% of_nat_mono
thf(fact_6915_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I2 ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_6916_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_6917_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_6918_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_6919_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_6920_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_6921_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_6922_abs__zmult__eq__1,axiom,
    ! [M: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_6923_pi__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ pi ).

% pi_ge_zero
thf(fact_6924_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) ) ).

% of_nat_mod
thf(fact_6925_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mod
thf(fact_6926_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mod
thf(fact_6927_take__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
      = ( semiri1314217659103216013at_int @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).

% take_bit_of_nat
thf(fact_6928_take__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
      = ( semiri1316708129612266289at_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).

% take_bit_of_nat
thf(fact_6929_of__nat__and__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se727722235901077358nd_nat @ M @ N ) )
      = ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_and_eq
thf(fact_6930_of__nat__and__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se727722235901077358nd_nat @ M @ N ) )
      = ( bit_se727722235901077358nd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_and_eq
thf(fact_6931_bit__of__nat__iff__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( semiri1314217659103216013at_int @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ M @ N ) ) ).

% bit_of_nat_iff_bit
thf(fact_6932_bit__of__nat__iff__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( semiri1316708129612266289at_nat @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ M @ N ) ) ).

% bit_of_nat_iff_bit
thf(fact_6933_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% of_nat_mask_eq
thf(fact_6934_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_nat_mask_eq
thf(fact_6935_ex__less__of__nat__mult,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N3: nat] : ( ord_less_rat @ Y2 @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N3 ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_6936_ex__less__of__nat__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_6937_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri8010041392384452111omplex @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).

% of_nat_diff
thf(fact_6938_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_6939_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% of_nat_diff
thf(fact_6940_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% of_nat_diff
thf(fact_6941_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_6942_exp__of__nat__mult,axiom,
    ! [N: nat,X: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ X ) )
      = ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).

% exp_of_nat_mult
thf(fact_6943_exp__of__nat__mult,axiom,
    ! [N: nat,X: real] :
      ( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) )
      = ( power_power_real @ ( exp_real @ X ) @ N ) ) ).

% exp_of_nat_mult
thf(fact_6944_exp__of__nat2__mult,axiom,
    ! [X: complex,N: nat] :
      ( ( exp_complex @ ( times_times_complex @ X @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).

% exp_of_nat2_mult
thf(fact_6945_exp__of__nat2__mult,axiom,
    ! [X: real,N: nat] :
      ( ( exp_real @ ( times_times_real @ X @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( power_power_real @ ( exp_real @ X ) @ N ) ) ).

% exp_of_nat2_mult
thf(fact_6946_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y6: real] :
        ? [N3: nat] : ( ord_less_real @ Y6 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% reals_Archimedean3
thf(fact_6947_dvd__imp__le__int,axiom,
    ! [I2: int,D: int] :
      ( ( I2 != zero_zero_int )
     => ( ( dvd_dvd_int @ D @ I2 )
       => ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I2 ) ) ) ) ).

% dvd_imp_le_int
thf(fact_6948_real__of__nat__div4,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% real_of_nat_div4
thf(fact_6949_abs__mod__less,axiom,
    ! [L: int,K2: int] :
      ( ( L != zero_zero_int )
     => ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K2 @ L ) ) @ ( abs_abs_int @ L ) ) ) ).

% abs_mod_less
thf(fact_6950_real__of__nat__div,axiom,
    ! [D: nat,N: nat] :
      ( ( dvd_dvd_nat @ D @ N )
     => ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D ) )
        = ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div
thf(fact_6951_mod__mult2__eq_H,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_6952_mod__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_6953_mod__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_6954_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_6955_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_6956_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_6957_pi__less__4,axiom,
    ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).

% pi_less_4
thf(fact_6958_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat,M2: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ).

% nat_less_real_le
thf(fact_6959_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N2: nat,M2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M2 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_6960_pi__ge__two,axiom,
    ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).

% pi_ge_two
thf(fact_6961_zdvd__mult__cancel1,axiom,
    ! [M: int,N: int] :
      ( ( M != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
        = ( ( abs_abs_int @ N )
          = one_one_int ) ) ) ).

% zdvd_mult_cancel1
thf(fact_6962_pi__half__neq__two,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_neq_two
thf(fact_6963_log__of__power__eq,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N )
          = ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_6964_less__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_6965_real__of__nat__div__aux,axiom,
    ! [X: nat,D: nat] :
      ( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ D ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X @ D ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X @ D ) ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div_aux
thf(fact_6966_nat__approx__posE,axiom,
    ! [E: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ E )
     => ~ ! [N3: nat] :
            ~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_6967_nat__approx__posE,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ~ ! [N3: nat] :
            ~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_6968_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_6969_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_6970_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_6971_inverse__of__nat__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_6972_inverse__of__nat__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_6973_exp__divide__power__eq,axiom,
    ! [N: nat,X: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X @ ( semiri8010041392384452111omplex @ N ) ) ) @ N )
        = ( exp_complex @ X ) ) ) ).

% exp_divide_power_eq
thf(fact_6974_exp__divide__power__eq,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N )
        = ( exp_real @ X ) ) ) ).

% exp_divide_power_eq
thf(fact_6975_even__abs__add__iff,axiom,
    ! [K2: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K2 ) @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K2 @ L ) ) ) ).

% even_abs_add_iff
thf(fact_6976_even__add__abs__iff,axiom,
    ! [K2: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K2 @ ( abs_abs_int @ L ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K2 @ L ) ) ) ).

% even_add_abs_iff
thf(fact_6977_real__archimedian__rdiv__eq__0,axiom,
    ! [X: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M4 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X ) @ C ) )
         => ( X = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_6978_pi__half__neq__zero,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% pi_half_neq_zero
thf(fact_6979_pi__half__less__two,axiom,
    ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_less_two
thf(fact_6980_pi__half__le__two,axiom,
    ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_le_two
thf(fact_6981_real__of__nat__div2,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) ) ).

% real_of_nat_div2
thf(fact_6982_le__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_6983_ln__realpow,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( power_power_real @ X @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X ) ) ) ) ).

% ln_realpow
thf(fact_6984_log__nat__power,axiom,
    ! [X: real,B: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log @ B @ ( power_power_real @ X @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X ) ) ) ) ).

% log_nat_power
thf(fact_6985_real__of__nat__div3,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_6986_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K2: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K2 )
         => ( ( ord_less_eq_int @ K2 @ ( F @ N ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N )
                & ( ( F @ I3 )
                  = K2 ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_6987_incr__lemma,axiom,
    ! [D: int,Z3: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z3 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z3 ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_6988_decr__lemma,axiom,
    ! [D: int,X: int,Z3: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z3 ) ) @ one_one_int ) @ D ) ) @ Z3 ) ) ).

% decr_lemma
thf(fact_6989_pi__half__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_gt_zero
thf(fact_6990_linear__plus__1__le__power,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).

% linear_plus_1_le_power
thf(fact_6991_pi__half__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_ge_zero
thf(fact_6992_log2__of__power__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( semiri5074537144036343181t_real @ N )
        = ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_6993_log__of__power__less,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_less
thf(fact_6994_Bernoulli__inequality,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).

% Bernoulli_inequality
thf(fact_6995_m2pi__less__pi,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).

% m2pi_less_pi
thf(fact_6996_arctan__ubound,axiom,
    ! [Y2: real] : ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arctan_ubound
thf(fact_6997_arctan__one,axiom,
    ( ( arctan @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% arctan_one
thf(fact_6998_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K2: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K2 )
       => ( ( ord_less_eq_int @ K2 @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K2 ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_6999_log__of__power__le,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_le
thf(fact_7000_minus__pi__half__less__zero,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).

% minus_pi_half_less_zero
thf(fact_7001_arctan__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) )
      & ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arctan_bounded
thf(fact_7002_arctan__lbound,axiom,
    ! [Y2: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) ) ).

% arctan_lbound
thf(fact_7003_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K2: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K2 )
       => ( ( ord_less_eq_int @ K2 @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K2 ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_7004_less__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_7005_le__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_7006_Bernoulli__inequality__even,axiom,
    ! [N: nat,X: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).

% Bernoulli_inequality_even
thf(fact_7007_log2__of__power__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_less
thf(fact_7008_of__nat__code__if,axiom,
    ( semiri8010041392384452111omplex
    = ( ^ [N2: nat] :
          ( if_complex @ ( N2 = zero_zero_nat ) @ zero_zero_complex
          @ ( produc1917071388513777916omplex
            @ ^ [M2: nat,Q5: nat] : ( if_complex @ ( Q5 = zero_zero_nat ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M2 ) ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M2 ) ) @ one_one_complex ) )
            @ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7009_of__nat__code__if,axiom,
    ( semiri681578069525770553at_rat
    = ( ^ [N2: nat] :
          ( if_rat @ ( N2 = zero_zero_nat ) @ zero_zero_rat
          @ ( produc6207742614233964070at_rat
            @ ^ [M2: nat,Q5: nat] : ( if_rat @ ( Q5 = zero_zero_nat ) @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M2 ) ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M2 ) ) @ one_one_rat ) )
            @ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7010_of__nat__code__if,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [N2: nat] :
          ( if_real @ ( N2 = zero_zero_nat ) @ zero_zero_real
          @ ( produc1703576794950452218t_real
            @ ^ [M2: nat,Q5: nat] : ( if_real @ ( Q5 = zero_zero_nat ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M2 ) ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M2 ) ) @ one_one_real ) )
            @ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7011_of__nat__code__if,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N2: nat] :
          ( if_int @ ( N2 = zero_zero_nat ) @ zero_zero_int
          @ ( produc6840382203811409530at_int
            @ ^ [M2: nat,Q5: nat] : ( if_int @ ( Q5 = zero_zero_nat ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) @ one_one_int ) )
            @ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7012_of__nat__code__if,axiom,
    ( semiri4216267220026989637d_enat
    = ( ^ [N2: nat] :
          ( if_Extended_enat @ ( N2 = zero_zero_nat ) @ zero_z5237406670263579293d_enat
          @ ( produc2676513652042109336d_enat
            @ ^ [M2: nat,Q5: nat] : ( if_Extended_enat @ ( Q5 = zero_zero_nat ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ ( semiri4216267220026989637d_enat @ M2 ) ) @ ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ ( semiri4216267220026989637d_enat @ M2 ) ) @ one_on7984719198319812577d_enat ) )
            @ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7013_of__nat__code__if,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N2: nat] :
          ( if_nat @ ( N2 = zero_zero_nat ) @ zero_zero_nat
          @ ( produc6842872674320459806at_nat
            @ ^ [M2: nat,Q5: nat] : ( if_nat @ ( Q5 = zero_zero_nat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M2 ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M2 ) ) @ one_one_nat ) )
            @ ( divmod_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7014_monoseq__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( topolo6980174941875973593q_real
        @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% monoseq_arctan_series
thf(fact_7015_lemma__termdiff3,axiom,
    ! [H2: real,Z3: real,K5: real,N: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z3 ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z3 @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z3 @ H2 ) @ N ) @ ( power_power_real @ Z3 @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z3 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_7016_lemma__termdiff3,axiom,
    ! [H2: complex,Z3: complex,K5: real,N: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z3 ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z3 @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z3 @ H2 ) @ N ) @ ( power_power_complex @ Z3 @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z3 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_7017_sin__cos__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% sin_cos_npi
thf(fact_7018_ln__series,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ( ln_ln_real @ X )
          = ( suminf_real
            @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X @ one_one_real ) @ ( suc @ N2 ) ) ) ) ) ) ) ).

% ln_series
thf(fact_7019_arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( arctan @ X )
        = ( suminf_real
          @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% arctan_series
thf(fact_7020_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_7021_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_7022_sin__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% sin_npi
thf(fact_7023_sin__npi2,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi2
thf(fact_7024_sin__npi__int,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi_int
thf(fact_7025_powser__zero,axiom,
    ! [F: nat > complex] :
      ( ( suminf_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_7026_powser__zero,axiom,
    ! [F: nat > real] :
      ( ( suminf_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_7027_sin__two__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = zero_zero_real ) ).

% sin_two_pi
thf(fact_7028_sin__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_pi_half
thf(fact_7029_sin__periodic,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( sin_real @ X ) ) ).

% sin_periodic
thf(fact_7030_sin__2npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = zero_zero_real ) ).

% sin_2npi
thf(fact_7031_sin__2pi__minus,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_2pi_minus
thf(fact_7032_sin__int__2pin,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_int_2pin
thf(fact_7033_sin__3over2__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sin_3over2_pi
thf(fact_7034_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( semiri1314217659103216013at_int @ A4 )
          = ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_7035_int__if,axiom,
    ! [P3: $o,A: nat,B: nat] :
      ( ( P3
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P3 @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P3
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P3 @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_7036_of__nat__eq__enat,axiom,
    semiri4216267220026989637d_enat = extended_enat2 ).

% of_nat_eq_enat
thf(fact_7037_sin__x__le__x,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( sin_real @ X ) @ X ) ) ).

% sin_x_le_x
thf(fact_7038_sin__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( sin_real @ X ) @ one_one_real ) ).

% sin_le_one
thf(fact_7039_abs__sin__x__le__abs__x,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ ( abs_abs_real @ X ) ) ).

% abs_sin_x_le_abs_x
thf(fact_7040_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_7041_complex__mod__minus__le__complex__mod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% complex_mod_minus_le_complex_mod
thf(fact_7042_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_7043_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_7044_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_7045_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_7046_complex__mod__triangle__ineq2,axiom,
    ! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).

% complex_mod_triangle_ineq2
thf(fact_7047_zero__le__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ? [N3: nat] :
          ( K2
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_7048_nonneg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ~ ! [N3: nat] :
            ( K2
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_7049_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z3: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z3 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z3 ) ) ).

% zadd_int_left
thf(fact_7050_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_7051_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_7052_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_7053_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_7054_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z6: int] :
        ? [N2: nat] :
          ( Z6
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_7055_zdiv__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zdiv_int
thf(fact_7056_zmod__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zmod_int
thf(fact_7057_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_less_as_int
thf(fact_7058_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_leq_as_int
thf(fact_7059_sin__x__ge__neg__x,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ ( sin_real @ X ) ) ) ).

% sin_x_ge_neg_x
thf(fact_7060_sin__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_ge_zero
thf(fact_7061_sin__ge__minus__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X ) ) ).

% sin_ge_minus_one
thf(fact_7062_abs__sin__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ one_one_real ) ).

% abs_sin_le_one
thf(fact_7063_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_7064_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_7065_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_7066_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_7067_nonpos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_7068_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_7069_norm__exp,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ X ) ) @ ( exp_real @ ( real_V7735802525324610683m_real @ X ) ) ) ).

% norm_exp
thf(fact_7070_norm__exp,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ X ) ) @ ( exp_real @ ( real_V1022390504157884413omplex @ X ) ) ) ).

% norm_exp
thf(fact_7071_sin__zero__iff__int2,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [I: int] :
            ( X
            = ( times_times_real @ ( ring_1_of_int_real @ I ) @ pi ) ) ) ) ).

% sin_zero_iff_int2
thf(fact_7072_zero__less__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K2
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_7073_pos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ~ ! [N3: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_7074_int__cases3,axiom,
    ! [K2: int] :
      ( ( K2 != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K2
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_7075_zmult__zless__mono2__lemma,axiom,
    ! [I2: int,J: int,K2: nat] :
      ( ( ord_less_int @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K2 ) @ I2 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K2 ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_7076_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_7077_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_7078_sin__gt__zero__02,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_gt_zero_02
thf(fact_7079_neg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ K2 @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K2
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_7080_zdiff__int__split,axiom,
    ! [P3: int > $o,X: nat,Y2: nat] :
      ( ( P3 @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y2 ) ) )
      = ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ( P3 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) )
        & ( ( ord_less_nat @ X @ Y2 )
         => ( P3 @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_7081_monoseq__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X ) ) ) ) ).

% monoseq_realpow
thf(fact_7082_sin__pi__divide__n__ge__0,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_ge_0
thf(fact_7083_sin__45,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_45
thf(fact_7084_sin__gt__zero2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_gt_zero2
thf(fact_7085_sin__lt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ pi @ X )
     => ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_lt_zero
thf(fact_7086_sin__30,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_30
thf(fact_7087_sin__inj__pi,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ( sin_real @ X )
                = ( sin_real @ Y2 ) )
             => ( X = Y2 ) ) ) ) ) ) ).

% sin_inj_pi
thf(fact_7088_sin__mono__le__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( sin_real @ X ) @ ( sin_real @ Y2 ) )
              = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ) ).

% sin_mono_le_eq
thf(fact_7089_sin__monotone__2pi__le,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X )
       => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sin_real @ Y2 ) @ ( sin_real @ X ) ) ) ) ) ).

% sin_monotone_2pi_le
thf(fact_7090_sin__60,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_60
thf(fact_7091_exp__bound__half,axiom,
    ! [Z3: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z3 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_7092_exp__bound__half,axiom,
    ! [Z3: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_7093_sin__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ pi @ X )
     => ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_eq_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_le_zero
thf(fact_7094_sin__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_less_zero
thf(fact_7095_sin__mono__less__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( sin_real @ X ) @ ( sin_real @ Y2 ) )
              = ( ord_less_real @ X @ Y2 ) ) ) ) ) ) ).

% sin_mono_less_eq
thf(fact_7096_sin__monotone__2pi,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sin_real @ Y2 ) @ ( sin_real @ X ) ) ) ) ) ).

% sin_monotone_2pi
thf(fact_7097_sin__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ? [X5: real] :
            ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
            & ( ord_less_eq_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( sin_real @ X5 )
              = Y2 )
            & ! [Y6: real] :
                ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
                  & ( ( sin_real @ Y6 )
                    = Y2 ) )
               => ( Y6 = X5 ) ) ) ) ) ).

% sin_total
thf(fact_7098_sin__pi__divide__n__gt__0,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_gt_0
thf(fact_7099_sin__arctan,axiom,
    ! [X: real] :
      ( ( sin_real @ ( arctan @ X ) )
      = ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arctan
thf(fact_7100_exp__bound__lemma,axiom,
    ! [Z3: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z3 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z3 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z3 ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_7101_exp__bound__lemma,axiom,
    ! [Z3: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z3 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z3 ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_7102_sin__zero__iff__int,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [I: int] :
            ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I )
            & ( X
              = ( times_times_real @ ( ring_1_of_int_real @ I ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_iff_int
thf(fact_7103_sin__zero__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( sin_real @ X )
          = zero_zero_real )
       => ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_lemma
thf(fact_7104_sin__zero__iff,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [N2: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N2: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% sin_zero_iff
thf(fact_7105_pi__series,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( suminf_real
      @ ^ [K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% pi_series
thf(fact_7106_norm__divide__numeral,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_7107_norm__divide__numeral,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_7108_norm__mult__numeral1,axiom,
    ! [W: num,A: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_7109_norm__mult__numeral1,axiom,
    ! [W: num,A: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_7110_norm__mult__numeral2,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_7111_norm__mult__numeral2,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_7112_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_7113_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_7114_norm__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% norm_le_zero_iff
thf(fact_7115_norm__le__zero__iff,axiom,
    ! [X: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ zero_zero_real )
      = ( X = zero_zero_complex ) ) ).

% norm_le_zero_iff
thf(fact_7116_suminf__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( ( suminf_real @ ( power_power_real @ C ) )
        = ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7117_suminf__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( ( suminf_complex @ ( power_power_complex @ C ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7118_suminf__zero,axiom,
    ( ( suminf_complex
      @ ^ [N2: nat] : zero_zero_complex )
    = zero_zero_complex ) ).

% suminf_zero
thf(fact_7119_suminf__zero,axiom,
    ( ( suminf_real
      @ ^ [N2: nat] : zero_zero_real )
    = zero_zero_real ) ).

% suminf_zero
thf(fact_7120_suminf__zero,axiom,
    ( ( suminf_nat
      @ ^ [N2: nat] : zero_zero_nat )
    = zero_zero_nat ) ).

% suminf_zero
thf(fact_7121_suminf__zero,axiom,
    ( ( suminf_int
      @ ^ [N2: nat] : zero_zero_int )
    = zero_zero_int ) ).

% suminf_zero
thf(fact_7122_norm__one,axiom,
    ( ( real_V7735802525324610683m_real @ one_one_real )
    = one_one_real ) ).

% norm_one
thf(fact_7123_norm__one,axiom,
    ( ( real_V1022390504157884413omplex @ one_one_complex )
    = one_one_real ) ).

% norm_one
thf(fact_7124_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_7125_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_7126_norm__ge__zero,axiom,
    ! [X: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X ) ) ).

% norm_ge_zero
thf(fact_7127_norm__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y2 ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y2 ) ) ) ).

% norm_mult
thf(fact_7128_norm__mult,axiom,
    ! [X: complex,Y2: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y2 ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) ) ) ).

% norm_mult
thf(fact_7129_norm__divide,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_divide
thf(fact_7130_norm__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_divide
thf(fact_7131_norm__power,axiom,
    ! [X: real,N: nat] :
      ( ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) )
      = ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).

% norm_power
thf(fact_7132_norm__power,axiom,
    ! [X: complex,N: nat] :
      ( ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).

% norm_power
thf(fact_7133_norm__uminus__minus,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ Y2 ) )
      = ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y2 ) ) ) ).

% norm_uminus_minus
thf(fact_7134_norm__uminus__minus,axiom,
    ! [X: complex,Y2: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ Y2 ) )
      = ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y2 ) ) ) ).

% norm_uminus_minus
thf(fact_7135_nonzero__norm__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_7136_nonzero__norm__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_7137_power__eq__imp__eq__norm,axiom,
    ! [W: real,N: nat,Z3: real] :
      ( ( ( power_power_real @ W @ N )
        = ( power_power_real @ Z3 @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( real_V7735802525324610683m_real @ W )
          = ( real_V7735802525324610683m_real @ Z3 ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_7138_power__eq__imp__eq__norm,axiom,
    ! [W: complex,N: nat,Z3: complex] :
      ( ( ( power_power_complex @ W @ N )
        = ( power_power_complex @ Z3 @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( real_V1022390504157884413omplex @ W )
          = ( real_V1022390504157884413omplex @ Z3 ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_7139_norm__mult__less,axiom,
    ! [X: real,R: real,Y2: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y2 ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y2 ) ) @ ( times_times_real @ R @ S ) ) ) ) ).

% norm_mult_less
thf(fact_7140_norm__mult__less,axiom,
    ! [X: complex,R: real,Y2: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y2 ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y2 ) ) @ ( times_times_real @ R @ S ) ) ) ) ).

% norm_mult_less
thf(fact_7141_norm__mult__ineq,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y2 ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y2 ) ) ) ).

% norm_mult_ineq
thf(fact_7142_norm__mult__ineq,axiom,
    ! [X: complex,Y2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y2 ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) ) ) ).

% norm_mult_ineq
thf(fact_7143_norm__triangle__lt,axiom,
    ! [X: real,Y2: real,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y2 ) ) @ E )
     => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y2 ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_7144_norm__triangle__lt,axiom,
    ! [X: complex,Y2: complex,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) ) @ E )
     => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y2 ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_7145_norm__add__less,axiom,
    ! [X: real,R: real,Y2: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y2 ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y2 ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_add_less
thf(fact_7146_norm__add__less,axiom,
    ! [X: complex,R: real,Y2: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y2 ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y2 ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_add_less
thf(fact_7147_norm__triangle__mono,axiom,
    ! [A: real,R: real,B: real,S: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_7148_norm__triangle__mono,axiom,
    ! [A: complex,R: real,B: complex,S: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_7149_norm__triangle__ineq,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y2 ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y2 ) ) ) ).

% norm_triangle_ineq
thf(fact_7150_norm__triangle__ineq,axiom,
    ! [X: complex,Y2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y2 ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) ) ) ).

% norm_triangle_ineq
thf(fact_7151_norm__triangle__le,axiom,
    ! [X: real,Y2: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y2 ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y2 ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_7152_norm__triangle__le,axiom,
    ! [X: complex,Y2: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y2 ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_7153_norm__add__leD,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_7154_norm__add__leD,axiom,
    ! [A: complex,B: complex,C: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_7155_norm__power__ineq,axiom,
    ! [X: real,N: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).

% norm_power_ineq
thf(fact_7156_norm__power__ineq,axiom,
    ! [X: complex,N: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).

% norm_power_ineq
thf(fact_7157_norm__triangle__le__diff,axiom,
    ! [X: real,Y2: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y2 ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y2 ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_7158_norm__triangle__le__diff,axiom,
    ! [X: complex,Y2: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y2 ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_7159_norm__diff__triangle__le,axiom,
    ! [X: real,Y2: real,E1: real,Z3: real,E22: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y2 ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y2 @ Z3 ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z3 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_7160_norm__diff__triangle__le,axiom,
    ! [X: complex,Y2: complex,E1: real,Z3: complex,E22: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y2 ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y2 @ Z3 ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z3 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_7161_norm__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_7162_norm__triangle__ineq4,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_7163_norm__triangle__sub,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y2 ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y2 ) ) ) ) ).

% norm_triangle_sub
thf(fact_7164_norm__triangle__sub,axiom,
    ! [X: complex,Y2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y2 ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y2 ) ) ) ) ).

% norm_triangle_sub
thf(fact_7165_norm__diff__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_7166_norm__diff__ineq,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_7167_norm__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_7168_norm__triangle__ineq2,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_7169_power__eq__1__iff,axiom,
    ! [W: real,N: nat] :
      ( ( ( power_power_real @ W @ N )
        = one_one_real )
     => ( ( ( real_V7735802525324610683m_real @ W )
          = one_one_real )
        | ( N = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_7170_power__eq__1__iff,axiom,
    ! [W: complex,N: nat] :
      ( ( ( power_power_complex @ W @ N )
        = one_one_complex )
     => ( ( ( real_V1022390504157884413omplex @ W )
          = one_one_real )
        | ( N = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_7171_norm__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_7172_norm__diff__triangle__ineq,axiom,
    ! [A: complex,B: complex,C: complex,D: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_7173_norm__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_7174_norm__triangle__ineq3,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_7175_square__norm__one,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
     => ( ( real_V7735802525324610683m_real @ X )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_7176_square__norm__one,axiom,
    ! [X: complex] :
      ( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
     => ( ( real_V1022390504157884413omplex @ X )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_7177_norm__power__diff,axiom,
    ! [Z3: real,W: real,M: nat] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z3 @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z3 @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_7178_norm__power__diff,axiom,
    ! [Z3: complex,W: complex,M: nat] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z3 @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z3 @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_7179_ceiling__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
          = ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K2 )
            & ( ord_less_eq_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% ceiling_log_nat_eq_powr_iff
thf(fact_7180_summable__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( summable_real
        @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).

% summable_arctan_series
thf(fact_7181_cos__pi__eq__zero,axiom,
    ! [M: nat] :
      ( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = zero_zero_real ) ).

% cos_pi_eq_zero
thf(fact_7182_sincos__total__2pi,axiom,
    ! [X: real,Y2: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ~ ! [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
           => ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( ( X
                  = ( cos_real @ T3 ) )
               => ( Y2
                 != ( sin_real @ T3 ) ) ) ) ) ) ).

% sincos_total_2pi
thf(fact_7183_sin__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( sin_real @ X )
        = ( divide_divide_real @ ( tan_real @ X ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_tan
thf(fact_7184_of__int__ceiling__cancel,axiom,
    ! [X: rat] :
      ( ( ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) )
        = X )
      = ( ? [N2: int] :
            ( X
            = ( ring_1_of_int_rat @ N2 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_7185_of__int__ceiling__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) )
        = X )
      = ( ? [N2: int] :
            ( X
            = ( ring_1_of_int_real @ N2 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_7186_summable__zero,axiom,
    ( summable_complex
    @ ^ [N2: nat] : zero_zero_complex ) ).

% summable_zero
thf(fact_7187_summable__zero,axiom,
    ( summable_real
    @ ^ [N2: nat] : zero_zero_real ) ).

% summable_zero
thf(fact_7188_summable__zero,axiom,
    ( summable_nat
    @ ^ [N2: nat] : zero_zero_nat ) ).

% summable_zero
thf(fact_7189_summable__zero,axiom,
    ( summable_int
    @ ^ [N2: nat] : zero_zero_int ) ).

% summable_zero
thf(fact_7190_summable__single,axiom,
    ! [I2: nat,F: nat > complex] :
      ( summable_complex
      @ ^ [R5: nat] : ( if_complex @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ).

% summable_single
thf(fact_7191_summable__single,axiom,
    ! [I2: nat,F: nat > real] :
      ( summable_real
      @ ^ [R5: nat] : ( if_real @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ).

% summable_single
thf(fact_7192_summable__single,axiom,
    ! [I2: nat,F: nat > nat] :
      ( summable_nat
      @ ^ [R5: nat] : ( if_nat @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ).

% summable_single
thf(fact_7193_summable__single,axiom,
    ! [I2: nat,F: nat > int] :
      ( summable_int
      @ ^ [R5: nat] : ( if_int @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ).

% summable_single
thf(fact_7194_summable__iff__shift,axiom,
    ! [F: nat > real,K2: nat] :
      ( ( summable_real
        @ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K2 ) ) )
      = ( summable_real @ F ) ) ).

% summable_iff_shift
thf(fact_7195_summable__iff__shift,axiom,
    ! [F: nat > complex,K2: nat] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K2 ) ) )
      = ( summable_complex @ F ) ) ).

% summable_iff_shift
thf(fact_7196_cos__zero,axiom,
    ( ( cos_complex @ zero_zero_complex )
    = one_one_complex ) ).

% cos_zero
thf(fact_7197_cos__zero,axiom,
    ( ( cos_real @ zero_zero_real )
    = one_one_real ) ).

% cos_zero
thf(fact_7198_ceiling__numeral,axiom,
    ! [V: num] :
      ( ( archim7802044766580827645g_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% ceiling_numeral
thf(fact_7199_ceiling__numeral,axiom,
    ! [V: num] :
      ( ( archim2889992004027027881ng_rat @ ( numeral_numeral_rat @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% ceiling_numeral
thf(fact_7200_ceiling__one,axiom,
    ( ( archim2889992004027027881ng_rat @ one_one_rat )
    = one_one_int ) ).

% ceiling_one
thf(fact_7201_ceiling__one,axiom,
    ( ( archim7802044766580827645g_real @ one_one_real )
    = one_one_int ) ).

% ceiling_one
thf(fact_7202_summable__cmult__iff,axiom,
    ! [C: complex,F: nat > complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7203_summable__cmult__iff,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7204_summable__divide__iff,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_divide_iff
thf(fact_7205_summable__divide__iff,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_divide_iff
thf(fact_7206_ceiling__add__of__int,axiom,
    ! [X: rat,Z3: int] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ ( ring_1_of_int_rat @ Z3 ) ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ Z3 ) ) ).

% ceiling_add_of_int
thf(fact_7207_ceiling__add__of__int,axiom,
    ! [X: real,Z3: int] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z3 ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ Z3 ) ) ).

% ceiling_add_of_int
thf(fact_7208_cos__pi,axiom,
    ( ( cos_real @ pi )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% cos_pi
thf(fact_7209_sin__cos__squared__add3,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ X ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ X ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add3
thf(fact_7210_sin__cos__squared__add3,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ X ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ X ) ) )
      = one_one_real ) ).

% sin_cos_squared_add3
thf(fact_7211_ceiling__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% ceiling_le_zero
thf(fact_7212_ceiling__le__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ zero_zero_int )
      = ( ord_less_eq_rat @ X @ zero_zero_rat ) ) ).

% ceiling_le_zero
thf(fact_7213_zero__less__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ zero_zero_rat @ X ) ) ).

% zero_less_ceiling
thf(fact_7214_zero__less__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% zero_less_ceiling
thf(fact_7215_ceiling__le__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_real @ X @ ( numeral_numeral_real @ V ) ) ) ).

% ceiling_le_numeral
thf(fact_7216_ceiling__le__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_rat @ X @ ( numeral_numeral_rat @ V ) ) ) ).

% ceiling_le_numeral
thf(fact_7217_ceiling__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% ceiling_less_one
thf(fact_7218_ceiling__less__one,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int )
      = ( ord_less_eq_rat @ X @ zero_zero_rat ) ) ).

% ceiling_less_one
thf(fact_7219_one__le__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ zero_zero_rat @ X ) ) ).

% one_le_ceiling
thf(fact_7220_one__le__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% one_le_ceiling
thf(fact_7221_numeral__less__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( numeral_numeral_real @ V ) @ X ) ) ).

% numeral_less_ceiling
thf(fact_7222_numeral__less__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( numeral_numeral_rat @ V ) @ X ) ) ).

% numeral_less_ceiling
thf(fact_7223_ceiling__le__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
      = ( ord_less_eq_real @ X @ one_one_real ) ) ).

% ceiling_le_one
thf(fact_7224_ceiling__le__one,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int )
      = ( ord_less_eq_rat @ X @ one_one_rat ) ) ).

% ceiling_le_one
thf(fact_7225_one__less__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ one_one_rat @ X ) ) ).

% one_less_ceiling
thf(fact_7226_one__less__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ one_one_real @ X ) ) ).

% one_less_ceiling
thf(fact_7227_ceiling__add__numeral,axiom,
    ! [X: real,V: num] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ V ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_add_numeral
thf(fact_7228_ceiling__add__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_add_numeral
thf(fact_7229_ceiling__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_neg_numeral
thf(fact_7230_ceiling__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_neg_numeral
thf(fact_7231_ceiling__add__one,axiom,
    ! [X: rat] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ one_one_rat ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_7232_ceiling__add__one,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ one_one_real ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_7233_ceiling__diff__numeral,axiom,
    ! [X: real,V: num] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ ( numeral_numeral_real @ V ) ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_diff_numeral
thf(fact_7234_ceiling__diff__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_diff_numeral
thf(fact_7235_ceiling__diff__one,axiom,
    ! [X: rat] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ one_one_rat ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int ) ) ).

% ceiling_diff_one
thf(fact_7236_ceiling__diff__one,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ one_one_real ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int ) ) ).

% ceiling_diff_one
thf(fact_7237_ceiling__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim7802044766580827645g_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% ceiling_numeral_power
thf(fact_7238_ceiling__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim2889992004027027881ng_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% ceiling_numeral_power
thf(fact_7239_tan__npi,axiom,
    ! [N: nat] :
      ( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% tan_npi
thf(fact_7240_tan__periodic__n,axiom,
    ! [X: real,N: num] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_n
thf(fact_7241_tan__periodic__nat,axiom,
    ! [X: real,N: nat] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_nat
thf(fact_7242_tan__periodic__int,axiom,
    ! [X: real,I2: int] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( ring_1_of_int_real @ I2 ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_int
thf(fact_7243_summable__geometric__iff,axiom,
    ! [C: real] :
      ( ( summable_real @ ( power_power_real @ C ) )
      = ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7244_summable__geometric__iff,axiom,
    ! [C: complex] :
      ( ( summable_complex @ ( power_power_complex @ C ) )
      = ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7245_ceiling__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
      = ( ord_less_eq_real @ X @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% ceiling_less_zero
thf(fact_7246_ceiling__less__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ zero_zero_int )
      = ( ord_less_eq_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% ceiling_less_zero
thf(fact_7247_zero__le__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X ) ) ).

% zero_le_ceiling
thf(fact_7248_zero__le__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X ) ) ).

% zero_le_ceiling
thf(fact_7249_ceiling__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_divide_eq_div_numeral
thf(fact_7250_ceiling__less__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_real @ X @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% ceiling_less_numeral
thf(fact_7251_ceiling__less__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).

% ceiling_less_numeral
thf(fact_7252_numeral__le__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).

% numeral_le_ceiling
thf(fact_7253_numeral__le__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X ) ) ).

% numeral_le_ceiling
thf(fact_7254_ceiling__le__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% ceiling_le_neg_numeral
thf(fact_7255_ceiling__le__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).

% ceiling_le_neg_numeral
thf(fact_7256_neg__numeral__less__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).

% neg_numeral_less_ceiling
thf(fact_7257_neg__numeral__less__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X ) ) ).

% neg_numeral_less_ceiling
thf(fact_7258_cos__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_pi_half
thf(fact_7259_cos__two__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_real ) ).

% cos_two_pi
thf(fact_7260_cos__periodic,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cos_real @ X ) ) ).

% cos_periodic
thf(fact_7261_cos__2pi__minus,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
      = ( cos_real @ X ) ) ).

% cos_2pi_minus
thf(fact_7262_tan__periodic,axiom,
    ! [X: real] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic
thf(fact_7263_cos__npi2,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi2
thf(fact_7264_cos__npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi
thf(fact_7265_ceiling__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_minus_divide_eq_div_numeral
thf(fact_7266_sin__cos__squared__add,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add
thf(fact_7267_sin__cos__squared__add,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add
thf(fact_7268_sin__cos__squared__add2,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add2
thf(fact_7269_sin__cos__squared__add2,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add2
thf(fact_7270_cos__2npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = one_one_real ) ).

% cos_2npi
thf(fact_7271_cos__int__2pin,axiom,
    ! [N: int] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = one_one_real ) ).

% cos_int_2pin
thf(fact_7272_ceiling__less__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_real @ X @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% ceiling_less_neg_numeral
thf(fact_7273_ceiling__less__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).

% ceiling_less_neg_numeral
thf(fact_7274_neg__numeral__le__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).

% neg_numeral_le_ceiling
thf(fact_7275_neg__numeral__le__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X ) ) ).

% neg_numeral_le_ceiling
thf(fact_7276_cos__3over2__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = zero_zero_real ) ).

% cos_3over2_pi
thf(fact_7277_cos__npi__int,axiom,
    ! [N: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% cos_npi_int
thf(fact_7278_summable__norm__cancel,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( F @ N2 ) ) )
     => ( summable_real @ F ) ) ).

% summable_norm_cancel
thf(fact_7279_summable__norm__cancel,axiom,
    ! [F: nat > complex] :
      ( ( summable_real
        @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) )
     => ( summable_complex @ F ) ) ).

% summable_norm_cancel
thf(fact_7280_tan__def,axiom,
    ( tan_complex
    = ( ^ [X4: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X4 ) @ ( cos_complex @ X4 ) ) ) ) ).

% tan_def
thf(fact_7281_tan__def,axiom,
    ( tan_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( sin_real @ X4 ) @ ( cos_real @ X4 ) ) ) ) ).

% tan_def
thf(fact_7282_summable__const__iff,axiom,
    ! [C: complex] :
      ( ( summable_complex
        @ ^ [Uu3: nat] : C )
      = ( C = zero_zero_complex ) ) ).

% summable_const_iff
thf(fact_7283_summable__const__iff,axiom,
    ! [C: real] :
      ( ( summable_real
        @ ^ [Uu3: nat] : C )
      = ( C = zero_zero_real ) ) ).

% summable_const_iff
thf(fact_7284_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > real] :
      ( ( summable_real @ G )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7285_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > complex] :
      ( ( summable_real @ G )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7286_summable__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N6: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N6 @ N3 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test
thf(fact_7287_summable__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N6: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N6 @ N3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test
thf(fact_7288_summable__mult,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) ) ) ).

% summable_mult
thf(fact_7289_summable__mult,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) ) ) ).

% summable_mult
thf(fact_7290_summable__mult2,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C ) ) ) ).

% summable_mult2
thf(fact_7291_summable__mult2,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C ) ) ) ).

% summable_mult2
thf(fact_7292_summable__add,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( summable_complex
          @ ^ [N2: nat] : ( plus_plus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).

% summable_add
thf(fact_7293_summable__add,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N2: nat] : ( plus_plus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).

% summable_add
thf(fact_7294_summable__add,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ( summable_nat @ F )
     => ( ( summable_nat @ G )
       => ( summable_nat
          @ ^ [N2: nat] : ( plus_plus_nat @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).

% summable_add
thf(fact_7295_summable__add,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ( summable_int @ F )
     => ( ( summable_int @ G )
       => ( summable_int
          @ ^ [N2: nat] : ( plus_plus_int @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).

% summable_add
thf(fact_7296_summable__diff,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( summable_complex
          @ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).

% summable_diff
thf(fact_7297_summable__diff,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ).

% summable_diff
thf(fact_7298_summable__divide,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C ) ) ) ).

% summable_divide
thf(fact_7299_summable__divide,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C ) ) ) ).

% summable_divide
thf(fact_7300_summable__minus,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) ) ) ) ).

% summable_minus
thf(fact_7301_summable__minus,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) ) ) ) ).

% summable_minus
thf(fact_7302_summable__minus__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) ) )
      = ( summable_real @ F ) ) ).

% summable_minus_iff
thf(fact_7303_summable__minus__iff,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) ) )
      = ( summable_complex @ F ) ) ).

% summable_minus_iff
thf(fact_7304_summable__Suc__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
      = ( summable_real @ F ) ) ).

% summable_Suc_iff
thf(fact_7305_summable__Suc__iff,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
      = ( summable_complex @ F ) ) ).

% summable_Suc_iff
thf(fact_7306_summable__ignore__initial__segment,axiom,
    ! [F: nat > real,K2: nat] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K2 ) ) ) ) ).

% summable_ignore_initial_segment
thf(fact_7307_summable__ignore__initial__segment,axiom,
    ! [F: nat > complex,K2: nat] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N2: nat] : ( F @ ( plus_plus_nat @ N2 @ K2 ) ) ) ) ).

% summable_ignore_initial_segment
thf(fact_7308_summable__rabs__cancel,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) )
     => ( summable_real @ F ) ) ).

% summable_rabs_cancel
thf(fact_7309_powser__insidea,axiom,
    ! [F: nat > real,X: real,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X @ N2 ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z3 ) @ ( real_V7735802525324610683m_real @ X ) )
       => ( summable_real
          @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7310_powser__insidea,axiom,
    ! [F: nat > complex,X: complex,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ X @ N2 ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( real_V1022390504157884413omplex @ X ) )
       => ( summable_real
          @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7311_suminf__le,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( summable_real @ F )
       => ( ( summable_real @ G )
         => ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7312_suminf__le,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( summable_nat @ F )
       => ( ( summable_nat @ G )
         => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7313_suminf__le,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( summable_int @ F )
       => ( ( summable_int @ G )
         => ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7314_ceiling__mono,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ Y2 @ X )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y2 ) @ ( archim7802044766580827645g_real @ X ) ) ) ).

% ceiling_mono
thf(fact_7315_ceiling__mono,axiom,
    ! [Y2: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y2 @ X )
     => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ Y2 ) @ ( archim2889992004027027881ng_rat @ X ) ) ) ).

% ceiling_mono
thf(fact_7316_le__of__int__ceiling,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ).

% le_of_int_ceiling
thf(fact_7317_le__of__int__ceiling,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) ) ).

% le_of_int_ceiling
thf(fact_7318_ceiling__less__cancel,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim2889992004027027881ng_rat @ Y2 ) )
     => ( ord_less_rat @ X @ Y2 ) ) ).

% ceiling_less_cancel
thf(fact_7319_ceiling__less__cancel,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y2 ) )
     => ( ord_less_real @ X @ Y2 ) ) ).

% ceiling_less_cancel
thf(fact_7320_cos__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( cos_real @ X ) @ one_one_real ) ).

% cos_le_one
thf(fact_7321_summable__mult__D,axiom,
    ! [C: complex,F: nat > complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) )
     => ( ( C != zero_zero_complex )
       => ( summable_complex @ F ) ) ) ).

% summable_mult_D
thf(fact_7322_summable__mult__D,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) )
     => ( ( C != zero_zero_real )
       => ( summable_real @ F ) ) ) ).

% summable_mult_D
thf(fact_7323_polar__Ex,axiom,
    ! [X: real,Y2: real] :
    ? [R3: real,A3: real] :
      ( ( X
        = ( times_times_real @ R3 @ ( cos_real @ A3 ) ) )
      & ( Y2
        = ( times_times_real @ R3 @ ( sin_real @ A3 ) ) ) ) ).

% polar_Ex
thf(fact_7324_summable__zero__power,axiom,
    summable_real @ ( power_power_real @ zero_zero_real ) ).

% summable_zero_power
thf(fact_7325_summable__zero__power,axiom,
    summable_int @ ( power_power_int @ zero_zero_int ) ).

% summable_zero_power
thf(fact_7326_summable__zero__power,axiom,
    summable_complex @ ( power_power_complex @ zero_zero_complex ) ).

% summable_zero_power
thf(fact_7327_suminf__mult2,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( times_times_complex @ ( suminf_complex @ F ) @ C )
        = ( suminf_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C ) ) ) ) ).

% suminf_mult2
thf(fact_7328_suminf__mult2,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( times_times_real @ ( suminf_real @ F ) @ C )
        = ( suminf_real
          @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C ) ) ) ) ).

% suminf_mult2
thf(fact_7329_suminf__mult,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) ) )
        = ( times_times_complex @ C @ ( suminf_complex @ F ) ) ) ) ).

% suminf_mult
thf(fact_7330_suminf__mult,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) ) )
        = ( times_times_real @ C @ ( suminf_real @ F ) ) ) ) ).

% suminf_mult
thf(fact_7331_suminf__add,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( ( plus_plus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
          = ( suminf_complex
            @ ^ [N2: nat] : ( plus_plus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7332_suminf__add,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( ( plus_plus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
          = ( suminf_real
            @ ^ [N2: nat] : ( plus_plus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7333_suminf__add,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ( summable_nat @ F )
     => ( ( summable_nat @ G )
       => ( ( plus_plus_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) )
          = ( suminf_nat
            @ ^ [N2: nat] : ( plus_plus_nat @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7334_suminf__add,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ( summable_int @ F )
     => ( ( summable_int @ G )
       => ( ( plus_plus_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) )
          = ( suminf_int
            @ ^ [N2: nat] : ( plus_plus_int @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7335_suminf__diff,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( ( minus_minus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
          = ( suminf_complex
            @ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).

% suminf_diff
thf(fact_7336_suminf__diff,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( ( minus_minus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
          = ( suminf_real
            @ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) ) ) ) ) ) ).

% suminf_diff
thf(fact_7337_suminf__divide,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C ) )
        = ( divide1717551699836669952omplex @ ( suminf_complex @ F ) @ C ) ) ) ).

% suminf_divide
thf(fact_7338_suminf__divide,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C ) )
        = ( divide_divide_real @ ( suminf_real @ F ) @ C ) ) ) ).

% suminf_divide
thf(fact_7339_suminf__minus,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) ) )
        = ( uminus_uminus_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_minus
thf(fact_7340_suminf__minus,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) ) )
        = ( uminus1482373934393186551omplex @ ( suminf_complex @ F ) ) ) ) ).

% suminf_minus
thf(fact_7341_ceiling__ge__round,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).

% ceiling_ge_round
thf(fact_7342_add__tan__eq,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y2 )
         != zero_zero_complex )
       => ( ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y2 ) )
          = ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X @ Y2 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y2 ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_7343_add__tan__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y2 )
         != zero_zero_real )
       => ( ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) )
          = ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_7344_suminf__nonneg,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7345_suminf__nonneg,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7346_suminf__nonneg,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7347_suminf__eq__zero__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ( ( suminf_real @ F )
            = zero_zero_real )
          = ( ! [N2: nat] :
                ( ( F @ N2 )
                = zero_zero_real ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7348_suminf__eq__zero__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ( ( suminf_nat @ F )
            = zero_zero_nat )
          = ( ! [N2: nat] :
                ( ( F @ N2 )
                = zero_zero_nat ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7349_suminf__eq__zero__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ( ( suminf_int @ F )
            = zero_zero_int )
          = ( ! [N2: nat] :
                ( ( F @ N2 )
                = zero_zero_int ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7350_suminf__pos,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_pos
thf(fact_7351_suminf__pos,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_pos
thf(fact_7352_suminf__pos,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_pos
thf(fact_7353_cos__one__sin__zero,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
        = one_one_complex )
     => ( ( sin_complex @ X )
        = zero_zero_complex ) ) ).

% cos_one_sin_zero
thf(fact_7354_cos__one__sin__zero,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
     => ( ( sin_real @ X )
        = zero_zero_real ) ) ).

% cos_one_sin_zero
thf(fact_7355_sin__add,axiom,
    ! [X: real,Y2: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y2 ) ) ) ) ).

% sin_add
thf(fact_7356_sin__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( sin_complex @ ( minus_minus_complex @ X @ Y2 ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( sin_complex @ X ) @ ( cos_complex @ Y2 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( sin_complex @ Y2 ) ) ) ) ).

% sin_diff
thf(fact_7357_sin__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( sin_real @ ( minus_minus_real @ X @ Y2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y2 ) ) ) ) ).

% sin_diff
thf(fact_7358_lemma__tan__add1,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y2 )
         != zero_zero_complex )
       => ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y2 ) ) )
          = ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X @ Y2 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y2 ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_7359_lemma__tan__add1,axiom,
    ! [X: real,Y2: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y2 )
         != zero_zero_real )
       => ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) ) )
          = ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_7360_tan__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y2 )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( minus_minus_complex @ X @ Y2 ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( minus_minus_complex @ X @ Y2 ) )
            = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y2 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y2 ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_7361_tan__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y2 )
         != zero_zero_real )
       => ( ( ( cos_real @ ( minus_minus_real @ X @ Y2 ) )
           != zero_zero_real )
         => ( ( tan_real @ ( minus_minus_real @ X @ Y2 ) )
            = ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_7362_tan__add,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y2 )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( plus_plus_complex @ X @ Y2 ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( plus_plus_complex @ X @ Y2 ) )
            = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y2 ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y2 ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_7363_tan__add,axiom,
    ! [X: real,Y2: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y2 )
         != zero_zero_real )
       => ( ( ( cos_real @ ( plus_plus_real @ X @ Y2 ) )
           != zero_zero_real )
         => ( ( tan_real @ ( plus_plus_real @ X @ Y2 ) )
            = ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_7364_ceiling__le,axiom,
    ! [X: real,A: int] :
      ( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ A ) ) ).

% ceiling_le
thf(fact_7365_ceiling__le,axiom,
    ! [X: rat,A: int] :
      ( ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ A ) )
     => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ A ) ) ).

% ceiling_le
thf(fact_7366_ceiling__le__iff,axiom,
    ! [X: real,Z3: int] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ Z3 )
      = ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ) ).

% ceiling_le_iff
thf(fact_7367_ceiling__le__iff,axiom,
    ! [X: rat,Z3: int] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ Z3 )
      = ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z3 ) ) ) ).

% ceiling_le_iff
thf(fact_7368_less__ceiling__iff,axiom,
    ! [Z3: int,X: rat] :
      ( ( ord_less_int @ Z3 @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ X ) ) ).

% less_ceiling_iff
thf(fact_7369_less__ceiling__iff,axiom,
    ! [Z3: int,X: real] :
      ( ( ord_less_int @ Z3 @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ X ) ) ).

% less_ceiling_iff
thf(fact_7370_summable__0__powser,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) ) ) ).

% summable_0_powser
thf(fact_7371_summable__0__powser,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) ) ) ).

% summable_0_powser
thf(fact_7372_summable__zero__power_H,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) ) ) ).

% summable_zero_power'
thf(fact_7373_summable__zero__power_H,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) ) ) ).

% summable_zero_power'
thf(fact_7374_summable__zero__power_H,axiom,
    ! [F: nat > int] :
      ( summable_int
      @ ^ [N2: nat] : ( times_times_int @ ( F @ N2 ) @ ( power_power_int @ zero_zero_int @ N2 ) ) ) ).

% summable_zero_power'
thf(fact_7375_ceiling__add__le,axiom,
    ! [X: rat,Y2: rat] : ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ Y2 ) ) @ ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim2889992004027027881ng_rat @ Y2 ) ) ) ).

% ceiling_add_le
thf(fact_7376_ceiling__add__le,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ Y2 ) ) @ ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y2 ) ) ) ).

% ceiling_add_le
thf(fact_7377_cos__monotone__0__pi__le,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X )
       => ( ( ord_less_eq_real @ X @ pi )
         => ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) ) ) ) ).

% cos_monotone_0_pi_le
thf(fact_7378_cos__mono__le__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ pi )
           => ( ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) )
              = ( ord_less_eq_real @ Y2 @ X ) ) ) ) ) ) ).

% cos_mono_le_eq
thf(fact_7379_cos__inj__pi,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ pi )
           => ( ( ( cos_real @ X )
                = ( cos_real @ Y2 ) )
             => ( X = Y2 ) ) ) ) ) ) ).

% cos_inj_pi
thf(fact_7380_cos__ge__minus__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X ) ) ).

% cos_ge_minus_one
thf(fact_7381_powser__split__head_I3_J,axiom,
    ! [F: nat > complex,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) )
     => ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z3 @ N2 ) ) ) ) ).

% powser_split_head(3)
thf(fact_7382_powser__split__head_I3_J,axiom,
    ! [F: nat > real,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) )
     => ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z3 @ N2 ) ) ) ) ).

% powser_split_head(3)
thf(fact_7383_summable__powser__split__head,axiom,
    ! [F: nat > complex,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z3 @ N2 ) ) )
      = ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) ) ) ).

% summable_powser_split_head
thf(fact_7384_summable__powser__split__head,axiom,
    ! [F: nat > real,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z3 @ N2 ) ) )
      = ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) ) ) ).

% summable_powser_split_head
thf(fact_7385_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > complex,M: nat,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N2 @ M ) ) @ ( power_power_complex @ Z3 @ N2 ) ) )
      = ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7386_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > real,M: nat,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N2 @ M ) ) @ ( power_power_real @ Z3 @ N2 ) ) )
      = ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7387_abs__cos__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X ) ) @ one_one_real ) ).

% abs_cos_le_one
thf(fact_7388_summable__norm__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N6: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N6 @ N3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) ) ) ) ).

% summable_norm_comparison_test
thf(fact_7389_summable__rabs__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N6: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N6 @ N3 )
         => ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) ) ) ) ).

% summable_rabs_comparison_test
thf(fact_7390_summable__rabs,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) ) ) ) ).

% summable_rabs
thf(fact_7391_suminf__pos2,axiom,
    ! [F: nat > real,I2: nat] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I2 ) )
         => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7392_suminf__pos2,axiom,
    ! [F: nat > nat,I2: nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) )
         => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7393_suminf__pos2,axiom,
    ! [F: nat > int,I2: nat] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ( ord_less_int @ zero_zero_int @ ( F @ I2 ) )
         => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7394_suminf__pos__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N3 ) )
       => ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
          = ( ? [I: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7395_suminf__pos__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N3 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
          = ( ? [I: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7396_suminf__pos__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N3 ) )
       => ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
          = ( ? [I: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7397_cos__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( cos_complex @ ( minus_minus_complex @ X @ Y2 ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y2 ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ Y2 ) ) ) ) ).

% cos_diff
thf(fact_7398_cos__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( cos_real @ ( minus_minus_real @ X @ Y2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y2 ) ) ) ) ).

% cos_diff
thf(fact_7399_cos__add,axiom,
    ! [X: complex,Y2: complex] :
      ( ( cos_complex @ ( plus_plus_complex @ X @ Y2 ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y2 ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ Y2 ) ) ) ) ).

% cos_add
thf(fact_7400_cos__add,axiom,
    ! [X: real,Y2: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y2 ) ) ) ) ).

% cos_add
thf(fact_7401_sin__zero__norm__cos__one,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( cos_real @ X ) )
        = one_one_real ) ) ).

% sin_zero_norm_cos_one
thf(fact_7402_sin__zero__norm__cos__one,axiom,
    ! [X: complex] :
      ( ( ( sin_complex @ X )
        = zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( cos_complex @ X ) )
        = one_one_real ) ) ).

% sin_zero_norm_cos_one
thf(fact_7403_of__int__ceiling__le__add__one,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R ) ) @ ( plus_plus_real @ R @ one_one_real ) ) ).

% of_int_ceiling_le_add_one
thf(fact_7404_of__int__ceiling__le__add__one,axiom,
    ! [R: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R ) ) @ ( plus_plus_rat @ R @ one_one_rat ) ) ).

% of_int_ceiling_le_add_one
thf(fact_7405_of__int__ceiling__diff__one__le,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R ) ) @ one_one_real ) @ R ) ).

% of_int_ceiling_diff_one_le
thf(fact_7406_of__int__ceiling__diff__one__le,axiom,
    ! [R: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R ) ) @ one_one_rat ) @ R ) ).

% of_int_ceiling_diff_one_le
thf(fact_7407_cos__two__neq__zero,axiom,
    ( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% cos_two_neq_zero
thf(fact_7408_powser__inside,axiom,
    ! [F: nat > real,X: real,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X @ N2 ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z3 ) @ ( real_V7735802525324610683m_real @ X ) )
       => ( summable_real
          @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) ) ) ) ).

% powser_inside
thf(fact_7409_powser__inside,axiom,
    ! [F: nat > complex,X: complex,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ X @ N2 ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( real_V1022390504157884413omplex @ X ) )
       => ( summable_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) ) ) ) ).

% powser_inside
thf(fact_7410_cos__monotone__0__pi,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => ( ( ord_less_eq_real @ X @ pi )
         => ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) ) ) ) ).

% cos_monotone_0_pi
thf(fact_7411_cos__mono__less__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ pi )
           => ( ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) )
              = ( ord_less_real @ Y2 @ X ) ) ) ) ) ) ).

% cos_mono_less_eq
thf(fact_7412_tan__half,axiom,
    ( tan_complex
    = ( ^ [X4: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X4 ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X4 ) ) @ one_one_complex ) ) ) ) ).

% tan_half
thf(fact_7413_tan__half,axiom,
    ( tan_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X4 ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X4 ) ) @ one_one_real ) ) ) ) ).

% tan_half
thf(fact_7414_complete__algebra__summable__geometric,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ X ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7415_complete__algebra__summable__geometric,axiom,
    ! [X: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ X ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7416_summable__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ C ) ) ) ).

% summable_geometric
thf(fact_7417_summable__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ C ) ) ) ).

% summable_geometric
thf(fact_7418_cos__monotone__minus__pi__0_H,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X )
       => ( ( ord_less_eq_real @ X @ zero_zero_real )
         => ( ord_less_eq_real @ ( cos_real @ Y2 ) @ ( cos_real @ X ) ) ) ) ) ).

% cos_monotone_minus_pi_0'
thf(fact_7419_suminf__split__head,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
        = ( minus_minus_complex @ ( suminf_complex @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).

% suminf_split_head
thf(fact_7420_suminf__split__head,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N2: nat] : ( F @ ( suc @ N2 ) ) )
        = ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).

% suminf_split_head
thf(fact_7421_ceiling__divide__eq__div,axiom,
    ! [A: int,B: int] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% ceiling_divide_eq_div
thf(fact_7422_ceiling__divide__eq__div,axiom,
    ! [A: int,B: int] :
      ( ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% ceiling_divide_eq_div
thf(fact_7423_sin__zero__abs__cos__one,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
     => ( ( abs_abs_real @ ( cos_real @ X ) )
        = one_one_real ) ) ).

% sin_zero_abs_cos_one
thf(fact_7424_summable__norm,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( F @ N2 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( F @ N2 ) ) ) ) ) ).

% summable_norm
thf(fact_7425_summable__norm,axiom,
    ! [F: nat > complex] :
      ( ( summable_real
        @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( suminf_complex @ F ) )
        @ ( suminf_real
          @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( F @ N2 ) ) ) ) ) ).

% summable_norm
thf(fact_7426_sin__double,axiom,
    ! [X: complex] :
      ( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X ) ) @ ( cos_complex @ X ) ) ) ).

% sin_double
thf(fact_7427_sin__double,axiom,
    ! [X: real] :
      ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X ) ) @ ( cos_real @ X ) ) ) ).

% sin_double
thf(fact_7428_ceiling__split,axiom,
    ! [P3: int > $o,T: real] :
      ( ( P3 @ ( archim7802044766580827645g_real @ T ) )
      = ( ! [I: int] :
            ( ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ I ) @ one_one_real ) @ T )
              & ( ord_less_eq_real @ T @ ( ring_1_of_int_real @ I ) ) )
           => ( P3 @ I ) ) ) ) ).

% ceiling_split
thf(fact_7429_ceiling__split,axiom,
    ! [P3: int > $o,T: rat] :
      ( ( P3 @ ( archim2889992004027027881ng_rat @ T ) )
      = ( ! [I: int] :
            ( ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ I ) @ one_one_rat ) @ T )
              & ( ord_less_eq_rat @ T @ ( ring_1_of_int_rat @ I ) ) )
           => ( P3 @ I ) ) ) ) ).

% ceiling_split
thf(fact_7430_ceiling__eq__iff,axiom,
    ! [X: real,A: int] :
      ( ( ( archim7802044766580827645g_real @ X )
        = A )
      = ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) @ X )
        & ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) ) ) ) ).

% ceiling_eq_iff
thf(fact_7431_ceiling__eq__iff,axiom,
    ! [X: rat,A: int] :
      ( ( ( archim2889992004027027881ng_rat @ X )
        = A )
      = ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) @ X )
        & ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ A ) ) ) ) ).

% ceiling_eq_iff
thf(fact_7432_ceiling__unique,axiom,
    ! [Z3: int,X: real] :
      ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z3 ) )
       => ( ( archim7802044766580827645g_real @ X )
          = Z3 ) ) ) ).

% ceiling_unique
thf(fact_7433_ceiling__unique,axiom,
    ! [Z3: int,X: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat ) @ X )
     => ( ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z3 ) )
       => ( ( archim2889992004027027881ng_rat @ X )
          = Z3 ) ) ) ).

% ceiling_unique
thf(fact_7434_ceiling__correct,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) @ one_one_real ) @ X )
      & ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% ceiling_correct
thf(fact_7435_ceiling__correct,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) @ one_one_rat ) @ X )
      & ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) ) ) ).

% ceiling_correct
thf(fact_7436_mult__ceiling__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ).

% mult_ceiling_le
thf(fact_7437_mult__ceiling__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ).

% mult_ceiling_le
thf(fact_7438_ceiling__less__iff,axiom,
    ! [X: real,Z3: int] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ Z3 )
      = ( ord_less_eq_real @ X @ ( minus_minus_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real ) ) ) ).

% ceiling_less_iff
thf(fact_7439_ceiling__less__iff,axiom,
    ! [X: rat,Z3: int] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ Z3 )
      = ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat ) ) ) ).

% ceiling_less_iff
thf(fact_7440_le__ceiling__iff,axiom,
    ! [Z3: int,X: rat] :
      ( ( ord_less_eq_int @ Z3 @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat ) @ X ) ) ).

% le_ceiling_iff
thf(fact_7441_le__ceiling__iff,axiom,
    ! [Z3: int,X: real] :
      ( ( ord_less_eq_int @ Z3 @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real ) @ X ) ) ).

% le_ceiling_iff
thf(fact_7442_cos__two__less__zero,axiom,
    ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_less_zero
thf(fact_7443_cos__two__le__zero,axiom,
    ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_le_zero
thf(fact_7444_cos__is__zero,axiom,
    ? [X5: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X5 )
      & ( ord_less_eq_real @ X5 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      & ( ( cos_real @ X5 )
        = zero_zero_real )
      & ! [Y6: real] :
          ( ( ( ord_less_eq_real @ zero_zero_real @ Y6 )
            & ( ord_less_eq_real @ Y6 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ Y6 )
              = zero_zero_real ) )
         => ( Y6 = X5 ) ) ) ).

% cos_is_zero
thf(fact_7445_tan__double,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
         != zero_zero_complex )
       => ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_7446_tan__double,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
         != zero_zero_real )
       => ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
          = ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_7447_cos__monotone__minus__pi__0,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => ( ( ord_less_eq_real @ X @ zero_zero_real )
         => ( ord_less_real @ ( cos_real @ Y2 ) @ ( cos_real @ X ) ) ) ) ) ).

% cos_monotone_minus_pi_0
thf(fact_7448_cos__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ? [X5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X5 )
            & ( ord_less_eq_real @ X5 @ pi )
            & ( ( cos_real @ X5 )
              = Y2 )
            & ! [Y6: real] :
                ( ( ( ord_less_eq_real @ zero_zero_real @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ pi )
                  & ( ( cos_real @ Y6 )
                    = Y2 ) )
               => ( Y6 = X5 ) ) ) ) ) ).

% cos_total
thf(fact_7449_sincos__principal__value,axiom,
    ! [X: real] :
    ? [Y5: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y5 )
      & ( ord_less_eq_real @ Y5 @ pi )
      & ( ( sin_real @ Y5 )
        = ( sin_real @ X ) )
      & ( ( cos_real @ Y5 )
        = ( cos_real @ X ) ) ) ).

% sincos_principal_value
thf(fact_7450_ceiling__divide__upper,axiom,
    ! [Q: real,P5: real] :
      ( ( ord_less_real @ zero_zero_real @ Q )
     => ( ord_less_eq_real @ P5 @ ( times_times_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P5 @ Q ) ) ) @ Q ) ) ) ).

% ceiling_divide_upper
thf(fact_7451_ceiling__divide__upper,axiom,
    ! [Q: rat,P5: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q )
     => ( ord_less_eq_rat @ P5 @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P5 @ Q ) ) ) @ Q ) ) ) ).

% ceiling_divide_upper
thf(fact_7452_powser__split__head_I1_J,axiom,
    ! [F: nat > complex,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) )
     => ( ( suminf_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) )
        = ( plus_plus_complex @ ( F @ zero_zero_nat )
          @ ( times_times_complex
            @ ( suminf_complex
              @ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z3 @ N2 ) ) )
            @ Z3 ) ) ) ) ).

% powser_split_head(1)
thf(fact_7453_powser__split__head_I1_J,axiom,
    ! [F: nat > real,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) )
     => ( ( suminf_real
          @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) )
        = ( plus_plus_real @ ( F @ zero_zero_nat )
          @ ( times_times_real
            @ ( suminf_real
              @ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z3 @ N2 ) ) )
            @ Z3 ) ) ) ) ).

% powser_split_head(1)
thf(fact_7454_powser__split__head_I2_J,axiom,
    ! [F: nat > complex,Z3: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) )
     => ( ( times_times_complex
          @ ( suminf_complex
            @ ^ [N2: nat] : ( times_times_complex @ ( F @ ( suc @ N2 ) ) @ ( power_power_complex @ Z3 @ N2 ) ) )
          @ Z3 )
        = ( minus_minus_complex
          @ ( suminf_complex
            @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ ( power_power_complex @ Z3 @ N2 ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7455_powser__split__head_I2_J,axiom,
    ! [F: nat > real,Z3: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) )
     => ( ( times_times_real
          @ ( suminf_real
            @ ^ [N2: nat] : ( times_times_real @ ( F @ ( suc @ N2 ) ) @ ( power_power_real @ Z3 @ N2 ) ) )
          @ Z3 )
        = ( minus_minus_real
          @ ( suminf_real
            @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ Z3 @ N2 ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7456_cos__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( cos_real @ X )
        = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_tan
thf(fact_7457_tan__45,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = one_one_real ) ).

% tan_45
thf(fact_7458_suminf__exist__split,axiom,
    ! [R: real,F: nat > real] :
      ( ( ord_less_real @ zero_zero_real @ R )
     => ( ( summable_real @ F )
       => ? [N7: nat] :
          ! [N8: nat] :
            ( ( ord_less_eq_nat @ N7 @ N8 )
           => ( ord_less_real
              @ ( real_V7735802525324610683m_real
                @ ( suminf_real
                  @ ^ [I: nat] : ( F @ ( plus_plus_nat @ I @ N8 ) ) ) )
              @ R ) ) ) ) ).

% suminf_exist_split
thf(fact_7459_suminf__exist__split,axiom,
    ! [R: real,F: nat > complex] :
      ( ( ord_less_real @ zero_zero_real @ R )
     => ( ( summable_complex @ F )
       => ? [N7: nat] :
          ! [N8: nat] :
            ( ( ord_less_eq_nat @ N7 @ N8 )
           => ( ord_less_real
              @ ( real_V1022390504157884413omplex
                @ ( suminf_complex
                  @ ^ [I: nat] : ( F @ ( plus_plus_nat @ I @ N8 ) ) ) )
              @ R ) ) ) ) ).

% suminf_exist_split
thf(fact_7460_tan__60,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% tan_60
thf(fact_7461_summable__power__series,axiom,
    ! [F: nat > real,Z3: real] :
      ( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z3 )
         => ( ( ord_less_real @ Z3 @ one_one_real )
           => ( summable_real
              @ ^ [I: nat] : ( times_times_real @ ( F @ I ) @ ( power_power_real @ Z3 @ I ) ) ) ) ) ) ) ).

% summable_power_series
thf(fact_7462_Abel__lemma,axiom,
    ! [R: real,R0: real,A: nat > complex,M7: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R )
     => ( ( ord_less_real @ R @ R0 )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R0 @ N3 ) ) @ M7 )
         => ( summable_real
            @ ^ [N2: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N2 ) ) @ ( power_power_real @ R @ N2 ) ) ) ) ) ) ).

% Abel_lemma
thf(fact_7463_cos__45,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_45
thf(fact_7464_sin__cos__le1,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) ) ) @ one_one_real ) ).

% sin_cos_le1
thf(fact_7465_cos__plus__cos,axiom,
    ! [W: complex,Z3: complex] :
      ( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z3 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_7466_cos__plus__cos,axiom,
    ! [W: real,Z3: real] :
      ( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z3 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_7467_cos__times__cos,axiom,
    ! [W: complex,Z3: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z3 ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z3 ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z3 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_7468_cos__times__cos,axiom,
    ! [W: real,Z3: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z3 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z3 ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_7469_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > real] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_ratio_test
thf(fact_7470_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > complex] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N4 @ N3 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N3 ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_ratio_test
thf(fact_7471_cos__squared__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7472_cos__squared__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7473_sin__squared__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7474_sin__squared__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7475_ceiling__divide__lower,axiom,
    ! [Q: real,P5: real] :
      ( ( ord_less_real @ zero_zero_real @ Q )
     => ( ord_less_real @ ( times_times_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P5 @ Q ) ) ) @ one_one_real ) @ Q ) @ P5 ) ) ).

% ceiling_divide_lower
thf(fact_7476_ceiling__divide__lower,axiom,
    ! [Q: rat,P5: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q )
     => ( ord_less_rat @ ( times_times_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P5 @ Q ) ) ) @ one_one_rat ) @ Q ) @ P5 ) ) ).

% ceiling_divide_lower
thf(fact_7477_tan__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).

% tan_gt_zero
thf(fact_7478_lemma__tan__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ? [X5: real] :
          ( ( ord_less_real @ zero_zero_real @ X5 )
          & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ord_less_real @ Y2 @ ( tan_real @ X5 ) ) ) ) ).

% lemma_tan_total
thf(fact_7479_ceiling__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_eq_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim7802044766580827645g_real @ X )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_7480_ceiling__eq,axiom,
    ! [N: int,X: rat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ N ) @ X )
     => ( ( ord_less_eq_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ N ) @ one_one_rat ) )
       => ( ( archim2889992004027027881ng_rat @ X )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_7481_lemma__tan__total1,axiom,
    ! [Y2: real] :
    ? [X5: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
      & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X5 )
        = Y2 ) ) ).

% lemma_tan_total1
thf(fact_7482_tan__mono__lt__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) )
              = ( ord_less_real @ X @ Y2 ) ) ) ) ) ) ).

% tan_mono_lt_eq
thf(fact_7483_tan__monotone_H,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
         => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ Y2 @ X )
              = ( ord_less_real @ ( tan_real @ Y2 ) @ ( tan_real @ X ) ) ) ) ) ) ) ).

% tan_monotone'
thf(fact_7484_tan__monotone,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( tan_real @ Y2 ) @ ( tan_real @ X ) ) ) ) ) ).

% tan_monotone
thf(fact_7485_tan__total,axiom,
    ! [Y2: real] :
    ? [X5: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
      & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X5 )
        = Y2 )
      & ! [Y6: real] :
          ( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y6 )
            & ( ord_less_real @ Y6 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( tan_real @ Y6 )
              = Y2 ) )
         => ( Y6 = X5 ) ) ) ).

% tan_total
thf(fact_7486_tan__minus__45,axiom,
    ( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% tan_minus_45
thf(fact_7487_cos__double__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ).

% cos_double_less_one
thf(fact_7488_tan__inverse,axiom,
    ! [Y2: real] :
      ( ( divide_divide_real @ one_one_real @ ( tan_real @ Y2 ) )
      = ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 ) ) ) ).

% tan_inverse
thf(fact_7489_cos__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_gt_zero
thf(fact_7490_cos__60,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_60
thf(fact_7491_cos__30,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_30
thf(fact_7492_cos__one__2pi__int,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
      = ( ? [X4: int] :
            ( X
            = ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).

% cos_one_2pi_int
thf(fact_7493_cos__double__cos,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).

% cos_double_cos
thf(fact_7494_cos__double__cos,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).

% cos_double_cos
thf(fact_7495_cos__treble__cos,axiom,
    ! [X: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X ) ) ) ) ).

% cos_treble_cos
thf(fact_7496_cos__treble__cos,axiom,
    ! [X: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X ) ) ) ) ).

% cos_treble_cos
thf(fact_7497_cos__diff__cos,axiom,
    ! [W: complex,Z3: complex] :
      ( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z3 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z3 @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_7498_cos__diff__cos,axiom,
    ! [W: real,Z3: real] :
      ( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z3 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z3 @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_7499_sin__diff__sin,axiom,
    ! [W: complex,Z3: complex] :
      ( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z3 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_7500_sin__diff__sin,axiom,
    ! [W: real,Z3: real] :
      ( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z3 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_7501_sin__plus__sin,axiom,
    ! [W: complex,Z3: complex] :
      ( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z3 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_7502_sin__plus__sin,axiom,
    ! [W: real,Z3: real] :
      ( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z3 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_7503_cos__times__sin,axiom,
    ! [W: complex,Z3: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z3 ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z3 ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z3 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_7504_cos__times__sin,axiom,
    ! [W: real,Z3: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z3 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z3 ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_7505_sin__times__cos,axiom,
    ! [W: complex,Z3: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z3 ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z3 ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z3 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_7506_sin__times__cos,axiom,
    ! [W: real,Z3: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z3 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z3 ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_7507_sin__times__sin,axiom,
    ! [W: complex,Z3: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z3 ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z3 ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z3 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_7508_sin__times__sin,axiom,
    ! [W: real,Z3: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z3 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z3 ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_7509_cos__double,axiom,
    ! [X: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_7510_cos__double,axiom,
    ! [X: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( minus_minus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_7511_tan__total__pos,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ? [X5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X5 )
          & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( tan_real @ X5 )
            = Y2 ) ) ) ).

% tan_total_pos
thf(fact_7512_tan__pos__pi2__le,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).

% tan_pos_pi2_le
thf(fact_7513_tan__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( tan_real @ X ) @ zero_zero_real ) ) ) ).

% tan_less_zero
thf(fact_7514_tan__mono__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) ) ) ) ) ).

% tan_mono_le
thf(fact_7515_tan__mono__le__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y2 ) )
              = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ) ).

% tan_mono_le_eq
thf(fact_7516_tan__bound__pi2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
     => ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X ) ) @ one_one_real ) ) ).

% tan_bound_pi2
thf(fact_7517_tan__30,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).

% tan_30
thf(fact_7518_cos__gt__zero__pi,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_gt_zero_pi
thf(fact_7519_cos__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_ge_zero
thf(fact_7520_arctan__unique,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ( tan_real @ X )
            = Y2 )
         => ( ( arctan @ Y2 )
            = X ) ) ) ) ).

% arctan_unique
thf(fact_7521_arctan__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arctan @ ( tan_real @ X ) )
          = X ) ) ) ).

% arctan_tan
thf(fact_7522_arctan,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) )
      & ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ ( arctan @ Y2 ) )
        = Y2 ) ) ).

% arctan
thf(fact_7523_cos__one__2pi,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
      = ( ? [X4: nat] :
            ( X
            = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
        | ? [X4: nat] :
            ( X
            = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).

% cos_one_2pi
thf(fact_7524_cos__double__sin,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_7525_cos__double__sin,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_7526_tan__total__pi4,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ? [Z: real] :
          ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z )
          & ( ord_less_real @ Z @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
          & ( ( tan_real @ Z )
            = X ) ) ) ).

% tan_total_pi4
thf(fact_7527_cos__arctan,axiom,
    ! [X: real] :
      ( ( cos_real @ ( arctan @ X ) )
      = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_arctan
thf(fact_7528_sincos__total__pi,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = one_one_real )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
            & ( ord_less_eq_real @ T3 @ pi )
            & ( X
              = ( cos_real @ T3 ) )
            & ( Y2
              = ( sin_real @ T3 ) ) ) ) ) ).

% sincos_total_pi
thf(fact_7529_sin__cos__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) )
     => ( ( sin_real @ X )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_cos_sqrt
thf(fact_7530_sin__expansion__lemma,axiom,
    ! [X: real,M: nat] :
      ( ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_expansion_lemma
thf(fact_7531_cos__zero__iff__int,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = zero_zero_real )
      = ( ? [I: int] :
            ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I )
            & ( X
              = ( times_times_real @ ( ring_1_of_int_real @ I ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_iff_int
thf(fact_7532_cos__zero__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( cos_real @ X )
          = zero_zero_real )
       => ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_lemma
thf(fact_7533_cos__zero__iff,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = zero_zero_real )
      = ( ? [N2: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N2: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% cos_zero_iff
thf(fact_7534_cos__expansion__lemma,axiom,
    ! [X: real,M: nat] :
      ( ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_expansion_lemma
thf(fact_7535_sincos__total__pi__half,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
            = one_one_real )
         => ? [T3: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ T3 )
              & ( ord_less_eq_real @ T3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( X
                = ( cos_real @ T3 ) )
              & ( Y2
                = ( sin_real @ T3 ) ) ) ) ) ) ).

% sincos_total_pi_half
thf(fact_7536_sincos__total__2pi__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ? [T3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ T3 )
          & ( ord_less_eq_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
          & ( X
            = ( cos_real @ T3 ) )
          & ( Y2
            = ( sin_real @ T3 ) ) ) ) ).

% sincos_total_2pi_le
thf(fact_7537_ceiling__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K2 )
     => ( ( ord_less_eq_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).

% ceiling_log_nat_eq_if
thf(fact_7538_ceiling__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).

% ceiling_log2_div2
thf(fact_7539_complex__unimodular__polar,axiom,
    ! [Z3: complex] :
      ( ( ( real_V1022390504157884413omplex @ Z3 )
        = one_one_real )
     => ~ ! [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
           => ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( Z3
               != ( complex2 @ ( cos_real @ T3 ) @ ( sin_real @ T3 ) ) ) ) ) ) ).

% complex_unimodular_polar
thf(fact_7540_ceiling__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim7802044766580827645g_real @ ( log @ B @ X ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ K2 ) @ one_one_int ) )
          = ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K2 ) ) @ X )
            & ( ord_less_eq_real @ X @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K2 @ one_one_nat ) ) ) ) ) ) ) ) ).

% ceiling_log_eq_powr_iff
thf(fact_7541_cos__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_arcsin
thf(fact_7542_sin__arccos__abs,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
     => ( ( sin_real @ ( arccos @ Y2 ) )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arccos_abs
thf(fact_7543_sin__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( sin_real @ ( arccos @ X ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_arccos
thf(fact_7544_powr__one__eq__one,axiom,
    ! [A: real] :
      ( ( powr_real @ one_one_real @ A )
      = one_one_real ) ).

% powr_one_eq_one
thf(fact_7545_powr__zero__eq__one,axiom,
    ! [X: real] :
      ( ( ( X = zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = zero_zero_real ) )
      & ( ( X != zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = one_one_real ) ) ) ).

% powr_zero_eq_one
thf(fact_7546_powr__nonneg__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_7547_powr__less__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_7548_arccos__1,axiom,
    ( ( arccos @ one_one_real )
    = zero_zero_real ) ).

% arccos_1
thf(fact_7549_powr__eq__one__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X )
          = one_one_real )
        = ( X = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_7550_powr__one__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ( powr_real @ X @ one_one_real )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% powr_one_gt_zero_iff
thf(fact_7551_powr__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ one_one_real )
        = X ) ) ).

% powr_one
thf(fact_7552_powr__le__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_7553_numeral__powr__numeral__real,axiom,
    ! [M: num,N: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_powr_numeral_real
thf(fact_7554_arccos__minus__1,axiom,
    ( ( arccos @ ( uminus_uminus_real @ one_one_real ) )
    = pi ) ).

% arccos_minus_1
thf(fact_7555_log__powr__cancel,axiom,
    ! [A: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( powr_real @ A @ Y2 ) )
          = Y2 ) ) ) ).

% log_powr_cancel
thf(fact_7556_powr__log__cancel,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( powr_real @ A @ ( log @ A @ X ) )
            = X ) ) ) ) ).

% powr_log_cancel
thf(fact_7557_cos__arccos,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( cos_real @ ( arccos @ Y2 ) )
          = Y2 ) ) ) ).

% cos_arccos
thf(fact_7558_sin__arcsin,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( sin_real @ ( arcsin @ Y2 ) )
          = Y2 ) ) ) ).

% sin_arcsin
thf(fact_7559_norm__cos__sin,axiom,
    ! [T: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ ( cos_real @ T ) @ ( sin_real @ T ) ) )
      = one_one_real ) ).

% norm_cos_sin
thf(fact_7560_powr__numeral,axiom,
    ! [X: real,N: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( numeral_numeral_real @ N ) )
        = ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ).

% powr_numeral
thf(fact_7561_arccos__0,axiom,
    ( ( arccos @ zero_zero_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arccos_0
thf(fact_7562_arcsin__1,axiom,
    ( ( arcsin @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arcsin_1
thf(fact_7563_arcsin__minus__1,axiom,
    ( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arcsin_minus_1
thf(fact_7564_square__powr__half,axiom,
    ! [X: real] :
      ( ( powr_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% square_powr_half
thf(fact_7565_powr__powr,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X @ A ) @ B )
      = ( powr_real @ X @ ( times_times_real @ A @ B ) ) ) ).

% powr_powr
thf(fact_7566_powr__ge__pzero,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y2 ) ) ).

% powr_ge_pzero
thf(fact_7567_powr__mono2,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y2 )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_7568_powr__less__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_less_mono
thf(fact_7569_powr__less__cancel,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_7570_powr__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X )
       => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_mono
thf(fact_7571_Complex__eq__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = one_one_complex )
      = ( ( A = one_one_real )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_1
thf(fact_7572_one__complex_Ocode,axiom,
    ( one_one_complex
    = ( complex2 @ one_one_real @ zero_zero_real ) ) ).

% one_complex.code
thf(fact_7573_powr__mono2_H,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y2 )
         => ( ord_less_eq_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_7574_powr__less__mono2,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y2 )
         => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_7575_powr__inj,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X )
            = ( powr_real @ A @ Y2 ) )
          = ( X = Y2 ) ) ) ) ).

% powr_inj
thf(fact_7576_gr__one__powr,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y2 ) ) ) ) ).

% gr_one_powr
thf(fact_7577_ge__one__powr__ge__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_7578_powr__mono__both,axiom,
    ! [A: real,B: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ( ord_less_eq_real @ X @ Y2 )
           => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_7579_powr__le1,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_7580_powr__divide,axiom,
    ! [X: real,Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( powr_real @ ( divide_divide_real @ X @ Y2 ) @ A )
          = ( divide_divide_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_divide
thf(fact_7581_powr__mult,axiom,
    ! [X: real,Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( powr_real @ ( times_times_real @ X @ Y2 ) @ A )
          = ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_mult
thf(fact_7582_divide__powr__uminus,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
      = ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).

% divide_powr_uminus
thf(fact_7583_ln__powr,axiom,
    ! [X: real,Y2: real] :
      ( ( X != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X @ Y2 ) )
        = ( times_times_real @ Y2 @ ( ln_ln_real @ X ) ) ) ) ).

% ln_powr
thf(fact_7584_log__powr,axiom,
    ! [X: real,B: real,Y2: real] :
      ( ( X != zero_zero_real )
     => ( ( log @ B @ ( powr_real @ X @ Y2 ) )
        = ( times_times_real @ Y2 @ ( log @ B @ X ) ) ) ) ).

% log_powr
thf(fact_7585_Complex__eq__neg__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( A
          = ( uminus_uminus_real @ one_one_real ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_1
thf(fact_7586_powr__add,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ X @ ( plus_plus_real @ A @ B ) )
      = ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ).

% powr_add
thf(fact_7587_powr__diff,axiom,
    ! [W: real,Z1: real,Z22: real] :
      ( ( powr_real @ W @ ( minus_minus_real @ Z1 @ Z22 ) )
      = ( divide_divide_real @ ( powr_real @ W @ Z1 ) @ ( powr_real @ W @ Z22 ) ) ) ).

% powr_diff
thf(fact_7588_complex__mult,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% complex_mult
thf(fact_7589_arccos__le__arccos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( arccos @ Y2 ) @ ( arccos @ X ) ) ) ) ) ).

% arccos_le_arccos
thf(fact_7590_arccos__eq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
        & ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real ) )
     => ( ( ( arccos @ X )
          = ( arccos @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% arccos_eq_iff
thf(fact_7591_arccos__le__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arccos @ X ) @ ( arccos @ Y2 ) )
          = ( ord_less_eq_real @ Y2 @ X ) ) ) ) ).

% arccos_le_mono
thf(fact_7592_arcsin__minus,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( arcsin @ ( uminus_uminus_real @ X ) )
          = ( uminus_uminus_real @ ( arcsin @ X ) ) ) ) ) ).

% arcsin_minus
thf(fact_7593_arcsin__le__arcsin,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y2 ) ) ) ) ) ).

% arcsin_le_arcsin
thf(fact_7594_arcsin__eq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ( arcsin @ X )
            = ( arcsin @ Y2 ) )
          = ( X = Y2 ) ) ) ) ).

% arcsin_eq_iff
thf(fact_7595_arcsin__le__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y2 ) )
          = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ).

% arcsin_le_mono
thf(fact_7596_less__log__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ Y2 @ ( log @ B @ X ) )
          = ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X ) ) ) ) ).

% less_log_iff
thf(fact_7597_log__less__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log @ B @ X ) @ Y2 )
          = ( ord_less_real @ X @ ( powr_real @ B @ Y2 ) ) ) ) ) ).

% log_less_iff
thf(fact_7598_less__powr__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ ( powr_real @ B @ Y2 ) )
          = ( ord_less_real @ ( log @ B @ X ) @ Y2 ) ) ) ) ).

% less_powr_iff
thf(fact_7599_powr__less__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X )
          = ( ord_less_real @ Y2 @ ( log @ B @ X ) ) ) ) ) ).

% powr_less_iff
thf(fact_7600_powr__minus__divide,axiom,
    ! [X: real,A: real] :
      ( ( powr_real @ X @ ( uminus_uminus_real @ A ) )
      = ( divide_divide_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ).

% powr_minus_divide
thf(fact_7601_arccos__lbound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) ) ) ) ).

% arccos_lbound
thf(fact_7602_arccos__less__arccos,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_real @ ( arccos @ Y2 ) @ ( arccos @ X ) ) ) ) ) ).

% arccos_less_arccos
thf(fact_7603_arccos__less__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_real @ ( arccos @ X ) @ ( arccos @ Y2 ) )
          = ( ord_less_real @ Y2 @ X ) ) ) ) ).

% arccos_less_mono
thf(fact_7604_arccos__ubound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi ) ) ) ).

% arccos_ubound
thf(fact_7605_arccos__cos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( arccos @ ( cos_real @ X ) )
          = X ) ) ) ).

% arccos_cos
thf(fact_7606_powr__neg__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X ) ) ) ).

% powr_neg_one
thf(fact_7607_arcsin__less__arcsin,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y2 ) ) ) ) ) ).

% arcsin_less_arcsin
thf(fact_7608_powr__mult__base,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ X @ ( powr_real @ X @ Y2 ) )
        = ( powr_real @ X @ ( plus_plus_real @ one_one_real @ Y2 ) ) ) ) ).

% powr_mult_base
thf(fact_7609_arcsin__less__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y2 ) )
          = ( ord_less_real @ X @ Y2 ) ) ) ) ).

% arcsin_less_mono
thf(fact_7610_le__log__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ Y2 @ ( log @ B @ X ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X ) ) ) ) ).

% le_log_iff
thf(fact_7611_log__le__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ B @ X ) @ Y2 )
          = ( ord_less_eq_real @ X @ ( powr_real @ B @ Y2 ) ) ) ) ) ).

% log_le_iff
thf(fact_7612_le__powr__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ ( powr_real @ B @ Y2 ) )
          = ( ord_less_eq_real @ ( log @ B @ X ) @ Y2 ) ) ) ) ).

% le_powr_iff
thf(fact_7613_powr__le__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X )
          = ( ord_less_eq_real @ Y2 @ ( log @ B @ X ) ) ) ) ) ).

% powr_le_iff
thf(fact_7614_cos__arccos__abs,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
     => ( ( cos_real @ ( arccos @ Y2 ) )
        = Y2 ) ) ).

% cos_arccos_abs
thf(fact_7615_arccos__cos__eq__abs,axiom,
    ! [Theta: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
     => ( ( arccos @ ( cos_real @ Theta ) )
        = ( abs_abs_real @ Theta ) ) ) ).

% arccos_cos_eq_abs
thf(fact_7616_ln__powr__bound,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( divide_divide_real @ ( powr_real @ X @ A ) @ A ) ) ) ) ).

% ln_powr_bound
thf(fact_7617_ln__powr__bound2,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X ) ) ) ) ).

% ln_powr_bound2
thf(fact_7618_add__log__eq__powr,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( plus_plus_real @ Y2 @ ( log @ B @ X ) )
            = ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y2 ) @ X ) ) ) ) ) ) ).

% add_log_eq_powr
thf(fact_7619_log__add__eq__powr,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( plus_plus_real @ ( log @ B @ X ) @ Y2 )
            = ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ Y2 ) ) ) ) ) ) ) ).

% log_add_eq_powr
thf(fact_7620_minus__log__eq__powr,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( minus_minus_real @ Y2 @ ( log @ B @ X ) )
            = ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y2 ) @ X ) ) ) ) ) ) ).

% minus_log_eq_powr
thf(fact_7621_arccos__lt__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y2 ) )
          & ( ord_less_real @ ( arccos @ Y2 ) @ pi ) ) ) ) ).

% arccos_lt_bounded
thf(fact_7622_arccos__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) )
          & ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi ) ) ) ) ).

% arccos_bounded
thf(fact_7623_sin__arccos__nonzero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ( sin_real @ ( arccos @ X ) )
         != zero_zero_real ) ) ) ).

% sin_arccos_nonzero
thf(fact_7624_arccos__cos2,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X )
       => ( ( arccos @ ( cos_real @ X ) )
          = ( uminus_uminus_real @ X ) ) ) ) ).

% arccos_cos2
thf(fact_7625_arccos__minus,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( arccos @ ( uminus_uminus_real @ X ) )
          = ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ) ).

% arccos_minus
thf(fact_7626_cos__arcsin__nonzero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X ) )
         != zero_zero_real ) ) ) ).

% cos_arcsin_nonzero
thf(fact_7627_powr__def,axiom,
    ( powr_real
    = ( ^ [X4: real,A4: real] : ( if_real @ ( X4 = zero_zero_real ) @ zero_zero_real @ ( exp_real @ ( times_times_real @ A4 @ ( ln_ln_real @ X4 ) ) ) ) ) ) ).

% powr_def
thf(fact_7628_log__minus__eq__powr,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( minus_minus_real @ ( log @ B @ X ) @ Y2 )
            = ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ ( uminus_uminus_real @ Y2 ) ) ) ) ) ) ) ) ).

% log_minus_eq_powr
thf(fact_7629_arccos,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) )
          & ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi )
          & ( ( cos_real @ ( arccos @ Y2 ) )
            = Y2 ) ) ) ) ).

% arccos
thf(fact_7630_arccos__minus__abs,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( arccos @ ( uminus_uminus_real @ X ) )
        = ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ).

% arccos_minus_abs
thf(fact_7631_complex__norm,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ X @ Y2 ) )
      = ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_norm
thf(fact_7632_powr__half__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        = ( sqrt @ X ) ) ) ).

% powr_half_sqrt
thf(fact_7633_powr__neg__numeral,axiom,
    ! [X: real,N: num] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_7634_arccos__le__pi2,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arccos_le_pi2
thf(fact_7635_arcsin__lt__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ one_one_real )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_lt_bounded
thf(fact_7636_arcsin__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_bounded
thf(fact_7637_arcsin__ubound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arcsin_ubound
thf(fact_7638_arcsin__lbound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) ) ) ) ).

% arcsin_lbound
thf(fact_7639_arcsin__sin,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arcsin @ ( sin_real @ X ) )
          = X ) ) ) ).

% arcsin_sin
thf(fact_7640_le__arcsin__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ Y2 @ ( arcsin @ X ) )
              = ( ord_less_eq_real @ ( sin_real @ Y2 ) @ X ) ) ) ) ) ) ).

% le_arcsin_iff
thf(fact_7641_arcsin__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( arcsin @ X ) @ Y2 )
              = ( ord_less_eq_real @ X @ ( sin_real @ Y2 ) ) ) ) ) ) ) ).

% arcsin_le_iff
thf(fact_7642_arcsin__pi,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y2 ) @ pi )
          & ( ( sin_real @ ( arcsin @ Y2 ) )
            = Y2 ) ) ) ) ).

% arcsin_pi
thf(fact_7643_arcsin,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( sin_real @ ( arcsin @ Y2 ) )
            = Y2 ) ) ) ) ).

% arcsin
thf(fact_7644_arccos__cos__eq__abs__2pi,axiom,
    ! [Theta: real] :
      ~ ! [K: int] :
          ( ( arccos @ ( cos_real @ Theta ) )
         != ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).

% arccos_cos_eq_abs_2pi
thf(fact_7645_arcosh__def,axiom,
    ( arcosh_real
    = ( ^ [X4: real] : ( ln_ln_real @ ( plus_plus_real @ X4 @ ( powr_real @ ( minus_minus_real @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% arcosh_def
thf(fact_7646_geometric__deriv__sums,axiom,
    ! [Z3: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z3 ) @ one_one_real )
     => ( sums_real
        @ ^ [N2: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( power_power_real @ Z3 @ N2 ) )
        @ ( divide_divide_real @ one_one_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% geometric_deriv_sums
thf(fact_7647_geometric__deriv__sums,axiom,
    ! [Z3: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z3 ) @ one_one_real )
     => ( sums_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N2 ) ) @ ( power_power_complex @ Z3 @ N2 ) )
        @ ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ ( minus_minus_complex @ one_one_complex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% geometric_deriv_sums
thf(fact_7648_arsinh__def,axiom,
    ( arsinh_real
    = ( ^ [X4: real] : ( ln_ln_real @ ( plus_plus_real @ X4 @ ( powr_real @ ( plus_plus_real @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% arsinh_def
thf(fact_7649_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
            = ( semiri1314217659103216013at_int @ N ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K2 )
            & ( ord_less_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_7650_monoseq__def,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X6: nat > real] :
          ( ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_real @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) )
          | ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_real @ ( X6 @ N2 ) @ ( X6 @ M2 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7651_monoseq__def,axiom,
    ( topolo3100542954746470799et_int
    = ( ^ [X6: nat > set_int] :
          ( ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_set_int @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) )
          | ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_set_int @ ( X6 @ N2 ) @ ( X6 @ M2 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7652_monoseq__def,axiom,
    ( topolo4267028734544971653eq_rat
    = ( ^ [X6: nat > rat] :
          ( ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_rat @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) )
          | ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_rat @ ( X6 @ N2 ) @ ( X6 @ M2 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7653_monoseq__def,axiom,
    ( topolo1459490580787246023eq_num
    = ( ^ [X6: nat > num] :
          ( ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_num @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) )
          | ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_num @ ( X6 @ N2 ) @ ( X6 @ M2 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7654_monoseq__def,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X6: nat > nat] :
          ( ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_nat @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) )
          | ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_nat @ ( X6 @ N2 ) @ ( X6 @ M2 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7655_monoseq__def,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X6: nat > int] :
          ( ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_int @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) )
          | ! [M2: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_int @ ( X6 @ N2 ) @ ( X6 @ M2 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_7656_summable__complex__of__real,axiom,
    ! [F: nat > real] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( F @ N2 ) ) )
      = ( summable_real @ F ) ) ).

% summable_complex_of_real
thf(fact_7657_of__int__floor__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) )
        = X )
      = ( ? [N2: int] :
            ( X
            = ( ring_1_of_int_real @ N2 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_7658_of__int__floor__cancel,axiom,
    ! [X: rat] :
      ( ( ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) )
        = X )
      = ( ? [N2: int] :
            ( X
            = ( ring_1_of_int_rat @ N2 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_7659_sums__zero,axiom,
    ( sums_complex
    @ ^ [N2: nat] : zero_zero_complex
    @ zero_zero_complex ) ).

% sums_zero
thf(fact_7660_sums__zero,axiom,
    ( sums_real
    @ ^ [N2: nat] : zero_zero_real
    @ zero_zero_real ) ).

% sums_zero
thf(fact_7661_sums__zero,axiom,
    ( sums_nat
    @ ^ [N2: nat] : zero_zero_nat
    @ zero_zero_nat ) ).

% sums_zero
thf(fact_7662_sums__zero,axiom,
    ( sums_int
    @ ^ [N2: nat] : zero_zero_int
    @ zero_zero_int ) ).

% sums_zero
thf(fact_7663_of__real__1,axiom,
    ( ( real_V1803761363581548252l_real @ one_one_real )
    = one_one_real ) ).

% of_real_1
thf(fact_7664_of__real__1,axiom,
    ( ( real_V4546457046886955230omplex @ one_one_real )
    = one_one_complex ) ).

% of_real_1
thf(fact_7665_of__real__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( real_V1803761363581548252l_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% of_real_eq_1_iff
thf(fact_7666_of__real__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( real_V4546457046886955230omplex @ X )
        = one_one_complex )
      = ( X = one_one_real ) ) ).

% of_real_eq_1_iff
thf(fact_7667_of__real__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V1803761363581548252l_real @ ( times_times_real @ X @ Y2 ) )
      = ( times_times_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ).

% of_real_mult
thf(fact_7668_of__real__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V4546457046886955230omplex @ ( times_times_real @ X @ Y2 ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ).

% of_real_mult
thf(fact_7669_of__real__numeral,axiom,
    ! [W: num] :
      ( ( real_V1803761363581548252l_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% of_real_numeral
thf(fact_7670_of__real__numeral,axiom,
    ! [W: num] :
      ( ( real_V4546457046886955230omplex @ ( numeral_numeral_real @ W ) )
      = ( numera6690914467698888265omplex @ W ) ) ).

% of_real_numeral
thf(fact_7671_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_7672_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim3151403230148437115or_rat @ ( numeral_numeral_rat @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_7673_of__real__divide,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X @ Y2 ) )
      = ( divide_divide_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ).

% of_real_divide
thf(fact_7674_of__real__divide,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X @ Y2 ) )
      = ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ).

% of_real_divide
thf(fact_7675_floor__one,axiom,
    ( ( archim6058952711729229775r_real @ one_one_real )
    = one_one_int ) ).

% floor_one
thf(fact_7676_floor__one,axiom,
    ( ( archim3151403230148437115or_rat @ one_one_rat )
    = one_one_int ) ).

% floor_one
thf(fact_7677_of__real__add,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V1803761363581548252l_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ).

% of_real_add
thf(fact_7678_of__real__add,axiom,
    ! [X: real,Y2: real] :
      ( ( real_V4546457046886955230omplex @ ( plus_plus_real @ X @ Y2 ) )
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ).

% of_real_add
thf(fact_7679_of__real__power,axiom,
    ! [X: real,N: nat] :
      ( ( real_V1803761363581548252l_real @ ( power_power_real @ X @ N ) )
      = ( power_power_real @ ( real_V1803761363581548252l_real @ X ) @ N ) ) ).

% of_real_power
thf(fact_7680_of__real__power,axiom,
    ! [X: real,N: nat] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ X @ N ) )
      = ( power_power_complex @ ( real_V4546457046886955230omplex @ X ) @ N ) ) ).

% of_real_power
thf(fact_7681_zero__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_floor
thf(fact_7682_zero__le__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ X ) ) ).

% zero_le_floor
thf(fact_7683_floor__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% floor_less_zero
thf(fact_7684_floor__less__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ zero_zero_int )
      = ( ord_less_rat @ X @ zero_zero_rat ) ) ).

% floor_less_zero
thf(fact_7685_numeral__le__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X ) ) ).

% numeral_le_floor
thf(fact_7686_numeral__le__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( numeral_numeral_rat @ V ) @ X ) ) ).

% numeral_le_floor
thf(fact_7687_zero__less__floor,axiom,
    ! [X: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% zero_less_floor
thf(fact_7688_zero__less__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ one_one_rat @ X ) ) ).

% zero_less_floor
thf(fact_7689_floor__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_le_zero
thf(fact_7690_floor__le__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ zero_zero_int )
      = ( ord_less_rat @ X @ one_one_rat ) ) ).

% floor_le_zero
thf(fact_7691_floor__less__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X @ ( numeral_numeral_real @ V ) ) ) ).

% floor_less_numeral
thf(fact_7692_floor__less__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_rat @ X @ ( numeral_numeral_rat @ V ) ) ) ).

% floor_less_numeral
thf(fact_7693_one__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% one_le_floor
thf(fact_7694_one__le__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ one_one_rat @ X ) ) ).

% one_le_floor
thf(fact_7695_floor__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_less_one
thf(fact_7696_floor__less__one,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
      = ( ord_less_rat @ X @ one_one_rat ) ) ).

% floor_less_one
thf(fact_7697_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_7698_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_7699_of__real__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1803761363581548252l_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ).

% of_real_neg_numeral
thf(fact_7700_of__real__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V4546457046886955230omplex @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% of_real_neg_numeral
thf(fact_7701_floor__diff__numeral,axiom,
    ! [X: real,V: num] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ ( numeral_numeral_real @ V ) ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% floor_diff_numeral
thf(fact_7702_floor__diff__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% floor_diff_numeral
thf(fact_7703_cos__of__real__pi,axiom,
    ( ( cos_real @ ( real_V1803761363581548252l_real @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% cos_of_real_pi
thf(fact_7704_cos__of__real__pi,axiom,
    ( ( cos_complex @ ( real_V4546457046886955230omplex @ pi ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% cos_of_real_pi
thf(fact_7705_floor__diff__one,axiom,
    ! [X: real] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ one_one_real ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ).

% floor_diff_one
thf(fact_7706_floor__diff__one,axiom,
    ! [X: rat] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ one_one_rat ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ).

% floor_diff_one
thf(fact_7707_floor__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim6058952711729229775r_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% floor_numeral_power
thf(fact_7708_floor__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim3151403230148437115or_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% floor_numeral_power
thf(fact_7709_powser__sums__zero__iff,axiom,
    ! [A: nat > complex,X: complex] :
      ( ( sums_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( A @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) )
        @ X )
      = ( ( A @ zero_zero_nat )
        = X ) ) ).

% powser_sums_zero_iff
thf(fact_7710_powser__sums__zero__iff,axiom,
    ! [A: nat > real,X: real] :
      ( ( sums_real
        @ ^ [N2: nat] : ( times_times_real @ ( A @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) )
        @ X )
      = ( ( A @ zero_zero_nat )
        = X ) ) ).

% powser_sums_zero_iff
thf(fact_7711_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_7712_numeral__less__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).

% numeral_less_floor
thf(fact_7713_numeral__less__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X ) ) ).

% numeral_less_floor
thf(fact_7714_floor__le__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% floor_le_numeral
thf(fact_7715_floor__le__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_rat @ X @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).

% floor_le_numeral
thf(fact_7716_one__less__floor,axiom,
    ! [X: real] :
      ( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ).

% one_less_floor
thf(fact_7717_one__less__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ one_one_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) ) ).

% one_less_floor
thf(fact_7718_floor__le__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_7719_floor__le__one,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
      = ( ord_less_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_7720_neg__numeral__le__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).

% neg_numeral_le_floor
thf(fact_7721_neg__numeral__le__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X ) ) ).

% neg_numeral_le_floor
thf(fact_7722_floor__less__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_7723_floor__less__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_7724_norm__of__real__add1,axiom,
    ! [X: real] :
      ( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ one_one_real ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% norm_of_real_add1
thf(fact_7725_norm__of__real__add1,axiom,
    ! [X: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ one_one_complex ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% norm_of_real_add1
thf(fact_7726_norm__of__real__addn,axiom,
    ! [X: real,B: num] :
      ( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ ( numeral_numeral_real @ B ) ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ B ) ) ) ) ).

% norm_of_real_addn
thf(fact_7727_norm__of__real__addn,axiom,
    ! [X: real,B: num] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( numera6690914467698888265omplex @ B ) ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ B ) ) ) ) ).

% norm_of_real_addn
thf(fact_7728_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_7729_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_7730_cos__of__real__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_of_real_pi_half
thf(fact_7731_cos__of__real__pi__half,axiom,
    ( ( cos_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
    = zero_zero_complex ) ).

% cos_of_real_pi_half
thf(fact_7732_sin__of__real__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_of_real_pi_half
thf(fact_7733_sin__of__real__pi__half,axiom,
    ( ( sin_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
    = one_one_complex ) ).

% sin_of_real_pi_half
thf(fact_7734_neg__numeral__less__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).

% neg_numeral_less_floor
thf(fact_7735_neg__numeral__less__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X ) ) ).

% neg_numeral_less_floor
thf(fact_7736_floor__le__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% floor_le_neg_numeral
thf(fact_7737_floor__le__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_rat @ X @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).

% floor_le_neg_numeral
thf(fact_7738_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_7739_sums__le,axiom,
    ! [F: nat > real,G: nat > real,S: real,T: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( sums_real @ F @ S )
       => ( ( sums_real @ G @ T )
         => ( ord_less_eq_real @ S @ T ) ) ) ) ).

% sums_le
thf(fact_7740_sums__le,axiom,
    ! [F: nat > nat,G: nat > nat,S: nat,T: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( sums_nat @ F @ S )
       => ( ( sums_nat @ G @ T )
         => ( ord_less_eq_nat @ S @ T ) ) ) ) ).

% sums_le
thf(fact_7741_sums__le,axiom,
    ! [F: nat > int,G: nat > int,S: int,T: int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( G @ N3 ) )
     => ( ( sums_int @ F @ S )
       => ( ( sums_int @ G @ T )
         => ( ord_less_eq_int @ S @ T ) ) ) ) ).

% sums_le
thf(fact_7742_sums__of__real,axiom,
    ! [X9: nat > real,A: real] :
      ( ( sums_real @ X9 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( real_V1803761363581548252l_real @ ( X9 @ N2 ) )
        @ ( real_V1803761363581548252l_real @ A ) ) ) ).

% sums_of_real
thf(fact_7743_sums__of__real,axiom,
    ! [X9: nat > real,A: real] :
      ( ( sums_real @ X9 @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( X9 @ N2 ) )
        @ ( real_V4546457046886955230omplex @ A ) ) ) ).

% sums_of_real
thf(fact_7744_sums__of__real__iff,axiom,
    ! [F: nat > real,C: real] :
      ( ( sums_real
        @ ^ [N2: nat] : ( real_V1803761363581548252l_real @ ( F @ N2 ) )
        @ ( real_V1803761363581548252l_real @ C ) )
      = ( sums_real @ F @ C ) ) ).

% sums_of_real_iff
thf(fact_7745_sums__of__real__iff,axiom,
    ! [F: nat > real,C: real] :
      ( ( sums_complex
        @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( F @ N2 ) )
        @ ( real_V4546457046886955230omplex @ C ) )
      = ( sums_real @ F @ C ) ) ).

% sums_of_real_iff
thf(fact_7746_complex__exp__exists,axiom,
    ! [Z3: complex] :
    ? [A3: complex,R3: real] :
      ( Z3
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( exp_complex @ A3 ) ) ) ).

% complex_exp_exists
thf(fact_7747_sums__single,axiom,
    ! [I2: nat,F: nat > complex] :
      ( sums_complex
      @ ^ [R5: nat] : ( if_complex @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_complex )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_7748_sums__single,axiom,
    ! [I2: nat,F: nat > real] :
      ( sums_real
      @ ^ [R5: nat] : ( if_real @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_real )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_7749_sums__single,axiom,
    ! [I2: nat,F: nat > nat] :
      ( sums_nat
      @ ^ [R5: nat] : ( if_nat @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_nat )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_7750_sums__single,axiom,
    ! [I2: nat,F: nat > int] :
      ( sums_int
      @ ^ [R5: nat] : ( if_int @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_int )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_7751_sums__mult,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) )
        @ ( times_times_complex @ C @ A ) ) ) ).

% sums_mult
thf(fact_7752_sums__mult,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) )
        @ ( times_times_real @ C @ A ) ) ) ).

% sums_mult
thf(fact_7753_sums__mult2,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C )
        @ ( times_times_complex @ A @ C ) ) ) ).

% sums_mult2
thf(fact_7754_sums__mult2,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C )
        @ ( times_times_real @ A @ C ) ) ) ).

% sums_mult2
thf(fact_7755_sums__add,axiom,
    ! [F: nat > complex,A: complex,G: nat > complex,B: complex] :
      ( ( sums_complex @ F @ A )
     => ( ( sums_complex @ G @ B )
       => ( sums_complex
          @ ^ [N2: nat] : ( plus_plus_complex @ ( F @ N2 ) @ ( G @ N2 ) )
          @ ( plus_plus_complex @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7756_sums__add,axiom,
    ! [F: nat > real,A: real,G: nat > real,B: real] :
      ( ( sums_real @ F @ A )
     => ( ( sums_real @ G @ B )
       => ( sums_real
          @ ^ [N2: nat] : ( plus_plus_real @ ( F @ N2 ) @ ( G @ N2 ) )
          @ ( plus_plus_real @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7757_sums__add,axiom,
    ! [F: nat > nat,A: nat,G: nat > nat,B: nat] :
      ( ( sums_nat @ F @ A )
     => ( ( sums_nat @ G @ B )
       => ( sums_nat
          @ ^ [N2: nat] : ( plus_plus_nat @ ( F @ N2 ) @ ( G @ N2 ) )
          @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7758_sums__add,axiom,
    ! [F: nat > int,A: int,G: nat > int,B: int] :
      ( ( sums_int @ F @ A )
     => ( ( sums_int @ G @ B )
       => ( sums_int
          @ ^ [N2: nat] : ( plus_plus_int @ ( F @ N2 ) @ ( G @ N2 ) )
          @ ( plus_plus_int @ A @ B ) ) ) ) ).

% sums_add
thf(fact_7759_sums__diff,axiom,
    ! [F: nat > complex,A: complex,G: nat > complex,B: complex] :
      ( ( sums_complex @ F @ A )
     => ( ( sums_complex @ G @ B )
       => ( sums_complex
          @ ^ [N2: nat] : ( minus_minus_complex @ ( F @ N2 ) @ ( G @ N2 ) )
          @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% sums_diff
thf(fact_7760_sums__diff,axiom,
    ! [F: nat > real,A: real,G: nat > real,B: real] :
      ( ( sums_real @ F @ A )
     => ( ( sums_real @ G @ B )
       => ( sums_real
          @ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) )
          @ ( minus_minus_real @ A @ B ) ) ) ) ).

% sums_diff
thf(fact_7761_sums__divide,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ C )
        @ ( divide1717551699836669952omplex @ A @ C ) ) ) ).

% sums_divide
thf(fact_7762_sums__divide,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ C )
        @ ( divide_divide_real @ A @ C ) ) ) ).

% sums_divide
thf(fact_7763_sums__minus,axiom,
    ! [F: nat > real,A: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( uminus_uminus_real @ ( F @ N2 ) )
        @ ( uminus_uminus_real @ A ) ) ) ).

% sums_minus
thf(fact_7764_sums__minus,axiom,
    ! [F: nat > complex,A: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( F @ N2 ) )
        @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% sums_minus
thf(fact_7765_floor__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) ).

% floor_mono
thf(fact_7766_floor__mono,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X @ Y2 )
     => ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y2 ) ) ) ).

% floor_mono
thf(fact_7767_of__int__floor__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X ) ).

% of_int_floor_le
thf(fact_7768_of__int__floor__le,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) @ X ) ).

% of_int_floor_le
thf(fact_7769_floor__less__cancel,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) )
     => ( ord_less_real @ X @ Y2 ) ) ).

% floor_less_cancel
thf(fact_7770_floor__less__cancel,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y2 ) )
     => ( ord_less_rat @ X @ Y2 ) ) ).

% floor_less_cancel
thf(fact_7771_floor__le__ceiling,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).

% floor_le_ceiling
thf(fact_7772_floor__le__ceiling,axiom,
    ! [X: rat] : ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim2889992004027027881ng_rat @ X ) ) ).

% floor_le_ceiling
thf(fact_7773_sums__mult__iff,axiom,
    ! [C: complex,F: nat > complex,D: complex] :
      ( ( C != zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) )
          @ ( times_times_complex @ C @ D ) )
        = ( sums_complex @ F @ D ) ) ) ).

% sums_mult_iff
thf(fact_7774_sums__mult__iff,axiom,
    ! [C: real,F: nat > real,D: real] :
      ( ( C != zero_zero_real )
     => ( ( sums_real
          @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) )
          @ ( times_times_real @ C @ D ) )
        = ( sums_real @ F @ D ) ) ) ).

% sums_mult_iff
thf(fact_7775_sums__mult2__iff,axiom,
    ! [C: complex,F: nat > complex,D: complex] :
      ( ( C != zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( F @ N2 ) @ C )
          @ ( times_times_complex @ D @ C ) )
        = ( sums_complex @ F @ D ) ) ) ).

% sums_mult2_iff
thf(fact_7776_sums__mult2__iff,axiom,
    ! [C: real,F: nat > real,D: real] :
      ( ( C != zero_zero_real )
     => ( ( sums_real
          @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ C )
          @ ( times_times_real @ D @ C ) )
        = ( sums_real @ F @ D ) ) ) ).

% sums_mult2_iff
thf(fact_7777_complex__of__real__mult__Complex,axiom,
    ! [R: real,X: real,Y2: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ ( complex2 @ X @ Y2 ) )
      = ( complex2 @ ( times_times_real @ R @ X ) @ ( times_times_real @ R @ Y2 ) ) ) ).

% complex_of_real_mult_Complex
thf(fact_7778_Complex__mult__complex__of__real,axiom,
    ! [X: real,Y2: real,R: real] :
      ( ( times_times_complex @ ( complex2 @ X @ Y2 ) @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ ( times_times_real @ X @ R ) @ ( times_times_real @ Y2 @ R ) ) ) ).

% Complex_mult_complex_of_real
thf(fact_7779_floor__le__round,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim8280529875227126926d_real @ X ) ) ).

% floor_le_round
thf(fact_7780_floor__le__round,axiom,
    ! [X: rat] : ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim7778729529865785530nd_rat @ X ) ) ).

% floor_le_round
thf(fact_7781_summable__of__real,axiom,
    ! [X9: nat > real] :
      ( ( summable_real @ X9 )
     => ( summable_real
        @ ^ [N2: nat] : ( real_V1803761363581548252l_real @ ( X9 @ N2 ) ) ) ) ).

% summable_of_real
thf(fact_7782_summable__of__real,axiom,
    ! [X9: nat > real] :
      ( ( summable_real @ X9 )
     => ( summable_complex
        @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( X9 @ N2 ) ) ) ) ).

% summable_of_real
thf(fact_7783_le__floor__iff,axiom,
    ! [Z3: int,X: real] :
      ( ( ord_less_eq_int @ Z3 @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ X ) ) ).

% le_floor_iff
thf(fact_7784_le__floor__iff,axiom,
    ! [Z3: int,X: rat] :
      ( ( ord_less_eq_int @ Z3 @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ X ) ) ).

% le_floor_iff
thf(fact_7785_floor__less__iff,axiom,
    ! [X: real,Z3: int] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ Z3 )
      = ( ord_less_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ) ).

% floor_less_iff
thf(fact_7786_floor__less__iff,axiom,
    ! [X: rat,Z3: int] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ Z3 )
      = ( ord_less_rat @ X @ ( ring_1_of_int_rat @ Z3 ) ) ) ).

% floor_less_iff
thf(fact_7787_nonzero__of__real__divide,axiom,
    ! [Y2: real,X: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X @ Y2 ) )
        = ( divide_divide_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ) ).

% nonzero_of_real_divide
thf(fact_7788_nonzero__of__real__divide,axiom,
    ! [Y2: real,X: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X @ Y2 ) )
        = ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ) ).

% nonzero_of_real_divide
thf(fact_7789_le__floor__add,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) ) ) ).

% le_floor_add
thf(fact_7790_le__floor__add,axiom,
    ! [X: rat,Y2: rat] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y2 ) ) @ ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y2 ) ) ) ).

% le_floor_add
thf(fact_7791_int__add__floor,axiom,
    ! [Z3: int,X: real] :
      ( ( plus_plus_int @ Z3 @ ( archim6058952711729229775r_real @ X ) )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z3 ) @ X ) ) ) ).

% int_add_floor
thf(fact_7792_int__add__floor,axiom,
    ! [Z3: int,X: rat] :
      ( ( plus_plus_int @ Z3 @ ( archim3151403230148437115or_rat @ X ) )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z3 ) @ X ) ) ) ).

% int_add_floor
thf(fact_7793_floor__add__int,axiom,
    ! [X: real,Z3: int] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ Z3 )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ) ) ).

% floor_add_int
thf(fact_7794_floor__add__int,axiom,
    ! [X: rat,Z3: int] :
      ( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ Z3 )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ ( ring_1_of_int_rat @ Z3 ) ) ) ) ).

% floor_add_int
thf(fact_7795_floor__divide__of__int__eq,axiom,
    ! [K2: int,L: int] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( ring_1_of_int_real @ K2 ) @ ( ring_1_of_int_real @ L ) ) )
      = ( divide_divide_int @ K2 @ L ) ) ).

% floor_divide_of_int_eq
thf(fact_7796_floor__divide__of__int__eq,axiom,
    ! [K2: int,L: int] :
      ( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ K2 ) @ ( ring_1_of_int_rat @ L ) ) )
      = ( divide_divide_int @ K2 @ L ) ) ).

% floor_divide_of_int_eq
thf(fact_7797_sums__mult__D,axiom,
    ! [C: complex,F: nat > complex,A: complex] :
      ( ( sums_complex
        @ ^ [N2: nat] : ( times_times_complex @ C @ ( F @ N2 ) )
        @ A )
     => ( ( C != zero_zero_complex )
       => ( sums_complex @ F @ ( divide1717551699836669952omplex @ A @ C ) ) ) ) ).

% sums_mult_D
thf(fact_7798_sums__mult__D,axiom,
    ! [C: real,F: nat > real,A: real] :
      ( ( sums_real
        @ ^ [N2: nat] : ( times_times_real @ C @ ( F @ N2 ) )
        @ A )
     => ( ( C != zero_zero_real )
       => ( sums_real @ F @ ( divide_divide_real @ A @ C ) ) ) ) ).

% sums_mult_D
thf(fact_7799_sums__Suc__imp,axiom,
    ! [F: nat > complex,S: complex] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
          @ S )
       => ( sums_complex @ F @ S ) ) ) ).

% sums_Suc_imp
thf(fact_7800_sums__Suc__imp,axiom,
    ! [F: nat > real,S: real] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_real )
     => ( ( sums_real
          @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
          @ S )
       => ( sums_real @ F @ S ) ) ) ).

% sums_Suc_imp
thf(fact_7801_floor__power,axiom,
    ! [X: real,N: nat] :
      ( ( X
        = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) )
     => ( ( archim6058952711729229775r_real @ ( power_power_real @ X @ N ) )
        = ( power_power_int @ ( archim6058952711729229775r_real @ X ) @ N ) ) ) ).

% floor_power
thf(fact_7802_floor__power,axiom,
    ! [X: rat,N: nat] :
      ( ( X
        = ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) )
     => ( ( archim3151403230148437115or_rat @ ( power_power_rat @ X @ N ) )
        = ( power_power_int @ ( archim3151403230148437115or_rat @ X ) @ N ) ) ) ).

% floor_power
thf(fact_7803_sums__Suc,axiom,
    ! [F: nat > complex,L: complex] :
      ( ( sums_complex
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
        @ L )
     => ( sums_complex @ F @ ( plus_plus_complex @ L @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7804_sums__Suc,axiom,
    ! [F: nat > real,L: real] :
      ( ( sums_real
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
        @ L )
     => ( sums_real @ F @ ( plus_plus_real @ L @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7805_sums__Suc,axiom,
    ! [F: nat > nat,L: nat] :
      ( ( sums_nat
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
        @ L )
     => ( sums_nat @ F @ ( plus_plus_nat @ L @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7806_sums__Suc,axiom,
    ! [F: nat > int,L: int] :
      ( ( sums_int
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
        @ L )
     => ( sums_int @ F @ ( plus_plus_int @ L @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_7807_sums__Suc__iff,axiom,
    ! [F: nat > complex,S: complex] :
      ( ( sums_complex
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
        @ S )
      = ( sums_complex @ F @ ( plus_plus_complex @ S @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc_iff
thf(fact_7808_sums__Suc__iff,axiom,
    ! [F: nat > real,S: real] :
      ( ( sums_real
        @ ^ [N2: nat] : ( F @ ( suc @ N2 ) )
        @ S )
      = ( sums_real @ F @ ( plus_plus_real @ S @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc_iff
thf(fact_7809_sums__zero__iff__shift,axiom,
    ! [N: nat,F: nat > complex,S: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ( F @ I3 )
            = zero_zero_complex ) )
     => ( ( sums_complex
          @ ^ [I: nat] : ( F @ ( plus_plus_nat @ I @ N ) )
          @ S )
        = ( sums_complex @ F @ S ) ) ) ).

% sums_zero_iff_shift
thf(fact_7810_sums__zero__iff__shift,axiom,
    ! [N: nat,F: nat > real,S: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ( F @ I3 )
            = zero_zero_real ) )
     => ( ( sums_real
          @ ^ [I: nat] : ( F @ ( plus_plus_nat @ I @ N ) )
          @ S )
        = ( sums_real @ F @ S ) ) ) ).

% sums_zero_iff_shift
thf(fact_7811_suminf__of__real,axiom,
    ! [X9: nat > real] :
      ( ( summable_real @ X9 )
     => ( ( real_V1803761363581548252l_real @ ( suminf_real @ X9 ) )
        = ( suminf_real
          @ ^ [N2: nat] : ( real_V1803761363581548252l_real @ ( X9 @ N2 ) ) ) ) ) ).

% suminf_of_real
thf(fact_7812_suminf__of__real,axiom,
    ! [X9: nat > real] :
      ( ( summable_real @ X9 )
     => ( ( real_V4546457046886955230omplex @ ( suminf_real @ X9 ) )
        = ( suminf_complex
          @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( X9 @ N2 ) ) ) ) ) ).

% suminf_of_real
thf(fact_7813_norm__less__p1,axiom,
    ! [X: real] : ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ ( real_V7735802525324610683m_real @ X ) ) @ one_one_real ) ) ) ).

% norm_less_p1
thf(fact_7814_norm__less__p1,axiom,
    ! [X: complex] : ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( real_V1022390504157884413omplex @ X ) ) @ one_one_complex ) ) ) ).

% norm_less_p1
thf(fact_7815_one__add__floor,axiom,
    ! [X: real] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% one_add_floor
thf(fact_7816_one__add__floor,axiom,
    ! [X: rat] :
      ( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ one_one_rat ) ) ) ).

% one_add_floor
thf(fact_7817_powser__sums__if,axiom,
    ! [M: nat,Z3: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( times_times_complex @ ( if_complex @ ( N2 = M ) @ one_one_complex @ zero_zero_complex ) @ ( power_power_complex @ Z3 @ N2 ) )
      @ ( power_power_complex @ Z3 @ M ) ) ).

% powser_sums_if
thf(fact_7818_powser__sums__if,axiom,
    ! [M: nat,Z3: real] :
      ( sums_real
      @ ^ [N2: nat] : ( times_times_real @ ( if_real @ ( N2 = M ) @ one_one_real @ zero_zero_real ) @ ( power_power_real @ Z3 @ N2 ) )
      @ ( power_power_real @ Z3 @ M ) ) ).

% powser_sums_if
thf(fact_7819_powser__sums__if,axiom,
    ! [M: nat,Z3: int] :
      ( sums_int
      @ ^ [N2: nat] : ( times_times_int @ ( if_int @ ( N2 = M ) @ one_one_int @ zero_zero_int ) @ ( power_power_int @ Z3 @ N2 ) )
      @ ( power_power_int @ Z3 @ M ) ) ).

% powser_sums_if
thf(fact_7820_powser__sums__zero,axiom,
    ! [A: nat > complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( times_times_complex @ ( A @ N2 ) @ ( power_power_complex @ zero_zero_complex @ N2 ) )
      @ ( A @ zero_zero_nat ) ) ).

% powser_sums_zero
thf(fact_7821_powser__sums__zero,axiom,
    ! [A: nat > real] :
      ( sums_real
      @ ^ [N2: nat] : ( times_times_real @ ( A @ N2 ) @ ( power_power_real @ zero_zero_real @ N2 ) )
      @ ( A @ zero_zero_nat ) ) ).

% powser_sums_zero
thf(fact_7822_floor__divide__of__nat__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).

% floor_divide_of_nat_eq
thf(fact_7823_floor__divide__of__nat__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).

% floor_divide_of_nat_eq
thf(fact_7824_ceiling__altdef,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X4: real] :
          ( if_int
          @ ( X4
            = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X4 ) ) )
          @ ( archim6058952711729229775r_real @ X4 )
          @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X4 ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_7825_ceiling__altdef,axiom,
    ( archim2889992004027027881ng_rat
    = ( ^ [X4: rat] :
          ( if_int
          @ ( X4
            = ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X4 ) ) )
          @ ( archim3151403230148437115or_rat @ X4 )
          @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X4 ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_7826_ceiling__diff__floor__le__1,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim6058952711729229775r_real @ X ) ) @ one_one_int ) ).

% ceiling_diff_floor_le_1
thf(fact_7827_ceiling__diff__floor__le__1,axiom,
    ! [X: rat] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim3151403230148437115or_rat @ X ) ) @ one_one_int ) ).

% ceiling_diff_floor_le_1
thf(fact_7828_floor__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq
thf(fact_7829_real__of__int__floor__add__one__gt,axiom,
    ! [R: real] : ( ord_less_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_7830_real__of__int__floor__add__one__ge,axiom,
    ! [R: real] : ( ord_less_eq_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_7831_real__of__int__floor__gt__diff__one,axiom,
    ! [R: real] : ( ord_less_real @ ( minus_minus_real @ R @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_7832_real__of__int__floor__ge__diff__one,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( minus_minus_real @ R @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_7833_floor__split,axiom,
    ! [P3: int > $o,T: real] :
      ( ( P3 @ ( archim6058952711729229775r_real @ T ) )
      = ( ! [I: int] :
            ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ I ) @ T )
              & ( ord_less_real @ T @ ( plus_plus_real @ ( ring_1_of_int_real @ I ) @ one_one_real ) ) )
           => ( P3 @ I ) ) ) ) ).

% floor_split
thf(fact_7834_floor__split,axiom,
    ! [P3: int > $o,T: rat] :
      ( ( P3 @ ( archim3151403230148437115or_rat @ T ) )
      = ( ! [I: int] :
            ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ I ) @ T )
              & ( ord_less_rat @ T @ ( plus_plus_rat @ ( ring_1_of_int_rat @ I ) @ one_one_rat ) ) )
           => ( P3 @ I ) ) ) ) ).

% floor_split
thf(fact_7835_floor__eq__iff,axiom,
    ! [X: real,A: int] :
      ( ( ( archim6058952711729229775r_real @ X )
        = A )
      = ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ X )
        & ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) ) ) ) ).

% floor_eq_iff
thf(fact_7836_floor__eq__iff,axiom,
    ! [X: rat,A: int] :
      ( ( ( archim3151403230148437115or_rat @ X )
        = A )
      = ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ X )
        & ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) ) ) ) ).

% floor_eq_iff
thf(fact_7837_floor__unique,axiom,
    ! [Z3: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = Z3 ) ) ) ).

% floor_unique
thf(fact_7838_floor__unique,axiom,
    ! [Z3: int,X: rat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ X )
     => ( ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat ) )
       => ( ( archim3151403230148437115or_rat @ X )
          = Z3 ) ) ) ).

% floor_unique
thf(fact_7839_le__mult__floor,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ).

% le_mult_floor
thf(fact_7840_le__mult__floor,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ).

% le_mult_floor
thf(fact_7841_less__floor__iff,axiom,
    ! [Z3: int,X: real] :
      ( ( ord_less_int @ Z3 @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real ) @ X ) ) ).

% less_floor_iff
thf(fact_7842_less__floor__iff,axiom,
    ! [Z3: int,X: rat] :
      ( ( ord_less_int @ Z3 @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat ) @ X ) ) ).

% less_floor_iff
thf(fact_7843_floor__le__iff,axiom,
    ! [X: real,Z3: int] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ Z3 )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z3 ) @ one_one_real ) ) ) ).

% floor_le_iff
thf(fact_7844_floor__le__iff,axiom,
    ! [X: rat,Z3: int] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ Z3 )
      = ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z3 ) @ one_one_rat ) ) ) ).

% floor_le_iff
thf(fact_7845_floor__correct,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_7846_floor__correct,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) @ X )
      & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_7847_norm__of__real__diff,axiom,
    ! [B: real,A: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( real_V1803761363581548252l_real @ B ) @ ( real_V1803761363581548252l_real @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_of_real_diff
thf(fact_7848_norm__of__real__diff,axiom,
    ! [B: real,A: real] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( real_V4546457046886955230omplex @ B ) @ ( real_V4546457046886955230omplex @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_of_real_diff
thf(fact_7849_floor__eq2,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq2
thf(fact_7850_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_7851_floor__divide__lower,axiom,
    ! [Q: real,P5: real] :
      ( ( ord_less_real @ zero_zero_real @ Q )
     => ( ord_less_eq_real @ ( times_times_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P5 @ Q ) ) ) @ Q ) @ P5 ) ) ).

% floor_divide_lower
thf(fact_7852_floor__divide__lower,axiom,
    ! [Q: rat,P5: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q )
     => ( ord_less_eq_rat @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P5 @ Q ) ) ) @ Q ) @ P5 ) ) ).

% floor_divide_lower
thf(fact_7853_cos__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X ) ) )
      = ( real_V1803761363581548252l_real @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% cos_int_times_real
thf(fact_7854_cos__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( cos_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X ) ) )
      = ( real_V4546457046886955230omplex @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% cos_int_times_real
thf(fact_7855_sin__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X ) ) )
      = ( real_V1803761363581548252l_real @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% sin_int_times_real
thf(fact_7856_sin__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( sin_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X ) ) )
      = ( real_V4546457046886955230omplex @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% sin_int_times_real
thf(fact_7857_floor__divide__upper,axiom,
    ! [Q: real,P5: real] :
      ( ( ord_less_real @ zero_zero_real @ Q )
     => ( ord_less_real @ P5 @ ( times_times_real @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P5 @ Q ) ) ) @ one_one_real ) @ Q ) ) ) ).

% floor_divide_upper
thf(fact_7858_floor__divide__upper,axiom,
    ! [Q: rat,P5: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q )
     => ( ord_less_rat @ P5 @ ( times_times_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P5 @ Q ) ) ) @ one_one_rat ) @ Q ) ) ) ).

% floor_divide_upper
thf(fact_7859_geometric__sums,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( sums_real @ ( power_power_real @ C ) @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% geometric_sums
thf(fact_7860_geometric__sums,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( sums_complex @ ( power_power_complex @ C ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% geometric_sums
thf(fact_7861_power__half__series,axiom,
    ( sums_real
    @ ^ [N2: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N2 ) )
    @ one_one_real ) ).

% power_half_series
thf(fact_7862_round__def,axiom,
    ( archim8280529875227126926d_real
    = ( ^ [X4: real] : ( archim6058952711729229775r_real @ ( plus_plus_real @ X4 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% round_def
thf(fact_7863_round__def,axiom,
    ( archim7778729529865785530nd_rat
    = ( ^ [X4: rat] : ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X4 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% round_def
thf(fact_7864_sums__if_H,axiom,
    ! [G: nat > real,X: real] :
      ( ( sums_real @ G @ X )
     => ( sums_real
        @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        @ X ) ) ).

% sums_if'
thf(fact_7865_cos__sin__eq,axiom,
    ( cos_real
    = ( ^ [X4: real] : ( sin_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X4 ) ) ) ) ).

% cos_sin_eq
thf(fact_7866_cos__sin__eq,axiom,
    ( cos_complex
    = ( ^ [X4: complex] : ( sin_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X4 ) ) ) ) ).

% cos_sin_eq
thf(fact_7867_sin__cos__eq,axiom,
    ( sin_real
    = ( ^ [X4: real] : ( cos_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X4 ) ) ) ) ).

% sin_cos_eq
thf(fact_7868_sin__cos__eq,axiom,
    ( sin_complex
    = ( ^ [X4: complex] : ( cos_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X4 ) ) ) ) ).

% sin_cos_eq
thf(fact_7869_sums__if,axiom,
    ! [G: nat > real,X: real,F: nat > real,Y2: real] :
      ( ( sums_real @ G @ X )
     => ( ( sums_real @ F @ Y2 )
       => ( sums_real
          @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( F @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( plus_plus_real @ X @ Y2 ) ) ) ) ).

% sums_if
thf(fact_7870_minus__sin__cos__eq,axiom,
    ! [X: real] :
      ( ( uminus_uminus_real @ ( sin_real @ X ) )
      = ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% minus_sin_cos_eq
thf(fact_7871_minus__sin__cos__eq,axiom,
    ! [X: complex] :
      ( ( uminus1482373934393186551omplex @ ( sin_complex @ X ) )
      = ( cos_complex @ ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% minus_sin_cos_eq
thf(fact_7872_floor__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K2: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log @ B @ X ) )
            = K2 )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K2 ) ) @ X )
            & ( ord_less_real @ X @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K2 @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_7873_monoseq__minus,axiom,
    ! [A: nat > int] :
      ( ( topolo4899668324122417113eq_int @ A )
     => ( topolo4899668324122417113eq_int
        @ ^ [N2: nat] : ( uminus_uminus_int @ ( A @ N2 ) ) ) ) ).

% monoseq_minus
thf(fact_7874_monoseq__minus,axiom,
    ! [A: nat > rat] :
      ( ( topolo4267028734544971653eq_rat @ A )
     => ( topolo4267028734544971653eq_rat
        @ ^ [N2: nat] : ( uminus_uminus_rat @ ( A @ N2 ) ) ) ) ).

% monoseq_minus
thf(fact_7875_monoseq__minus,axiom,
    ! [A: nat > code_integer] :
      ( ( topolo2919662092509805066nteger @ A )
     => ( topolo2919662092509805066nteger
        @ ^ [N2: nat] : ( uminus1351360451143612070nteger @ ( A @ N2 ) ) ) ) ).

% monoseq_minus
thf(fact_7876_monoseq__minus,axiom,
    ! [A: nat > real] :
      ( ( topolo6980174941875973593q_real @ A )
     => ( topolo6980174941875973593q_real
        @ ^ [N2: nat] : ( uminus_uminus_real @ ( A @ N2 ) ) ) ) ).

% monoseq_minus
thf(fact_7877_floor__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_7878_floor__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K2 )
     => ( ( ord_less_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_7879_mono__SucI1,axiom,
    ! [X9: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( X9 @ N3 ) @ ( X9 @ ( suc @ N3 ) ) )
     => ( topolo6980174941875973593q_real @ X9 ) ) ).

% mono_SucI1
thf(fact_7880_mono__SucI1,axiom,
    ! [X9: nat > set_int] :
      ( ! [N3: nat] : ( ord_less_eq_set_int @ ( X9 @ N3 ) @ ( X9 @ ( suc @ N3 ) ) )
     => ( topolo3100542954746470799et_int @ X9 ) ) ).

% mono_SucI1
thf(fact_7881_mono__SucI1,axiom,
    ! [X9: nat > rat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( X9 @ N3 ) @ ( X9 @ ( suc @ N3 ) ) )
     => ( topolo4267028734544971653eq_rat @ X9 ) ) ).

% mono_SucI1
thf(fact_7882_mono__SucI1,axiom,
    ! [X9: nat > num] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( X9 @ N3 ) @ ( X9 @ ( suc @ N3 ) ) )
     => ( topolo1459490580787246023eq_num @ X9 ) ) ).

% mono_SucI1
thf(fact_7883_mono__SucI1,axiom,
    ! [X9: nat > nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( X9 @ N3 ) @ ( X9 @ ( suc @ N3 ) ) )
     => ( topolo4902158794631467389eq_nat @ X9 ) ) ).

% mono_SucI1
thf(fact_7884_mono__SucI1,axiom,
    ! [X9: nat > int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( X9 @ N3 ) @ ( X9 @ ( suc @ N3 ) ) )
     => ( topolo4899668324122417113eq_int @ X9 ) ) ).

% mono_SucI1
thf(fact_7885_mono__SucI2,axiom,
    ! [X9: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( X9 @ ( suc @ N3 ) ) @ ( X9 @ N3 ) )
     => ( topolo6980174941875973593q_real @ X9 ) ) ).

% mono_SucI2
thf(fact_7886_mono__SucI2,axiom,
    ! [X9: nat > set_int] :
      ( ! [N3: nat] : ( ord_less_eq_set_int @ ( X9 @ ( suc @ N3 ) ) @ ( X9 @ N3 ) )
     => ( topolo3100542954746470799et_int @ X9 ) ) ).

% mono_SucI2
thf(fact_7887_mono__SucI2,axiom,
    ! [X9: nat > rat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( X9 @ ( suc @ N3 ) ) @ ( X9 @ N3 ) )
     => ( topolo4267028734544971653eq_rat @ X9 ) ) ).

% mono_SucI2
thf(fact_7888_mono__SucI2,axiom,
    ! [X9: nat > num] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( X9 @ ( suc @ N3 ) ) @ ( X9 @ N3 ) )
     => ( topolo1459490580787246023eq_num @ X9 ) ) ).

% mono_SucI2
thf(fact_7889_mono__SucI2,axiom,
    ! [X9: nat > nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( X9 @ ( suc @ N3 ) ) @ ( X9 @ N3 ) )
     => ( topolo4902158794631467389eq_nat @ X9 ) ) ).

% mono_SucI2
thf(fact_7890_mono__SucI2,axiom,
    ! [X9: nat > int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( X9 @ ( suc @ N3 ) ) @ ( X9 @ N3 ) )
     => ( topolo4899668324122417113eq_int @ X9 ) ) ).

% mono_SucI2
thf(fact_7891_monoseq__Suc,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X6: nat > real] :
          ( ! [N2: nat] : ( ord_less_eq_real @ ( X6 @ N2 ) @ ( X6 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_real @ ( X6 @ ( suc @ N2 ) ) @ ( X6 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7892_monoseq__Suc,axiom,
    ( topolo3100542954746470799et_int
    = ( ^ [X6: nat > set_int] :
          ( ! [N2: nat] : ( ord_less_eq_set_int @ ( X6 @ N2 ) @ ( X6 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_set_int @ ( X6 @ ( suc @ N2 ) ) @ ( X6 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7893_monoseq__Suc,axiom,
    ( topolo4267028734544971653eq_rat
    = ( ^ [X6: nat > rat] :
          ( ! [N2: nat] : ( ord_less_eq_rat @ ( X6 @ N2 ) @ ( X6 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_rat @ ( X6 @ ( suc @ N2 ) ) @ ( X6 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7894_monoseq__Suc,axiom,
    ( topolo1459490580787246023eq_num
    = ( ^ [X6: nat > num] :
          ( ! [N2: nat] : ( ord_less_eq_num @ ( X6 @ N2 ) @ ( X6 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_num @ ( X6 @ ( suc @ N2 ) ) @ ( X6 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7895_monoseq__Suc,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X6: nat > nat] :
          ( ! [N2: nat] : ( ord_less_eq_nat @ ( X6 @ N2 ) @ ( X6 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_nat @ ( X6 @ ( suc @ N2 ) ) @ ( X6 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7896_monoseq__Suc,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X6: nat > int] :
          ( ! [N2: nat] : ( ord_less_eq_int @ ( X6 @ N2 ) @ ( X6 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_int @ ( X6 @ ( suc @ N2 ) ) @ ( X6 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_7897_monoI1,axiom,
    ! [X9: nat > real] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_real @ ( X9 @ M4 ) @ ( X9 @ N3 ) ) )
     => ( topolo6980174941875973593q_real @ X9 ) ) ).

% monoI1
thf(fact_7898_monoI1,axiom,
    ! [X9: nat > set_int] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_set_int @ ( X9 @ M4 ) @ ( X9 @ N3 ) ) )
     => ( topolo3100542954746470799et_int @ X9 ) ) ).

% monoI1
thf(fact_7899_monoI1,axiom,
    ! [X9: nat > rat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_rat @ ( X9 @ M4 ) @ ( X9 @ N3 ) ) )
     => ( topolo4267028734544971653eq_rat @ X9 ) ) ).

% monoI1
thf(fact_7900_monoI1,axiom,
    ! [X9: nat > num] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_num @ ( X9 @ M4 ) @ ( X9 @ N3 ) ) )
     => ( topolo1459490580787246023eq_num @ X9 ) ) ).

% monoI1
thf(fact_7901_monoI1,axiom,
    ! [X9: nat > nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_nat @ ( X9 @ M4 ) @ ( X9 @ N3 ) ) )
     => ( topolo4902158794631467389eq_nat @ X9 ) ) ).

% monoI1
thf(fact_7902_monoI1,axiom,
    ! [X9: nat > int] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_int @ ( X9 @ M4 ) @ ( X9 @ N3 ) ) )
     => ( topolo4899668324122417113eq_int @ X9 ) ) ).

% monoI1
thf(fact_7903_monoI2,axiom,
    ! [X9: nat > real] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_real @ ( X9 @ N3 ) @ ( X9 @ M4 ) ) )
     => ( topolo6980174941875973593q_real @ X9 ) ) ).

% monoI2
thf(fact_7904_monoI2,axiom,
    ! [X9: nat > set_int] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_set_int @ ( X9 @ N3 ) @ ( X9 @ M4 ) ) )
     => ( topolo3100542954746470799et_int @ X9 ) ) ).

% monoI2
thf(fact_7905_monoI2,axiom,
    ! [X9: nat > rat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_rat @ ( X9 @ N3 ) @ ( X9 @ M4 ) ) )
     => ( topolo4267028734544971653eq_rat @ X9 ) ) ).

% monoI2
thf(fact_7906_monoI2,axiom,
    ! [X9: nat > num] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_num @ ( X9 @ N3 ) @ ( X9 @ M4 ) ) )
     => ( topolo1459490580787246023eq_num @ X9 ) ) ).

% monoI2
thf(fact_7907_monoI2,axiom,
    ! [X9: nat > nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_nat @ ( X9 @ N3 ) @ ( X9 @ M4 ) ) )
     => ( topolo4902158794631467389eq_nat @ X9 ) ) ).

% monoI2
thf(fact_7908_monoI2,axiom,
    ! [X9: nat > int] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M4 @ N3 )
         => ( ord_less_eq_int @ ( X9 @ N3 ) @ ( X9 @ M4 ) ) )
     => ( topolo4899668324122417113eq_int @ X9 ) ) ).

% monoI2
thf(fact_7909_diffs__equiv,axiom,
    ! [C: nat > complex,X: complex] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) )
     => ( sums_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( C @ N2 ) ) @ ( power_power_complex @ X @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
        @ ( suminf_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ) ).

% diffs_equiv
thf(fact_7910_diffs__equiv,axiom,
    ! [C: nat > real,X: real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) )
     => ( sums_real
        @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( C @ N2 ) ) @ ( power_power_real @ X @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
        @ ( suminf_real
          @ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).

% diffs_equiv
thf(fact_7911_round__altdef,axiom,
    ( archim8280529875227126926d_real
    = ( ^ [X4: real] : ( if_int @ ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( archim2898591450579166408c_real @ X4 ) ) @ ( archim7802044766580827645g_real @ X4 ) @ ( archim6058952711729229775r_real @ X4 ) ) ) ) ).

% round_altdef
thf(fact_7912_round__altdef,axiom,
    ( archim7778729529865785530nd_rat
    = ( ^ [X4: rat] : ( if_int @ ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( archimedean_frac_rat @ X4 ) ) @ ( archim2889992004027027881ng_rat @ X4 ) @ ( archim3151403230148437115or_rat @ X4 ) ) ) ) ).

% round_altdef
thf(fact_7913_sin__paired,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
      @ ( sin_real @ X ) ) ).

% sin_paired
thf(fact_7914_pochhammer__double,axiom,
    ! [Z3: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z3 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s2602460028002588243omplex @ Z3 @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z3 @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_7915_pochhammer__double,axiom,
    ! [Z3: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z3 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s4028243227959126397er_rat @ Z3 @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_7916_pochhammer__double,axiom,
    ! [Z3: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z3 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s7457072308508201937r_real @ Z3 @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_7917_of__nat__code,axiom,
    ( semiri8010041392384452111omplex
    = ( ^ [N2: nat] :
          ( semiri2816024913162550771omplex
          @ ^ [I: complex] : ( plus_plus_complex @ I @ one_one_complex )
          @ N2
          @ zero_zero_complex ) ) ) ).

% of_nat_code
thf(fact_7918_of__nat__code,axiom,
    ( semiri681578069525770553at_rat
    = ( ^ [N2: nat] :
          ( semiri7787848453975740701ux_rat
          @ ^ [I: rat] : ( plus_plus_rat @ I @ one_one_rat )
          @ N2
          @ zero_zero_rat ) ) ) ).

% of_nat_code
thf(fact_7919_of__nat__code,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [N2: nat] :
          ( semiri7260567687927622513x_real
          @ ^ [I: real] : ( plus_plus_real @ I @ one_one_real )
          @ N2
          @ zero_zero_real ) ) ) ).

% of_nat_code
thf(fact_7920_of__nat__code,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N2: nat] :
          ( semiri8420488043553186161ux_int
          @ ^ [I: int] : ( plus_plus_int @ I @ one_one_int )
          @ N2
          @ zero_zero_int ) ) ) ).

% of_nat_code
thf(fact_7921_of__nat__code,axiom,
    ( semiri4216267220026989637d_enat
    = ( ^ [N2: nat] :
          ( semiri8563196900006977889d_enat
          @ ^ [I: extended_enat] : ( plus_p3455044024723400733d_enat @ I @ one_on7984719198319812577d_enat )
          @ N2
          @ zero_z5237406670263579293d_enat ) ) ) ).

% of_nat_code
thf(fact_7922_of__nat__code,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N2: nat] :
          ( semiri8422978514062236437ux_nat
          @ ^ [I: nat] : ( plus_plus_nat @ I @ one_one_nat )
          @ N2
          @ zero_zero_nat ) ) ) ).

% of_nat_code
thf(fact_7923_fact__0,axiom,
    ( ( semiri5044797733671781792omplex @ zero_zero_nat )
    = one_one_complex ) ).

% fact_0
thf(fact_7924_fact__0,axiom,
    ( ( semiri773545260158071498ct_rat @ zero_zero_nat )
    = one_one_rat ) ).

% fact_0
thf(fact_7925_fact__0,axiom,
    ( ( semiri1406184849735516958ct_int @ zero_zero_nat )
    = one_one_int ) ).

% fact_0
thf(fact_7926_fact__0,axiom,
    ( ( semiri2265585572941072030t_real @ zero_zero_nat )
    = one_one_real ) ).

% fact_0
thf(fact_7927_fact__0,axiom,
    ( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
    = one_one_nat ) ).

% fact_0
thf(fact_7928_fact__1,axiom,
    ( ( semiri5044797733671781792omplex @ one_one_nat )
    = one_one_complex ) ).

% fact_1
thf(fact_7929_fact__1,axiom,
    ( ( semiri773545260158071498ct_rat @ one_one_nat )
    = one_one_rat ) ).

% fact_1
thf(fact_7930_fact__1,axiom,
    ( ( semiri1406184849735516958ct_int @ one_one_nat )
    = one_one_int ) ).

% fact_1
thf(fact_7931_fact__1,axiom,
    ( ( semiri2265585572941072030t_real @ one_one_nat )
    = one_one_real ) ).

% fact_1
thf(fact_7932_fact__1,axiom,
    ( ( semiri1408675320244567234ct_nat @ one_one_nat )
    = one_one_nat ) ).

% fact_1
thf(fact_7933_pochhammer__0,axiom,
    ! [A: complex] :
      ( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% pochhammer_0
thf(fact_7934_pochhammer__0,axiom,
    ! [A: real] :
      ( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% pochhammer_0
thf(fact_7935_pochhammer__0,axiom,
    ! [A: rat] :
      ( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% pochhammer_0
thf(fact_7936_pochhammer__0,axiom,
    ! [A: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% pochhammer_0
thf(fact_7937_pochhammer__0,axiom,
    ! [A: int] :
      ( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% pochhammer_0
thf(fact_7938_fact__Suc__0,axiom,
    ( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
    = one_one_complex ) ).

% fact_Suc_0
thf(fact_7939_fact__Suc__0,axiom,
    ( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
    = one_one_rat ) ).

% fact_Suc_0
thf(fact_7940_fact__Suc__0,axiom,
    ( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% fact_Suc_0
thf(fact_7941_fact__Suc__0,axiom,
    ( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
    = one_one_real ) ).

% fact_Suc_0
thf(fact_7942_fact__Suc__0,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% fact_Suc_0
thf(fact_7943_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri773545260158071498ct_rat @ ( suc @ N ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% fact_Suc
thf(fact_7944_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1406184849735516958ct_int @ ( suc @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% fact_Suc
thf(fact_7945_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri4449623510593786356d_enat @ ( suc @ N ) )
      = ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ ( suc @ N ) ) @ ( semiri4449623510593786356d_enat @ N ) ) ) ).

% fact_Suc
thf(fact_7946_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri2265585572941072030t_real @ ( suc @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% fact_Suc
thf(fact_7947_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1408675320244567234ct_nat @ ( suc @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_Suc
thf(fact_7948_fact__2,axiom,
    ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7949_fact__2,axiom,
    ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7950_fact__2,axiom,
    ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7951_fact__2,axiom,
    ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7952_fact__2,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_7953_pochhammer__fact,axiom,
    ( semiri5044797733671781792omplex
    = ( comm_s2602460028002588243omplex @ one_one_complex ) ) ).

% pochhammer_fact
thf(fact_7954_pochhammer__fact,axiom,
    ( semiri773545260158071498ct_rat
    = ( comm_s4028243227959126397er_rat @ one_one_rat ) ) ).

% pochhammer_fact
thf(fact_7955_pochhammer__fact,axiom,
    ( semiri1406184849735516958ct_int
    = ( comm_s4660882817536571857er_int @ one_one_int ) ) ).

% pochhammer_fact
thf(fact_7956_pochhammer__fact,axiom,
    ( semiri2265585572941072030t_real
    = ( comm_s7457072308508201937r_real @ one_one_real ) ) ).

% pochhammer_fact
thf(fact_7957_pochhammer__fact,axiom,
    ( semiri1408675320244567234ct_nat
    = ( comm_s4663373288045622133er_nat @ one_one_nat ) ) ).

% pochhammer_fact
thf(fact_7958_diffs__of__real,axiom,
    ! [F: nat > real] :
      ( ( diffs_complex
        @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( F @ N2 ) ) )
      = ( ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( diffs_real @ F @ N2 ) ) ) ) ).

% diffs_of_real
thf(fact_7959_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).

% fact_ge_zero
thf(fact_7960_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).

% fact_ge_zero
thf(fact_7961_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).

% fact_ge_zero
thf(fact_7962_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_zero
thf(fact_7963_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).

% fact_gt_zero
thf(fact_7964_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).

% fact_gt_zero
thf(fact_7965_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).

% fact_gt_zero
thf(fact_7966_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_gt_zero
thf(fact_7967_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N ) @ zero_zero_rat ) ).

% fact_not_neg
thf(fact_7968_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N ) @ zero_zero_int ) ).

% fact_not_neg
thf(fact_7969_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N ) @ zero_zero_real ) ).

% fact_not_neg
thf(fact_7970_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N ) @ zero_zero_nat ) ).

% fact_not_neg
thf(fact_7971_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).

% fact_ge_1
thf(fact_7972_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N ) ) ).

% fact_ge_1
thf(fact_7973_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N ) ) ).

% fact_ge_1
thf(fact_7974_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_1
thf(fact_7975_diffs__minus,axiom,
    ! [C: nat > real] :
      ( ( diffs_real
        @ ^ [N2: nat] : ( uminus_uminus_real @ ( C @ N2 ) ) )
      = ( ^ [N2: nat] : ( uminus_uminus_real @ ( diffs_real @ C @ N2 ) ) ) ) ).

% diffs_minus
thf(fact_7976_diffs__minus,axiom,
    ! [C: nat > int] :
      ( ( diffs_int
        @ ^ [N2: nat] : ( uminus_uminus_int @ ( C @ N2 ) ) )
      = ( ^ [N2: nat] : ( uminus_uminus_int @ ( diffs_int @ C @ N2 ) ) ) ) ).

% diffs_minus
thf(fact_7977_diffs__minus,axiom,
    ! [C: nat > complex] :
      ( ( diffs_complex
        @ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( C @ N2 ) ) )
      = ( ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( diffs_complex @ C @ N2 ) ) ) ) ).

% diffs_minus
thf(fact_7978_diffs__minus,axiom,
    ! [C: nat > rat] :
      ( ( diffs_rat
        @ ^ [N2: nat] : ( uminus_uminus_rat @ ( C @ N2 ) ) )
      = ( ^ [N2: nat] : ( uminus_uminus_rat @ ( diffs_rat @ C @ N2 ) ) ) ) ).

% diffs_minus
thf(fact_7979_diffs__minus,axiom,
    ! [C: nat > code_integer] :
      ( ( diffs_Code_integer
        @ ^ [N2: nat] : ( uminus1351360451143612070nteger @ ( C @ N2 ) ) )
      = ( ^ [N2: nat] : ( uminus1351360451143612070nteger @ ( diffs_Code_integer @ C @ N2 ) ) ) ) ).

% diffs_minus
thf(fact_7980_fact__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% fact_mono
thf(fact_7981_fact__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% fact_mono
thf(fact_7982_fact__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% fact_mono
thf(fact_7983_fact__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_mono
thf(fact_7984_pochhammer__pos,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_7985_pochhammer__pos,axiom,
    ! [X: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_7986_pochhammer__pos,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X )
     => ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_7987_pochhammer__pos,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_7988_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).

% fact_dvd
thf(fact_7989_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_Code_integer @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) ) ) ).

% fact_dvd
thf(fact_7990_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).

% fact_dvd
thf(fact_7991_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).

% fact_dvd
thf(fact_7992_pochhammer__neq__0__mono,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ M )
       != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s2602460028002588243omplex @ A @ N )
         != zero_zero_complex ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_7993_pochhammer__neq__0__mono,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ M )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ N )
         != zero_zero_real ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_7994_pochhammer__neq__0__mono,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ M )
       != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ N )
         != zero_zero_rat ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_7995_pochhammer__eq__0__mono,axiom,
    ! [A: complex,N: nat,M: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N )
        = zero_zero_complex )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s2602460028002588243omplex @ A @ M )
          = zero_zero_complex ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_7996_pochhammer__eq__0__mono,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N )
        = zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ M )
          = zero_zero_real ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_7997_pochhammer__eq__0__mono,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N )
        = zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ M )
          = zero_zero_rat ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_7998_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ N )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).

% pochhammer_same
thf(fact_7999_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ N )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% pochhammer_same
thf(fact_8000_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ N )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).

% pochhammer_same
thf(fact_8001_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% pochhammer_same
thf(fact_8002_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ N )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% pochhammer_same
thf(fact_8003_frac__ge__0,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) ) ).

% frac_ge_0
thf(fact_8004_frac__ge__0,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X ) ) ).

% frac_ge_0
thf(fact_8005_frac__lt__1,axiom,
    ! [X: real] : ( ord_less_real @ ( archim2898591450579166408c_real @ X ) @ one_one_real ) ).

% frac_lt_1
thf(fact_8006_frac__lt__1,axiom,
    ! [X: rat] : ( ord_less_rat @ ( archimedean_frac_rat @ X ) @ one_one_rat ) ).

% frac_lt_1
thf(fact_8007_frac__1__eq,axiom,
    ! [X: real] :
      ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ one_one_real ) )
      = ( archim2898591450579166408c_real @ X ) ) ).

% frac_1_eq
thf(fact_8008_frac__1__eq,axiom,
    ! [X: rat] :
      ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ one_one_rat ) )
      = ( archimedean_frac_rat @ X ) ) ).

% frac_1_eq
thf(fact_8009_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ) ).

% fact_less_mono
thf(fact_8010_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ) ).

% fact_less_mono
thf(fact_8011_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ).

% fact_less_mono
thf(fact_8012_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono
thf(fact_8013_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) )
        = zero_zero_int ) ) ).

% fact_mod
thf(fact_8014_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) )
        = zero_z3403309356797280102nteger ) ) ).

% fact_mod
thf(fact_8015_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) )
        = zero_zero_nat ) ) ).

% fact_mod
thf(fact_8016_pochhammer__nonneg,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_8017_pochhammer__nonneg,axiom,
    ! [X: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_8018_pochhammer__nonneg,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_8019_pochhammer__nonneg,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_8020_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_8021_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_8022_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_8023_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_8024_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% pochhammer_0_left
thf(fact_8025_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% pochhammer_0_left
thf(fact_8026_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% pochhammer_0_left
thf(fact_8027_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% pochhammer_0_left
thf(fact_8028_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% pochhammer_0_left
thf(fact_8029_pochhammer__rec,axiom,
    ! [A: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
      = ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_8030_pochhammer__rec,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_8031_pochhammer__rec,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_8032_pochhammer__rec,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_8033_pochhammer__rec,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_8034_diffs__def,axiom,
    ( diffs_rat
    = ( ^ [C2: nat > rat,N2: nat] : ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) @ ( C2 @ ( suc @ N2 ) ) ) ) ) ).

% diffs_def
thf(fact_8035_diffs__def,axiom,
    ( diffs_real
    = ( ^ [C2: nat > real,N2: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( C2 @ ( suc @ N2 ) ) ) ) ) ).

% diffs_def
thf(fact_8036_diffs__def,axiom,
    ( diffs_int
    = ( ^ [C2: nat > int,N2: nat] : ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) @ ( C2 @ ( suc @ N2 ) ) ) ) ) ).

% diffs_def
thf(fact_8037_pochhammer__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_8038_pochhammer__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_8039_pochhammer__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_8040_pochhammer__Suc,axiom,
    ! [A: extended_enat,N: nat] :
      ( ( comm_s3181272606743183617d_enat @ A @ ( suc @ N ) )
      = ( times_7803423173614009249d_enat @ ( comm_s3181272606743183617d_enat @ A @ N ) @ ( plus_p3455044024723400733d_enat @ A @ ( semiri4216267220026989637d_enat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_8041_pochhammer__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_8042_pochhammer__rec_H,axiom,
    ! [Z3: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z3 @ ( suc @ N ) )
      = ( times_times_rat @ ( plus_plus_rat @ Z3 @ ( semiri681578069525770553at_rat @ N ) ) @ ( comm_s4028243227959126397er_rat @ Z3 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_8043_pochhammer__rec_H,axiom,
    ! [Z3: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ Z3 @ ( suc @ N ) )
      = ( times_times_real @ ( plus_plus_real @ Z3 @ ( semiri5074537144036343181t_real @ N ) ) @ ( comm_s7457072308508201937r_real @ Z3 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_8044_pochhammer__rec_H,axiom,
    ! [Z3: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ Z3 @ ( suc @ N ) )
      = ( times_times_int @ ( plus_plus_int @ Z3 @ ( semiri1314217659103216013at_int @ N ) ) @ ( comm_s4660882817536571857er_int @ Z3 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_8045_pochhammer__rec_H,axiom,
    ! [Z3: extended_enat,N: nat] :
      ( ( comm_s3181272606743183617d_enat @ Z3 @ ( suc @ N ) )
      = ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ Z3 @ ( semiri4216267220026989637d_enat @ N ) ) @ ( comm_s3181272606743183617d_enat @ Z3 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_8046_pochhammer__rec_H,axiom,
    ! [Z3: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z3 @ ( suc @ N ) )
      = ( times_times_nat @ ( plus_plus_nat @ Z3 @ ( semiri1316708129612266289at_nat @ N ) ) @ ( comm_s4663373288045622133er_nat @ Z3 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_8047_pochhammer__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N )
        = zero_zero_complex )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ( A
              = ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8048_pochhammer__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N )
        = zero_zero_rat )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ( A
              = ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8049_pochhammer__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N )
        = zero_zero_real )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ( A
              = ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8050_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K2 )
        = zero_zero_complex )
      = ( ord_less_nat @ N @ K2 ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8051_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K2 )
        = zero_zero_rat )
      = ( ord_less_nat @ N @ K2 ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8052_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K2 )
        = zero_z3403309356797280102nteger )
      = ( ord_less_nat @ N @ K2 ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8053_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K2 )
        = zero_zero_real )
      = ( ord_less_nat @ N @ K2 ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8054_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K2 )
        = zero_zero_int )
      = ( ord_less_nat @ N @ K2 ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8055_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ N @ K2 )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K2 )
        = zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8056_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ N @ K2 )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K2 )
        = zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8057_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ N @ K2 )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K2 )
        = zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8058_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ N @ K2 )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K2 )
        = zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8059_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ N @ K2 )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K2 )
        = zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8060_fact__numeral,axiom,
    ! [K2: num] :
      ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K2 ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ K2 ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K2 ) ) ) ) ).

% fact_numeral
thf(fact_8061_fact__numeral,axiom,
    ! [K2: num] :
      ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K2 ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ K2 ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K2 ) ) ) ) ).

% fact_numeral
thf(fact_8062_fact__numeral,axiom,
    ! [K2: num] :
      ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K2 ) )
      = ( times_times_int @ ( numeral_numeral_int @ K2 ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K2 ) ) ) ) ).

% fact_numeral
thf(fact_8063_fact__numeral,axiom,
    ! [K2: num] :
      ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K2 ) )
      = ( times_times_real @ ( numeral_numeral_real @ K2 ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K2 ) ) ) ) ).

% fact_numeral
thf(fact_8064_fact__numeral,axiom,
    ! [K2: num] :
      ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K2 ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ K2 ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K2 ) ) ) ) ).

% fact_numeral
thf(fact_8065_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K2 )
       != zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8066_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K2 )
       != zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8067_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K2 )
       != zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8068_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K2 )
       != zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8069_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K2 )
       != zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8070_pochhammer__product_H,axiom,
    ! [Z3: rat,N: nat,M: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z3 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z3 @ N ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z3 @ ( semiri681578069525770553at_rat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8071_pochhammer__product_H,axiom,
    ! [Z3: real,N: nat,M: nat] :
      ( ( comm_s7457072308508201937r_real @ Z3 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z3 @ N ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z3 @ ( semiri5074537144036343181t_real @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8072_pochhammer__product_H,axiom,
    ! [Z3: int,N: nat,M: nat] :
      ( ( comm_s4660882817536571857er_int @ Z3 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z3 @ N ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z3 @ ( semiri1314217659103216013at_int @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8073_pochhammer__product_H,axiom,
    ! [Z3: extended_enat,N: nat,M: nat] :
      ( ( comm_s3181272606743183617d_enat @ Z3 @ ( plus_plus_nat @ N @ M ) )
      = ( times_7803423173614009249d_enat @ ( comm_s3181272606743183617d_enat @ Z3 @ N ) @ ( comm_s3181272606743183617d_enat @ ( plus_p3455044024723400733d_enat @ Z3 @ ( semiri4216267220026989637d_enat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8074_pochhammer__product_H,axiom,
    ! [Z3: nat,N: nat,M: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z3 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z3 @ N ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z3 @ ( semiri1316708129612266289at_nat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8075_fact__double,axiom,
    ! [N: nat] :
      ( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).

% fact_double
thf(fact_8076_fact__double,axiom,
    ! [N: nat] :
      ( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% fact_double
thf(fact_8077_fact__double,axiom,
    ! [N: nat] :
      ( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% fact_double
thf(fact_8078_termdiff__converges__all,axiom,
    ! [C: nat > complex,X: complex] :
      ( ! [X5: complex] :
          ( summable_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( C @ N2 ) @ ( power_power_complex @ X5 @ N2 ) ) )
     => ( summable_complex
        @ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ).

% termdiff_converges_all
thf(fact_8079_termdiff__converges__all,axiom,
    ! [C: nat > real,X: real] :
      ( ! [X5: real] :
          ( summable_real
          @ ^ [N2: nat] : ( times_times_real @ ( C @ N2 ) @ ( power_power_real @ X5 @ N2 ) ) )
     => ( summable_real
        @ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ).

% termdiff_converges_all
thf(fact_8080_frac__eq,axiom,
    ! [X: real] :
      ( ( ( archim2898591450579166408c_real @ X )
        = X )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_real @ X @ one_one_real ) ) ) ).

% frac_eq
thf(fact_8081_frac__eq,axiom,
    ! [X: rat] :
      ( ( ( archimedean_frac_rat @ X )
        = X )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ X )
        & ( ord_less_rat @ X @ one_one_rat ) ) ) ).

% frac_eq
thf(fact_8082_frac__add,axiom,
    ! [X: real,Y2: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real )
       => ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real )
       => ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( minus_minus_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real ) ) ) ) ).

% frac_add
thf(fact_8083_frac__add,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y2 ) ) @ one_one_rat )
       => ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ Y2 ) )
          = ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y2 ) ) ) )
      & ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y2 ) ) @ one_one_rat )
       => ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ Y2 ) )
          = ( minus_minus_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y2 ) ) @ one_one_rat ) ) ) ) ).

% frac_add
thf(fact_8084_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z3: rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4028243227959126397er_rat @ Z3 @ N )
        = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z3 @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z3 @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8085_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z3: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s7457072308508201937r_real @ Z3 @ N )
        = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z3 @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z3 @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8086_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z3: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4660882817536571857er_int @ Z3 @ N )
        = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z3 @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z3 @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8087_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z3: extended_enat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s3181272606743183617d_enat @ Z3 @ N )
        = ( times_7803423173614009249d_enat @ ( comm_s3181272606743183617d_enat @ Z3 @ M ) @ ( comm_s3181272606743183617d_enat @ ( plus_p3455044024723400733d_enat @ Z3 @ ( semiri4216267220026989637d_enat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8088_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4663373288045622133er_nat @ Z3 @ N )
        = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z3 @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z3 @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8089_square__fact__le__2__fact,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% square_fact_le_2_fact
thf(fact_8090_fact__num__eq__if,axiom,
    ( semiri5044797733671781792omplex
    = ( ^ [M2: nat] : ( if_complex @ ( M2 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M2 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8091_fact__num__eq__if,axiom,
    ( semiri773545260158071498ct_rat
    = ( ^ [M2: nat] : ( if_rat @ ( M2 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8092_fact__num__eq__if,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [M2: nat] : ( if_int @ ( M2 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8093_fact__num__eq__if,axiom,
    ( semiri4449623510593786356d_enat
    = ( ^ [M2: nat] : ( if_Extended_enat @ ( M2 = zero_zero_nat ) @ one_on7984719198319812577d_enat @ ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ M2 ) @ ( semiri4449623510593786356d_enat @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8094_fact__num__eq__if,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [M2: nat] : ( if_real @ ( M2 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8095_fact__num__eq__if,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [M2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8096_fact__code,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [N2: nat] : ( semiri1314217659103216013at_int @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8097_fact__code,axiom,
    ( semiri4449623510593786356d_enat
    = ( ^ [N2: nat] : ( semiri4216267220026989637d_enat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8098_fact__code,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [N2: nat] : ( semiri5074537144036343181t_real @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8099_fact__code,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [N2: nat] : ( semiri1316708129612266289at_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8100_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri773545260158071498ct_rat @ N )
        = ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8101_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri1406184849735516958ct_int @ N )
        = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8102_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri4449623510593786356d_enat @ N )
        = ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ N ) @ ( semiri4449623510593786356d_enat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8103_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri2265585572941072030t_real @ N )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8104_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri1408675320244567234ct_nat @ N )
        = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8105_pochhammer__absorb__comp,axiom,
    ! [R: complex,K2: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ R @ ( semiri8010041392384452111omplex @ K2 ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R ) @ K2 ) )
      = ( times_times_complex @ R @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R ) @ one_one_complex ) @ K2 ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8106_pochhammer__absorb__comp,axiom,
    ! [R: rat,K2: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ R @ ( semiri681578069525770553at_rat @ K2 ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R ) @ K2 ) )
      = ( times_times_rat @ R @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R ) @ one_one_rat ) @ K2 ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8107_pochhammer__absorb__comp,axiom,
    ! [R: code_integer,K2: nat] :
      ( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R @ ( semiri4939895301339042750nteger @ K2 ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R ) @ K2 ) )
      = ( times_3573771949741848930nteger @ R @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R ) @ one_one_Code_integer ) @ K2 ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8108_pochhammer__absorb__comp,axiom,
    ! [R: real,K2: nat] :
      ( ( times_times_real @ ( minus_minus_real @ R @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R ) @ K2 ) )
      = ( times_times_real @ R @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R ) @ one_one_real ) @ K2 ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8109_pochhammer__absorb__comp,axiom,
    ! [R: int,K2: nat] :
      ( ( times_times_int @ ( minus_minus_int @ R @ ( semiri1314217659103216013at_int @ K2 ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R ) @ K2 ) )
      = ( times_times_int @ R @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R ) @ one_one_int ) @ K2 ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8110_pochhammer__minus,axiom,
    ! [B: complex,K2: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ K2 ) ) ) ).

% pochhammer_minus
thf(fact_8111_pochhammer__minus,axiom,
    ! [B: rat,K2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ K2 ) ) ) ).

% pochhammer_minus
thf(fact_8112_pochhammer__minus,axiom,
    ! [B: code_integer,K2: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K2 )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K2 ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K2 ) ) @ one_one_Code_integer ) @ K2 ) ) ) ).

% pochhammer_minus
thf(fact_8113_pochhammer__minus,axiom,
    ! [B: real,K2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ K2 ) ) ) ).

% pochhammer_minus
thf(fact_8114_pochhammer__minus,axiom,
    ! [B: int,K2: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K2 )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K2 ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K2 ) ) @ one_one_int ) @ K2 ) ) ) ).

% pochhammer_minus
thf(fact_8115_pochhammer__minus_H,axiom,
    ! [B: complex,K2: nat] :
      ( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ K2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K2 ) ) ) ).

% pochhammer_minus'
thf(fact_8116_pochhammer__minus_H,axiom,
    ! [B: rat,K2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ K2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K2 ) ) ) ).

% pochhammer_minus'
thf(fact_8117_pochhammer__minus_H,axiom,
    ! [B: code_integer,K2: nat] :
      ( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K2 ) ) @ one_one_Code_integer ) @ K2 )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K2 ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K2 ) ) ) ).

% pochhammer_minus'
thf(fact_8118_pochhammer__minus_H,axiom,
    ! [B: real,K2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ K2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K2 ) ) ) ).

% pochhammer_minus'
thf(fact_8119_pochhammer__minus_H,axiom,
    ! [B: int,K2: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K2 ) ) @ one_one_int ) @ K2 )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K2 ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K2 ) ) ) ).

% pochhammer_minus'
thf(fact_8120_termdiff__converges,axiom,
    ! [X: real,K5: real,C: nat > real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ K5 )
     => ( ! [X5: real] :
            ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X5 ) @ K5 )
           => ( summable_real
              @ ^ [N2: nat] : ( times_times_real @ ( C @ N2 ) @ ( power_power_real @ X5 @ N2 ) ) ) )
       => ( summable_real
          @ ^ [N2: nat] : ( times_times_real @ ( diffs_real @ C @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).

% termdiff_converges
thf(fact_8121_termdiff__converges,axiom,
    ! [X: complex,K5: real,C: nat > complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ K5 )
     => ( ! [X5: complex] :
            ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X5 ) @ K5 )
           => ( summable_complex
              @ ^ [N2: nat] : ( times_times_complex @ ( C @ N2 ) @ ( power_power_complex @ X5 @ N2 ) ) ) )
       => ( summable_complex
          @ ^ [N2: nat] : ( times_times_complex @ ( diffs_complex @ C @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ) ).

% termdiff_converges
thf(fact_8122_floor__add,axiom,
    ! [X: real,Y2: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y2 ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_8123_floor__add,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y2 ) ) @ one_one_rat )
       => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y2 ) )
          = ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y2 ) ) ) )
      & ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y2 ) ) @ one_one_rat )
       => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y2 ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y2 ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_8124_pochhammer__code,axiom,
    ( comm_s2602460028002588243omplex
    = ( ^ [A4: complex,N2: nat] :
          ( if_complex @ ( N2 = zero_zero_nat ) @ one_one_complex
          @ ( set_fo1517530859248394432omplex
            @ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A4 @ ( semiri8010041392384452111omplex @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N2 @ one_one_nat )
            @ one_one_complex ) ) ) ) ).

% pochhammer_code
thf(fact_8125_pochhammer__code,axiom,
    ( comm_s4028243227959126397er_rat
    = ( ^ [A4: rat,N2: nat] :
          ( if_rat @ ( N2 = zero_zero_nat ) @ one_one_rat
          @ ( set_fo1949268297981939178at_rat
            @ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A4 @ ( semiri681578069525770553at_rat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N2 @ one_one_nat )
            @ one_one_rat ) ) ) ) ).

% pochhammer_code
thf(fact_8126_pochhammer__code,axiom,
    ( comm_s7457072308508201937r_real
    = ( ^ [A4: real,N2: nat] :
          ( if_real @ ( N2 = zero_zero_nat ) @ one_one_real
          @ ( set_fo3111899725591712190t_real
            @ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A4 @ ( semiri5074537144036343181t_real @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N2 @ one_one_nat )
            @ one_one_real ) ) ) ) ).

% pochhammer_code
thf(fact_8127_pochhammer__code,axiom,
    ( comm_s4660882817536571857er_int
    = ( ^ [A4: int,N2: nat] :
          ( if_int @ ( N2 = zero_zero_nat ) @ one_one_int
          @ ( set_fo2581907887559384638at_int
            @ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A4 @ ( semiri1314217659103216013at_int @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N2 @ one_one_nat )
            @ one_one_int ) ) ) ) ).

% pochhammer_code
thf(fact_8128_pochhammer__code,axiom,
    ( comm_s3181272606743183617d_enat
    = ( ^ [A4: extended_enat,N2: nat] :
          ( if_Extended_enat @ ( N2 = zero_zero_nat ) @ one_on7984719198319812577d_enat
          @ ( set_fo2538466533108834004d_enat
            @ ^ [O: nat] : ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A4 @ ( semiri4216267220026989637d_enat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N2 @ one_one_nat )
            @ one_on7984719198319812577d_enat ) ) ) ) ).

% pochhammer_code
thf(fact_8129_pochhammer__code,axiom,
    ( comm_s4663373288045622133er_nat
    = ( ^ [A4: nat,N2: nat] :
          ( if_nat @ ( N2 = zero_zero_nat ) @ one_one_nat
          @ ( set_fo2584398358068434914at_nat
            @ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A4 @ ( semiri1316708129612266289at_nat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N2 @ one_one_nat )
            @ one_one_nat ) ) ) ) ).

% pochhammer_code
thf(fact_8130_cos__paired,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( power_power_real @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      @ ( cos_real @ X ) ) ).

% cos_paired
thf(fact_8131_sin__coeff__def,axiom,
    ( sin_coeff
    = ( ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ) ).

% sin_coeff_def
thf(fact_8132_choose__dvd,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K2 ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N @ K2 ) ) ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).

% choose_dvd
thf(fact_8133_choose__dvd,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K2 ) ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% choose_dvd
thf(fact_8134_choose__dvd,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K2 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ K2 ) ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% choose_dvd
thf(fact_8135_choose__dvd,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K2 ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% choose_dvd
thf(fact_8136_choose__dvd,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K2 ) ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% choose_dvd
thf(fact_8137_cos__coeff__def,axiom,
    ( cos_coeff
    = ( ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ zero_zero_real ) ) ) ).

% cos_coeff_def
thf(fact_8138_fact__fact__dvd__fact,axiom,
    ! [K2: nat,N: nat] : ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K2 ) @ ( semiri3624122377584611663nteger @ N ) ) @ ( semiri3624122377584611663nteger @ ( plus_plus_nat @ K2 @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8139_fact__fact__dvd__fact,axiom,
    ! [K2: nat,N: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K2 ) @ ( semiri773545260158071498ct_rat @ N ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K2 @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8140_fact__fact__dvd__fact,axiom,
    ! [K2: nat,N: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K2 ) @ ( semiri1406184849735516958ct_int @ N ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K2 @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8141_fact__fact__dvd__fact,axiom,
    ! [K2: nat,N: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K2 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K2 @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8142_fact__fact__dvd__fact,axiom,
    ! [K2: nat,N: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K2 ) @ ( semiri1408675320244567234ct_nat @ N ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K2 @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8143_central__binomial__lower__bound,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).

% central_binomial_lower_bound
thf(fact_8144_binomial__n__n,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ N )
      = one_one_nat ) ).

% binomial_n_n
thf(fact_8145_binomial__eq__0__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ( binomial @ N @ K2 )
        = zero_zero_nat )
      = ( ord_less_nat @ N @ K2 ) ) ).

% binomial_eq_0_iff
thf(fact_8146_binomial__Suc__Suc,axiom,
    ! [N: nat,K2: nat] :
      ( ( binomial @ ( suc @ N ) @ ( suc @ K2 ) )
      = ( plus_plus_nat @ ( binomial @ N @ K2 ) @ ( binomial @ N @ ( suc @ K2 ) ) ) ) ).

% binomial_Suc_Suc
thf(fact_8147_binomial__n__0,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ zero_zero_nat )
      = one_one_nat ) ).

% binomial_n_0
thf(fact_8148_cos__coeff__0,axiom,
    ( ( cos_coeff @ zero_zero_nat )
    = one_one_real ) ).

% cos_coeff_0
thf(fact_8149_zero__less__binomial__iff,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K2 ) )
      = ( ord_less_eq_nat @ K2 @ N ) ) ).

% zero_less_binomial_iff
thf(fact_8150_binomial__fact__lemma,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K2 ) ) ) @ ( binomial @ N @ K2 ) )
        = ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% binomial_fact_lemma
thf(fact_8151_fact__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_mono_nat
thf(fact_8152_fact__ge__self,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_self
thf(fact_8153_binomial__eq__0,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ N @ K2 )
     => ( ( binomial @ N @ K2 )
        = zero_zero_nat ) ) ).

% binomial_eq_0
thf(fact_8154_choose__one,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ one_one_nat )
      = N ) ).

% choose_one
thf(fact_8155_Suc__times__binomial__eq,axiom,
    ! [N: nat,K2: nat] :
      ( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K2 ) )
      = ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K2 ) ) @ ( suc @ K2 ) ) ) ).

% Suc_times_binomial_eq
thf(fact_8156_Suc__times__binomial,axiom,
    ! [K2: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K2 ) @ ( binomial @ ( suc @ N ) @ ( suc @ K2 ) ) )
      = ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K2 ) ) ) ).

% Suc_times_binomial
thf(fact_8157_binomial__symmetric,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( binomial @ N @ K2 )
        = ( binomial @ N @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% binomial_symmetric
thf(fact_8158_choose__mult__lemma,axiom,
    ! [M: nat,R: nat,K2: nat] :
      ( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R ) @ K2 ) @ ( plus_plus_nat @ M @ K2 ) ) @ ( binomial @ ( plus_plus_nat @ M @ K2 ) @ K2 ) )
      = ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R ) @ K2 ) @ K2 ) @ ( binomial @ ( plus_plus_nat @ M @ R ) @ M ) ) ) ).

% choose_mult_lemma
thf(fact_8159_binomial__le__pow,axiom,
    ! [R: nat,N: nat] :
      ( ( ord_less_eq_nat @ R @ N )
     => ( ord_less_eq_nat @ ( binomial @ N @ R ) @ ( power_power_nat @ N @ R ) ) ) ).

% binomial_le_pow
thf(fact_8160_binomial__altdef__nat,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( binomial @ N @ K2 )
        = ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ) ).

% binomial_altdef_nat
thf(fact_8161_zero__less__binomial,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K2 ) ) ) ).

% zero_less_binomial
thf(fact_8162_fact__less__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono_nat
thf(fact_8163_Suc__times__binomial__add,axiom,
    ! [A: nat,B: nat] :
      ( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
      = ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).

% Suc_times_binomial_add
thf(fact_8164_choose__mult,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K2 ) )
          = ( times_times_nat @ ( binomial @ N @ K2 ) @ ( binomial @ ( minus_minus_nat @ N @ K2 ) @ ( minus_minus_nat @ M @ K2 ) ) ) ) ) ) ).

% choose_mult
thf(fact_8165_binomial__Suc__Suc__eq__times,axiom,
    ! [N: nat,K2: nat] :
      ( ( binomial @ ( suc @ N ) @ ( suc @ K2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K2 ) ) @ ( suc @ K2 ) ) ) ).

% binomial_Suc_Suc_eq_times
thf(fact_8166_binomial__absorb__comp,axiom,
    ! [N: nat,K2: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ N @ K2 ) @ ( binomial @ N @ K2 ) )
      = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K2 ) ) ) ).

% binomial_absorb_comp
thf(fact_8167_binomial__absorption,axiom,
    ! [K2: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K2 ) @ ( binomial @ N @ ( suc @ K2 ) ) )
      = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K2 ) ) ) ).

% binomial_absorption
thf(fact_8168_fact__ge__Suc__0__nat,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_Suc_0_nat
thf(fact_8169_dvd__fact,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% dvd_fact
thf(fact_8170_binomial__ge__n__over__k__pow__k,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ K2 ) ) @ K2 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K2 ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_8171_binomial__ge__n__over__k__pow__k,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri681578069525770553at_rat @ K2 ) ) @ K2 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K2 ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_8172_binomial__le__pow2,axiom,
    ! [N: nat,K2: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% binomial_le_pow2
thf(fact_8173_choose__reduce__nat,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ( binomial @ N @ K2 )
          = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K2 ) ) ) ) ) ).

% choose_reduce_nat
thf(fact_8174_times__binomial__minus1__eq,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( times_times_nat @ K2 @ ( binomial @ N @ K2 ) )
        = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) ) ) ) ).

% times_binomial_minus1_eq
thf(fact_8175_fact__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ ( suc @ M ) )
     => ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
        = ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).

% fact_diff_Suc
thf(fact_8176_binomial__code,axiom,
    ( binomial
    = ( ^ [N2: nat,K3: nat] : ( if_nat @ ( ord_less_nat @ N2 @ K3 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K3 ) ) @ ( binomial @ N2 @ ( minus_minus_nat @ N2 @ K3 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N2 @ K3 ) @ one_one_nat ) @ N2 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K3 ) ) ) ) ) ) ).

% binomial_code
thf(fact_8177_fact__div__fact__le__pow,axiom,
    ! [R: nat,N: nat] :
      ( ( ord_less_eq_nat @ R @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R ) ) ) @ ( power_power_nat @ N @ R ) ) ) ).

% fact_div_fact_le_pow
thf(fact_8178_binomial__addition__formula,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( binomial @ N @ ( suc @ K2 ) )
        = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K2 ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K2 ) ) ) ) ).

% binomial_addition_formula
thf(fact_8179_fact__binomial,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( times_times_complex @ ( semiri5044797733671781792omplex @ K2 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K2 ) ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ).

% fact_binomial
thf(fact_8180_fact__binomial,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K2 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K2 ) ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ).

% fact_binomial
thf(fact_8181_fact__binomial,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( times_times_real @ ( semiri2265585572941072030t_real @ K2 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K2 ) ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ).

% fact_binomial
thf(fact_8182_binomial__fact,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K2 ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K2 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8183_binomial__fact,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K2 ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8184_binomial__fact,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K2 ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K2 ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8185_binomial__mono,axiom,
    ! [K2: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_eq_nat @ ( binomial @ N @ K2 ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_mono
thf(fact_8186_binomial__maximum_H,axiom,
    ! [N: nat,K2: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K2 ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% binomial_maximum'
thf(fact_8187_binomial__maximum,axiom,
    ! [N: nat,K2: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K2 ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% binomial_maximum
thf(fact_8188_binomial__antimono,axiom,
    ! [K2: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ K6 )
     => ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K2 )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_eq_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K2 ) ) ) ) ) ).

% binomial_antimono
thf(fact_8189_choose__two,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% choose_two
thf(fact_8190_binomial__strict__mono,axiom,
    ! [K2: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K2 @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_nat @ ( binomial @ N @ K2 ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_strict_mono
thf(fact_8191_binomial__strict__antimono,axiom,
    ! [K2: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K2 @ K6 )
     => ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K2 ) ) ) ) ) ).

% binomial_strict_antimono
thf(fact_8192_binomial__less__binomial__Suc,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_nat @ K2 @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ord_less_nat @ ( binomial @ N @ K2 ) @ ( binomial @ N @ ( suc @ K2 ) ) ) ) ).

% binomial_less_binomial_Suc
thf(fact_8193_central__binomial__odd,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% central_binomial_odd
thf(fact_8194_exp__two__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
    = one_one_complex ) ).

% exp_two_pi_i'
thf(fact_8195_exp__two__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
    = one_one_complex ) ).

% exp_two_pi_i
thf(fact_8196_cot__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( cot_real @ X ) @ zero_zero_real ) ) ) ).

% cot_less_zero
thf(fact_8197_gbinomial__code,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] :
          ( if_complex @ ( K3 = zero_zero_nat ) @ one_one_complex
          @ ( divide1717551699836669952omplex
            @ ( set_fo1517530859248394432omplex
              @ ^ [L3: nat] : ( times_times_complex @ ( minus_minus_complex @ A4 @ ( semiri8010041392384452111omplex @ L3 ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K3 @ one_one_nat )
              @ one_one_complex )
            @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8198_gbinomial__code,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] :
          ( if_rat @ ( K3 = zero_zero_nat ) @ one_one_rat
          @ ( divide_divide_rat
            @ ( set_fo1949268297981939178at_rat
              @ ^ [L3: nat] : ( times_times_rat @ ( minus_minus_rat @ A4 @ ( semiri681578069525770553at_rat @ L3 ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K3 @ one_one_nat )
              @ one_one_rat )
            @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8199_gbinomial__code,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] :
          ( if_real @ ( K3 = zero_zero_nat ) @ one_one_real
          @ ( divide_divide_real
            @ ( set_fo3111899725591712190t_real
              @ ^ [L3: nat] : ( times_times_real @ ( minus_minus_real @ A4 @ ( semiri5074537144036343181t_real @ L3 ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K3 @ one_one_nat )
              @ one_one_real )
            @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8200_cot__periodic,axiom,
    ! [X: real] :
      ( ( cot_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cot_real @ X ) ) ).

% cot_periodic
thf(fact_8201_gbinomial__0_I1_J,axiom,
    ! [A: complex] :
      ( ( gbinomial_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% gbinomial_0(1)
thf(fact_8202_gbinomial__0_I1_J,axiom,
    ! [A: real] :
      ( ( gbinomial_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% gbinomial_0(1)
thf(fact_8203_gbinomial__0_I1_J,axiom,
    ! [A: rat] :
      ( ( gbinomial_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% gbinomial_0(1)
thf(fact_8204_gbinomial__0_I1_J,axiom,
    ! [A: nat] :
      ( ( gbinomial_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% gbinomial_0(1)
thf(fact_8205_gbinomial__0_I1_J,axiom,
    ! [A: int] :
      ( ( gbinomial_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% gbinomial_0(1)
thf(fact_8206_norm__ii,axiom,
    ( ( real_V1022390504157884413omplex @ imaginary_unit )
    = one_one_real ) ).

% norm_ii
thf(fact_8207_divide__i,axiom,
    ! [X: complex] :
      ( ( divide1717551699836669952omplex @ X @ imaginary_unit )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X ) ) ).

% divide_i
thf(fact_8208_complex__i__mult__minus,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X ) )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% complex_i_mult_minus
thf(fact_8209_i__squared,axiom,
    ( ( times_times_complex @ imaginary_unit @ imaginary_unit )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% i_squared
thf(fact_8210_divide__numeral__i,axiom,
    ! [Z3: complex,N: num] :
      ( ( divide1717551699836669952omplex @ Z3 @ ( times_times_complex @ ( numera6690914467698888265omplex @ N ) @ imaginary_unit ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z3 ) ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% divide_numeral_i
thf(fact_8211_cot__npi,axiom,
    ! [N: nat] :
      ( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% cot_npi
thf(fact_8212_power2__i,axiom,
    ( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power2_i
thf(fact_8213_i__even__power,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).

% i_even_power
thf(fact_8214_exp__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i
thf(fact_8215_exp__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i'
thf(fact_8216_complex__i__not__one,axiom,
    imaginary_unit != one_one_complex ).

% complex_i_not_one
thf(fact_8217_i__times__eq__iff,axiom,
    ! [W: complex,Z3: complex] :
      ( ( ( times_times_complex @ imaginary_unit @ W )
        = Z3 )
      = ( W
        = ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z3 ) ) ) ) ).

% i_times_eq_iff
thf(fact_8218_gbinomial__Suc__Suc,axiom,
    ! [A: complex,K2: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K2 ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ A @ K2 ) @ ( gbinomial_complex @ A @ ( suc @ K2 ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8219_gbinomial__Suc__Suc,axiom,
    ! [A: real,K2: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K2 ) )
      = ( plus_plus_real @ ( gbinomial_real @ A @ K2 ) @ ( gbinomial_real @ A @ ( suc @ K2 ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8220_gbinomial__Suc__Suc,axiom,
    ! [A: rat,K2: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K2 ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ A @ K2 ) @ ( gbinomial_rat @ A @ ( suc @ K2 ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8221_gbinomial__of__nat__symmetric,axiom,
    ! [K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ N )
     => ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K2 )
        = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ ( minus_minus_nat @ N @ K2 ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8222_imaginary__unit_Ocode,axiom,
    ( imaginary_unit
    = ( complex2 @ zero_zero_real @ one_one_real ) ) ).

% imaginary_unit.code
thf(fact_8223_Complex__eq__i,axiom,
    ! [X: real,Y2: real] :
      ( ( ( complex2 @ X @ Y2 )
        = imaginary_unit )
      = ( ( X = zero_zero_real )
        & ( Y2 = one_one_real ) ) ) ).

% Complex_eq_i
thf(fact_8224_i__mult__Complex,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% i_mult_Complex
thf(fact_8225_Complex__mult__i,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% Complex_mult_i
thf(fact_8226_gbinomial__addition__formula,axiom,
    ! [A: complex,K2: nat] :
      ( ( gbinomial_complex @ A @ ( suc @ K2 ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K2 ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K2 ) ) ) ).

% gbinomial_addition_formula
thf(fact_8227_gbinomial__addition__formula,axiom,
    ! [A: real,K2: nat] :
      ( ( gbinomial_real @ A @ ( suc @ K2 ) )
      = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K2 ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K2 ) ) ) ).

% gbinomial_addition_formula
thf(fact_8228_gbinomial__addition__formula,axiom,
    ! [A: rat,K2: nat] :
      ( ( gbinomial_rat @ A @ ( suc @ K2 ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K2 ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K2 ) ) ) ).

% gbinomial_addition_formula
thf(fact_8229_gbinomial__absorb__comp,axiom,
    ! [A: complex,K2: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K2 ) ) @ ( gbinomial_complex @ A @ K2 ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K2 ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8230_gbinomial__absorb__comp,axiom,
    ! [A: rat,K2: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ ( gbinomial_rat @ A @ K2 ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K2 ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8231_gbinomial__absorb__comp,axiom,
    ! [A: real,K2: nat] :
      ( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( gbinomial_real @ A @ K2 ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K2 ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8232_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K2: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K2 ) @ A )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ K2 ) @ ( gbinomial_real @ A @ K2 ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8233_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K2: nat,A: rat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K2 ) @ A )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ K2 ) @ ( gbinomial_rat @ A @ K2 ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8234_gbinomial__mult__1,axiom,
    ! [A: rat,K2: nat] :
      ( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K2 ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K2 ) @ ( gbinomial_rat @ A @ K2 ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K2 ) ) @ ( gbinomial_rat @ A @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8235_gbinomial__mult__1,axiom,
    ! [A: real,K2: nat] :
      ( ( times_times_real @ A @ ( gbinomial_real @ A @ K2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K2 ) @ ( gbinomial_real @ A @ K2 ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K2 ) ) @ ( gbinomial_real @ A @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8236_gbinomial__mult__1_H,axiom,
    ! [A: rat,K2: nat] :
      ( ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ A )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K2 ) @ ( gbinomial_rat @ A @ K2 ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K2 ) ) @ ( gbinomial_rat @ A @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8237_gbinomial__mult__1_H,axiom,
    ! [A: real,K2: nat] :
      ( ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ A )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K2 ) @ ( gbinomial_real @ A @ K2 ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K2 ) ) @ ( gbinomial_real @ A @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8238_cot__def,axiom,
    ( cot_complex
    = ( ^ [X4: complex] : ( divide1717551699836669952omplex @ ( cos_complex @ X4 ) @ ( sin_complex @ X4 ) ) ) ) ).

% cot_def
thf(fact_8239_cot__def,axiom,
    ( cot_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( cos_real @ X4 ) @ ( sin_real @ X4 ) ) ) ) ).

% cot_def
thf(fact_8240_Suc__times__gbinomial,axiom,
    ! [K2: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K2 ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K2 ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K2 ) ) ) ).

% Suc_times_gbinomial
thf(fact_8241_Suc__times__gbinomial,axiom,
    ! [K2: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K2 ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K2 ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K2 ) ) ) ).

% Suc_times_gbinomial
thf(fact_8242_Suc__times__gbinomial,axiom,
    ! [K2: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K2 ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K2 ) ) )
      = ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K2 ) ) ) ).

% Suc_times_gbinomial
thf(fact_8243_gbinomial__absorption,axiom,
    ! [K2: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K2 ) ) @ ( gbinomial_complex @ A @ ( suc @ K2 ) ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K2 ) ) ) ).

% gbinomial_absorption
thf(fact_8244_gbinomial__absorption,axiom,
    ! [K2: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K2 ) ) @ ( gbinomial_rat @ A @ ( suc @ K2 ) ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K2 ) ) ) ).

% gbinomial_absorption
thf(fact_8245_gbinomial__absorption,axiom,
    ! [K2: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K2 ) ) @ ( gbinomial_real @ A @ ( suc @ K2 ) ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K2 ) ) ) ).

% gbinomial_absorption
thf(fact_8246_gbinomial__trinomial__revision,axiom,
    ! [K2: nat,M: nat,A: complex] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( times_times_complex @ ( gbinomial_complex @ A @ M ) @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ M ) @ K2 ) )
        = ( times_times_complex @ ( gbinomial_complex @ A @ K2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K2 ) ) @ ( minus_minus_nat @ M @ K2 ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8247_gbinomial__trinomial__revision,axiom,
    ! [K2: nat,M: nat,A: rat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K2 ) )
        = ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ ( minus_minus_nat @ M @ K2 ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8248_gbinomial__trinomial__revision,axiom,
    ! [K2: nat,M: nat,A: real] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K2 ) )
        = ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( minus_minus_nat @ M @ K2 ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8249_complex__of__real__i,axiom,
    ! [R: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ imaginary_unit )
      = ( complex2 @ zero_zero_real @ R ) ) ).

% complex_of_real_i
thf(fact_8250_i__complex__of__real,axiom,
    ! [R: real] :
      ( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ zero_zero_real @ R ) ) ).

% i_complex_of_real
thf(fact_8251_Complex__eq,axiom,
    ( complex2
    = ( ^ [A4: real,B3: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A4 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B3 ) ) ) ) ) ).

% Complex_eq
thf(fact_8252_gbinomial__factors,axiom,
    ! [A: complex,K2: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K2 ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K2 ) ) ) @ ( gbinomial_complex @ A @ K2 ) ) ) ).

% gbinomial_factors
thf(fact_8253_gbinomial__factors,axiom,
    ! [A: rat,K2: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K2 ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K2 ) ) ) @ ( gbinomial_rat @ A @ K2 ) ) ) ).

% gbinomial_factors
thf(fact_8254_gbinomial__factors,axiom,
    ! [A: real,K2: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K2 ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K2 ) ) ) @ ( gbinomial_real @ A @ K2 ) ) ) ).

% gbinomial_factors
thf(fact_8255_gbinomial__rec,axiom,
    ! [A: complex,K2: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K2 ) )
      = ( times_times_complex @ ( gbinomial_complex @ A @ K2 ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8256_gbinomial__rec,axiom,
    ! [A: rat,K2: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K2 ) )
      = ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8257_gbinomial__rec,axiom,
    ! [A: real,K2: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K2 ) )
      = ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K2 ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8258_gbinomial__negated__upper,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A4 ) @ one_one_complex ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8259_gbinomial__negated__upper,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A4 ) @ one_one_rat ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8260_gbinomial__negated__upper,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A4 ) @ one_one_real ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8261_gbinomial__index__swap,axiom,
    ! [K2: nat,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ K2 ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_8262_gbinomial__index__swap,axiom,
    ! [K2: nat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ K2 ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_8263_gbinomial__index__swap,axiom,
    ! [K2: nat,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ K2 ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_8264_complex__split__polar,axiom,
    ! [Z3: complex] :
    ? [R3: real,A3: real] :
      ( Z3
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A3 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A3 ) ) ) ) ) ) ).

% complex_split_polar
thf(fact_8265_gbinomial__minus,axiom,
    ! [A: complex,K2: nat] :
      ( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ K2 ) ) ) ).

% gbinomial_minus
thf(fact_8266_gbinomial__minus,axiom,
    ! [A: rat,K2: nat] :
      ( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ K2 ) ) ) ).

% gbinomial_minus
thf(fact_8267_gbinomial__minus,axiom,
    ! [A: real,K2: nat] :
      ( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ K2 ) ) ) ).

% gbinomial_minus
thf(fact_8268_gbinomial__reduce__nat,axiom,
    ! [K2: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( gbinomial_complex @ A @ K2 )
        = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K2 ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8269_gbinomial__reduce__nat,axiom,
    ! [K2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( gbinomial_real @ A @ K2 )
        = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K2 ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8270_gbinomial__reduce__nat,axiom,
    ! [K2: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( gbinomial_rat @ A @ K2 )
        = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K2 ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8271_gbinomial__pochhammer,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A4 ) @ K3 ) ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8272_gbinomial__pochhammer,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A4 ) @ K3 ) ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8273_gbinomial__pochhammer,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A4 ) @ K3 ) ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8274_gbinomial__pochhammer_H,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A4 @ ( semiri8010041392384452111omplex @ K3 ) ) @ one_one_complex ) @ K3 ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8275_gbinomial__pochhammer_H,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A4 @ ( semiri681578069525770553at_rat @ K3 ) ) @ one_one_rat ) @ K3 ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8276_gbinomial__pochhammer_H,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A4 @ ( semiri5074537144036343181t_real @ K3 ) ) @ one_one_real ) @ K3 ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8277_gbinomial__absorption_H,axiom,
    ! [K2: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( gbinomial_complex @ A @ K2 )
        = ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K2 ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8278_gbinomial__absorption_H,axiom,
    ! [K2: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( gbinomial_rat @ A @ K2 )
        = ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8279_gbinomial__absorption_H,axiom,
    ! [K2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( gbinomial_real @ A @ K2 )
        = ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K2 @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8280_cmod__unit__one,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
      = one_one_real ) ).

% cmod_unit_one
thf(fact_8281_cmod__complex__polar,axiom,
    ! [R: real,A: real] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
      = ( abs_abs_real @ R ) ) ).

% cmod_complex_polar
thf(fact_8282_cot__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cot_real @ X ) ) ) ) ).

% cot_gt_zero
thf(fact_8283_tan__cot_H,axiom,
    ! [X: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
      = ( cot_real @ X ) ) ).

% tan_cot'
thf(fact_8284_Arg__minus__ii,axiom,
    ( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
    = ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_minus_ii
thf(fact_8285_csqrt__ii,axiom,
    ( ( csqrt @ imaginary_unit )
    = ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt_ii
thf(fact_8286_Arg__ii,axiom,
    ( ( arg @ imaginary_unit )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_ii
thf(fact_8287_cis__minus__pi__half,axiom,
    ( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
    = ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).

% cis_minus_pi_half
thf(fact_8288_arctan__def,axiom,
    ( arctan
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X4: real] :
              ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
              & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( tan_real @ X4 )
                = Y ) ) ) ) ) ).

% arctan_def
thf(fact_8289_csqrt__eq__1,axiom,
    ! [Z3: complex] :
      ( ( ( csqrt @ Z3 )
        = one_one_complex )
      = ( Z3 = one_one_complex ) ) ).

% csqrt_eq_1
thf(fact_8290_csqrt__1,axiom,
    ( ( csqrt @ one_one_complex )
    = one_one_complex ) ).

% csqrt_1
thf(fact_8291_norm__cis,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( cis @ A ) )
      = one_one_real ) ).

% norm_cis
thf(fact_8292_cis__zero,axiom,
    ( ( cis @ zero_zero_real )
    = one_one_complex ) ).

% cis_zero
thf(fact_8293_cis__pi,axiom,
    ( ( cis @ pi )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% cis_pi
thf(fact_8294_power2__csqrt,axiom,
    ! [Z3: complex] :
      ( ( power_power_complex @ ( csqrt @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = Z3 ) ).

% power2_csqrt
thf(fact_8295_cis__pi__half,axiom,
    ( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = imaginary_unit ) ).

% cis_pi_half
thf(fact_8296_cis__2pi,axiom,
    ( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_complex ) ).

% cis_2pi
thf(fact_8297_DeMoivre,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_complex @ ( cis @ A ) @ N )
      = ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).

% DeMoivre
thf(fact_8298_cis__mult,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( plus_plus_real @ A @ B ) ) ) ).

% cis_mult
thf(fact_8299_ln__real__def,axiom,
    ( ln_ln_real
    = ( ^ [X4: real] :
          ( the_real
          @ ^ [U2: real] :
              ( ( exp_real @ U2 )
              = X4 ) ) ) ) ).

% ln_real_def
thf(fact_8300_suminf__def,axiom,
    ( suminf_int
    = ( ^ [F4: nat > int] : ( the_int @ ( sums_int @ F4 ) ) ) ) ).

% suminf_def
thf(fact_8301_suminf__def,axiom,
    ( suminf_complex
    = ( ^ [F4: nat > complex] : ( the_complex @ ( sums_complex @ F4 ) ) ) ) ).

% suminf_def
thf(fact_8302_suminf__def,axiom,
    ( suminf_real
    = ( ^ [F4: nat > real] : ( the_real @ ( sums_real @ F4 ) ) ) ) ).

% suminf_def
thf(fact_8303_ln__neg__is__const,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ln_ln_real @ X )
        = ( the_real
          @ ^ [X4: real] : $false ) ) ) ).

% ln_neg_is_const
thf(fact_8304_cis__conv__exp,axiom,
    ( cis
    = ( ^ [B3: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B3 ) ) ) ) ) ).

% cis_conv_exp
thf(fact_8305_arccos__def,axiom,
    ( arccos
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X4: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ X4 )
              & ( ord_less_eq_real @ X4 @ pi )
              & ( ( cos_real @ X4 )
                = Y ) ) ) ) ) ).

% arccos_def
thf(fact_8306_of__real__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( real_V4546457046886955230omplex @ ( sqrt @ X ) )
        = ( csqrt @ ( real_V4546457046886955230omplex @ X ) ) ) ) ).

% of_real_sqrt
thf(fact_8307_Arg__bounded,axiom,
    ! [Z3: complex] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z3 ) )
      & ( ord_less_eq_real @ ( arg @ Z3 ) @ pi ) ) ).

% Arg_bounded
thf(fact_8308_pi__half,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
    = ( the_real
      @ ^ [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_eq_real @ X4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
          & ( ( cos_real @ X4 )
            = zero_zero_real ) ) ) ) ).

% pi_half
thf(fact_8309_pi__def,axiom,
    ( pi
    = ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
      @ ( the_real
        @ ^ [X4: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X4 )
            & ( ord_less_eq_real @ X4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ X4 )
              = zero_zero_real ) ) ) ) ) ).

% pi_def
thf(fact_8310_arcsin__def,axiom,
    ( arcsin
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X4: real] :
              ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
              & ( ord_less_eq_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( sin_real @ X4 )
                = Y ) ) ) ) ) ).

% arcsin_def
thf(fact_8311_rec__enat__def,axiom,
    ( extend3259767177765611793t_real
    = ( ^ [F12: nat > real,F22: real,X4: extended_enat] : ( the_real @ ( extend4979364747348822211t_real @ F12 @ F22 @ X4 ) ) ) ) ).

% rec_enat_def
thf(fact_8312_rec__enat__def,axiom,
    ( extend7766020554117459729at_int
    = ( ^ [F12: nat > int,F22: int,X4: extended_enat] : ( the_int @ ( extend5266846564383770563at_int @ F12 @ F22 @ X4 ) ) ) ) ).

% rec_enat_def
thf(fact_8313_the__sym__eq__trivial,axiom,
    ! [X: real] :
      ( ( the_real
        @ ( ^ [Y3: real,Z2: real] : ( Y3 = Z2 )
          @ X ) )
      = X ) ).

% the_sym_eq_trivial
thf(fact_8314_the__sym__eq__trivial,axiom,
    ! [X: int] :
      ( ( the_int
        @ ( ^ [Y3: int,Z2: int] : ( Y3 = Z2 )
          @ X ) )
      = X ) ).

% the_sym_eq_trivial
thf(fact_8315_the__eq__trivial,axiom,
    ! [A: real] :
      ( ( the_real
        @ ^ [X4: real] : ( X4 = A ) )
      = A ) ).

% the_eq_trivial
thf(fact_8316_the__eq__trivial,axiom,
    ! [A: int] :
      ( ( the_int
        @ ^ [X4: int] : ( X4 = A ) )
      = A ) ).

% the_eq_trivial
thf(fact_8317_the__equality,axiom,
    ! [P3: real > $o,A: real] :
      ( ( P3 @ A )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( ( the_real @ P3 )
          = A ) ) ) ).

% the_equality
thf(fact_8318_the__equality,axiom,
    ! [P3: int > $o,A: int] :
      ( ( P3 @ A )
     => ( ! [X5: int] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( ( the_int @ P3 )
          = A ) ) ) ).

% the_equality
thf(fact_8319_modulo__int__unfold,axiom,
    ! [L: int,K2: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K2 )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K2 )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
          & ( ( ( sgn_sgn_int @ K2 )
             != ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L )
                @ ( minus_minus_int
                  @ ( semiri1314217659103216013at_int
                    @ ( times_times_nat @ N
                      @ ( zero_n2687167440665602831ol_nat
                        @ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
                  @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).

% modulo_int_unfold
thf(fact_8320_sgn__one,axiom,
    ( ( sgn_sgn_real @ one_one_real )
    = one_one_real ) ).

% sgn_one
thf(fact_8321_sgn__one,axiom,
    ( ( sgn_sgn_complex @ one_one_complex )
    = one_one_complex ) ).

% sgn_one
thf(fact_8322_sgn__1,axiom,
    ( ( sgn_sgn_int @ one_one_int )
    = one_one_int ) ).

% sgn_1
thf(fact_8323_sgn__1,axiom,
    ( ( sgn_sgn_real @ one_one_real )
    = one_one_real ) ).

% sgn_1
thf(fact_8324_sgn__1,axiom,
    ( ( sgn_sgn_complex @ one_one_complex )
    = one_one_complex ) ).

% sgn_1
thf(fact_8325_sgn__1,axiom,
    ( ( sgn_sgn_rat @ one_one_rat )
    = one_one_rat ) ).

% sgn_1
thf(fact_8326_sgn__1,axiom,
    ( ( sgn_sgn_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% sgn_1
thf(fact_8327_sgn__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( sgn_sgn_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).

% sgn_divide
thf(fact_8328_sgn__divide,axiom,
    ! [A: real,B: real] :
      ( ( sgn_sgn_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).

% sgn_divide
thf(fact_8329_sgn__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( sgn_sgn_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).

% sgn_divide
thf(fact_8330_power__sgn,axiom,
    ! [A: rat,N: nat] :
      ( ( sgn_sgn_rat @ ( power_power_rat @ A @ N ) )
      = ( power_power_rat @ ( sgn_sgn_rat @ A ) @ N ) ) ).

% power_sgn
thf(fact_8331_power__sgn,axiom,
    ! [A: code_integer,N: nat] :
      ( ( sgn_sgn_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( power_8256067586552552935nteger @ ( sgn_sgn_Code_integer @ A ) @ N ) ) ).

% power_sgn
thf(fact_8332_power__sgn,axiom,
    ! [A: real,N: nat] :
      ( ( sgn_sgn_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( sgn_sgn_real @ A ) @ N ) ) ).

% power_sgn
thf(fact_8333_power__sgn,axiom,
    ! [A: int,N: nat] :
      ( ( sgn_sgn_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( sgn_sgn_int @ A ) @ N ) ) ).

% power_sgn
thf(fact_8334_The__split__eq,axiom,
    ! [X: code_integer,Y2: $o] :
      ( ( the_Pr406357557219058217eger_o
        @ ( produc7828578312038201481er_o_o
          @ ^ [X7: code_integer,Y4: $o] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( produc6677183202524767010eger_o @ X @ Y2 ) ) ).

% The_split_eq
thf(fact_8335_The__split__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( the_Pr6395592806576110876um_num
        @ ( produc5703948589228662326_num_o
          @ ^ [X7: num,Y4: num] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_num_num @ X @ Y2 ) ) ).

% The_split_eq
thf(fact_8336_The__split__eq,axiom,
    ! [X: nat,Y2: num] :
      ( ( the_Pr8265262403268641490at_num
        @ ( produc4927758841916487424_num_o
          @ ^ [X7: nat,Y4: num] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_nat_num @ X @ Y2 ) ) ).

% The_split_eq
thf(fact_8337_The__split__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( the_Pr7557018466319803784at_nat
        @ ( produc6081775807080527818_nat_o
          @ ^ [X7: nat,Y4: nat] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_nat_nat @ X @ Y2 ) ) ).

% The_split_eq
thf(fact_8338_The__split__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( the_Pr4378521158711661632nt_int
        @ ( produc4947309494688390418_int_o
          @ ^ [X7: int,Y4: int] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_int_int @ X @ Y2 ) ) ).

% The_split_eq
thf(fact_8339_sgn__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( sgn_sgn_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% sgn_less
thf(fact_8340_sgn__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( sgn_sgn_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% sgn_less
thf(fact_8341_sgn__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( sgn_sgn_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% sgn_less
thf(fact_8342_sgn__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( sgn_sgn_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% sgn_less
thf(fact_8343_sgn__greater,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( sgn_sgn_Code_integer @ A ) )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% sgn_greater
thf(fact_8344_sgn__greater,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sgn_sgn_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% sgn_greater
thf(fact_8345_sgn__greater,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( sgn_sgn_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% sgn_greater
thf(fact_8346_sgn__greater,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( sgn_sgn_int @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% sgn_greater
thf(fact_8347_divide__sgn,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ A @ ( sgn_sgn_real @ B ) )
      = ( times_times_real @ A @ ( sgn_sgn_real @ B ) ) ) ).

% divide_sgn
thf(fact_8348_divide__sgn,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ A @ ( sgn_sgn_rat @ B ) )
      = ( times_times_rat @ A @ ( sgn_sgn_rat @ B ) ) ) ).

% divide_sgn
thf(fact_8349_sgn__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( sgn_sgn_Code_integer @ A )
        = one_one_Code_integer ) ) ).

% sgn_pos
thf(fact_8350_sgn__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( sgn_sgn_real @ A )
        = one_one_real ) ) ).

% sgn_pos
thf(fact_8351_sgn__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( sgn_sgn_rat @ A )
        = one_one_rat ) ) ).

% sgn_pos
thf(fact_8352_sgn__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( sgn_sgn_int @ A )
        = one_one_int ) ) ).

% sgn_pos
thf(fact_8353_abs__sgn__eq__1,axiom,
    ! [A: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
        = one_one_Code_integer ) ) ).

% abs_sgn_eq_1
thf(fact_8354_abs__sgn__eq__1,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
        = one_one_real ) ) ).

% abs_sgn_eq_1
thf(fact_8355_abs__sgn__eq__1,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
        = one_one_rat ) ) ).

% abs_sgn_eq_1
thf(fact_8356_abs__sgn__eq__1,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
        = one_one_int ) ) ).

% abs_sgn_eq_1
thf(fact_8357_sgn__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ A ) )
      = ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).

% sgn_mult_self_eq
thf(fact_8358_sgn__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ A ) )
      = ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).

% sgn_mult_self_eq
thf(fact_8359_sgn__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ A ) )
      = ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).

% sgn_mult_self_eq
thf(fact_8360_sgn__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
      = ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).

% sgn_mult_self_eq
thf(fact_8361_sgn__mult__dvd__iff,axiom,
    ! [R: int,L: int,K2: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R ) @ L ) @ K2 )
      = ( ( dvd_dvd_int @ L @ K2 )
        & ( ( R = zero_zero_int )
         => ( K2 = zero_zero_int ) ) ) ) ).

% sgn_mult_dvd_iff
thf(fact_8362_mult__sgn__dvd__iff,axiom,
    ! [L: int,R: int,K2: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R ) ) @ K2 )
      = ( ( dvd_dvd_int @ L @ K2 )
        & ( ( R = zero_zero_int )
         => ( K2 = zero_zero_int ) ) ) ) ).

% mult_sgn_dvd_iff
thf(fact_8363_dvd__sgn__mult__iff,axiom,
    ! [L: int,R: int,K2: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R ) @ K2 ) )
      = ( ( dvd_dvd_int @ L @ K2 )
        | ( R = zero_zero_int ) ) ) ).

% dvd_sgn_mult_iff
thf(fact_8364_dvd__mult__sgn__iff,axiom,
    ! [L: int,K2: int,R: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ K2 @ ( sgn_sgn_int @ R ) ) )
      = ( ( dvd_dvd_int @ L @ K2 )
        | ( R = zero_zero_int ) ) ) ).

% dvd_mult_sgn_iff
thf(fact_8365_sgn__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( sgn_sgn_real @ A )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% sgn_neg
thf(fact_8366_sgn__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( sgn_sgn_int @ A )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% sgn_neg
thf(fact_8367_sgn__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( sgn_sgn_rat @ A )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% sgn_neg
thf(fact_8368_sgn__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( sgn_sgn_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% sgn_neg
thf(fact_8369_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( zero_n2052037380579107095ol_rat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_8370_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( zero_n3304061248610475627l_real @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_8371_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_8372_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_8373_Real__Vector__Spaces_Osgn__mult,axiom,
    ! [X: complex,Y2: complex] :
      ( ( sgn_sgn_complex @ ( times_times_complex @ X @ Y2 ) )
      = ( times_times_complex @ ( sgn_sgn_complex @ X ) @ ( sgn_sgn_complex @ Y2 ) ) ) ).

% Real_Vector_Spaces.sgn_mult
thf(fact_8374_Real__Vector__Spaces_Osgn__mult,axiom,
    ! [X: real,Y2: real] :
      ( ( sgn_sgn_real @ ( times_times_real @ X @ Y2 ) )
      = ( times_times_real @ ( sgn_sgn_real @ X ) @ ( sgn_sgn_real @ Y2 ) ) ) ).

% Real_Vector_Spaces.sgn_mult
thf(fact_8375_sgn__mult,axiom,
    ! [A: complex,B: complex] :
      ( ( sgn_sgn_complex @ ( times_times_complex @ A @ B ) )
      = ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).

% sgn_mult
thf(fact_8376_sgn__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( sgn_sgn_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ B ) ) ) ).

% sgn_mult
thf(fact_8377_sgn__mult,axiom,
    ! [A: real,B: real] :
      ( ( sgn_sgn_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).

% sgn_mult
thf(fact_8378_sgn__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( sgn_sgn_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).

% sgn_mult
thf(fact_8379_sgn__mult,axiom,
    ! [A: int,B: int] :
      ( ( sgn_sgn_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ).

% sgn_mult
thf(fact_8380_same__sgn__sgn__add,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ B )
        = ( sgn_sgn_Code_integer @ A ) )
     => ( ( sgn_sgn_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
        = ( sgn_sgn_Code_integer @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_8381_same__sgn__sgn__add,axiom,
    ! [B: real,A: real] :
      ( ( ( sgn_sgn_real @ B )
        = ( sgn_sgn_real @ A ) )
     => ( ( sgn_sgn_real @ ( plus_plus_real @ A @ B ) )
        = ( sgn_sgn_real @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_8382_same__sgn__sgn__add,axiom,
    ! [B: rat,A: rat] :
      ( ( ( sgn_sgn_rat @ B )
        = ( sgn_sgn_rat @ A ) )
     => ( ( sgn_sgn_rat @ ( plus_plus_rat @ A @ B ) )
        = ( sgn_sgn_rat @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_8383_same__sgn__sgn__add,axiom,
    ! [B: int,A: int] :
      ( ( ( sgn_sgn_int @ B )
        = ( sgn_sgn_int @ A ) )
     => ( ( sgn_sgn_int @ ( plus_plus_int @ A @ B ) )
        = ( sgn_sgn_int @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_8384_sgn__minus__1,axiom,
    ( ( sgn_sgn_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sgn_minus_1
thf(fact_8385_sgn__minus__1,axiom,
    ( ( sgn_sgn_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% sgn_minus_1
thf(fact_8386_sgn__minus__1,axiom,
    ( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% sgn_minus_1
thf(fact_8387_sgn__minus__1,axiom,
    ( ( sgn_sgn_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% sgn_minus_1
thf(fact_8388_sgn__minus__1,axiom,
    ( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% sgn_minus_1
thf(fact_8389_mult__sgn__abs,axiom,
    ! [X: code_integer] :
      ( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ X ) @ ( abs_abs_Code_integer @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_8390_mult__sgn__abs,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( sgn_sgn_real @ X ) @ ( abs_abs_real @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_8391_mult__sgn__abs,axiom,
    ! [X: rat] :
      ( ( times_times_rat @ ( sgn_sgn_rat @ X ) @ ( abs_abs_rat @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_8392_mult__sgn__abs,axiom,
    ! [X: int] :
      ( ( times_times_int @ ( sgn_sgn_int @ X ) @ ( abs_abs_int @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_8393_sgn__mult__abs,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( abs_abs_complex @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_8394_sgn__mult__abs,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_8395_sgn__mult__abs,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( abs_abs_real @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_8396_sgn__mult__abs,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( abs_abs_rat @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_8397_sgn__mult__abs,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( abs_abs_int @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_8398_abs__mult__sgn,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( abs_abs_complex @ A ) @ ( sgn_sgn_complex @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_8399_abs__mult__sgn,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_8400_abs__mult__sgn,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( sgn_sgn_real @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_8401_abs__mult__sgn,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( sgn_sgn_rat @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_8402_abs__mult__sgn,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( sgn_sgn_int @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_8403_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_Code_integer
    = ( ^ [K3: code_integer] : ( times_3573771949741848930nteger @ K3 @ ( sgn_sgn_Code_integer @ K3 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_8404_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_real
    = ( ^ [K3: real] : ( times_times_real @ K3 @ ( sgn_sgn_real @ K3 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_8405_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_rat
    = ( ^ [K3: rat] : ( times_times_rat @ K3 @ ( sgn_sgn_rat @ K3 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_8406_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_int
    = ( ^ [K3: int] : ( times_times_int @ K3 @ ( sgn_sgn_int @ K3 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_8407_int__sgnE,axiom,
    ! [K2: int] :
      ~ ! [N3: nat,L2: int] :
          ( K2
         != ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% int_sgnE
thf(fact_8408_same__sgn__abs__add,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ B )
        = ( sgn_sgn_Code_integer @ A ) )
     => ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
        = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_8409_same__sgn__abs__add,axiom,
    ! [B: real,A: real] :
      ( ( ( sgn_sgn_real @ B )
        = ( sgn_sgn_real @ A ) )
     => ( ( abs_abs_real @ ( plus_plus_real @ A @ B ) )
        = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_8410_same__sgn__abs__add,axiom,
    ! [B: rat,A: rat] :
      ( ( ( sgn_sgn_rat @ B )
        = ( sgn_sgn_rat @ A ) )
     => ( ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) )
        = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_8411_same__sgn__abs__add,axiom,
    ! [B: int,A: int] :
      ( ( ( sgn_sgn_int @ B )
        = ( sgn_sgn_int @ A ) )
     => ( ( abs_abs_int @ ( plus_plus_int @ A @ B ) )
        = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_8412_sgn__1__pos,axiom,
    ! [A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ A )
        = one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% sgn_1_pos
thf(fact_8413_sgn__1__pos,axiom,
    ! [A: real] :
      ( ( ( sgn_sgn_real @ A )
        = one_one_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% sgn_1_pos
thf(fact_8414_sgn__1__pos,axiom,
    ! [A: rat] :
      ( ( ( sgn_sgn_rat @ A )
        = one_one_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% sgn_1_pos
thf(fact_8415_sgn__1__pos,axiom,
    ! [A: int] :
      ( ( ( sgn_sgn_int @ A )
        = one_one_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% sgn_1_pos
thf(fact_8416_abs__sgn__eq,axiom,
    ! [A: code_integer] :
      ( ( ( A = zero_z3403309356797280102nteger )
       => ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
          = zero_z3403309356797280102nteger ) )
      & ( ( A != zero_z3403309356797280102nteger )
       => ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
          = one_one_Code_integer ) ) ) ).

% abs_sgn_eq
thf(fact_8417_abs__sgn__eq,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
          = one_one_real ) ) ) ).

% abs_sgn_eq
thf(fact_8418_abs__sgn__eq,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
          = one_one_rat ) ) ) ).

% abs_sgn_eq
thf(fact_8419_abs__sgn__eq,axiom,
    ! [A: int] :
      ( ( ( A = zero_zero_int )
       => ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
          = zero_zero_int ) )
      & ( ( A != zero_zero_int )
       => ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
          = one_one_int ) ) ) ).

% abs_sgn_eq
thf(fact_8420_sgn__mod,axiom,
    ! [L: int,K2: int] :
      ( ( L != zero_zero_int )
     => ( ~ ( dvd_dvd_int @ L @ K2 )
       => ( ( sgn_sgn_int @ ( modulo_modulo_int @ K2 @ L ) )
          = ( sgn_sgn_int @ L ) ) ) ) ).

% sgn_mod
thf(fact_8421_sgn__1__neg,axiom,
    ! [A: real] :
      ( ( ( sgn_sgn_real @ A )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% sgn_1_neg
thf(fact_8422_sgn__1__neg,axiom,
    ! [A: int] :
      ( ( ( sgn_sgn_int @ A )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% sgn_1_neg
thf(fact_8423_sgn__1__neg,axiom,
    ! [A: rat] :
      ( ( ( sgn_sgn_rat @ A )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% sgn_1_neg
thf(fact_8424_sgn__1__neg,axiom,
    ! [A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% sgn_1_neg
thf(fact_8425_sgn__if,axiom,
    ( sgn_sgn_real
    = ( ^ [X4: real] : ( if_real @ ( X4 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ X4 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_if
thf(fact_8426_sgn__if,axiom,
    ( sgn_sgn_int
    = ( ^ [X4: int] : ( if_int @ ( X4 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ X4 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% sgn_if
thf(fact_8427_sgn__if,axiom,
    ( sgn_sgn_rat
    = ( ^ [X4: rat] : ( if_rat @ ( X4 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ X4 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_if
thf(fact_8428_sgn__if,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [X4: code_integer] : ( if_Code_integer @ ( X4 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ X4 ) @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ) ).

% sgn_if
thf(fact_8429_zsgn__def,axiom,
    ( sgn_sgn_int
    = ( ^ [I: int] : ( if_int @ ( I = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zsgn_def
thf(fact_8430_norm__sgn,axiom,
    ! [X: real] :
      ( ( ( X = zero_zero_real )
       => ( ( real_V7735802525324610683m_real @ ( sgn_sgn_real @ X ) )
          = zero_zero_real ) )
      & ( ( X != zero_zero_real )
       => ( ( real_V7735802525324610683m_real @ ( sgn_sgn_real @ X ) )
          = one_one_real ) ) ) ).

% norm_sgn
thf(fact_8431_norm__sgn,axiom,
    ! [X: complex] :
      ( ( ( X = zero_zero_complex )
       => ( ( real_V1022390504157884413omplex @ ( sgn_sgn_complex @ X ) )
          = zero_zero_real ) )
      & ( ( X != zero_zero_complex )
       => ( ( real_V1022390504157884413omplex @ ( sgn_sgn_complex @ X ) )
          = one_one_real ) ) ) ).

% norm_sgn
thf(fact_8432_div__sgn__abs__cancel,axiom,
    ! [V: int,K2: int,L: int] :
      ( ( V != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K2 ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L ) ) )
        = ( divide_divide_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L ) ) ) ) ).

% div_sgn_abs_cancel
thf(fact_8433_div__dvd__sgn__abs,axiom,
    ! [L: int,K2: int] :
      ( ( dvd_dvd_int @ L @ K2 )
     => ( ( divide_divide_int @ K2 @ L )
        = ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( sgn_sgn_int @ L ) ) @ ( divide_divide_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_dvd_sgn_abs
thf(fact_8434_theI,axiom,
    ! [P3: real > $o,A: real] :
      ( ( P3 @ A )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( P3 @ ( the_real @ P3 ) ) ) ) ).

% theI
thf(fact_8435_theI,axiom,
    ! [P3: int > $o,A: int] :
      ( ( P3 @ A )
     => ( ! [X5: int] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( P3 @ ( the_int @ P3 ) ) ) ) ).

% theI
thf(fact_8436_theI_H,axiom,
    ! [P3: real > $o] :
      ( ? [X2: real] :
          ( ( P3 @ X2 )
          & ! [Y5: real] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( P3 @ ( the_real @ P3 ) ) ) ).

% theI'
thf(fact_8437_theI_H,axiom,
    ! [P3: int > $o] :
      ( ? [X2: int] :
          ( ( P3 @ X2 )
          & ! [Y5: int] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( P3 @ ( the_int @ P3 ) ) ) ).

% theI'
thf(fact_8438_theI2,axiom,
    ! [P3: real > $o,A: real,Q2: real > $o] :
      ( ( P3 @ A )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( ! [X5: real] :
              ( ( P3 @ X5 )
             => ( Q2 @ X5 ) )
         => ( Q2 @ ( the_real @ P3 ) ) ) ) ) ).

% theI2
thf(fact_8439_theI2,axiom,
    ! [P3: int > $o,A: int,Q2: int > $o] :
      ( ( P3 @ A )
     => ( ! [X5: int] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( ! [X5: int] :
              ( ( P3 @ X5 )
             => ( Q2 @ X5 ) )
         => ( Q2 @ ( the_int @ P3 ) ) ) ) ) ).

% theI2
thf(fact_8440_If__def,axiom,
    ( if_real
    = ( ^ [P2: $o,X4: real,Y: real] :
          ( the_real
          @ ^ [Z6: real] :
              ( ( P2
               => ( Z6 = X4 ) )
              & ( ~ P2
               => ( Z6 = Y ) ) ) ) ) ) ).

% If_def
thf(fact_8441_If__def,axiom,
    ( if_int
    = ( ^ [P2: $o,X4: int,Y: int] :
          ( the_int
          @ ^ [Z6: int] :
              ( ( P2
               => ( Z6 = X4 ) )
              & ( ~ P2
               => ( Z6 = Y ) ) ) ) ) ) ).

% If_def
thf(fact_8442_the1I2,axiom,
    ! [P3: real > $o,Q2: real > $o] :
      ( ? [X2: real] :
          ( ( P3 @ X2 )
          & ! [Y5: real] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( Q2 @ X5 ) )
       => ( Q2 @ ( the_real @ P3 ) ) ) ) ).

% the1I2
thf(fact_8443_the1I2,axiom,
    ! [P3: int > $o,Q2: int > $o] :
      ( ? [X2: int] :
          ( ( P3 @ X2 )
          & ! [Y5: int] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( ! [X5: int] :
            ( ( P3 @ X5 )
           => ( Q2 @ X5 ) )
       => ( Q2 @ ( the_int @ P3 ) ) ) ) ).

% the1I2
thf(fact_8444_the1__equality,axiom,
    ! [P3: real > $o,A: real] :
      ( ? [X2: real] :
          ( ( P3 @ X2 )
          & ! [Y5: real] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( ( P3 @ A )
       => ( ( the_real @ P3 )
          = A ) ) ) ).

% the1_equality
thf(fact_8445_the1__equality,axiom,
    ! [P3: int > $o,A: int] :
      ( ? [X2: int] :
          ( ( P3 @ X2 )
          & ! [Y5: int] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( ( P3 @ A )
       => ( ( the_int @ P3 )
          = A ) ) ) ).

% the1_equality
thf(fact_8446_eucl__rel__int__remainderI,axiom,
    ! [R: int,L: int,K2: int,Q: int] :
      ( ( ( sgn_sgn_int @ R )
        = ( sgn_sgn_int @ L ) )
     => ( ( ord_less_int @ ( abs_abs_int @ R ) @ ( abs_abs_int @ L ) )
       => ( ( K2
            = ( plus_plus_int @ ( times_times_int @ Q @ L ) @ R ) )
         => ( eucl_rel_int @ K2 @ L @ ( product_Pair_int_int @ Q @ R ) ) ) ) ) ).

% eucl_rel_int_remainderI
thf(fact_8447_eucl__rel__int_Osimps,axiom,
    ( eucl_rel_int
    = ( ^ [A1: int,A22: int,A33: product_prod_int_int] :
          ( ? [K3: int] :
              ( ( A1 = K3 )
              & ( A22 = zero_zero_int )
              & ( A33
                = ( product_Pair_int_int @ zero_zero_int @ K3 ) ) )
          | ? [L3: int,K3: int,Q5: int] :
              ( ( A1 = K3 )
              & ( A22 = L3 )
              & ( A33
                = ( product_Pair_int_int @ Q5 @ zero_zero_int ) )
              & ( L3 != zero_zero_int )
              & ( K3
                = ( times_times_int @ Q5 @ L3 ) ) )
          | ? [R5: int,L3: int,K3: int,Q5: int] :
              ( ( A1 = K3 )
              & ( A22 = L3 )
              & ( A33
                = ( product_Pair_int_int @ Q5 @ R5 ) )
              & ( ( sgn_sgn_int @ R5 )
                = ( sgn_sgn_int @ L3 ) )
              & ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L3 ) )
              & ( K3
                = ( plus_plus_int @ ( times_times_int @ Q5 @ L3 ) @ R5 ) ) ) ) ) ) ).

% eucl_rel_int.simps
thf(fact_8448_eucl__rel__int_Ocases,axiom,
    ! [A12: int,A23: int,A32: product_prod_int_int] :
      ( ( eucl_rel_int @ A12 @ A23 @ A32 )
     => ( ( ( A23 = zero_zero_int )
         => ( A32
           != ( product_Pair_int_int @ zero_zero_int @ A12 ) ) )
       => ( ! [Q3: int] :
              ( ( A32
                = ( product_Pair_int_int @ Q3 @ zero_zero_int ) )
             => ( ( A23 != zero_zero_int )
               => ( A12
                 != ( times_times_int @ Q3 @ A23 ) ) ) )
         => ~ ! [R3: int,Q3: int] :
                ( ( A32
                  = ( product_Pair_int_int @ Q3 @ R3 ) )
               => ( ( ( sgn_sgn_int @ R3 )
                    = ( sgn_sgn_int @ A23 ) )
                 => ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A23 ) )
                   => ( A12
                     != ( plus_plus_int @ ( times_times_int @ Q3 @ A23 ) @ R3 ) ) ) ) ) ) ) ) ).

% eucl_rel_int.cases
thf(fact_8449_floor__real__def,axiom,
    ( archim6058952711729229775r_real
    = ( ^ [X4: real] :
          ( the_int
          @ ^ [Z6: int] :
              ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z6 ) @ X4 )
              & ( ord_less_real @ X4 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z6 @ one_one_int ) ) ) ) ) ) ) ).

% floor_real_def
thf(fact_8450_divide__int__unfold,axiom,
    ! [L: int,K2: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K2 )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = zero_zero_int ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K2 )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
          & ( ( ( sgn_sgn_int @ K2 )
             != ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( uminus_uminus_int
                @ ( semiri1314217659103216013at_int
                  @ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
                    @ ( zero_n2687167440665602831ol_nat
                      @ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).

% divide_int_unfold
thf(fact_8451_modulo__int__def,axiom,
    ( modulo_modulo_int
    = ( ^ [K3: int,L3: int] :
          ( if_int @ ( L3 = zero_zero_int ) @ K3
          @ ( if_int
            @ ( ( sgn_sgn_int @ K3 )
              = ( sgn_sgn_int @ L3 ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L3 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) ) ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L3 )
              @ ( minus_minus_int
                @ ( times_times_int @ ( abs_abs_int @ L3 )
                  @ ( zero_n2684676970156552555ol_int
                    @ ~ ( dvd_dvd_int @ L3 @ K3 ) ) )
                @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) ) ) ) ) ) ) ) ) ).

% modulo_int_def
thf(fact_8452_divide__int__def,axiom,
    ( divide_divide_int
    = ( ^ [K3: int,L3: int] :
          ( if_int @ ( L3 = zero_zero_int ) @ zero_zero_int
          @ ( if_int
            @ ( ( sgn_sgn_int @ K3 )
              = ( sgn_sgn_int @ L3 ) )
            @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) ) )
            @ ( uminus_uminus_int
              @ ( semiri1314217659103216013at_int
                @ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) )
                  @ ( zero_n2687167440665602831ol_nat
                    @ ~ ( dvd_dvd_int @ L3 @ K3 ) ) ) ) ) ) ) ) ) ).

% divide_int_def
thf(fact_8453_powr__int,axiom,
    ! [X: real,I2: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ I2 )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ I2 ) )
            = ( power_power_real @ X @ ( nat2 @ I2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ I2 )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ I2 ) )
            = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ I2 ) ) ) ) ) ) ) ) ).

% powr_int
thf(fact_8454_arctan__inverse,axiom,
    ! [X: real] :
      ( ( X != zero_zero_real )
     => ( ( arctan @ ( divide_divide_real @ one_one_real @ X ) )
        = ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X ) ) ) ) ).

% arctan_inverse
thf(fact_8455_cis__multiple__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_complex ) ) ).

% cis_multiple_2pi
thf(fact_8456_nat__numeral,axiom,
    ! [K2: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_nat @ K2 ) ) ).

% nat_numeral
thf(fact_8457_sgn__le__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sgn_sgn_real @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% sgn_le_0_iff
thf(fact_8458_zero__le__sgn__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_sgn_iff
thf(fact_8459_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_8460_nat__0__iff,axiom,
    ! [I2: int] :
      ( ( ( nat2 @ I2 )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I2 @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_8461_nat__le__0,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ Z3 @ zero_zero_int )
     => ( ( nat2 @ Z3 )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_8462_zless__nat__conj,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z3 ) )
      = ( ( ord_less_int @ zero_zero_int @ Z3 )
        & ( ord_less_int @ W @ Z3 ) ) ) ).

% zless_nat_conj
thf(fact_8463_int__nat__eq,axiom,
    ! [Z3: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z3 ) )
          = Z3 ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z3 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z3 ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_8464_floor__add2,axiom,
    ! [X: real,Y2: real] :
      ( ( ( member_real @ X @ ring_1_Ints_real )
        | ( member_real @ Y2 @ ring_1_Ints_real ) )
     => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) ) ).

% floor_add2
thf(fact_8465_floor__add2,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ( member_rat @ X @ ring_1_Ints_rat )
        | ( member_rat @ Y2 @ ring_1_Ints_rat ) )
     => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y2 ) )
        = ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y2 ) ) ) ) ).

% floor_add2
thf(fact_8466_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( semiri681578069525770553at_rat @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) )
      = ( ring_1_of_int_rat @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_8467_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( semiri5074537144036343181t_real @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) )
      = ( ring_1_of_int_real @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_8468_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( semiri1314217659103216013at_int @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_8469_frac__gt__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) )
      = ( ~ ( member_real @ X @ ring_1_Ints_real ) ) ) ).

% frac_gt_0_iff
thf(fact_8470_frac__gt__0__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X ) )
      = ( ~ ( member_rat @ X @ ring_1_Ints_rat ) ) ) ).

% frac_gt_0_iff
thf(fact_8471_zero__less__nat__eq,axiom,
    ! [Z3: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z3 ) )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% zero_less_nat_eq
thf(fact_8472_of__nat__nat,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( semiri681578069525770553at_rat @ ( nat2 @ Z3 ) )
        = ( ring_1_of_int_rat @ Z3 ) ) ) ).

% of_nat_nat
thf(fact_8473_of__nat__nat,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( semiri5074537144036343181t_real @ ( nat2 @ Z3 ) )
        = ( ring_1_of_int_real @ Z3 ) ) ) ).

% of_nat_nat
thf(fact_8474_of__nat__nat,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z3 ) )
        = ( ring_1_of_int_int @ Z3 ) ) ) ).

% of_nat_nat
thf(fact_8475_diff__nat__numeral,axiom,
    ! [V: num,V3: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).

% diff_nat_numeral
thf(fact_8476_nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X: num,N: nat] :
      ( ( ( nat2 @ Y2 )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% nat_eq_numeral_power_cancel_iff
thf(fact_8477_numeral__power__eq__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y2: int] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = ( nat2 @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_nat_cancel_iff
thf(fact_8478_nat__ceiling__le__eq,axiom,
    ! [X: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
      = ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_8479_one__less__nat__eq,axiom,
    ! [Z3: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z3 ) )
      = ( ord_less_int @ one_one_int @ Z3 ) ) ).

% one_less_nat_eq
thf(fact_8480_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_8481_nat__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% nat_less_numeral_power_cancel_iff
thf(fact_8482_numeral__power__less__nat__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_nat_cancel_iff
thf(fact_8483_numeral__power__le__nat__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_nat_cancel_iff
thf(fact_8484_nat__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% nat_le_numeral_power_cancel_iff
thf(fact_8485_Ints__numeral,axiom,
    ! [N: num] : ( member_complex @ ( numera6690914467698888265omplex @ N ) @ ring_1_Ints_complex ) ).

% Ints_numeral
thf(fact_8486_Ints__numeral,axiom,
    ! [N: num] : ( member_real @ ( numeral_numeral_real @ N ) @ ring_1_Ints_real ) ).

% Ints_numeral
thf(fact_8487_Ints__numeral,axiom,
    ! [N: num] : ( member_rat @ ( numeral_numeral_rat @ N ) @ ring_1_Ints_rat ) ).

% Ints_numeral
thf(fact_8488_Ints__numeral,axiom,
    ! [N: num] : ( member_int @ ( numeral_numeral_int @ N ) @ ring_1_Ints_int ) ).

% Ints_numeral
thf(fact_8489_Ints__add,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( member_complex @ B @ ring_1_Ints_complex )
       => ( member_complex @ ( plus_plus_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).

% Ints_add
thf(fact_8490_Ints__add,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( member_real @ B @ ring_1_Ints_real )
       => ( member_real @ ( plus_plus_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).

% Ints_add
thf(fact_8491_Ints__add,axiom,
    ! [A: rat,B: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( member_rat @ B @ ring_1_Ints_rat )
       => ( member_rat @ ( plus_plus_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).

% Ints_add
thf(fact_8492_Ints__add,axiom,
    ! [A: int,B: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( member_int @ B @ ring_1_Ints_int )
       => ( member_int @ ( plus_plus_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).

% Ints_add
thf(fact_8493_Ints__1,axiom,
    member_complex @ one_one_complex @ ring_1_Ints_complex ).

% Ints_1
thf(fact_8494_Ints__1,axiom,
    member_rat @ one_one_rat @ ring_1_Ints_rat ).

% Ints_1
thf(fact_8495_Ints__1,axiom,
    member_int @ one_one_int @ ring_1_Ints_int ).

% Ints_1
thf(fact_8496_Ints__1,axiom,
    member_real @ one_one_real @ ring_1_Ints_real ).

% Ints_1
thf(fact_8497_Ints__mult,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( member_complex @ B @ ring_1_Ints_complex )
       => ( member_complex @ ( times_times_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).

% Ints_mult
thf(fact_8498_Ints__mult,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( member_real @ B @ ring_1_Ints_real )
       => ( member_real @ ( times_times_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).

% Ints_mult
thf(fact_8499_Ints__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( member_rat @ B @ ring_1_Ints_rat )
       => ( member_rat @ ( times_times_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).

% Ints_mult
thf(fact_8500_Ints__mult,axiom,
    ! [A: int,B: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( member_int @ B @ ring_1_Ints_int )
       => ( member_int @ ( times_times_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).

% Ints_mult
thf(fact_8501_Ints__power,axiom,
    ! [A: real,N: nat] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( member_real @ ( power_power_real @ A @ N ) @ ring_1_Ints_real ) ) ).

% Ints_power
thf(fact_8502_Ints__power,axiom,
    ! [A: int,N: nat] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( member_int @ ( power_power_int @ A @ N ) @ ring_1_Ints_int ) ) ).

% Ints_power
thf(fact_8503_Ints__power,axiom,
    ! [A: complex,N: nat] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( member_complex @ ( power_power_complex @ A @ N ) @ ring_1_Ints_complex ) ) ).

% Ints_power
thf(fact_8504_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_8505_nat__numeral__as__int,axiom,
    ( numeral_numeral_nat
    = ( ^ [I: num] : ( nat2 @ ( numeral_numeral_int @ I ) ) ) ) ).

% nat_numeral_as_int
thf(fact_8506_nat__mono,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ).

% nat_mono
thf(fact_8507_eq__nat__nat__iff,axiom,
    ! [Z3: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
       => ( ( ( nat2 @ Z3 )
            = ( nat2 @ Z7 ) )
          = ( Z3 = Z7 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_8508_all__nat,axiom,
    ( ( ^ [P: nat > $o] :
        ! [X3: nat] : ( P @ X3 ) )
    = ( ^ [P2: nat > $o] :
        ! [X4: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X4 )
         => ( P2 @ ( nat2 @ X4 ) ) ) ) ) ).

% all_nat
thf(fact_8509_ex__nat,axiom,
    ( ( ^ [P: nat > $o] :
        ? [X3: nat] : ( P @ X3 ) )
    = ( ^ [P2: nat > $o] :
        ? [X4: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X4 )
          & ( P2 @ ( nat2 @ X4 ) ) ) ) ) ).

% ex_nat
thf(fact_8510_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_8511_Ints__double__eq__0__iff,axiom,
    ! [A: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( ( plus_plus_complex @ A @ A )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_8512_Ints__double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( ( plus_plus_real @ A @ A )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_8513_Ints__double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( ( plus_plus_rat @ A @ A )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_8514_Ints__double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( ( plus_plus_int @ A @ A )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_8515_unset__bit__nat__def,axiom,
    ( bit_se4205575877204974255it_nat
    = ( ^ [M2: nat,N2: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M2 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% unset_bit_nat_def
thf(fact_8516_nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% nat_mask_eq
thf(fact_8517_nat__mono__iff,axiom,
    ! [Z3: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z3 ) )
        = ( ord_less_int @ W @ Z3 ) ) ) ).

% nat_mono_iff
thf(fact_8518_of__nat__ceiling,axiom,
    ! [R: real] : ( ord_less_eq_real @ R @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ R ) ) ) ) ).

% of_nat_ceiling
thf(fact_8519_of__nat__ceiling,axiom,
    ! [R: rat] : ( ord_less_eq_rat @ R @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim2889992004027027881ng_rat @ R ) ) ) ) ).

% of_nat_ceiling
thf(fact_8520_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z3: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z3 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z3 ) ) ).

% zless_nat_eq_int_zless
thf(fact_8521_nat__le__iff,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_8522_int__eq__iff,axiom,
    ! [M: nat,Z3: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z3 )
      = ( ( M
          = ( nat2 @ Z3 ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z3 ) ) ) ).

% int_eq_iff
thf(fact_8523_nat__0__le,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z3 ) )
        = Z3 ) ) ).

% nat_0_le
thf(fact_8524_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_8525_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_8526_nat__abs__mult__distrib,axiom,
    ! [W: int,Z3: int] :
      ( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z3 ) ) )
      = ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z3 ) ) ) ) ).

% nat_abs_mult_distrib
thf(fact_8527_Ints__odd__nonzero,axiom,
    ! [A: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( plus_plus_complex @ ( plus_plus_complex @ one_one_complex @ A ) @ A )
       != zero_zero_complex ) ) ).

% Ints_odd_nonzero
thf(fact_8528_Ints__odd__nonzero,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A )
       != zero_zero_real ) ) ).

% Ints_odd_nonzero
thf(fact_8529_Ints__odd__nonzero,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( plus_plus_rat @ ( plus_plus_rat @ one_one_rat @ A ) @ A )
       != zero_zero_rat ) ) ).

% Ints_odd_nonzero
thf(fact_8530_Ints__odd__nonzero,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A )
       != zero_zero_int ) ) ).

% Ints_odd_nonzero
thf(fact_8531_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_complex @ ( divide1717551699836669952omplex @ ( ring_17405671764205052669omplex @ A ) @ ( ring_17405671764205052669omplex @ B ) ) @ ring_1_Ints_complex ) ) ).

% of_int_divide_in_Ints
thf(fact_8532_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) @ ring_1_Ints_real ) ) ).

% of_int_divide_in_Ints
thf(fact_8533_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) @ ring_1_Ints_rat ) ) ).

% of_int_divide_in_Ints
thf(fact_8534_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_int @ ( divide_divide_int @ ( ring_1_of_int_int @ A ) @ ( ring_1_of_int_int @ B ) ) @ ring_1_Ints_int ) ) ).

% of_int_divide_in_Ints
thf(fact_8535_and__nat__def,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M2: nat,N2: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% and_nat_def
thf(fact_8536_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_8537_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_times_as_int
thf(fact_8538_real__nat__ceiling__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_8539_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_8540_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_div_as_int
thf(fact_8541_nat__mod__as__int,axiom,
    ( modulo_modulo_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_mod_as_int
thf(fact_8542_sgn__real__def,axiom,
    ( sgn_sgn_real
    = ( ^ [A4: real] : ( if_real @ ( A4 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A4 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_real_def
thf(fact_8543_of__nat__floor,axiom,
    ! [R: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim6058952711729229775r_real @ R ) ) ) @ R ) ) ).

% of_nat_floor
thf(fact_8544_of__nat__floor,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ R )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim3151403230148437115or_rat @ R ) ) ) @ R ) ) ).

% of_nat_floor
thf(fact_8545_nat__less__eq__zless,axiom,
    ! [W: int,Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z3 ) )
        = ( ord_less_int @ W @ Z3 ) ) ) ).

% nat_less_eq_zless
thf(fact_8546_nat__le__eq__zle,axiom,
    ! [W: int,Z3: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z3 ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z3 ) )
        = ( ord_less_eq_int @ W @ Z3 ) ) ) ).

% nat_le_eq_zle
thf(fact_8547_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_8548_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_8549_le__mult__nat__floor,axiom,
    ! [A: real,B: real] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ B ) ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ).

% le_mult_nat_floor
thf(fact_8550_le__mult__nat__floor,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim3151403230148437115or_rat @ A ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% le_mult_nat_floor
thf(fact_8551_le__nat__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K2 ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K2 ) ) ) ).

% le_nat_iff
thf(fact_8552_nat__add__distrib,axiom,
    ! [Z3: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
       => ( ( nat2 @ ( plus_plus_int @ Z3 @ Z7 ) )
          = ( plus_plus_nat @ ( nat2 @ Z3 ) @ ( nat2 @ Z7 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_8553_nat__mult__distrib,axiom,
    ! [Z3: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( nat2 @ ( times_times_int @ Z3 @ Z7 ) )
        = ( times_times_nat @ ( nat2 @ Z3 ) @ ( nat2 @ Z7 ) ) ) ) ).

% nat_mult_distrib
thf(fact_8554_Suc__as__int,axiom,
    ( suc
    = ( ^ [A4: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A4 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_8555_nat__diff__distrib,axiom,
    ! [Z7: int,Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
     => ( ( ord_less_eq_int @ Z7 @ Z3 )
       => ( ( nat2 @ ( minus_minus_int @ Z3 @ Z7 ) )
          = ( minus_minus_nat @ ( nat2 @ Z3 ) @ ( nat2 @ Z7 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_8556_nat__diff__distrib_H,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( nat2 @ ( minus_minus_int @ X @ Y2 ) )
          = ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_8557_nat__abs__triangle__ineq,axiom,
    ! [K2: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K2 @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_8558_nat__div__distrib,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y2 ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ) ).

% nat_div_distrib
thf(fact_8559_nat__div__distrib_H,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y2 ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ) ).

% nat_div_distrib'
thf(fact_8560_nat__floor__neg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_8561_nat__power__eq,axiom,
    ! [Z3: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( nat2 @ ( power_power_int @ Z3 @ N ) )
        = ( power_power_nat @ ( nat2 @ Z3 ) @ N ) ) ) ).

% nat_power_eq
thf(fact_8562_nat__mod__distrib,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( nat2 @ ( modulo_modulo_int @ X @ Y2 ) )
          = ( modulo_modulo_nat @ ( nat2 @ X ) @ ( nat2 @ Y2 ) ) ) ) ) ).

% nat_mod_distrib
thf(fact_8563_div__abs__eq__div__nat,axiom,
    ! [K2: int,L: int] :
      ( ( divide_divide_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_abs_eq_div_nat
thf(fact_8564_Ints__odd__less__0,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( ord_less_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A ) @ zero_zero_real )
        = ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% Ints_odd_less_0
thf(fact_8565_Ints__odd__less__0,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( ord_less_rat @ ( plus_plus_rat @ ( plus_plus_rat @ one_one_rat @ A ) @ A ) @ zero_zero_rat )
        = ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% Ints_odd_less_0
thf(fact_8566_Ints__odd__less__0,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% Ints_odd_less_0
thf(fact_8567_floor__eq3,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N ) ) ) ).

% floor_eq3
thf(fact_8568_le__nat__floor,axiom,
    ! [X: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ A )
     => ( ord_less_eq_nat @ X @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).

% le_nat_floor
thf(fact_8569_Ints__nonzero__abs__ge1,axiom,
    ! [X: code_integer] :
      ( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
     => ( ( X != zero_z3403309356797280102nteger )
       => ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_8570_Ints__nonzero__abs__ge1,axiom,
    ! [X: real] :
      ( ( member_real @ X @ ring_1_Ints_real )
     => ( ( X != zero_zero_real )
       => ( ord_less_eq_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_8571_Ints__nonzero__abs__ge1,axiom,
    ! [X: rat] :
      ( ( member_rat @ X @ ring_1_Ints_rat )
     => ( ( X != zero_zero_rat )
       => ( ord_less_eq_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_8572_Ints__nonzero__abs__ge1,axiom,
    ! [X: int] :
      ( ( member_int @ X @ ring_1_Ints_int )
     => ( ( X != zero_zero_int )
       => ( ord_less_eq_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_8573_mod__abs__eq__div__nat,axiom,
    ! [K2: int,L: int] :
      ( ( modulo_modulo_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% mod_abs_eq_div_nat
thf(fact_8574_Ints__nonzero__abs__less1,axiom,
    ! [X: code_integer] :
      ( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer )
       => ( X = zero_z3403309356797280102nteger ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_8575_Ints__nonzero__abs__less1,axiom,
    ! [X: real] :
      ( ( member_real @ X @ ring_1_Ints_real )
     => ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
       => ( X = zero_zero_real ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_8576_Ints__nonzero__abs__less1,axiom,
    ! [X: rat] :
      ( ( member_rat @ X @ ring_1_Ints_rat )
     => ( ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat )
       => ( X = zero_zero_rat ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_8577_Ints__nonzero__abs__less1,axiom,
    ! [X: int] :
      ( ( member_int @ X @ ring_1_Ints_int )
     => ( ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int )
       => ( X = zero_zero_int ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_8578_Ints__eq__abs__less1,axiom,
    ! [X: code_integer,Y2: code_integer] :
      ( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
     => ( ( member_Code_integer @ Y2 @ ring_11222124179247155820nteger )
       => ( ( X = Y2 )
          = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ Y2 ) ) @ one_one_Code_integer ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_8579_Ints__eq__abs__less1,axiom,
    ! [X: real,Y2: real] :
      ( ( member_real @ X @ ring_1_Ints_real )
     => ( ( member_real @ Y2 @ ring_1_Ints_real )
       => ( ( X = Y2 )
          = ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y2 ) ) @ one_one_real ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_8580_Ints__eq__abs__less1,axiom,
    ! [X: rat,Y2: rat] :
      ( ( member_rat @ X @ ring_1_Ints_rat )
     => ( ( member_rat @ Y2 @ ring_1_Ints_rat )
       => ( ( X = Y2 )
          = ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ Y2 ) ) @ one_one_rat ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_8581_Ints__eq__abs__less1,axiom,
    ! [X: int,Y2: int] :
      ( ( member_int @ X @ ring_1_Ints_int )
     => ( ( member_int @ Y2 @ ring_1_Ints_int )
       => ( ( X = Y2 )
          = ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Y2 ) ) @ one_one_int ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_8582_nat__take__bit__eq,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) )
        = ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K2 ) ) ) ) ).

% nat_take_bit_eq
thf(fact_8583_take__bit__nat__eq,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K2 ) )
        = ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K2 ) ) ) ) ).

% take_bit_nat_eq
thf(fact_8584_sin__times__pi__eq__0,axiom,
    ! [X: real] :
      ( ( ( sin_real @ ( times_times_real @ X @ pi ) )
        = zero_zero_real )
      = ( member_real @ X @ ring_1_Ints_real ) ) ).

% sin_times_pi_eq_0
thf(fact_8585_bit__nat__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( nat2 @ K2 ) @ N )
      = ( ( ord_less_eq_int @ zero_zero_int @ K2 )
        & ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) ).

% bit_nat_iff
thf(fact_8586_nat__2,axiom,
    ( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% nat_2
thf(fact_8587_sgn__power__injE,axiom,
    ! [A: real,N: nat,X: real,B: real] :
      ( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
        = X )
     => ( ( X
          = ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( A = B ) ) ) ) ).

% sgn_power_injE
thf(fact_8588_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( suc @ ( nat2 @ Z3 ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z3 ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_8589_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_8590_nat__mult__distrib__neg,axiom,
    ! [Z3: int,Z7: int] :
      ( ( ord_less_eq_int @ Z3 @ zero_zero_int )
     => ( ( nat2 @ ( times_times_int @ Z3 @ Z7 ) )
        = ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z3 ) ) @ ( nat2 @ ( uminus_uminus_int @ Z7 ) ) ) ) ) ).

% nat_mult_distrib_neg
thf(fact_8591_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_8592_floor__eq4,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N ) ) ) ).

% floor_eq4
thf(fact_8593_diff__nat__eq__if,axiom,
    ! [Z7: int,Z3: int] :
      ( ( ( ord_less_int @ Z7 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z3 ) @ ( nat2 @ Z7 ) )
          = ( nat2 @ Z3 ) ) )
      & ( ~ ( ord_less_int @ Z7 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z3 ) @ ( nat2 @ Z7 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z3 @ Z7 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z3 @ Z7 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_8594_frac__neg,axiom,
    ! [X: real] :
      ( ( ( member_real @ X @ ring_1_Ints_real )
       => ( ( archim2898591450579166408c_real @ ( uminus_uminus_real @ X ) )
          = zero_zero_real ) )
      & ( ~ ( member_real @ X @ ring_1_Ints_real )
       => ( ( archim2898591450579166408c_real @ ( uminus_uminus_real @ X ) )
          = ( minus_minus_real @ one_one_real @ ( archim2898591450579166408c_real @ X ) ) ) ) ) ).

% frac_neg
thf(fact_8595_frac__neg,axiom,
    ! [X: rat] :
      ( ( ( member_rat @ X @ ring_1_Ints_rat )
       => ( ( archimedean_frac_rat @ ( uminus_uminus_rat @ X ) )
          = zero_zero_rat ) )
      & ( ~ ( member_rat @ X @ ring_1_Ints_rat )
       => ( ( archimedean_frac_rat @ ( uminus_uminus_rat @ X ) )
          = ( minus_minus_rat @ one_one_rat @ ( archimedean_frac_rat @ X ) ) ) ) ) ).

% frac_neg
thf(fact_8596_nat__dvd__iff,axiom,
    ! [Z3: int,M: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ Z3 ) @ M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
         => ( dvd_dvd_int @ Z3 @ ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z3 )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_dvd_iff
thf(fact_8597_Arg__correct,axiom,
    ! [Z3: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( ( sgn_sgn_complex @ Z3 )
          = ( cis @ ( arg @ Z3 ) ) )
        & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z3 ) )
        & ( ord_less_eq_real @ ( arg @ Z3 ) @ pi ) ) ) ).

% Arg_correct
thf(fact_8598_cis__Arg__unique,axiom,
    ! [Z3: complex,X: real] :
      ( ( ( sgn_sgn_complex @ Z3 )
        = ( cis @ X ) )
     => ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X )
       => ( ( ord_less_eq_real @ X @ pi )
         => ( ( arg @ Z3 )
            = X ) ) ) ) ).

% cis_Arg_unique
thf(fact_8599_le__mult__floor__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_8600_le__mult__floor__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_rat @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_8601_le__mult__floor__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_int @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_8602_le__mult__floor__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_real @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_8603_le__mult__floor__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_8604_le__mult__floor__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_int @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_8605_frac__unique__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( archim2898591450579166408c_real @ X )
        = A )
      = ( ( member_real @ ( minus_minus_real @ X @ A ) @ ring_1_Ints_real )
        & ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ord_less_real @ A @ one_one_real ) ) ) ).

% frac_unique_iff
thf(fact_8606_frac__unique__iff,axiom,
    ! [X: rat,A: rat] :
      ( ( ( archimedean_frac_rat @ X )
        = A )
      = ( ( member_rat @ ( minus_minus_rat @ X @ A ) @ ring_1_Ints_rat )
        & ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ord_less_rat @ A @ one_one_rat ) ) ) ).

% frac_unique_iff
thf(fact_8607_mult__ceiling__le__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_real @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_8608_mult__ceiling__le__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_8609_mult__ceiling__le__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_int @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_8610_mult__ceiling__le__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_real @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_8611_mult__ceiling__le__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_8612_mult__ceiling__le__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_int @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_8613_sin__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = zero_zero_real ) ) ).

% sin_integer_2pi
thf(fact_8614_cos__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_real ) ) ).

% cos_integer_2pi
thf(fact_8615_even__nat__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K2 ) )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) ) ).

% even_nat_iff
thf(fact_8616_floor__rat__def,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [X4: rat] :
          ( the_int
          @ ^ [Z6: int] :
              ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z6 ) @ X4 )
              & ( ord_less_rat @ X4 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z6 @ one_one_int ) ) ) ) ) ) ) ).

% floor_rat_def
thf(fact_8617_powr__real__of__int,axiom,
    ! [X: real,N: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
            = ( power_power_real @ X @ ( nat2 @ N ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
            = ( inverse_inverse_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).

% powr_real_of_int
thf(fact_8618_case__prod__app,axiom,
    ( produc27273713700761075at_nat
    = ( ^ [F4: nat > nat > product_prod_nat_nat > product_prod_nat_nat,X4: product_prod_nat_nat,Y: product_prod_nat_nat] :
          ( produc2626176000494625587at_nat
          @ ^ [L3: nat,R5: nat] : ( F4 @ L3 @ R5 @ Y )
          @ X4 ) ) ) ).

% case_prod_app
thf(fact_8619_case__prod__app,axiom,
    ( produc8739625826339149834_nat_o
    = ( ^ [F4: nat > nat > product_prod_nat_nat > $o,X4: product_prod_nat_nat,Y: product_prod_nat_nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [L3: nat,R5: nat] : ( F4 @ L3 @ R5 @ Y )
          @ X4 ) ) ) ).

% case_prod_app
thf(fact_8620_Suc__0__xor__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_xor_eq
thf(fact_8621_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_8622_inverse__eq__iff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_8623_inverse__eq__iff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_8624_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_8625_inverse__inverse__eq,axiom,
    ! [A: complex] :
      ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_8626_inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_8627_bit_Oxor__left__self,axiom,
    ! [X: int,Y2: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( bit_se6526347334894502574or_int @ X @ Y2 ) )
      = Y2 ) ).

% bit.xor_left_self
thf(fact_8628_inverse__nonzero__iff__nonzero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_8629_inverse__nonzero__iff__nonzero,axiom,
    ! [A: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_8630_inverse__nonzero__iff__nonzero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_8631_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_8632_inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% inverse_zero
thf(fact_8633_inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% inverse_zero
thf(fact_8634_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_8635_inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_8636_inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_8637_inverse__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( inverse_inverse_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_8638_inverse__eq__1__iff,axiom,
    ! [X: complex] :
      ( ( ( invers8013647133539491842omplex @ X )
        = one_one_complex )
      = ( X = one_one_complex ) ) ).

% inverse_eq_1_iff
thf(fact_8639_inverse__eq__1__iff,axiom,
    ! [X: rat] :
      ( ( ( inverse_inverse_rat @ X )
        = one_one_rat )
      = ( X = one_one_rat ) ) ).

% inverse_eq_1_iff
thf(fact_8640_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_8641_inverse__1,axiom,
    ( ( invers8013647133539491842omplex @ one_one_complex )
    = one_one_complex ) ).

% inverse_1
thf(fact_8642_inverse__1,axiom,
    ( ( inverse_inverse_rat @ one_one_rat )
    = one_one_rat ) ).

% inverse_1
thf(fact_8643_inverse__divide,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ B @ A ) ) ).

% inverse_divide
thf(fact_8644_inverse__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ B @ A ) ) ).

% inverse_divide
thf(fact_8645_inverse__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ B @ A ) ) ).

% inverse_divide
thf(fact_8646_inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
      = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).

% inverse_minus_eq
thf(fact_8647_inverse__minus__eq,axiom,
    ! [A: complex] :
      ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
      = ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ).

% inverse_minus_eq
thf(fact_8648_inverse__minus__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
      = ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% inverse_minus_eq
thf(fact_8649_bit_Oxor__self,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ X @ X )
      = zero_zero_int ) ).

% bit.xor_self
thf(fact_8650_xor__self__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ A )
      = zero_zero_nat ) ).

% xor_self_eq
thf(fact_8651_xor__self__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ A )
      = zero_zero_int ) ).

% xor_self_eq
thf(fact_8652_xor_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ zero_zero_nat @ A )
      = A ) ).

% xor.left_neutral
thf(fact_8653_xor_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ zero_zero_int @ A )
      = A ) ).

% xor.left_neutral
thf(fact_8654_xor_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ zero_zero_nat )
      = A ) ).

% xor.right_neutral
thf(fact_8655_xor_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ zero_zero_int )
      = A ) ).

% xor.right_neutral
thf(fact_8656_abs__inverse,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
      = ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ).

% abs_inverse
thf(fact_8657_abs__inverse,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( invers8013647133539491842omplex @ A ) )
      = ( invers8013647133539491842omplex @ ( abs_abs_complex @ A ) ) ) ).

% abs_inverse
thf(fact_8658_abs__inverse,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ).

% abs_inverse
thf(fact_8659_sgn__inverse,axiom,
    ! [A: real] :
      ( ( sgn_sgn_real @ ( inverse_inverse_real @ A ) )
      = ( inverse_inverse_real @ ( sgn_sgn_real @ A ) ) ) ).

% sgn_inverse
thf(fact_8660_sgn__inverse,axiom,
    ! [A: complex] :
      ( ( sgn_sgn_complex @ ( invers8013647133539491842omplex @ A ) )
      = ( invers8013647133539491842omplex @ ( sgn_sgn_complex @ A ) ) ) ).

% sgn_inverse
thf(fact_8661_sgn__inverse,axiom,
    ! [A: rat] :
      ( ( sgn_sgn_rat @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_rat @ ( sgn_sgn_rat @ A ) ) ) ).

% sgn_inverse
thf(fact_8662_inverse__sgn,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( sgn_sgn_real @ A ) )
      = ( sgn_sgn_real @ A ) ) ).

% inverse_sgn
thf(fact_8663_inverse__sgn,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( sgn_sgn_rat @ A ) )
      = ( sgn_sgn_rat @ A ) ) ).

% inverse_sgn
thf(fact_8664_take__bit__xor,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_xor
thf(fact_8665_take__bit__xor,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( bit_se6528837805403552850or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_xor
thf(fact_8666_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_8667_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_8668_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_8669_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_8670_inverse__less__iff__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_8671_inverse__less__iff__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_8672_inverse__less__iff__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_8673_inverse__less__iff__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_8674_inverse__negative__iff__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_8675_inverse__negative__iff__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% inverse_negative_iff_negative
thf(fact_8676_inverse__positive__iff__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_8677_inverse__positive__iff__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_8678_inverse__le__iff__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_8679_inverse__le__iff__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_8680_inverse__le__iff__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_8681_inverse__le__iff__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_8682_left__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% left_inverse
thf(fact_8683_left__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
        = one_one_complex ) ) ).

% left_inverse
thf(fact_8684_left__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% left_inverse
thf(fact_8685_right__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
        = one_one_real ) ) ).

% right_inverse
thf(fact_8686_right__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ A @ ( invers8013647133539491842omplex @ A ) )
        = one_one_complex ) ) ).

% right_inverse
thf(fact_8687_right__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ A @ ( inverse_inverse_rat @ A ) )
        = one_one_rat ) ) ).

% right_inverse
thf(fact_8688_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_real @ ( numeral_numeral_real @ W ) )
      = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_8689_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_8690_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_rat @ ( numeral_numeral_rat @ W ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_8691_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_8692_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_8693_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_8694_xor__numerals_I3_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% xor_numerals(3)
thf(fact_8695_xor__numerals_I3_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% xor_numerals(3)
thf(fact_8696_xor__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% xor_numerals(1)
thf(fact_8697_xor__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y2 ) ) ) ).

% xor_numerals(1)
thf(fact_8698_xor__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) ) ).

% xor_numerals(2)
thf(fact_8699_xor__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_int @ ( bit0 @ Y2 ) ) ) ).

% xor_numerals(2)
thf(fact_8700_xor__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% xor_numerals(5)
thf(fact_8701_xor__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).

% xor_numerals(5)
thf(fact_8702_xor__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).

% xor_numerals(8)
thf(fact_8703_xor__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit0 @ X ) ) ) ).

% xor_numerals(8)
thf(fact_8704_xor__numerals_I7_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% xor_numerals(7)
thf(fact_8705_xor__numerals_I7_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% xor_numerals(7)
thf(fact_8706_xor__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).

% xor_nat_numerals(4)
thf(fact_8707_xor__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% xor_nat_numerals(3)
thf(fact_8708_xor__nat__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) ) ).

% xor_nat_numerals(2)
thf(fact_8709_xor__nat__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% xor_nat_numerals(1)
thf(fact_8710_xor__numerals_I4_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% xor_numerals(4)
thf(fact_8711_xor__numerals_I4_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% xor_numerals(4)
thf(fact_8712_xor__numerals_I6_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% xor_numerals(6)
thf(fact_8713_xor__numerals_I6_J,axiom,
    ! [X: num,Y2: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% xor_numerals(6)
thf(fact_8714_sgn__rat__def,axiom,
    ( sgn_sgn_rat
    = ( ^ [A4: rat] : ( if_rat @ ( A4 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A4 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_rat_def
thf(fact_8715_power__inverse,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( inverse_inverse_real @ A ) @ N )
      = ( inverse_inverse_real @ ( power_power_real @ A @ N ) ) ) ).

% power_inverse
thf(fact_8716_power__inverse,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( invers8013647133539491842omplex @ A ) @ N )
      = ( invers8013647133539491842omplex @ ( power_power_complex @ A @ N ) ) ) ).

% power_inverse
thf(fact_8717_power__inverse,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( inverse_inverse_rat @ A ) @ N )
      = ( inverse_inverse_rat @ ( power_power_rat @ A @ N ) ) ) ).

% power_inverse
thf(fact_8718_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y2: real,X: real] :
      ( ( ( times_times_real @ Y2 @ X )
        = ( times_times_real @ X @ Y2 ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y2 ) @ X )
        = ( times_times_real @ X @ ( inverse_inverse_real @ Y2 ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_8719_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y2: complex,X: complex] :
      ( ( ( times_times_complex @ Y2 @ X )
        = ( times_times_complex @ X @ Y2 ) )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ Y2 ) @ X )
        = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y2 ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_8720_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y2: rat,X: rat] :
      ( ( ( times_times_rat @ Y2 @ X )
        = ( times_times_rat @ X @ Y2 ) )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ Y2 ) @ X )
        = ( times_times_rat @ X @ ( inverse_inverse_rat @ Y2 ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_8721_real__sqrt__inverse,axiom,
    ! [X: real] :
      ( ( sqrt @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_inverse
thf(fact_8722_nonzero__imp__inverse__nonzero,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_8723_nonzero__imp__inverse__nonzero,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A )
       != zero_zero_complex ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_8724_nonzero__imp__inverse__nonzero,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
       != zero_zero_rat ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_8725_nonzero__inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_8726_nonzero__inverse__inverse__eq,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_8727_nonzero__inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_8728_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( ( A != zero_zero_real )
       => ( ( B != zero_zero_real )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_8729_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
     => ( ( A != zero_zero_complex )
       => ( ( B != zero_zero_complex )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_8730_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( ( A != zero_zero_rat )
       => ( ( B != zero_zero_rat )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_8731_inverse__zero__imp__zero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
     => ( A = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_8732_inverse__zero__imp__zero,axiom,
    ! [A: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = zero_zero_complex )
     => ( A = zero_zero_complex ) ) ).

% inverse_zero_imp_zero
thf(fact_8733_inverse__zero__imp__zero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
     => ( A = zero_zero_rat ) ) ).

% inverse_zero_imp_zero
thf(fact_8734_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_8735_field__class_Ofield__inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% field_class.field_inverse_zero
thf(fact_8736_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% field_class.field_inverse_zero
thf(fact_8737_less__eq__rat__def,axiom,
    ( ord_less_eq_rat
    = ( ^ [X4: rat,Y: rat] :
          ( ( ord_less_rat @ X4 @ Y )
          | ( X4 = Y ) ) ) ) ).

% less_eq_rat_def
thf(fact_8738_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_8739_inverse__eq__imp__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_8740_inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_8741_xor_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ C )
      = ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).

% xor.assoc
thf(fact_8742_xor_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ C )
      = ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).

% xor.assoc
thf(fact_8743_xor_Ocommute,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [A4: nat,B3: nat] : ( bit_se6528837805403552850or_nat @ B3 @ A4 ) ) ) ).

% xor.commute
thf(fact_8744_xor_Ocommute,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [A4: int,B3: int] : ( bit_se6526347334894502574or_int @ B3 @ A4 ) ) ) ).

% xor.commute
thf(fact_8745_xor_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se6528837805403552850or_nat @ B @ ( bit_se6528837805403552850or_nat @ A @ C ) )
      = ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).

% xor.left_commute
thf(fact_8746_xor_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se6526347334894502574or_int @ B @ ( bit_se6526347334894502574or_int @ A @ C ) )
      = ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).

% xor.left_commute
thf(fact_8747_of__int__xor__eq,axiom,
    ! [K2: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se6526347334894502574or_int @ K2 @ L ) )
      = ( bit_se6526347334894502574or_int @ ( ring_1_of_int_int @ K2 ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_xor_eq
thf(fact_8748_obtain__pos__sum,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R )
     => ~ ! [S2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S2 )
           => ! [T3: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T3 )
               => ( R
                 != ( plus_plus_rat @ S2 @ T3 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_8749_of__nat__xor__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se6528837805403552850or_nat @ M @ N ) )
      = ( bit_se6528837805403552850or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_xor_eq
thf(fact_8750_of__nat__xor__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se6528837805403552850or_nat @ M @ N ) )
      = ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_xor_eq
thf(fact_8751_bit__xor__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
       != ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).

% bit_xor_iff
thf(fact_8752_bit__xor__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
       != ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).

% bit_xor_iff
thf(fact_8753_bit_Oconj__xor__distrib2,axiom,
    ! [Y2: int,Z3: int,X: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se6526347334894502574or_int @ Y2 @ Z3 ) @ X )
      = ( bit_se6526347334894502574or_int @ ( bit_se725231765392027082nd_int @ Y2 @ X ) @ ( bit_se725231765392027082nd_int @ Z3 @ X ) ) ) ).

% bit.conj_xor_distrib2
thf(fact_8754_bit_Oconj__xor__distrib,axiom,
    ! [X: int,Y2: int,Z3: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( bit_se6526347334894502574or_int @ Y2 @ Z3 ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) @ ( bit_se725231765392027082nd_int @ X @ Z3 ) ) ) ).

% bit.conj_xor_distrib
thf(fact_8755_norm__inverse__le__norm,axiom,
    ! [R: real,X: real] :
      ( ( ord_less_eq_real @ R @ ( real_V7735802525324610683m_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ R )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ X ) ) @ ( inverse_inverse_real @ R ) ) ) ) ).

% norm_inverse_le_norm
thf(fact_8756_norm__inverse__le__norm,axiom,
    ! [R: real,X: complex] :
      ( ( ord_less_eq_real @ R @ ( real_V1022390504157884413omplex @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ R )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ X ) ) @ ( inverse_inverse_real @ R ) ) ) ) ).

% norm_inverse_le_norm
thf(fact_8757_inverse__less__imp__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_8758_inverse__less__imp__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_8759_less__imp__inverse__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_8760_less__imp__inverse__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_8761_inverse__less__imp__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_8762_inverse__less__imp__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_8763_less__imp__inverse__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_8764_less__imp__inverse__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_8765_inverse__negative__imp__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_8766_inverse__negative__imp__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% inverse_negative_imp_negative
thf(fact_8767_inverse__positive__imp__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_8768_inverse__positive__imp__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_8769_negative__imp__inverse__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_8770_negative__imp__inverse__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat ) ) ).

% negative_imp_inverse_negative
thf(fact_8771_positive__imp__inverse__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_8772_positive__imp__inverse__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_8773_nonzero__inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
          = ( times_times_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_8774_nonzero__inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
          = ( times_times_complex @ ( invers8013647133539491842omplex @ B ) @ ( invers8013647133539491842omplex @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_8775_nonzero__inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
          = ( times_times_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_8776_nonzero__inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
        = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_8777_nonzero__inverse__minus__eq,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
        = ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_8778_nonzero__inverse__minus__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
        = ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_8779_inverse__numeral__1,axiom,
    ( ( inverse_inverse_real @ ( numeral_numeral_real @ one ) )
    = ( numeral_numeral_real @ one ) ) ).

% inverse_numeral_1
thf(fact_8780_inverse__numeral__1,axiom,
    ( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( numera6690914467698888265omplex @ one ) ) ).

% inverse_numeral_1
thf(fact_8781_inverse__numeral__1,axiom,
    ( ( inverse_inverse_rat @ ( numeral_numeral_rat @ one ) )
    = ( numeral_numeral_rat @ one ) ) ).

% inverse_numeral_1
thf(fact_8782_inverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = one_one_real )
     => ( ( inverse_inverse_real @ A )
        = B ) ) ).

% inverse_unique
thf(fact_8783_inverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = one_one_complex )
     => ( ( invers8013647133539491842omplex @ A )
        = B ) ) ).

% inverse_unique
thf(fact_8784_inverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = one_one_rat )
     => ( ( inverse_inverse_rat @ A )
        = B ) ) ).

% inverse_unique
thf(fact_8785_divide__inverse__commute,axiom,
    ( divide_divide_real
    = ( ^ [A4: real,B3: real] : ( times_times_real @ ( inverse_inverse_real @ B3 ) @ A4 ) ) ) ).

% divide_inverse_commute
thf(fact_8786_divide__inverse__commute,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A4: complex,B3: complex] : ( times_times_complex @ ( invers8013647133539491842omplex @ B3 ) @ A4 ) ) ) ).

% divide_inverse_commute
thf(fact_8787_divide__inverse__commute,axiom,
    ( divide_divide_rat
    = ( ^ [A4: rat,B3: rat] : ( times_times_rat @ ( inverse_inverse_rat @ B3 ) @ A4 ) ) ) ).

% divide_inverse_commute
thf(fact_8788_divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A4: real,B3: real] : ( times_times_real @ A4 @ ( inverse_inverse_real @ B3 ) ) ) ) ).

% divide_inverse
thf(fact_8789_divide__inverse,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A4: complex,B3: complex] : ( times_times_complex @ A4 @ ( invers8013647133539491842omplex @ B3 ) ) ) ) ).

% divide_inverse
thf(fact_8790_divide__inverse,axiom,
    ( divide_divide_rat
    = ( ^ [A4: rat,B3: rat] : ( times_times_rat @ A4 @ ( inverse_inverse_rat @ B3 ) ) ) ) ).

% divide_inverse
thf(fact_8791_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A4: real,B3: real] : ( times_times_real @ A4 @ ( inverse_inverse_real @ B3 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_8792_field__class_Ofield__divide__inverse,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A4: complex,B3: complex] : ( times_times_complex @ A4 @ ( invers8013647133539491842omplex @ B3 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_8793_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_rat
    = ( ^ [A4: rat,B3: rat] : ( times_times_rat @ A4 @ ( inverse_inverse_rat @ B3 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_8794_inverse__eq__divide,axiom,
    ( inverse_inverse_real
    = ( divide_divide_real @ one_one_real ) ) ).

% inverse_eq_divide
thf(fact_8795_inverse__eq__divide,axiom,
    ( invers8013647133539491842omplex
    = ( divide1717551699836669952omplex @ one_one_complex ) ) ).

% inverse_eq_divide
thf(fact_8796_inverse__eq__divide,axiom,
    ( inverse_inverse_rat
    = ( divide_divide_rat @ one_one_rat ) ) ).

% inverse_eq_divide
thf(fact_8797_power__mult__power__inverse__commute,axiom,
    ! [X: real,M: nat,N: nat] :
      ( ( times_times_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ ( inverse_inverse_real @ X ) @ N ) )
      = ( times_times_real @ ( power_power_real @ ( inverse_inverse_real @ X ) @ N ) @ ( power_power_real @ X @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_8798_power__mult__power__inverse__commute,axiom,
    ! [X: complex,M: nat,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ N ) )
      = ( times_times_complex @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ N ) @ ( power_power_complex @ X @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_8799_power__mult__power__inverse__commute,axiom,
    ! [X: rat,M: nat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ N ) )
      = ( times_times_rat @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ N ) @ ( power_power_rat @ X @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_8800_power__mult__inverse__distrib,axiom,
    ! [X: real,M: nat] :
      ( ( times_times_real @ ( power_power_real @ X @ M ) @ ( inverse_inverse_real @ X ) )
      = ( times_times_real @ ( inverse_inverse_real @ X ) @ ( power_power_real @ X @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_8801_power__mult__inverse__distrib,axiom,
    ! [X: complex,M: nat] :
      ( ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( invers8013647133539491842omplex @ X ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ X ) @ ( power_power_complex @ X @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_8802_power__mult__inverse__distrib,axiom,
    ! [X: rat,M: nat] :
      ( ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( inverse_inverse_rat @ X ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ X ) @ ( power_power_rat @ X @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_8803_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) @ X )
      = ( times_times_real @ X @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_8804_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: complex] :
      ( ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa ) ) @ X )
      = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_8805_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: rat] :
      ( ( times_times_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa ) ) @ X )
      = ( times_times_rat @ X @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_8806_nonzero__abs__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
        = ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ) ).

% nonzero_abs_inverse
thf(fact_8807_nonzero__abs__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
        = ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ) ).

% nonzero_abs_inverse
thf(fact_8808_mult__inverse__of__int__commute,axiom,
    ! [Xa: int,X: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa ) ) @ X )
      = ( times_times_real @ X @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_8809_mult__inverse__of__int__commute,axiom,
    ! [Xa: int,X: complex] :
      ( ( times_times_complex @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa ) ) @ X )
      = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_8810_mult__inverse__of__int__commute,axiom,
    ! [Xa: int,X: rat] :
      ( ( times_times_rat @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa ) ) @ X )
      = ( times_times_rat @ X @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_8811_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X4: real,Y: real] : ( times_times_real @ X4 @ ( inverse_inverse_real @ Y ) ) ) ) ).

% divide_real_def
thf(fact_8812_exp__fdiffs,axiom,
    ( ( diffs_complex
      @ ^ [N2: nat] : ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N2 ) ) )
    = ( ^ [N2: nat] : ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N2 ) ) ) ) ).

% exp_fdiffs
thf(fact_8813_exp__fdiffs,axiom,
    ( ( diffs_real
      @ ^ [N2: nat] : ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) )
    = ( ^ [N2: nat] : ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ).

% exp_fdiffs
thf(fact_8814_le__imp__inverse__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_8815_le__imp__inverse__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_8816_inverse__le__imp__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_8817_inverse__le__imp__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_8818_le__imp__inverse__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_8819_le__imp__inverse__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_8820_inverse__le__imp__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_8821_inverse__le__imp__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_8822_inverse__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ X ) @ one_one_real )
      = ( ( ord_less_eq_real @ X @ zero_zero_real )
        | ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% inverse_le_1_iff
thf(fact_8823_inverse__le__1__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ X ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X @ zero_zero_rat )
        | ( ord_less_eq_rat @ one_one_rat @ X ) ) ) ).

% inverse_le_1_iff
thf(fact_8824_one__less__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_less_inverse
thf(fact_8825_one__less__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_less_inverse
thf(fact_8826_one__less__inverse__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X ) )
      = ( ( ord_less_real @ zero_zero_real @ X )
        & ( ord_less_real @ X @ one_one_real ) ) ) ).

% one_less_inverse_iff
thf(fact_8827_one__less__inverse__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ X ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X )
        & ( ord_less_rat @ X @ one_one_rat ) ) ) ).

% one_less_inverse_iff
thf(fact_8828_field__class_Ofield__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% field_class.field_inverse
thf(fact_8829_field__class_Ofield__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
        = one_one_complex ) ) ).

% field_class.field_inverse
thf(fact_8830_field__class_Ofield__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% field_class.field_inverse
thf(fact_8831_division__ring__inverse__add,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( plus_plus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_8832_division__ring__inverse__add,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( plus_plus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_8833_division__ring__inverse__add,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( plus_plus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_8834_inverse__add,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( inverse_inverse_real @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% inverse_add
thf(fact_8835_inverse__add,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( invers8013647133539491842omplex @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% inverse_add
thf(fact_8836_inverse__add,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( inverse_inverse_rat @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% inverse_add
thf(fact_8837_division__ring__inverse__diff,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ B @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_8838_division__ring__inverse__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ B @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_8839_division__ring__inverse__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ B @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_8840_nonzero__inverse__eq__divide,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_8841_nonzero__inverse__eq__divide,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_8842_nonzero__inverse__eq__divide,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_8843_inverse__powr,axiom,
    ! [Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( powr_real @ ( inverse_inverse_real @ Y2 ) @ A )
        = ( inverse_inverse_real @ ( powr_real @ Y2 @ A ) ) ) ) ).

% inverse_powr
thf(fact_8844_inverse__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_real @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_8845_inverse__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_rat @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_8846_inverse__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_eq_real @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_8847_inverse__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_eq_rat @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_8848_one__le__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_le_inverse
thf(fact_8849_one__le__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_le_inverse
thf(fact_8850_inverse__less__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ X ) @ one_one_real )
      = ( ( ord_less_eq_real @ X @ zero_zero_real )
        | ( ord_less_real @ one_one_real @ X ) ) ) ).

% inverse_less_1_iff
thf(fact_8851_inverse__less__1__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ X ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X @ zero_zero_rat )
        | ( ord_less_rat @ one_one_rat @ X ) ) ) ).

% inverse_less_1_iff
thf(fact_8852_one__le__inverse__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X ) )
      = ( ( ord_less_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% one_le_inverse_iff
thf(fact_8853_one__le__inverse__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ X ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X )
        & ( ord_less_eq_rat @ X @ one_one_rat ) ) ) ).

% one_le_inverse_iff
thf(fact_8854_inverse__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_8855_inverse__diff__inverse,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( uminus1482373934393186551omplex @ ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_8856_inverse__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( uminus_uminus_rat @ ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_8857_reals__Archimedean,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ X ) ) ).

% reals_Archimedean
thf(fact_8858_reals__Archimedean,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N3: nat] : ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) ) @ X ) ) ).

% reals_Archimedean
thf(fact_8859_forall__pos__mono__1,axiom,
    ! [P3: real > $o,E: real] :
      ( ! [D2: real,E2: real] :
          ( ( ord_less_real @ D2 @ E2 )
         => ( ( P3 @ D2 )
           => ( P3 @ E2 ) ) )
     => ( ! [N3: nat] : ( P3 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P3 @ E ) ) ) ) ).

% forall_pos_mono_1
thf(fact_8860_forall__pos__mono,axiom,
    ! [P3: real > $o,E: real] :
      ( ! [D2: real,E2: real] :
          ( ( ord_less_real @ D2 @ E2 )
         => ( ( P3 @ D2 )
           => ( P3 @ E2 ) ) )
     => ( ! [N3: nat] :
            ( ( N3 != zero_zero_nat )
           => ( P3 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P3 @ E ) ) ) ) ).

% forall_pos_mono
thf(fact_8861_real__arch__inverse,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
      = ( ? [N2: nat] :
            ( ( N2 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ E ) ) ) ) ).

% real_arch_inverse
thf(fact_8862_even__xor__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3222712562003087583nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_8863_even__xor__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_8864_even__xor__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_8865_sqrt__divide__self__eq,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( divide_divide_real @ ( sqrt @ X ) @ X )
        = ( inverse_inverse_real @ ( sqrt @ X ) ) ) ) ).

% sqrt_divide_self_eq
thf(fact_8866_summable__exp,axiom,
    ! [X: complex] :
      ( summable_complex
      @ ^ [N2: nat] : ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N2 ) ) @ ( power_power_complex @ X @ N2 ) ) ) ).

% summable_exp
thf(fact_8867_summable__exp,axiom,
    ! [X: real] :
      ( summable_real
      @ ^ [N2: nat] : ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ).

% summable_exp
thf(fact_8868_ex__inverse__of__nat__less,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_8869_ex__inverse__of__nat__less,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ N3 ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_8870_power__diff__conv__inverse,axiom,
    ! [X: real,M: nat,N: nat] :
      ( ( X != zero_zero_real )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( power_power_real @ X @ ( minus_minus_nat @ N @ M ) )
          = ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ ( inverse_inverse_real @ X ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_8871_power__diff__conv__inverse,axiom,
    ! [X: complex,M: nat,N: nat] :
      ( ( X != zero_zero_complex )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( power_power_complex @ X @ ( minus_minus_nat @ N @ M ) )
          = ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_8872_power__diff__conv__inverse,axiom,
    ! [X: rat,M: nat,N: nat] :
      ( ( X != zero_zero_rat )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( power_power_rat @ X @ ( minus_minus_nat @ N @ M ) )
          = ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_8873_log__inverse,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( log @ A @ ( inverse_inverse_real @ X ) )
            = ( uminus_uminus_real @ ( log @ A @ X ) ) ) ) ) ) ).

% log_inverse
thf(fact_8874_exp__plus__inverse__exp,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) ) ).

% exp_plus_inverse_exp
thf(fact_8875_plus__inverse__ge__2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_8876_real__inv__sqrt__pow2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( inverse_inverse_real @ X ) ) ) ).

% real_inv_sqrt_pow2
thf(fact_8877_tan__cot,axiom,
    ! [X: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
      = ( inverse_inverse_real @ ( tan_real @ X ) ) ) ).

% tan_cot
thf(fact_8878_xor__nat__unfold,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M2: nat,N2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ N2 @ ( if_nat @ ( N2 = zero_zero_nat ) @ M2 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% xor_nat_unfold
thf(fact_8879_real__le__x__sinh,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ X @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_x_sinh
thf(fact_8880_xor__nat__rec,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M2: nat,N2: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
             != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_nat_rec
thf(fact_8881_xor__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3222712562003087583nteger @ A @ one_one_Code_integer )
      = ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n356916108424825756nteger
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% xor_one_eq
thf(fact_8882_xor__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ one_one_nat )
      = ( minus_minus_nat @ ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% xor_one_eq
thf(fact_8883_xor__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ one_one_int )
      = ( minus_minus_int @ ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2684676970156552555ol_int
          @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% xor_one_eq
thf(fact_8884_one__xor__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3222712562003087583nteger @ one_one_Code_integer @ A )
      = ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n356916108424825756nteger
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_xor_eq
thf(fact_8885_one__xor__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ A )
      = ( minus_minus_nat @ ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_xor_eq
thf(fact_8886_one__xor__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ A )
      = ( minus_minus_int @ ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2684676970156552555ol_int
          @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_xor_eq
thf(fact_8887_real__le__abs__sinh,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_abs_sinh
thf(fact_8888_tan__sec,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( power_power_real @ ( inverse_inverse_real @ ( cos_real @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% tan_sec
thf(fact_8889_tan__sec,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( plus_plus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( power_power_complex @ ( invers8013647133539491842omplex @ ( cos_complex @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% tan_sec
thf(fact_8890_case__prod__Pair__iden,axiom,
    ! [P5: produc6271795597528267376eger_o] :
      ( ( produc8281089916252573759eger_o @ produc6677183202524767010eger_o @ P5 )
      = P5 ) ).

% case_prod_Pair_iden
thf(fact_8891_case__prod__Pair__iden,axiom,
    ! [P5: product_prod_num_num] :
      ( ( produc64540874165560627um_num @ product_Pair_num_num @ P5 )
      = P5 ) ).

% case_prod_Pair_iden
thf(fact_8892_case__prod__Pair__iden,axiom,
    ! [P5: product_prod_nat_num] :
      ( ( produc49306077274653107at_num @ product_Pair_nat_num @ P5 )
      = P5 ) ).

% case_prod_Pair_iden
thf(fact_8893_case__prod__Pair__iden,axiom,
    ! [P5: product_prod_nat_nat] :
      ( ( produc2626176000494625587at_nat @ product_Pair_nat_nat @ P5 )
      = P5 ) ).

% case_prod_Pair_iden
thf(fact_8894_case__prod__Pair__iden,axiom,
    ! [P5: product_prod_int_int] :
      ( ( produc4245557441103728435nt_int @ product_Pair_int_int @ P5 )
      = P5 ) ).

% case_prod_Pair_iden
thf(fact_8895_xor__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% xor_Suc_0_eq
thf(fact_8896_exp__first__two__terms,axiom,
    ( exp_real
    = ( ^ [X4: real] :
          ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X4 )
          @ ( suminf_real
            @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_real @ X4 @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% exp_first_two_terms
thf(fact_8897_exp__first__two__terms,axiom,
    ( exp_complex
    = ( ^ [X4: complex] :
          ( plus_plus_complex @ ( plus_plus_complex @ one_one_complex @ X4 )
          @ ( suminf_complex
            @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_complex @ X4 @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% exp_first_two_terms
thf(fact_8898_Arg__def,axiom,
    ( arg
    = ( ^ [Z6: complex] :
          ( if_real @ ( Z6 = zero_zero_complex ) @ zero_zero_real
          @ ( fChoice_real
            @ ^ [A4: real] :
                ( ( ( sgn_sgn_complex @ Z6 )
                  = ( cis @ A4 ) )
                & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A4 )
                & ( ord_less_eq_real @ A4 @ pi ) ) ) ) ) ) ).

% Arg_def
thf(fact_8899_sinh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( sinh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_ln_real
thf(fact_8900_cosh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( cosh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_ln_real
thf(fact_8901_mult__scaleR__left,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( times_times_real @ ( real_V1485227260804924795R_real @ A @ X ) @ Y2 )
      = ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y2 ) ) ) ).

% mult_scaleR_left
thf(fact_8902_mult__scaleR__left,axiom,
    ! [A: real,X: complex,Y2: complex] :
      ( ( times_times_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ Y2 )
      = ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y2 ) ) ) ).

% mult_scaleR_left
thf(fact_8903_mult__scaleR__right,axiom,
    ! [X: real,A: real,Y2: real] :
      ( ( times_times_real @ X @ ( real_V1485227260804924795R_real @ A @ Y2 ) )
      = ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y2 ) ) ) ).

% mult_scaleR_right
thf(fact_8904_mult__scaleR__right,axiom,
    ! [X: complex,A: real,Y2: complex] :
      ( ( times_times_complex @ X @ ( real_V2046097035970521341omplex @ A @ Y2 ) )
      = ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y2 ) ) ) ).

% mult_scaleR_right
thf(fact_8905_scaleR__one,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ one_one_real @ X )
      = X ) ).

% scaleR_one
thf(fact_8906_scaleR__one,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ one_one_real @ X )
      = X ) ).

% scaleR_one
thf(fact_8907_scaleR__scaleR,axiom,
    ! [A: real,B: real,X: real] :
      ( ( real_V1485227260804924795R_real @ A @ ( real_V1485227260804924795R_real @ B @ X ) )
      = ( real_V1485227260804924795R_real @ ( times_times_real @ A @ B ) @ X ) ) ).

% scaleR_scaleR
thf(fact_8908_scaleR__scaleR,axiom,
    ! [A: real,B: real,X: complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( real_V2046097035970521341omplex @ B @ X ) )
      = ( real_V2046097035970521341omplex @ ( times_times_real @ A @ B ) @ X ) ) ).

% scaleR_scaleR
thf(fact_8909_sinh__real__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X ) @ ( sinh_real @ Y2 ) )
      = ( ord_less_eq_real @ X @ Y2 ) ) ).

% sinh_real_le_iff
thf(fact_8910_scaleR__eq__iff,axiom,
    ! [B: real,U: real,A: real] :
      ( ( ( plus_plus_real @ B @ ( real_V1485227260804924795R_real @ U @ A ) )
        = ( plus_plus_real @ A @ ( real_V1485227260804924795R_real @ U @ B ) ) )
      = ( ( A = B )
        | ( U = one_one_real ) ) ) ).

% scaleR_eq_iff
thf(fact_8911_scaleR__eq__iff,axiom,
    ! [B: complex,U: real,A: complex] :
      ( ( ( plus_plus_complex @ B @ ( real_V2046097035970521341omplex @ U @ A ) )
        = ( plus_plus_complex @ A @ ( real_V2046097035970521341omplex @ U @ B ) ) )
      = ( ( A = B )
        | ( U = one_one_real ) ) ) ).

% scaleR_eq_iff
thf(fact_8912_cosh__0,axiom,
    ( ( cosh_complex @ zero_zero_complex )
    = one_one_complex ) ).

% cosh_0
thf(fact_8913_cosh__0,axiom,
    ( ( cosh_real @ zero_zero_real )
    = one_one_real ) ).

% cosh_0
thf(fact_8914_scaleR__power,axiom,
    ! [X: real,Y2: real,N: nat] :
      ( ( power_power_real @ ( real_V1485227260804924795R_real @ X @ Y2 ) @ N )
      = ( real_V1485227260804924795R_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y2 @ N ) ) ) ).

% scaleR_power
thf(fact_8915_scaleR__power,axiom,
    ! [X: real,Y2: complex,N: nat] :
      ( ( power_power_complex @ ( real_V2046097035970521341omplex @ X @ Y2 ) @ N )
      = ( real_V2046097035970521341omplex @ ( power_power_real @ X @ N ) @ ( power_power_complex @ Y2 @ N ) ) ) ).

% scaleR_power
thf(fact_8916_sinh__real__nonneg__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% sinh_real_nonneg_iff
thf(fact_8917_sinh__real__nonpos__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% sinh_real_nonpos_iff
thf(fact_8918_xor__nonnegative__int__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K2 @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K2 )
        = ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% xor_nonnegative_int_iff
thf(fact_8919_xor__negative__int__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K2 @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K2 @ zero_zero_int )
       != ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% xor_negative_int_iff
thf(fact_8920_scaleR__minus1__left,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ ( uminus_uminus_real @ one_one_real ) @ X )
      = ( uminus_uminus_real @ X ) ) ).

% scaleR_minus1_left
thf(fact_8921_scaleR__minus1__left,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ ( uminus_uminus_real @ one_one_real ) @ X )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% scaleR_minus1_left
thf(fact_8922_scaleR__collapse,axiom,
    ! [U: real,A: real] :
      ( ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V1485227260804924795R_real @ U @ A ) )
      = A ) ).

% scaleR_collapse
thf(fact_8923_scaleR__collapse,axiom,
    ! [U: real,A: complex] :
      ( ( plus_plus_complex @ ( real_V2046097035970521341omplex @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V2046097035970521341omplex @ U @ A ) )
      = A ) ).

% scaleR_collapse
thf(fact_8924_norm__scaleR,axiom,
    ! [A: real,X: real] :
      ( ( real_V7735802525324610683m_real @ ( real_V1485227260804924795R_real @ A @ X ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( real_V7735802525324610683m_real @ X ) ) ) ).

% norm_scaleR
thf(fact_8925_norm__scaleR,axiom,
    ! [A: real,X: complex] :
      ( ( real_V1022390504157884413omplex @ ( real_V2046097035970521341omplex @ A @ X ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( real_V1022390504157884413omplex @ X ) ) ) ).

% norm_scaleR
thf(fact_8926_scaleR__times,axiom,
    ! [U: num,W: num,A: real] :
      ( ( real_V1485227260804924795R_real @ ( numeral_numeral_real @ U ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( real_V1485227260804924795R_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ A ) ) ).

% scaleR_times
thf(fact_8927_scaleR__times,axiom,
    ! [U: num,W: num,A: complex] :
      ( ( real_V2046097035970521341omplex @ ( numeral_numeral_real @ U ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( real_V2046097035970521341omplex @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ A ) ) ).

% scaleR_times
thf(fact_8928_inverse__scaleR__times,axiom,
    ! [V: num,W: num,A: real] :
      ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( numeral_numeral_real @ W ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% inverse_scaleR_times
thf(fact_8929_inverse__scaleR__times,axiom,
    ! [V: num,W: num,A: complex] :
      ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( numeral_numeral_real @ W ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% inverse_scaleR_times
thf(fact_8930_fraction__scaleR__times,axiom,
    ! [U: num,V: num,W: num,A: real] :
      ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% fraction_scaleR_times
thf(fact_8931_fraction__scaleR__times,axiom,
    ! [U: num,V: num,W: num,A: complex] :
      ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% fraction_scaleR_times
thf(fact_8932_scaleR__half__double,axiom,
    ! [A: real] :
      ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ A @ A ) )
      = A ) ).

% scaleR_half_double
thf(fact_8933_scaleR__half__double,axiom,
    ! [A: complex] :
      ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_complex @ A @ A ) )
      = A ) ).

% scaleR_half_double
thf(fact_8934_sinh__le__cosh__real,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) ) ).

% sinh_le_cosh_real
thf(fact_8935_bit__xor__int__iff,axiom,
    ! [K2: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K2 @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K2 @ N )
       != ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_xor_int_iff
thf(fact_8936_cosh__plus__sinh,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( cosh_complex @ X ) @ ( sinh_complex @ X ) )
      = ( exp_complex @ X ) ) ).

% cosh_plus_sinh
thf(fact_8937_cosh__plus__sinh,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( cosh_real @ X ) @ ( sinh_real @ X ) )
      = ( exp_real @ X ) ) ).

% cosh_plus_sinh
thf(fact_8938_sinh__plus__cosh,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( sinh_complex @ X ) @ ( cosh_complex @ X ) )
      = ( exp_complex @ X ) ) ).

% sinh_plus_cosh
thf(fact_8939_sinh__plus__cosh,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) )
      = ( exp_real @ X ) ) ).

% sinh_plus_cosh
thf(fact_8940_verit__sko__ex_H,axiom,
    ! [P3: real > $o,A2: $o] :
      ( ( ( P3 @ ( fChoice_real @ P3 ) )
        = A2 )
     => ( ( ? [X6: real] : ( P3 @ X6 ) )
        = A2 ) ) ).

% verit_sko_ex'
thf(fact_8941_verit__sko__forall,axiom,
    ( ( ^ [P: real > $o] :
        ! [X3: real] : ( P @ X3 ) )
    = ( ^ [P2: real > $o] :
          ( P2
          @ ( fChoice_real
            @ ^ [X4: real] :
                ~ ( P2 @ X4 ) ) ) ) ) ).

% verit_sko_forall
thf(fact_8942_verit__sko__forall_H,axiom,
    ! [P3: real > $o,A2: $o] :
      ( ( ( P3
          @ ( fChoice_real
            @ ^ [X4: real] :
                ~ ( P3 @ X4 ) ) )
        = A2 )
     => ( ( ! [X6: real] : ( P3 @ X6 ) )
        = A2 ) ) ).

% verit_sko_forall'
thf(fact_8943_verit__sko__forall_H_H,axiom,
    ! [B4: real,A2: real,P3: real > $o] :
      ( ( B4 = A2 )
     => ( ( ( fChoice_real @ P3 )
          = A2 )
        = ( ( fChoice_real @ P3 )
          = B4 ) ) ) ).

% verit_sko_forall''
thf(fact_8944_verit__sko__ex__indirect,axiom,
    ! [X: real,P3: real > $o] :
      ( ( X
        = ( fChoice_real @ P3 ) )
     => ( ( ? [X6: real] : ( P3 @ X6 ) )
        = ( P3 @ X ) ) ) ).

% verit_sko_ex_indirect
thf(fact_8945_verit__sko__ex__indirect2,axiom,
    ! [X: real,P3: real > $o,P6: real > $o] :
      ( ( X
        = ( fChoice_real @ P3 ) )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
            = ( P6 @ X5 ) )
       => ( ( ? [X6: real] : ( P6 @ X6 ) )
          = ( P3 @ X ) ) ) ) ).

% verit_sko_ex_indirect2
thf(fact_8946_verit__sko__forall__indirect,axiom,
    ! [X: real,P3: real > $o] :
      ( ( X
        = ( fChoice_real
          @ ^ [X4: real] :
              ~ ( P3 @ X4 ) ) )
     => ( ( ! [X6: real] : ( P3 @ X6 ) )
        = ( P3 @ X ) ) ) ).

% verit_sko_forall_indirect
thf(fact_8947_verit__sko__forall__indirect2,axiom,
    ! [X: real,P3: real > $o,P6: real > $o] :
      ( ( X
        = ( fChoice_real
          @ ^ [X4: real] :
              ~ ( P3 @ X4 ) ) )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
            = ( P6 @ X5 ) )
       => ( ( ! [X6: real] : ( P6 @ X6 ) )
          = ( P3 @ X ) ) ) ) ).

% verit_sko_forall_indirect2
thf(fact_8948_scaleR__right__distrib,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( real_V1485227260804924795R_real @ A @ ( plus_plus_real @ X @ Y2 ) )
      = ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ A @ Y2 ) ) ) ).

% scaleR_right_distrib
thf(fact_8949_scaleR__right__distrib,axiom,
    ! [A: real,X: complex,Y2: complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( plus_plus_complex @ X @ Y2 ) )
      = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ A @ Y2 ) ) ) ).

% scaleR_right_distrib
thf(fact_8950_sinh__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( sinh_complex @ ( minus_minus_complex @ X @ Y2 ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( sinh_complex @ X ) @ ( cosh_complex @ Y2 ) ) @ ( times_times_complex @ ( cosh_complex @ X ) @ ( sinh_complex @ Y2 ) ) ) ) ).

% sinh_diff
thf(fact_8951_sinh__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( sinh_real @ ( minus_minus_real @ X @ Y2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( sinh_real @ X ) @ ( cosh_real @ Y2 ) ) @ ( times_times_real @ ( cosh_real @ X ) @ ( sinh_real @ Y2 ) ) ) ) ).

% sinh_diff
thf(fact_8952_cosh__diff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( cosh_complex @ ( minus_minus_complex @ X @ Y2 ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( cosh_complex @ X ) @ ( cosh_complex @ Y2 ) ) @ ( times_times_complex @ ( sinh_complex @ X ) @ ( sinh_complex @ Y2 ) ) ) ) ).

% cosh_diff
thf(fact_8953_cosh__diff,axiom,
    ! [X: real,Y2: real] :
      ( ( cosh_real @ ( minus_minus_real @ X @ Y2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) ) @ ( times_times_real @ ( sinh_real @ X ) @ ( sinh_real @ Y2 ) ) ) ) ).

% cosh_diff
thf(fact_8954_sinh__add,axiom,
    ! [X: real,Y2: real] :
      ( ( sinh_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( sinh_real @ X ) @ ( cosh_real @ Y2 ) ) @ ( times_times_real @ ( cosh_real @ X ) @ ( sinh_real @ Y2 ) ) ) ) ).

% sinh_add
thf(fact_8955_cosh__add,axiom,
    ! [X: real,Y2: real] :
      ( ( cosh_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) ) @ ( times_times_real @ ( sinh_real @ X ) @ ( sinh_real @ Y2 ) ) ) ) ).

% cosh_add
thf(fact_8956_real__scaleR__def,axiom,
    real_V1485227260804924795R_real = times_times_real ).

% real_scaleR_def
thf(fact_8957_tanh__def,axiom,
    ( tanh_complex
    = ( ^ [X4: complex] : ( divide1717551699836669952omplex @ ( sinh_complex @ X4 ) @ ( cosh_complex @ X4 ) ) ) ) ).

% tanh_def
thf(fact_8958_tanh__def,axiom,
    ( tanh_real
    = ( ^ [X4: real] : ( divide_divide_real @ ( sinh_real @ X4 ) @ ( cosh_real @ X4 ) ) ) ) ).

% tanh_def
thf(fact_8959_summable__scaleR__right,axiom,
    ! [X9: nat > real,R: real] :
      ( ( summable_real @ X9 )
     => ( summable_real
        @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ R @ ( X9 @ N2 ) ) ) ) ).

% summable_scaleR_right
thf(fact_8960_summable__scaleR__right,axiom,
    ! [X9: nat > complex,R: real] :
      ( ( summable_complex @ X9 )
     => ( summable_complex
        @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ R @ ( X9 @ N2 ) ) ) ) ).

% summable_scaleR_right
thf(fact_8961_sums__scaleR__right,axiom,
    ! [X9: nat > real,A: real,R: real] :
      ( ( sums_real @ X9 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ R @ ( X9 @ N2 ) )
        @ ( real_V1485227260804924795R_real @ R @ A ) ) ) ).

% sums_scaleR_right
thf(fact_8962_sums__scaleR__right,axiom,
    ! [X9: nat > complex,A: complex,R: real] :
      ( ( sums_complex @ X9 @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ R @ ( X9 @ N2 ) )
        @ ( real_V2046097035970521341omplex @ R @ A ) ) ) ).

% sums_scaleR_right
thf(fact_8963_XOR__lower,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X @ Y2 ) ) ) ) ).

% XOR_lower
thf(fact_8964_scaleR__left_Oadd,axiom,
    ! [X: real,Y2: real,Xa: real] :
      ( ( real_V1485227260804924795R_real @ ( plus_plus_real @ X @ Y2 ) @ Xa )
      = ( plus_plus_real @ ( real_V1485227260804924795R_real @ X @ Xa ) @ ( real_V1485227260804924795R_real @ Y2 @ Xa ) ) ) ).

% scaleR_left.add
thf(fact_8965_scaleR__left_Oadd,axiom,
    ! [X: real,Y2: real,Xa: complex] :
      ( ( real_V2046097035970521341omplex @ ( plus_plus_real @ X @ Y2 ) @ Xa )
      = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ X @ Xa ) @ ( real_V2046097035970521341omplex @ Y2 @ Xa ) ) ) ).

% scaleR_left.add
thf(fact_8966_scaleR__left__distrib,axiom,
    ! [A: real,B: real,X: real] :
      ( ( real_V1485227260804924795R_real @ ( plus_plus_real @ A @ B ) @ X )
      = ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ).

% scaleR_left_distrib
thf(fact_8967_scaleR__left__distrib,axiom,
    ! [A: real,B: real,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( plus_plus_real @ A @ B ) @ X )
      = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ B @ X ) ) ) ).

% scaleR_left_distrib
thf(fact_8968_cosh__real__nonneg,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X ) ) ).

% cosh_real_nonneg
thf(fact_8969_cosh__real__nonneg__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ).

% cosh_real_nonneg_le_iff
thf(fact_8970_cosh__real__nonpos__le__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_eq_real @ Y2 @ X ) ) ) ) ).

% cosh_real_nonpos_le_iff
thf(fact_8971_scaleR__conv__of__real,axiom,
    ( real_V1485227260804924795R_real
    = ( ^ [R5: real] : ( times_times_real @ ( real_V1803761363581548252l_real @ R5 ) ) ) ) ).

% scaleR_conv_of_real
thf(fact_8972_scaleR__conv__of__real,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real] : ( times_times_complex @ ( real_V4546457046886955230omplex @ R5 ) ) ) ) ).

% scaleR_conv_of_real
thf(fact_8973_of__real__def,axiom,
    ( real_V1803761363581548252l_real
    = ( ^ [R5: real] : ( real_V1485227260804924795R_real @ R5 @ one_one_real ) ) ) ).

% of_real_def
thf(fact_8974_of__real__def,axiom,
    ( real_V4546457046886955230omplex
    = ( ^ [R5: real] : ( real_V2046097035970521341omplex @ R5 @ one_one_complex ) ) ) ).

% of_real_def
thf(fact_8975_cosh__real__ge__1,axiom,
    ! [X: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X ) ) ).

% cosh_real_ge_1
thf(fact_8976_sinh__double,axiom,
    ! [X: complex] :
      ( ( sinh_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sinh_complex @ X ) ) @ ( cosh_complex @ X ) ) ) ).

% sinh_double
thf(fact_8977_sinh__double,axiom,
    ! [X: real] :
      ( ( sinh_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sinh_real @ X ) ) @ ( cosh_real @ X ) ) ) ).

% sinh_double
thf(fact_8978_complex__scaleR,axiom,
    ! [R: real,A: real,B: real] :
      ( ( real_V2046097035970521341omplex @ R @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ B ) ) ) ).

% complex_scaleR
thf(fact_8979_divide__complex__def,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X4: complex,Y: complex] : ( times_times_complex @ X4 @ ( invers8013647133539491842omplex @ Y ) ) ) ) ).

% divide_complex_def
thf(fact_8980_suminf__scaleR__right,axiom,
    ! [X9: nat > real,R: real] :
      ( ( summable_real @ X9 )
     => ( ( real_V1485227260804924795R_real @ R @ ( suminf_real @ X9 ) )
        = ( suminf_real
          @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ R @ ( X9 @ N2 ) ) ) ) ) ).

% suminf_scaleR_right
thf(fact_8981_suminf__scaleR__right,axiom,
    ! [X9: nat > complex,R: real] :
      ( ( summable_complex @ X9 )
     => ( ( real_V2046097035970521341omplex @ R @ ( suminf_complex @ X9 ) )
        = ( suminf_complex
          @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ R @ ( X9 @ N2 ) ) ) ) ) ).

% suminf_scaleR_right
thf(fact_8982_summable__scaleR__left,axiom,
    ! [X9: nat > real,X: real] :
      ( ( summable_real @ X9 )
     => ( summable_real
        @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( X9 @ N2 ) @ X ) ) ) ).

% summable_scaleR_left
thf(fact_8983_summable__scaleR__left,axiom,
    ! [X9: nat > real,X: complex] :
      ( ( summable_real @ X9 )
     => ( summable_complex
        @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( X9 @ N2 ) @ X ) ) ) ).

% summable_scaleR_left
thf(fact_8984_sums__scaleR__left,axiom,
    ! [X9: nat > real,A: real,X: real] :
      ( ( sums_real @ X9 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( X9 @ N2 ) @ X )
        @ ( real_V1485227260804924795R_real @ A @ X ) ) ) ).

% sums_scaleR_left
thf(fact_8985_sums__scaleR__left,axiom,
    ! [X9: nat > real,A: real,X: complex] :
      ( ( sums_real @ X9 @ A )
     => ( sums_complex
        @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( X9 @ N2 ) @ X )
        @ ( real_V2046097035970521341omplex @ A @ X ) ) ) ).

% sums_scaleR_left
thf(fact_8986_scaleR__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ C ) @ ( real_V1485227260804924795R_real @ B @ C ) ) ) ) ).

% scaleR_right_mono_neg
thf(fact_8987_scaleR__right__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ) ).

% scaleR_right_mono
thf(fact_8988_scaleR__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% scaleR_le_cancel_left_pos
thf(fact_8989_scaleR__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% scaleR_le_cancel_left_neg
thf(fact_8990_scaleR__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% scaleR_le_cancel_left
thf(fact_8991_scaleR__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) ) ) ) ).

% scaleR_left_mono_neg
thf(fact_8992_scaleR__left__mono,axiom,
    ! [X: real,Y2: real,A: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ A @ Y2 ) ) ) ) ).

% scaleR_left_mono
thf(fact_8993_Real__Vector__Spaces_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% Real_Vector_Spaces.le_add_iff2
thf(fact_8994_Real__Vector__Spaces_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% Real_Vector_Spaces.le_add_iff1
thf(fact_8995_cosh__real__nonpos__less__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_real @ Y2 @ X ) ) ) ) ).

% cosh_real_nonpos_less_iff
thf(fact_8996_cosh__real__nonneg__less__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_real @ X @ Y2 ) ) ) ) ).

% cosh_real_nonneg_less_iff
thf(fact_8997_cosh__real__strict__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y2 ) ) ) ) ).

% cosh_real_strict_mono
thf(fact_8998_cosh__square__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ).

% cosh_square_eq
thf(fact_8999_cosh__square__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ).

% cosh_square_eq
thf(fact_9000_sinh__square__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ).

% sinh_square_eq
thf(fact_9001_sinh__square__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ).

% sinh_square_eq
thf(fact_9002_hyperbolic__pythagoras,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% hyperbolic_pythagoras
thf(fact_9003_hyperbolic__pythagoras,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% hyperbolic_pythagoras
thf(fact_9004_xor__nat__def,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M2: nat,N2: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% xor_nat_def
thf(fact_9005_arcosh__cosh__real,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( arcosh_real @ ( cosh_real @ X ) )
        = X ) ) ).

% arcosh_cosh_real
thf(fact_9006_cosh__def,axiom,
    ( cosh_real
    = ( ^ [X4: real] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ ( exp_real @ X4 ) @ ( exp_real @ ( uminus_uminus_real @ X4 ) ) ) ) ) ) ).

% cosh_def
thf(fact_9007_cosh__def,axiom,
    ( cosh_complex
    = ( ^ [X4: complex] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X4 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X4 ) ) ) ) ) ) ).

% cosh_def
thf(fact_9008_sinh__def,axiom,
    ( sinh_real
    = ( ^ [X4: real] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( minus_minus_real @ ( exp_real @ X4 ) @ ( exp_real @ ( uminus_uminus_real @ X4 ) ) ) ) ) ) ).

% sinh_def
thf(fact_9009_sinh__def,axiom,
    ( sinh_complex
    = ( ^ [X4: complex] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( minus_minus_complex @ ( exp_complex @ X4 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X4 ) ) ) ) ) ) ).

% sinh_def
thf(fact_9010_cosh__double,axiom,
    ! [X: complex] :
      ( ( cosh_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( plus_plus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cosh_double
thf(fact_9011_cosh__double,axiom,
    ! [X: real] :
      ( ( cosh_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( plus_plus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cosh_double
thf(fact_9012_suminf__scaleR__left,axiom,
    ! [X9: nat > real,X: real] :
      ( ( summable_real @ X9 )
     => ( ( real_V1485227260804924795R_real @ ( suminf_real @ X9 ) @ X )
        = ( suminf_real
          @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( X9 @ N2 ) @ X ) ) ) ) ).

% suminf_scaleR_left
thf(fact_9013_suminf__scaleR__left,axiom,
    ! [X9: nat > real,X: complex] :
      ( ( summable_real @ X9 )
     => ( ( real_V2046097035970521341omplex @ ( suminf_real @ X9 ) @ X )
        = ( suminf_complex
          @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( X9 @ N2 ) @ X ) ) ) ) ).

% suminf_scaleR_left
thf(fact_9014_zero__le__scaleR__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( A = zero_zero_real ) ) ) ).

% zero_le_scaleR_iff
thf(fact_9015_scaleR__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% scaleR_le_0_iff
thf(fact_9016_scaleR__mono,axiom,
    ! [A: real,B: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ X )
           => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ Y2 ) ) ) ) ) ) ).

% scaleR_mono
thf(fact_9017_scaleR__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ C ) @ ( real_V1485227260804924795R_real @ B @ D ) ) ) ) ) ) ).

% scaleR_mono'
thf(fact_9018_split__scaleR__neg__le,axiom,
    ! [A: real,X: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ X @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ X ) ) )
     => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ).

% split_scaleR_neg_le
thf(fact_9019_split__scaleR__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) ) ) ).

% split_scaleR_pos_le
thf(fact_9020_scaleR__nonneg__nonneg,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ X ) ) ) ) ).

% scaleR_nonneg_nonneg
thf(fact_9021_scaleR__nonneg__nonpos,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ X @ zero_zero_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ) ).

% scaleR_nonneg_nonpos
thf(fact_9022_scaleR__nonpos__nonneg,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ) ).

% scaleR_nonpos_nonneg
thf(fact_9023_scaleR__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) ) ) ) ).

% scaleR_nonpos_nonpos
thf(fact_9024_scaleR__left__le__one__le,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ X ) ) ) ).

% scaleR_left_le_one_le
thf(fact_9025_scaleR__2,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X )
      = ( plus_plus_real @ X @ X ) ) ).

% scaleR_2
thf(fact_9026_scaleR__2,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X )
      = ( plus_plus_complex @ X @ X ) ) ).

% scaleR_2
thf(fact_9027_real__vector__eq__affinity,axiom,
    ! [M: real,Y2: real,X: real,C: real] :
      ( ( M != zero_zero_real )
     => ( ( Y2
          = ( plus_plus_real @ ( real_V1485227260804924795R_real @ M @ X ) @ C ) )
        = ( ( minus_minus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ Y2 ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ C ) )
          = X ) ) ) ).

% real_vector_eq_affinity
thf(fact_9028_real__vector__eq__affinity,axiom,
    ! [M: real,Y2: complex,X: complex,C: complex] :
      ( ( M != zero_zero_real )
     => ( ( Y2
          = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ M @ X ) @ C ) )
        = ( ( minus_minus_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ Y2 ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ C ) )
          = X ) ) ) ).

% real_vector_eq_affinity
thf(fact_9029_real__vector__affinity__eq,axiom,
    ! [M: real,X: real,C: real,Y2: real] :
      ( ( M != zero_zero_real )
     => ( ( ( plus_plus_real @ ( real_V1485227260804924795R_real @ M @ X ) @ C )
          = Y2 )
        = ( X
          = ( minus_minus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ Y2 ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ C ) ) ) ) ) ).

% real_vector_affinity_eq
thf(fact_9030_real__vector__affinity__eq,axiom,
    ! [M: real,X: complex,C: complex,Y2: complex] :
      ( ( M != zero_zero_real )
     => ( ( ( plus_plus_complex @ ( real_V2046097035970521341omplex @ M @ X ) @ C )
          = Y2 )
        = ( X
          = ( minus_minus_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ Y2 ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ C ) ) ) ) ) ).

% real_vector_affinity_eq
thf(fact_9031_pos__divideR__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
        = ( ord_less_eq_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% pos_divideR_le_eq
thf(fact_9032_pos__le__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
        = ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).

% pos_le_divideR_eq
thf(fact_9033_neg__divideR__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
        = ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).

% neg_divideR_le_eq
thf(fact_9034_neg__le__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
        = ( ord_less_eq_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% neg_le_divideR_eq
thf(fact_9035_pos__divideR__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
        = ( ord_less_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% pos_divideR_less_eq
thf(fact_9036_pos__less__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
        = ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).

% pos_less_divideR_eq
thf(fact_9037_neg__divideR__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
        = ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).

% neg_divideR_less_eq
thf(fact_9038_neg__less__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
        = ( ord_less_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% neg_less_divideR_eq
thf(fact_9039_summable__exp__generic,axiom,
    ! [X: real] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ).

% summable_exp_generic
thf(fact_9040_summable__exp__generic,axiom,
    ! [X: complex] :
      ( summable_complex
      @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_complex @ X @ N2 ) ) ) ).

% summable_exp_generic
thf(fact_9041_sin__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( sin_coeff @ N2 ) @ ( power_power_real @ X @ N2 ) )
      @ ( sin_real @ X ) ) ).

% sin_converges
thf(fact_9042_sin__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( sin_coeff @ N2 ) @ ( power_power_complex @ X @ N2 ) )
      @ ( sin_complex @ X ) ) ).

% sin_converges
thf(fact_9043_sin__def,axiom,
    ( sin_real
    = ( ^ [X4: real] :
          ( suminf_real
          @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( sin_coeff @ N2 ) @ ( power_power_real @ X4 @ N2 ) ) ) ) ) ).

% sin_def
thf(fact_9044_sin__def,axiom,
    ( sin_complex
    = ( ^ [X4: complex] :
          ( suminf_complex
          @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( sin_coeff @ N2 ) @ ( power_power_complex @ X4 @ N2 ) ) ) ) ) ).

% sin_def
thf(fact_9045_cos__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( cos_coeff @ N2 ) @ ( power_power_real @ X @ N2 ) )
      @ ( cos_real @ X ) ) ).

% cos_converges
thf(fact_9046_cos__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( cos_coeff @ N2 ) @ ( power_power_complex @ X @ N2 ) )
      @ ( cos_complex @ X ) ) ).

% cos_converges
thf(fact_9047_cos__def,axiom,
    ( cos_real
    = ( ^ [X4: real] :
          ( suminf_real
          @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( cos_coeff @ N2 ) @ ( power_power_real @ X4 @ N2 ) ) ) ) ) ).

% cos_def
thf(fact_9048_cos__def,axiom,
    ( cos_complex
    = ( ^ [X4: complex] :
          ( suminf_complex
          @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( cos_coeff @ N2 ) @ ( power_power_complex @ X4 @ N2 ) ) ) ) ) ).

% cos_def
thf(fact_9049_summable__norm__sin,axiom,
    ! [X: real] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( real_V1485227260804924795R_real @ ( sin_coeff @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ).

% summable_norm_sin
thf(fact_9050_summable__norm__sin,axiom,
    ! [X: complex] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( real_V2046097035970521341omplex @ ( sin_coeff @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ).

% summable_norm_sin
thf(fact_9051_summable__norm__cos,axiom,
    ! [X: real] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( real_V1485227260804924795R_real @ ( cos_coeff @ N2 ) @ ( power_power_real @ X @ N2 ) ) ) ) ).

% summable_norm_cos
thf(fact_9052_summable__norm__cos,axiom,
    ! [X: complex] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( real_V2046097035970521341omplex @ ( cos_coeff @ N2 ) @ ( power_power_complex @ X @ N2 ) ) ) ) ).

% summable_norm_cos
thf(fact_9053_cosh__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) @ zero_zero_real )
      @ ( cosh_real @ X ) ) ).

% cosh_converges
thf(fact_9054_cosh__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_complex @ X @ N2 ) ) @ zero_zero_complex )
      @ ( cosh_complex @ X ) ) ).

% cosh_converges
thf(fact_9055_neg__minus__divideR__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
        = ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divideR_le_eq
thf(fact_9056_neg__le__minus__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% neg_le_minus_divideR_eq
thf(fact_9057_pos__minus__divideR__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% pos_minus_divideR_le_eq
thf(fact_9058_pos__le__minus__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
        = ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divideR_eq
thf(fact_9059_neg__minus__divideR__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
        = ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divideR_less_eq
thf(fact_9060_neg__less__minus__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% neg_less_minus_divideR_eq
thf(fact_9061_pos__minus__divideR__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).

% pos_minus_divideR_less_eq
thf(fact_9062_pos__less__minus__divideR__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
        = ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divideR_eq
thf(fact_9063_sinh__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) )
      @ ( sinh_real @ X ) ) ).

% sinh_converges
thf(fact_9064_sinh__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_complex @ X @ N2 ) ) )
      @ ( sinh_complex @ X ) ) ).

% sinh_converges
thf(fact_9065_exp__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) )
      @ ( exp_real @ X ) ) ).

% exp_converges
thf(fact_9066_exp__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_complex @ X @ N2 ) )
      @ ( exp_complex @ X ) ) ).

% exp_converges
thf(fact_9067_exp__def,axiom,
    ( exp_real
    = ( ^ [X4: real] :
          ( suminf_real
          @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X4 @ N2 ) ) ) ) ) ).

% exp_def
thf(fact_9068_exp__def,axiom,
    ( exp_complex
    = ( ^ [X4: complex] :
          ( suminf_complex
          @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_complex @ X4 @ N2 ) ) ) ) ) ).

% exp_def
thf(fact_9069_summable__norm__exp,axiom,
    ! [X: real] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V7735802525324610683m_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ).

% summable_norm_exp
thf(fact_9070_summable__norm__exp,axiom,
    ! [X: complex] :
      ( summable_real
      @ ^ [N2: nat] : ( real_V1022390504157884413omplex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_complex @ X @ N2 ) ) ) ) ).

% summable_norm_exp
thf(fact_9071_sin__minus__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( sin_coeff @ N2 ) @ ( power_power_real @ ( uminus_uminus_real @ X ) @ N2 ) ) )
      @ ( sin_real @ X ) ) ).

% sin_minus_converges
thf(fact_9072_sin__minus__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( uminus1482373934393186551omplex @ ( real_V2046097035970521341omplex @ ( sin_coeff @ N2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ N2 ) ) )
      @ ( sin_complex @ X ) ) ).

% sin_minus_converges
thf(fact_9073_cos__minus__converges,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( cos_coeff @ N2 ) @ ( power_power_real @ ( uminus_uminus_real @ X ) @ N2 ) )
      @ ( cos_real @ X ) ) ).

% cos_minus_converges
thf(fact_9074_cos__minus__converges,axiom,
    ! [X: complex] :
      ( sums_complex
      @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( cos_coeff @ N2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ N2 ) )
      @ ( cos_complex @ X ) ) ).

% cos_minus_converges
thf(fact_9075_tanh__add,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( cosh_complex @ X )
       != zero_zero_complex )
     => ( ( ( cosh_complex @ Y2 )
         != zero_zero_complex )
       => ( ( tanh_complex @ ( plus_plus_complex @ X @ Y2 ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tanh_complex @ X ) @ ( tanh_complex @ Y2 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tanh_complex @ X ) @ ( tanh_complex @ Y2 ) ) ) ) ) ) ) ).

% tanh_add
thf(fact_9076_tanh__add,axiom,
    ! [X: real,Y2: real] :
      ( ( ( cosh_real @ X )
       != zero_zero_real )
     => ( ( ( cosh_real @ Y2 )
         != zero_zero_real )
       => ( ( tanh_real @ ( plus_plus_real @ X @ Y2 ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( tanh_real @ X ) @ ( tanh_real @ Y2 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tanh_real @ X ) @ ( tanh_real @ Y2 ) ) ) ) ) ) ) ).

% tanh_add
thf(fact_9077_XOR__upper,axiom,
    ! [X: int,N: nat,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se6526347334894502574or_int @ X @ Y2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% XOR_upper
thf(fact_9078_cosh__field__def,axiom,
    ( cosh_real
    = ( ^ [Z6: real] : ( divide_divide_real @ ( plus_plus_real @ ( exp_real @ Z6 ) @ ( exp_real @ ( uminus_uminus_real @ Z6 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_field_def
thf(fact_9079_cosh__field__def,axiom,
    ( cosh_complex
    = ( ^ [Z6: complex] : ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( exp_complex @ Z6 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ Z6 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ).

% cosh_field_def
thf(fact_9080_complex__inverse,axiom,
    ! [A: real,B: real] :
      ( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_inverse
thf(fact_9081_xor__int__rec,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L3: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) )
             != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_int_rec
thf(fact_9082_sinh__field__def,axiom,
    ( sinh_real
    = ( ^ [Z6: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ Z6 ) @ ( exp_real @ ( uminus_uminus_real @ Z6 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_field_def
thf(fact_9083_sinh__field__def,axiom,
    ( sinh_complex
    = ( ^ [Z6: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ Z6 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ Z6 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ).

% sinh_field_def
thf(fact_9084_exp__first__term,axiom,
    ( exp_real
    = ( ^ [X4: real] :
          ( plus_plus_real @ one_one_real
          @ ( suminf_real
            @ ^ [N2: nat] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X4 @ ( suc @ N2 ) ) ) ) ) ) ) ).

% exp_first_term
thf(fact_9085_exp__first__term,axiom,
    ( exp_complex
    = ( ^ [X4: complex] :
          ( plus_plus_complex @ one_one_complex
          @ ( suminf_complex
            @ ^ [N2: nat] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ ( suc @ N2 ) ) ) @ ( power_power_complex @ X4 @ ( suc @ N2 ) ) ) ) ) ) ) ).

% exp_first_term
thf(fact_9086_cosh__zero__iff,axiom,
    ! [X: real] :
      ( ( ( cosh_real @ X )
        = zero_zero_real )
      = ( ( power_power_real @ ( exp_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% cosh_zero_iff
thf(fact_9087_cosh__zero__iff,axiom,
    ! [X: complex] :
      ( ( ( cosh_complex @ X )
        = zero_zero_complex )
      = ( ( power_power_complex @ ( exp_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% cosh_zero_iff
thf(fact_9088_some__sym__eq__trivial,axiom,
    ! [X: real] :
      ( ( fChoice_real
        @ ( ^ [Y3: real,Z2: real] : ( Y3 = Z2 )
          @ X ) )
      = X ) ).

% some_sym_eq_trivial
thf(fact_9089_some__eq__trivial,axiom,
    ! [X: real] :
      ( ( fChoice_real
        @ ^ [Y: real] : ( Y = X ) )
      = X ) ).

% some_eq_trivial
thf(fact_9090_some__equality,axiom,
    ! [P3: real > $o,A: real] :
      ( ( P3 @ A )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( X5 = A ) )
       => ( ( fChoice_real @ P3 )
          = A ) ) ) ).

% some_equality
thf(fact_9091_xor__int__unfold,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L3: int] :
          ( if_int
          @ ( K3
            = ( uminus_uminus_int @ one_one_int ) )
          @ ( bit_ri7919022796975470100ot_int @ L3 )
          @ ( if_int
            @ ( L3
              = ( uminus_uminus_int @ one_one_int ) )
            @ ( bit_ri7919022796975470100ot_int @ K3 )
            @ ( if_int @ ( K3 = zero_zero_int ) @ L3 @ ( if_int @ ( L3 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_int_unfold
thf(fact_9092_bit_Odouble__compl,axiom,
    ! [X: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( bit_ri7919022796975470100ot_int @ X ) )
      = X ) ).

% bit.double_compl
thf(fact_9093_bit_Ocompl__eq__compl__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ( bit_ri7919022796975470100ot_int @ X )
        = ( bit_ri7919022796975470100ot_int @ Y2 ) )
      = ( X = Y2 ) ) ).

% bit.compl_eq_compl_iff
thf(fact_9094_bit_Oxor__compl__left,axiom,
    ! [X: int,Y2: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ Y2 )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X @ Y2 ) ) ) ).

% bit.xor_compl_left
thf(fact_9095_bit_Oxor__compl__right,axiom,
    ! [X: int,Y2: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( bit_ri7919022796975470100ot_int @ Y2 ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X @ Y2 ) ) ) ).

% bit.xor_compl_right
thf(fact_9096_Eps__case__prod__eq,axiom,
    ! [X: code_integer,Y2: $o] :
      ( ( fChoic166683996008689692eger_o
        @ ( produc7828578312038201481er_o_o
          @ ^ [X7: code_integer,Y4: $o] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( produc6677183202524767010eger_o @ X @ Y2 ) ) ).

% Eps_case_prod_eq
thf(fact_9097_Eps__case__prod__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( fChoic5817513213647635945um_num
        @ ( produc5703948589228662326_num_o
          @ ^ [X7: num,Y4: num] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_num_num @ X @ Y2 ) ) ).

% Eps_case_prod_eq
thf(fact_9098_Eps__case__prod__eq,axiom,
    ! [X: nat,Y2: num] :
      ( ( fChoic7687182810340166559at_num
        @ ( produc4927758841916487424_num_o
          @ ^ [X7: nat,Y4: num] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_nat_num @ X @ Y2 ) ) ).

% Eps_case_prod_eq
thf(fact_9099_Eps__case__prod__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( fChoic6978938873391328853at_nat
        @ ( produc6081775807080527818_nat_o
          @ ^ [X7: nat,Y4: nat] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_nat_nat @ X @ Y2 ) ) ).

% Eps_case_prod_eq
thf(fact_9100_Eps__case__prod__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( fChoic3800441565783186701nt_int
        @ ( produc4947309494688390418_int_o
          @ ^ [X7: int,Y4: int] :
              ( ( X = X7 )
              & ( Y2 = Y4 ) ) ) )
      = ( product_Pair_int_int @ X @ Y2 ) ) ).

% Eps_case_prod_eq
thf(fact_9101_bit_Oconj__cancel__right,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
      = zero_zero_int ) ).

% bit.conj_cancel_right
thf(fact_9102_bit_Oconj__cancel__left,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
      = zero_zero_int ) ).

% bit.conj_cancel_left
thf(fact_9103_bit_Ocompl__one,axiom,
    ( ( bit_ri7632146776885996613nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% bit.compl_one
thf(fact_9104_bit_Ocompl__one,axiom,
    ( ( bit_ri7919022796975470100ot_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% bit.compl_one
thf(fact_9105_bit_Ocompl__zero,axiom,
    ( ( bit_ri7632146776885996613nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.compl_zero
thf(fact_9106_bit_Ocompl__zero,axiom,
    ( ( bit_ri7919022796975470100ot_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.compl_zero
thf(fact_9107_bit_Oxor__one__left,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
      = ( bit_ri7632146776885996613nteger @ X ) ) ).

% bit.xor_one_left
thf(fact_9108_bit_Oxor__one__left,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ one_one_int ) @ X )
      = ( bit_ri7919022796975470100ot_int @ X ) ) ).

% bit.xor_one_left
thf(fact_9109_bit_Oxor__one__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_ri7632146776885996613nteger @ X ) ) ).

% bit.xor_one_right
thf(fact_9110_bit_Oxor__one__right,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ X ) ) ).

% bit.xor_one_right
thf(fact_9111_bit_Oxor__cancel__left,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ ( bit_ri7632146776885996613nteger @ X ) @ X )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.xor_cancel_left
thf(fact_9112_bit_Oxor__cancel__left,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.xor_cancel_left
thf(fact_9113_bit_Oxor__cancel__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ X @ ( bit_ri7632146776885996613nteger @ X ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.xor_cancel_right
thf(fact_9114_bit_Oxor__cancel__right,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.xor_cancel_right
thf(fact_9115_not__nonnegative__int__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K2 ) )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% not_nonnegative_int_iff
thf(fact_9116_not__negative__int__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% not_negative_int_iff
thf(fact_9117_minus__not__numeral__eq,axiom,
    ! [N: num] :
      ( ( uminus1351360451143612070nteger @ ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ).

% minus_not_numeral_eq
thf(fact_9118_minus__not__numeral__eq,axiom,
    ! [N: num] :
      ( ( uminus_uminus_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( inc @ N ) ) ) ).

% minus_not_numeral_eq
thf(fact_9119_even__not__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri7632146776885996613nteger @ A ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_not_iff
thf(fact_9120_even__not__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ A ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_not_iff
thf(fact_9121_not__one__eq,axiom,
    ( ( bit_ri7632146776885996613nteger @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% not_one_eq
thf(fact_9122_not__one__eq,axiom,
    ( ( bit_ri7919022796975470100ot_int @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% not_one_eq
thf(fact_9123_of__int__not__numeral,axiom,
    ! [K2: num] :
      ( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K2 ) ) ) ).

% of_int_not_numeral
thf(fact_9124_take__bit__not__take__bit,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ ( bit_se2923211474154528505it_int @ N @ A ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) ) ) ).

% take_bit_not_take_bit
thf(fact_9125_take__bit__not__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
        = ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ B ) ) )
      = ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_not_iff
thf(fact_9126_bit__not__int__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K2 @ N ) ) ) ).

% bit_not_int_iff
thf(fact_9127_of__int__not__eq,axiom,
    ! [K2: int] :
      ( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ K2 ) )
      = ( bit_ri7919022796975470100ot_int @ ( ring_1_of_int_int @ K2 ) ) ) ).

% of_int_not_eq
thf(fact_9128_split__paired__Eps,axiom,
    ( fChoic166683996008689692eger_o
    = ( ^ [P2: produc6271795597528267376eger_o > $o] :
          ( fChoic166683996008689692eger_o
          @ ( produc7828578312038201481er_o_o
            @ ^ [A4: code_integer,B3: $o] : ( P2 @ ( produc6677183202524767010eger_o @ A4 @ B3 ) ) ) ) ) ) ).

% split_paired_Eps
thf(fact_9129_split__paired__Eps,axiom,
    ( fChoic5817513213647635945um_num
    = ( ^ [P2: product_prod_num_num > $o] :
          ( fChoic5817513213647635945um_num
          @ ( produc5703948589228662326_num_o
            @ ^ [A4: num,B3: num] : ( P2 @ ( product_Pair_num_num @ A4 @ B3 ) ) ) ) ) ) ).

% split_paired_Eps
thf(fact_9130_split__paired__Eps,axiom,
    ( fChoic7687182810340166559at_num
    = ( ^ [P2: product_prod_nat_num > $o] :
          ( fChoic7687182810340166559at_num
          @ ( produc4927758841916487424_num_o
            @ ^ [A4: nat,B3: num] : ( P2 @ ( product_Pair_nat_num @ A4 @ B3 ) ) ) ) ) ) ).

% split_paired_Eps
thf(fact_9131_split__paired__Eps,axiom,
    ( fChoic6978938873391328853at_nat
    = ( ^ [P2: product_prod_nat_nat > $o] :
          ( fChoic6978938873391328853at_nat
          @ ( produc6081775807080527818_nat_o
            @ ^ [A4: nat,B3: nat] : ( P2 @ ( product_Pair_nat_nat @ A4 @ B3 ) ) ) ) ) ) ).

% split_paired_Eps
thf(fact_9132_split__paired__Eps,axiom,
    ( fChoic3800441565783186701nt_int
    = ( ^ [P2: product_prod_int_int > $o] :
          ( fChoic3800441565783186701nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [A4: int,B3: int] : ( P2 @ ( product_Pair_int_int @ A4 @ B3 ) ) ) ) ) ) ).

% split_paired_Eps
thf(fact_9133_not__diff__distrib,axiom,
    ! [A: int,B: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A @ B ) )
      = ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).

% not_diff_distrib
thf(fact_9134_not__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( plus_plus_int @ A @ B ) )
      = ( minus_minus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).

% not_add_distrib
thf(fact_9135_minus__eq__not__plus__1,axiom,
    ( uminus1351360451143612070nteger
    = ( ^ [A4: code_integer] : ( plus_p5714425477246183910nteger @ ( bit_ri7632146776885996613nteger @ A4 ) @ one_one_Code_integer ) ) ) ).

% minus_eq_not_plus_1
thf(fact_9136_minus__eq__not__plus__1,axiom,
    ( uminus_uminus_int
    = ( ^ [A4: int] : ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A4 ) @ one_one_int ) ) ) ).

% minus_eq_not_plus_1
thf(fact_9137_not__eq__complement,axiom,
    ( bit_ri7632146776885996613nteger
    = ( ^ [A4: code_integer] : ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A4 ) @ one_one_Code_integer ) ) ) ).

% not_eq_complement
thf(fact_9138_not__eq__complement,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [A4: int] : ( minus_minus_int @ ( uminus_uminus_int @ A4 ) @ one_one_int ) ) ) ).

% not_eq_complement
thf(fact_9139_minus__eq__not__minus__1,axiom,
    ( uminus1351360451143612070nteger
    = ( ^ [A4: code_integer] : ( bit_ri7632146776885996613nteger @ ( minus_8373710615458151222nteger @ A4 @ one_one_Code_integer ) ) ) ) ).

% minus_eq_not_minus_1
thf(fact_9140_minus__eq__not__minus__1,axiom,
    ( uminus_uminus_int
    = ( ^ [A4: int] : ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A4 @ one_one_int ) ) ) ) ).

% minus_eq_not_minus_1
thf(fact_9141_not__int__def,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K3: int] : ( minus_minus_int @ ( uminus_uminus_int @ K3 ) @ one_one_int ) ) ) ).

% not_int_def
thf(fact_9142_and__not__numerals_I1_J,axiom,
    ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = zero_zero_int ) ).

% and_not_numerals(1)
thf(fact_9143_disjunctive__diff,axiom,
    ! [B: int,A: int] :
      ( ! [N3: nat] :
          ( ( bit_se1146084159140164899it_int @ B @ N3 )
         => ( bit_se1146084159140164899it_int @ A @ N3 ) )
     => ( ( minus_minus_int @ A @ B )
        = ( bit_se725231765392027082nd_int @ A @ ( bit_ri7919022796975470100ot_int @ B ) ) ) ) ).

% disjunctive_diff
thf(fact_9144_take__bit__not__eq__mask__diff,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
      = ( minus_minus_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ).

% take_bit_not_eq_mask_diff
thf(fact_9145_minus__numeral__inc__eq,axiom,
    ! [N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) )
      = ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% minus_numeral_inc_eq
thf(fact_9146_minus__numeral__inc__eq,axiom,
    ! [N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ).

% minus_numeral_inc_eq
thf(fact_9147_not__int__div__2,axiom,
    ! [K2: int] :
      ( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% not_int_div_2
thf(fact_9148_even__not__iff__int,axiom,
    ! [K2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K2 ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) ) ).

% even_not_iff_int
thf(fact_9149_and__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(4)
thf(fact_9150_and__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = one_one_int ) ).

% and_not_numerals(2)
thf(fact_9151_not__numeral__Bit0__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ) ).

% not_numeral_Bit0_eq
thf(fact_9152_not__numeral__Bit0__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% not_numeral_Bit0_eq
thf(fact_9153_bit__minus__int__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K2 ) @ N )
      = ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K2 @ one_one_int ) ) @ N ) ) ).

% bit_minus_int_iff
thf(fact_9154_not__numeral__BitM__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ ( bitM @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ) ).

% not_numeral_BitM_eq
thf(fact_9155_not__numeral__BitM__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bitM @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% not_numeral_BitM_eq
thf(fact_9156_take__bit__not__mask__eq__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) )
        = zero_zero_int ) ) ).

% take_bit_not_mask_eq_0
thf(fact_9157_and__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(5)
thf(fact_9158_and__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(7)
thf(fact_9159_and__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = zero_zero_int ) ).

% and_not_numerals(3)
thf(fact_9160_someI2,axiom,
    ! [P3: real > $o,A: real,Q2: real > $o] :
      ( ( P3 @ A )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( Q2 @ X5 ) )
       => ( Q2 @ ( fChoice_real @ P3 ) ) ) ) ).

% someI2
thf(fact_9161_someI__ex,axiom,
    ! [P3: real > $o] :
      ( ? [X_1: real] : ( P3 @ X_1 )
     => ( P3 @ ( fChoice_real @ P3 ) ) ) ).

% someI_ex
thf(fact_9162_someI2__ex,axiom,
    ! [P3: real > $o,Q2: real > $o] :
      ( ? [X_1: real] : ( P3 @ X_1 )
     => ( ! [X5: real] :
            ( ( P3 @ X5 )
           => ( Q2 @ X5 ) )
       => ( Q2 @ ( fChoice_real @ P3 ) ) ) ) ).

% someI2_ex
thf(fact_9163_someI2__bex,axiom,
    ! [A2: set_complex,P3: complex > $o,Q2: complex > $o] :
      ( ? [X2: complex] :
          ( ( member_complex @ X2 @ A2 )
          & ( P3 @ X2 ) )
     => ( ! [X5: complex] :
            ( ( ( member_complex @ X5 @ A2 )
              & ( P3 @ X5 ) )
           => ( Q2 @ X5 ) )
       => ( Q2
          @ ( fChoice_complex
            @ ^ [X4: complex] :
                ( ( member_complex @ X4 @ A2 )
                & ( P3 @ X4 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_9164_someI2__bex,axiom,
    ! [A2: set_set_nat,P3: set_nat > $o,Q2: set_nat > $o] :
      ( ? [X2: set_nat] :
          ( ( member_set_nat @ X2 @ A2 )
          & ( P3 @ X2 ) )
     => ( ! [X5: set_nat] :
            ( ( ( member_set_nat @ X5 @ A2 )
              & ( P3 @ X5 ) )
           => ( Q2 @ X5 ) )
       => ( Q2
          @ ( fChoice_set_nat
            @ ^ [X4: set_nat] :
                ( ( member_set_nat @ X4 @ A2 )
                & ( P3 @ X4 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_9165_someI2__bex,axiom,
    ! [A2: set_nat,P3: nat > $o,Q2: nat > $o] :
      ( ? [X2: nat] :
          ( ( member_nat @ X2 @ A2 )
          & ( P3 @ X2 ) )
     => ( ! [X5: nat] :
            ( ( ( member_nat @ X5 @ A2 )
              & ( P3 @ X5 ) )
           => ( Q2 @ X5 ) )
       => ( Q2
          @ ( fChoice_nat
            @ ^ [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( P3 @ X4 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_9166_someI2__bex,axiom,
    ! [A2: set_int,P3: int > $o,Q2: int > $o] :
      ( ? [X2: int] :
          ( ( member_int @ X2 @ A2 )
          & ( P3 @ X2 ) )
     => ( ! [X5: int] :
            ( ( ( member_int @ X5 @ A2 )
              & ( P3 @ X5 ) )
           => ( Q2 @ X5 ) )
       => ( Q2
          @ ( fChoice_int
            @ ^ [X4: int] :
                ( ( member_int @ X4 @ A2 )
                & ( P3 @ X4 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_9167_someI2__bex,axiom,
    ! [A2: set_real,P3: real > $o,Q2: real > $o] :
      ( ? [X2: real] :
          ( ( member_real @ X2 @ A2 )
          & ( P3 @ X2 ) )
     => ( ! [X5: real] :
            ( ( ( member_real @ X5 @ A2 )
              & ( P3 @ X5 ) )
           => ( Q2 @ X5 ) )
       => ( Q2
          @ ( fChoice_real
            @ ^ [X4: real] :
                ( ( member_real @ X4 @ A2 )
                & ( P3 @ X4 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_9168_some__eq__ex,axiom,
    ! [P3: real > $o] :
      ( ( P3 @ ( fChoice_real @ P3 ) )
      = ( ? [X6: real] : ( P3 @ X6 ) ) ) ).

% some_eq_ex
thf(fact_9169_some1__equality,axiom,
    ! [P3: real > $o,A: real] :
      ( ? [X2: real] :
          ( ( P3 @ X2 )
          & ! [Y5: real] :
              ( ( P3 @ Y5 )
             => ( Y5 = X2 ) ) )
     => ( ( P3 @ A )
       => ( ( fChoice_real @ P3 )
          = A ) ) ) ).

% some1_equality
thf(fact_9170_and__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(9)
thf(fact_9171_and__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(6)
thf(fact_9172_bit__not__iff__eq,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ A ) @ N )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
         != zero_zero_int )
        & ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% bit_not_iff_eq
thf(fact_9173_minus__exp__eq__not__mask,axiom,
    ! [N: nat] :
      ( ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N ) ) ) ).

% minus_exp_eq_not_mask
thf(fact_9174_minus__exp__eq__not__mask,axiom,
    ! [N: nat] :
      ( ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).

% minus_exp_eq_not_mask
thf(fact_9175_and__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% and_not_numerals(8)
thf(fact_9176_not__int__rec,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K3: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% not_int_rec
thf(fact_9177_sin__x__sin__y,axiom,
    ! [X: real,Y2: real] :
      ( sums_real
      @ ^ [P4: nat] :
          ( groups6591440286371151544t_real
          @ ^ [N2: nat] :
              ( if_real
              @ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P4 )
                & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              @ ( times_times_real @ ( real_V1485227260804924795R_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P4 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P4 ) ) ) @ ( power_power_real @ X @ N2 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ P4 @ N2 ) ) )
              @ zero_zero_real )
          @ ( set_ord_atMost_nat @ P4 ) )
      @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y2 ) ) ) ).

% sin_x_sin_y
thf(fact_9178_sin__x__sin__y,axiom,
    ! [X: complex,Y2: complex] :
      ( sums_complex
      @ ^ [P4: nat] :
          ( groups2073611262835488442omplex
          @ ^ [N2: nat] :
              ( if_complex
              @ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P4 )
                & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              @ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( uminus_uminus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P4 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P4 ) ) ) @ ( power_power_complex @ X @ N2 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ P4 @ N2 ) ) )
              @ zero_zero_complex )
          @ ( set_ord_atMost_nat @ P4 ) )
      @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ Y2 ) ) ) ).

% sin_x_sin_y
thf(fact_9179_sums__cos__x__plus__y,axiom,
    ! [X: real,Y2: real] :
      ( sums_real
      @ ^ [P4: nat] :
          ( groups6591440286371151544t_real
          @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P4 ) @ ( times_times_real @ ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P4 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P4 ) ) @ ( power_power_real @ X @ N2 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ P4 @ N2 ) ) ) @ zero_zero_real )
          @ ( set_ord_atMost_nat @ P4 ) )
      @ ( cos_real @ ( plus_plus_real @ X @ Y2 ) ) ) ).

% sums_cos_x_plus_y
thf(fact_9180_sums__cos__x__plus__y,axiom,
    ! [X: complex,Y2: complex] :
      ( sums_complex
      @ ^ [P4: nat] :
          ( groups2073611262835488442omplex
          @ ^ [N2: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P4 ) @ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P4 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P4 ) ) @ ( power_power_complex @ X @ N2 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ P4 @ N2 ) ) ) @ zero_zero_complex )
          @ ( set_ord_atMost_nat @ P4 ) )
      @ ( cos_complex @ ( plus_plus_complex @ X @ Y2 ) ) ) ).

% sums_cos_x_plus_y
thf(fact_9181_cos__x__cos__y,axiom,
    ! [X: real,Y2: real] :
      ( sums_real
      @ ^ [P4: nat] :
          ( groups6591440286371151544t_real
          @ ^ [N2: nat] :
              ( if_real
              @ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P4 )
                & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              @ ( times_times_real @ ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P4 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P4 ) ) @ ( power_power_real @ X @ N2 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ P4 @ N2 ) ) )
              @ zero_zero_real )
          @ ( set_ord_atMost_nat @ P4 ) )
      @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y2 ) ) ) ).

% cos_x_cos_y
thf(fact_9182_cos__x__cos__y,axiom,
    ! [X: complex,Y2: complex] :
      ( sums_complex
      @ ^ [P4: nat] :
          ( groups2073611262835488442omplex
          @ ^ [N2: nat] :
              ( if_complex
              @ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P4 )
                & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              @ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P4 @ N2 ) ) ) ) @ ( semiri2265585572941072030t_real @ P4 ) ) @ ( power_power_complex @ X @ N2 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ P4 @ N2 ) ) )
              @ zero_zero_complex )
          @ ( set_ord_atMost_nat @ P4 ) )
      @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y2 ) ) ) ).

% cos_x_cos_y
thf(fact_9183_rat__inverse__code,axiom,
    ! [P5: rat] :
      ( ( quotient_of @ ( inverse_inverse_rat @ P5 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,B3: int] : ( if_Pro3027730157355071871nt_int @ ( A4 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A4 ) @ B3 ) @ ( abs_abs_int @ A4 ) ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_inverse_code
thf(fact_9184_atMost__iff,axiom,
    ! [I2: real,K2: real] :
      ( ( member_real @ I2 @ ( set_ord_atMost_real @ K2 ) )
      = ( ord_less_eq_real @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9185_atMost__iff,axiom,
    ! [I2: set_nat,K2: set_nat] :
      ( ( member_set_nat @ I2 @ ( set_or4236626031148496127et_nat @ K2 ) )
      = ( ord_less_eq_set_nat @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9186_atMost__iff,axiom,
    ! [I2: set_int,K2: set_int] :
      ( ( member_set_int @ I2 @ ( set_or58775011639299419et_int @ K2 ) )
      = ( ord_less_eq_set_int @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9187_atMost__iff,axiom,
    ! [I2: rat,K2: rat] :
      ( ( member_rat @ I2 @ ( set_ord_atMost_rat @ K2 ) )
      = ( ord_less_eq_rat @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9188_atMost__iff,axiom,
    ! [I2: num,K2: num] :
      ( ( member_num @ I2 @ ( set_ord_atMost_num @ K2 ) )
      = ( ord_less_eq_num @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9189_atMost__iff,axiom,
    ! [I2: nat,K2: nat] :
      ( ( member_nat @ I2 @ ( set_ord_atMost_nat @ K2 ) )
      = ( ord_less_eq_nat @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9190_atMost__iff,axiom,
    ! [I2: int,K2: int] :
      ( ( member_int @ I2 @ ( set_ord_atMost_int @ K2 ) )
      = ( ord_less_eq_int @ I2 @ K2 ) ) ).

% atMost_iff
thf(fact_9191_of__nat__sum,axiom,
    ! [F: complex > nat,A2: set_complex] :
      ( ( semiri8010041392384452111omplex @ ( groups5693394587270226106ex_nat @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X4: complex] : ( semiri8010041392384452111omplex @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_9192_of__nat__sum,axiom,
    ! [F: int > nat,A2: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X4: int] : ( semiri1314217659103216013at_int @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_9193_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3539618377306564664at_int
        @ ^ [X4: nat] : ( semiri1314217659103216013at_int @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_9194_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri4216267220026989637d_enat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups7108830773950497114d_enat
        @ ^ [X4: nat] : ( semiri4216267220026989637d_enat @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_9195_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri1316708129612266289at_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [X4: nat] : ( semiri1316708129612266289at_nat @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_9196_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X4: nat] : ( semiri5074537144036343181t_real @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_9197_of__int__sum,axiom,
    ! [F: complex > int,A2: set_complex] :
      ( ( ring_17405671764205052669omplex @ ( groups5690904116761175830ex_int @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X4: complex] : ( ring_17405671764205052669omplex @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_9198_of__int__sum,axiom,
    ! [F: nat > int,A2: set_nat] :
      ( ( ring_1_of_int_real @ ( groups3539618377306564664at_int @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X4: nat] : ( ring_1_of_int_real @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_9199_of__int__sum,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( ring_1_of_int_real @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups8778361861064173332t_real
        @ ^ [X4: int] : ( ring_1_of_int_real @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_9200_of__int__sum,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( ring_1_of_int_rat @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups3906332499630173760nt_rat
        @ ^ [X4: int] : ( ring_1_of_int_rat @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_9201_of__int__sum,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( ring_1_of_int_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X4: int] : ( ring_1_of_int_int @ ( F @ X4 ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_9202_of__real__sum,axiom,
    ! [F: complex > real,S: set_complex] :
      ( ( real_V4546457046886955230omplex @ ( groups5808333547571424918x_real @ F @ S ) )
      = ( groups7754918857620584856omplex
        @ ^ [X4: complex] : ( real_V4546457046886955230omplex @ ( F @ X4 ) )
        @ S ) ) ).

% of_real_sum
thf(fact_9203_of__real__sum,axiom,
    ! [F: nat > real,S: set_nat] :
      ( ( real_V4546457046886955230omplex @ ( groups6591440286371151544t_real @ F @ S ) )
      = ( groups2073611262835488442omplex
        @ ^ [X4: nat] : ( real_V4546457046886955230omplex @ ( F @ X4 ) )
        @ S ) ) ).

% of_real_sum
thf(fact_9204_of__real__sum,axiom,
    ! [F: nat > real,S: set_nat] :
      ( ( real_V1803761363581548252l_real @ ( groups6591440286371151544t_real @ F @ S ) )
      = ( groups6591440286371151544t_real
        @ ^ [X4: nat] : ( real_V1803761363581548252l_real @ ( F @ X4 ) )
        @ S ) ) ).

% of_real_sum
thf(fact_9205_atMost__subset__iff,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( ord_le4403425263959731960et_int @ ( set_or58775011639299419et_int @ X ) @ ( set_or58775011639299419et_int @ Y2 ) )
      = ( ord_less_eq_set_int @ X @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_9206_atMost__subset__iff,axiom,
    ! [X: rat,Y2: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X ) @ ( set_ord_atMost_rat @ Y2 ) )
      = ( ord_less_eq_rat @ X @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_9207_atMost__subset__iff,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X ) @ ( set_ord_atMost_num @ Y2 ) )
      = ( ord_less_eq_num @ X @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_9208_atMost__subset__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X ) @ ( set_ord_atMost_nat @ Y2 ) )
      = ( ord_less_eq_nat @ X @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_9209_atMost__subset__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X ) @ ( set_ord_atMost_int @ Y2 ) )
      = ( ord_less_eq_int @ X @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_9210_sum_OatMost__Suc,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atMost_Suc
thf(fact_9211_sum_OatMost__Suc,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atMost_Suc
thf(fact_9212_sum_OatMost__Suc,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atMost_Suc
thf(fact_9213_sum_OatMost__Suc,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atMost_Suc
thf(fact_9214_quotient__of__number_I3_J,axiom,
    ! [K2: num] :
      ( ( quotient_of @ ( numeral_numeral_rat @ K2 ) )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ K2 ) @ one_one_int ) ) ).

% quotient_of_number(3)
thf(fact_9215_rat__one__code,axiom,
    ( ( quotient_of @ one_one_rat )
    = ( product_Pair_int_int @ one_one_int @ one_one_int ) ) ).

% rat_one_code
thf(fact_9216_rat__zero__code,axiom,
    ( ( quotient_of @ zero_zero_rat )
    = ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).

% rat_zero_code
thf(fact_9217_quotient__of__number_I5_J,axiom,
    ! [K2: num] :
      ( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K2 ) ) )
      = ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) @ one_one_int ) ) ).

% quotient_of_number(5)
thf(fact_9218_quotient__of__number_I4_J,axiom,
    ( ( quotient_of @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( product_Pair_int_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ) ) ).

% quotient_of_number(4)
thf(fact_9219_divide__rat__def,axiom,
    ( divide_divide_rat
    = ( ^ [Q5: rat,R5: rat] : ( times_times_rat @ Q5 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).

% divide_rat_def
thf(fact_9220_scaleR__left_Osum,axiom,
    ! [G: nat > real,A2: set_nat,X: real] :
      ( ( real_V1485227260804924795R_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ X )
      = ( groups6591440286371151544t_real
        @ ^ [X4: nat] : ( real_V1485227260804924795R_real @ ( G @ X4 ) @ X )
        @ A2 ) ) ).

% scaleR_left.sum
thf(fact_9221_scaleR__left_Osum,axiom,
    ! [G: complex > real,A2: set_complex,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( groups5808333547571424918x_real @ G @ A2 ) @ X )
      = ( groups7754918857620584856omplex
        @ ^ [X4: complex] : ( real_V2046097035970521341omplex @ ( G @ X4 ) @ X )
        @ A2 ) ) ).

% scaleR_left.sum
thf(fact_9222_scaleR__left_Osum,axiom,
    ! [G: nat > real,A2: set_nat,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( groups6591440286371151544t_real @ G @ A2 ) @ X )
      = ( groups2073611262835488442omplex
        @ ^ [X4: nat] : ( real_V2046097035970521341omplex @ ( G @ X4 ) @ X )
        @ A2 ) ) ).

% scaleR_left.sum
thf(fact_9223_scaleR__sum__left,axiom,
    ! [F: nat > real,A2: set_nat,X: real] :
      ( ( real_V1485227260804924795R_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ X )
      = ( groups6591440286371151544t_real
        @ ^ [A4: nat] : ( real_V1485227260804924795R_real @ ( F @ A4 ) @ X )
        @ A2 ) ) ).

% scaleR_sum_left
thf(fact_9224_scaleR__sum__left,axiom,
    ! [F: complex > real,A2: set_complex,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( groups5808333547571424918x_real @ F @ A2 ) @ X )
      = ( groups7754918857620584856omplex
        @ ^ [A4: complex] : ( real_V2046097035970521341omplex @ ( F @ A4 ) @ X )
        @ A2 ) ) ).

% scaleR_sum_left
thf(fact_9225_scaleR__sum__left,axiom,
    ! [F: nat > real,A2: set_nat,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( groups6591440286371151544t_real @ F @ A2 ) @ X )
      = ( groups2073611262835488442omplex
        @ ^ [A4: nat] : ( real_V2046097035970521341omplex @ ( F @ A4 ) @ X )
        @ A2 ) ) ).

% scaleR_sum_left
thf(fact_9226_mod__sum__eq,axiom,
    ! [F: nat > nat,A: nat,A2: set_nat] :
      ( ( modulo_modulo_nat
        @ ( groups3542108847815614940at_nat
          @ ^ [I: nat] : ( modulo_modulo_nat @ ( F @ I ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_9227_mod__sum__eq,axiom,
    ! [F: int > int,A: int,A2: set_int] :
      ( ( modulo_modulo_int
        @ ( groups4538972089207619220nt_int
          @ ^ [I: int] : ( modulo_modulo_int @ ( F @ I ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_9228_scaleR__sum__right,axiom,
    ! [A: real,F: nat > real,A2: set_nat] :
      ( ( real_V1485227260804924795R_real @ A @ ( groups6591440286371151544t_real @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X4: nat] : ( real_V1485227260804924795R_real @ A @ ( F @ X4 ) )
        @ A2 ) ) ).

% scaleR_sum_right
thf(fact_9229_scaleR__sum__right,axiom,
    ! [A: real,F: complex > complex,A2: set_complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( groups7754918857620584856omplex @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X4: complex] : ( real_V2046097035970521341omplex @ A @ ( F @ X4 ) )
        @ A2 ) ) ).

% scaleR_sum_right
thf(fact_9230_scaleR__right_Osum,axiom,
    ! [A: real,G: nat > real,A2: set_nat] :
      ( ( real_V1485227260804924795R_real @ A @ ( groups6591440286371151544t_real @ G @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X4: nat] : ( real_V1485227260804924795R_real @ A @ ( G @ X4 ) )
        @ A2 ) ) ).

% scaleR_right.sum
thf(fact_9231_scaleR__right_Osum,axiom,
    ! [A: real,G: complex > complex,A2: set_complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( groups7754918857620584856omplex @ G @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X4: complex] : ( real_V2046097035970521341omplex @ A @ ( G @ X4 ) )
        @ A2 ) ) ).

% scaleR_right.sum
thf(fact_9232_sum__norm__le,axiom,
    ! [S3: set_real,F: real > complex,G: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups5754745047067104278omplex @ F @ S3 ) ) @ ( groups8097168146408367636l_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_9233_sum__norm__le,axiom,
    ! [S3: set_set_nat,F: set_nat > complex,G: set_nat > real] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups8255218700646806128omplex @ F @ S3 ) ) @ ( groups5107569545109728110t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_9234_sum__norm__le,axiom,
    ! [S3: set_int,F: int > complex,G: int > real] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3049146728041665814omplex @ F @ S3 ) ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_9235_sum__norm__le,axiom,
    ! [S3: set_nat,F: nat > complex,G: nat > real] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_9236_sum__norm__le,axiom,
    ! [S3: set_complex,F: complex > complex,G: complex > real] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ S3 ) ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_9237_sum__norm__le,axiom,
    ! [S3: set_nat,F: nat > real,G: nat > real] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_9238_norm__sum,axiom,
    ! [F: nat > complex,A2: set_nat] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I: nat] : ( real_V1022390504157884413omplex @ ( F @ I ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_9239_norm__sum,axiom,
    ! [F: complex > complex,A2: set_complex] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ A2 ) )
      @ ( groups5808333547571424918x_real
        @ ^ [I: complex] : ( real_V1022390504157884413omplex @ ( F @ I ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_9240_norm__sum,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I: nat] : ( real_V7735802525324610683m_real @ ( F @ I ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_9241_sum__choose__upper,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( binomial @ K3 @ M )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).

% sum_choose_upper
thf(fact_9242_summable__sum,axiom,
    ! [I5: set_complex,F: complex > nat > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N2: nat] :
            ( groups5808333547571424918x_real
            @ ^ [I: complex] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9243_summable__sum,axiom,
    ! [I5: set_real,F: real > nat > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N2: nat] :
            ( groups8097168146408367636l_real
            @ ^ [I: real] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9244_summable__sum,axiom,
    ! [I5: set_int,F: int > nat > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N2: nat] :
            ( groups8778361861064173332t_real
            @ ^ [I: int] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9245_summable__sum,axiom,
    ! [I5: set_real,F: real > nat > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N2: nat] :
            ( groups5754745047067104278omplex
            @ ^ [I: real] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9246_summable__sum,axiom,
    ! [I5: set_nat,F: nat > nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N2: nat] :
            ( groups2073611262835488442omplex
            @ ^ [I: nat] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9247_summable__sum,axiom,
    ! [I5: set_int,F: int > nat > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N2: nat] :
            ( groups3049146728041665814omplex
            @ ^ [I: int] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9248_summable__sum,axiom,
    ! [I5: set_nat,F: nat > nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( summable_nat @ ( F @ I3 ) ) )
     => ( summable_nat
        @ ^ [N2: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I: nat] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9249_summable__sum,axiom,
    ! [I5: set_complex,F: complex > nat > complex] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N2: nat] :
            ( groups7754918857620584856omplex
            @ ^ [I: complex] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9250_summable__sum,axiom,
    ! [I5: set_nat,F: nat > nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N2: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I: nat] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9251_summable__sum,axiom,
    ! [I5: set_int,F: int > nat > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( summable_int @ ( F @ I3 ) ) )
     => ( summable_int
        @ ^ [N2: nat] :
            ( groups4538972089207619220nt_int
            @ ^ [I: int] : ( F @ I @ N2 )
            @ I5 ) ) ) ).

% summable_sum
thf(fact_9252_sums__sum,axiom,
    ! [I5: set_complex,F: complex > nat > real,X: complex > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N2: nat] :
            ( groups5808333547571424918x_real
            @ ^ [I: complex] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups5808333547571424918x_real @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9253_sums__sum,axiom,
    ! [I5: set_real,F: real > nat > real,X: real > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N2: nat] :
            ( groups8097168146408367636l_real
            @ ^ [I: real] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups8097168146408367636l_real @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9254_sums__sum,axiom,
    ! [I5: set_int,F: int > nat > real,X: int > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N2: nat] :
            ( groups8778361861064173332t_real
            @ ^ [I: int] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups8778361861064173332t_real @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9255_sums__sum,axiom,
    ! [I5: set_real,F: real > nat > complex,X: real > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N2: nat] :
            ( groups5754745047067104278omplex
            @ ^ [I: real] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups5754745047067104278omplex @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9256_sums__sum,axiom,
    ! [I5: set_nat,F: nat > nat > complex,X: nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N2: nat] :
            ( groups2073611262835488442omplex
            @ ^ [I: nat] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups2073611262835488442omplex @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9257_sums__sum,axiom,
    ! [I5: set_int,F: int > nat > complex,X: int > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N2: nat] :
            ( groups3049146728041665814omplex
            @ ^ [I: int] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups3049146728041665814omplex @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9258_sums__sum,axiom,
    ! [I5: set_nat,F: nat > nat > nat,X: nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( sums_nat @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_nat
        @ ^ [N2: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I: nat] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups3542108847815614940at_nat @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9259_sums__sum,axiom,
    ! [I5: set_complex,F: complex > nat > complex,X: complex > complex] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N2: nat] :
            ( groups7754918857620584856omplex
            @ ^ [I: complex] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups7754918857620584856omplex @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9260_sums__sum,axiom,
    ! [I5: set_nat,F: nat > nat > real,X: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N2: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I: nat] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups6591440286371151544t_real @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9261_sums__sum,axiom,
    ! [I5: set_int,F: int > nat > int,X: int > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( sums_int @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_int
        @ ^ [N2: nat] :
            ( groups4538972089207619220nt_int
            @ ^ [I: int] : ( F @ I @ N2 )
            @ I5 )
        @ ( groups4538972089207619220nt_int @ X @ I5 ) ) ) ).

% sums_sum
thf(fact_9262_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I: nat] : ( G @ ( suc @ I ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_9263_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I: nat] : ( G @ ( suc @ I ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_9264_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I: nat] : ( G @ ( suc @ I ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_9265_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( G @ ( suc @ I ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_9266_sum__telescope,axiom,
    ! [F: nat > complex,I2: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [I: nat] : ( minus_minus_complex @ ( F @ I ) @ ( F @ ( suc @ I ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_complex @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_9267_sum__telescope,axiom,
    ! [F: nat > rat,I2: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I: nat] : ( minus_minus_rat @ ( F @ I ) @ ( F @ ( suc @ I ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_9268_sum__telescope,axiom,
    ! [F: nat > int,I2: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I: nat] : ( minus_minus_int @ ( F @ I ) @ ( F @ ( suc @ I ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_9269_sum__telescope,axiom,
    ! [F: nat > real,I2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I: nat] : ( minus_minus_real @ ( F @ I ) @ ( F @ ( suc @ I ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_9270_polyfun__eq__coeffs,axiom,
    ! [C: nat > complex,N: nat,D: nat > complex] :
      ( ( ! [X4: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( times_times_complex @ ( C @ I ) @ ( power_power_complex @ X4 @ I ) )
              @ ( set_ord_atMost_nat @ N ) )
            = ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( times_times_complex @ ( D @ I ) @ ( power_power_complex @ X4 @ I ) )
              @ ( set_ord_atMost_nat @ N ) ) ) )
      = ( ! [I: nat] :
            ( ( ord_less_eq_nat @ I @ N )
           => ( ( C @ I )
              = ( D @ I ) ) ) ) ) ).

% polyfun_eq_coeffs
thf(fact_9271_polyfun__eq__coeffs,axiom,
    ! [C: nat > real,N: nat,D: nat > real] :
      ( ( ! [X4: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( C @ I ) @ ( power_power_real @ X4 @ I ) )
              @ ( set_ord_atMost_nat @ N ) )
            = ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( D @ I ) @ ( power_power_real @ X4 @ I ) )
              @ ( set_ord_atMost_nat @ N ) ) ) )
      = ( ! [I: nat] :
            ( ( ord_less_eq_nat @ I @ N )
           => ( ( C @ I )
              = ( D @ I ) ) ) ) ) ).

% polyfun_eq_coeffs
thf(fact_9272_bounded__imp__summable,axiom,
    ! [A: nat > int,B4: int] :
      ( ! [N3: nat] : ( ord_less_eq_int @ zero_zero_int @ ( A @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B4 )
       => ( summable_int @ A ) ) ) ).

% bounded_imp_summable
thf(fact_9273_bounded__imp__summable,axiom,
    ! [A: nat > nat,B4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( A @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B4 )
       => ( summable_nat @ A ) ) ) ).

% bounded_imp_summable
thf(fact_9274_bounded__imp__summable,axiom,
    ! [A: nat > real,B4: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ A @ ( set_ord_atMost_nat @ N3 ) ) @ B4 )
       => ( summable_real @ A ) ) ) ).

% bounded_imp_summable
thf(fact_9275_atMost__def,axiom,
    ( set_or4236626031148496127et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X4: set_nat] : ( ord_less_eq_set_nat @ X4 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_9276_atMost__def,axiom,
    ( set_or58775011639299419et_int
    = ( ^ [U2: set_int] :
          ( collect_set_int
          @ ^ [X4: set_int] : ( ord_less_eq_set_int @ X4 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_9277_atMost__def,axiom,
    ( set_ord_atMost_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X4: rat] : ( ord_less_eq_rat @ X4 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_9278_atMost__def,axiom,
    ( set_ord_atMost_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X4: num] : ( ord_less_eq_num @ X4 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_9279_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X4: nat] : ( ord_less_eq_nat @ X4 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_9280_atMost__def,axiom,
    ( set_ord_atMost_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X4: int] : ( ord_less_eq_int @ X4 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_9281_sum__choose__lower,axiom,
    ! [R: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( binomial @ ( plus_plus_nat @ R @ K3 ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( suc @ ( plus_plus_nat @ R @ N ) ) @ N ) ) ).

% sum_choose_lower
thf(fact_9282_choose__rising__sum_I2_J,axiom,
    ! [N: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ M ) ) ).

% choose_rising_sum(2)
thf(fact_9283_choose__rising__sum_I1_J,axiom,
    ! [N: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ).

% choose_rising_sum(1)
thf(fact_9284_polyfun__eq__0,axiom,
    ! [C: nat > complex,N: nat] :
      ( ( ! [X4: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( times_times_complex @ ( C @ I ) @ ( power_power_complex @ X4 @ I ) )
              @ ( set_ord_atMost_nat @ N ) )
            = zero_zero_complex ) )
      = ( ! [I: nat] :
            ( ( ord_less_eq_nat @ I @ N )
           => ( ( C @ I )
              = zero_zero_complex ) ) ) ) ).

% polyfun_eq_0
thf(fact_9285_polyfun__eq__0,axiom,
    ! [C: nat > real,N: nat] :
      ( ( ! [X4: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( C @ I ) @ ( power_power_real @ X4 @ I ) )
              @ ( set_ord_atMost_nat @ N ) )
            = zero_zero_real ) )
      = ( ! [I: nat] :
            ( ( ord_less_eq_nat @ I @ N )
           => ( ( C @ I )
              = zero_zero_real ) ) ) ) ).

% polyfun_eq_0
thf(fact_9286_zero__polynom__imp__zero__coeffs,axiom,
    ! [C: nat > complex,N: nat,K2: nat] :
      ( ! [W2: complex] :
          ( ( groups2073611262835488442omplex
            @ ^ [I: nat] : ( times_times_complex @ ( C @ I ) @ ( power_power_complex @ W2 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_complex )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( C @ K2 )
          = zero_zero_complex ) ) ) ).

% zero_polynom_imp_zero_coeffs
thf(fact_9287_zero__polynom__imp__zero__coeffs,axiom,
    ! [C: nat > real,N: nat,K2: nat] :
      ( ! [W2: real] :
          ( ( groups6591440286371151544t_real
            @ ^ [I: nat] : ( times_times_real @ ( C @ I ) @ ( power_power_real @ W2 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_real )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( C @ K2 )
          = zero_zero_real ) ) ) ).

% zero_polynom_imp_zero_coeffs
thf(fact_9288_gbinomial__parallel__sum,axiom,
    ! [A: complex,N: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( gbinomial_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( gbinomial_complex @ ( plus_plus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ N ) ) ).

% gbinomial_parallel_sum
thf(fact_9289_gbinomial__parallel__sum,axiom,
    ! [A: rat,N: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( gbinomial_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( gbinomial_rat @ ( plus_plus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ N ) ) ).

% gbinomial_parallel_sum
thf(fact_9290_gbinomial__parallel__sum,axiom,
    ! [A: real,N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( gbinomial_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( gbinomial_real @ ( plus_plus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ N ) ) ).

% gbinomial_parallel_sum
thf(fact_9291_sum__choose__diagonal,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3542108847815614940at_nat
          @ ^ [K3: nat] : ( binomial @ ( minus_minus_nat @ N @ K3 ) @ ( minus_minus_nat @ M @ K3 ) )
          @ ( set_ord_atMost_nat @ M ) )
        = ( binomial @ ( suc @ N ) @ M ) ) ) ).

% sum_choose_diagonal
thf(fact_9292_vandermonde,axiom,
    ! [M: nat,N: nat,R: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( binomial @ M @ K3 ) @ ( binomial @ N @ ( minus_minus_nat @ R @ K3 ) ) )
        @ ( set_ord_atMost_nat @ R ) )
      = ( binomial @ ( plus_plus_nat @ M @ N ) @ R ) ) ).

% vandermonde
thf(fact_9293_sum__gp__basic,axiom,
    ! [X: complex,N: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_9294_sum__gp__basic,axiom,
    ! [X: rat,N: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_9295_sum__gp__basic,axiom,
    ! [X: int,N: nat] :
      ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_9296_sum__gp__basic,axiom,
    ! [X: real,N: nat] :
      ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_9297_suminf__sum,axiom,
    ! [I5: set_complex,F: complex > nat > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N2: nat] :
              ( groups5808333547571424918x_real
              @ ^ [I: complex] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups5808333547571424918x_real
          @ ^ [I: complex] : ( suminf_real @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9298_suminf__sum,axiom,
    ! [I5: set_real,F: real > nat > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N2: nat] :
              ( groups8097168146408367636l_real
              @ ^ [I: real] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups8097168146408367636l_real
          @ ^ [I: real] : ( suminf_real @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9299_suminf__sum,axiom,
    ! [I5: set_int,F: int > nat > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N2: nat] :
              ( groups8778361861064173332t_real
              @ ^ [I: int] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups8778361861064173332t_real
          @ ^ [I: int] : ( suminf_real @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9300_suminf__sum,axiom,
    ! [I5: set_real,F: real > nat > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N2: nat] :
              ( groups5754745047067104278omplex
              @ ^ [I: real] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups5754745047067104278omplex
          @ ^ [I: real] : ( suminf_complex @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9301_suminf__sum,axiom,
    ! [I5: set_nat,F: nat > nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N2: nat] :
              ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups2073611262835488442omplex
          @ ^ [I: nat] : ( suminf_complex @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9302_suminf__sum,axiom,
    ! [I5: set_int,F: int > nat > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N2: nat] :
              ( groups3049146728041665814omplex
              @ ^ [I: int] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups3049146728041665814omplex
          @ ^ [I: int] : ( suminf_complex @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9303_suminf__sum,axiom,
    ! [I5: set_nat,F: nat > nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( summable_nat @ ( F @ I3 ) ) )
     => ( ( suminf_nat
          @ ^ [N2: nat] :
              ( groups3542108847815614940at_nat
              @ ^ [I: nat] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups3542108847815614940at_nat
          @ ^ [I: nat] : ( suminf_nat @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9304_suminf__sum,axiom,
    ! [I5: set_complex,F: complex > nat > complex] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N2: nat] :
              ( groups7754918857620584856omplex
              @ ^ [I: complex] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups7754918857620584856omplex
          @ ^ [I: complex] : ( suminf_complex @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9305_suminf__sum,axiom,
    ! [I5: set_nat,F: nat > nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N2: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( suminf_real @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9306_suminf__sum,axiom,
    ! [I5: set_int,F: int > nat > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( summable_int @ ( F @ I3 ) ) )
     => ( ( suminf_int
          @ ^ [N2: nat] :
              ( groups4538972089207619220nt_int
              @ ^ [I: int] : ( F @ I @ N2 )
              @ I5 ) )
        = ( groups4538972089207619220nt_int
          @ ^ [I: int] : ( suminf_int @ ( F @ I ) )
          @ I5 ) ) ) ).

% suminf_sum
thf(fact_9307_choose__row__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% choose_row_sum
thf(fact_9308_binomial,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial
thf(fact_9309_summable__Cauchy__product,axiom,
    ! [A: nat > complex,B: nat > complex] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
       => ( summable_complex
          @ ^ [K3: nat] :
              ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( times_times_complex @ ( A @ I ) @ ( B @ ( minus_minus_nat @ K3 @ I ) ) )
              @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ).

% summable_Cauchy_product
thf(fact_9310_summable__Cauchy__product,axiom,
    ! [A: nat > real,B: nat > real] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
       => ( summable_real
          @ ^ [K3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( A @ I ) @ ( B @ ( minus_minus_nat @ K3 @ I ) ) )
              @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ).

% summable_Cauchy_product
thf(fact_9311_Cauchy__product,axiom,
    ! [A: nat > complex,B: nat > complex] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
       => ( ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) )
          = ( suminf_complex
            @ ^ [K3: nat] :
                ( groups2073611262835488442omplex
                @ ^ [I: nat] : ( times_times_complex @ ( A @ I ) @ ( B @ ( minus_minus_nat @ K3 @ I ) ) )
                @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ) ).

% Cauchy_product
thf(fact_9312_Cauchy__product,axiom,
    ! [A: nat > real,B: nat > real] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
       => ( ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) )
          = ( suminf_real
            @ ^ [K3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I: nat] : ( times_times_real @ ( A @ I ) @ ( B @ ( minus_minus_nat @ K3 @ I ) ) )
                @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ) ).

% Cauchy_product
thf(fact_9313_sum_Oin__pairs__0,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_9314_sum_Oin__pairs__0,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups3539618377306564664at_int
        @ ^ [I: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_9315_sum_Oin__pairs__0,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_9316_sum_Oin__pairs__0,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_9317_polynomial__product,axiom,
    ! [M: nat,A: nat > complex,N: nat,B: nat > complex,X: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_complex ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_complex ) )
       => ( ( times_times_complex
            @ ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( times_times_complex @ ( A @ I ) @ ( power_power_complex @ X @ I ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups2073611262835488442omplex
              @ ^ [J3: nat] : ( times_times_complex @ ( B @ J3 ) @ ( power_power_complex @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups2073611262835488442omplex
            @ ^ [R5: nat] :
                ( times_times_complex
                @ ( groups2073611262835488442omplex
                  @ ^ [K3: nat] : ( times_times_complex @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_complex @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_9318_polynomial__product,axiom,
    ! [M: nat,A: nat > rat,N: nat,B: nat > rat,X: rat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_rat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_rat ) )
       => ( ( times_times_rat
            @ ( groups2906978787729119204at_rat
              @ ^ [I: nat] : ( times_times_rat @ ( A @ I ) @ ( power_power_rat @ X @ I ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups2906978787729119204at_rat
              @ ^ [J3: nat] : ( times_times_rat @ ( B @ J3 ) @ ( power_power_rat @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups2906978787729119204at_rat
            @ ^ [R5: nat] :
                ( times_times_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [K3: nat] : ( times_times_rat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_rat @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_9319_polynomial__product,axiom,
    ! [M: nat,A: nat > int,N: nat,B: nat > int,X: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_int ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_int ) )
       => ( ( times_times_int
            @ ( groups3539618377306564664at_int
              @ ^ [I: nat] : ( times_times_int @ ( A @ I ) @ ( power_power_int @ X @ I ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3539618377306564664at_int
              @ ^ [J3: nat] : ( times_times_int @ ( B @ J3 ) @ ( power_power_int @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups3539618377306564664at_int
            @ ^ [R5: nat] :
                ( times_times_int
                @ ( groups3539618377306564664at_int
                  @ ^ [K3: nat] : ( times_times_int @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_int @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_9320_polynomial__product,axiom,
    ! [M: nat,A: nat > real,N: nat,B: nat > real,X: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_real ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_real ) )
       => ( ( times_times_real
            @ ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( A @ I ) @ ( power_power_real @ X @ I ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups6591440286371151544t_real
              @ ^ [J3: nat] : ( times_times_real @ ( B @ J3 ) @ ( power_power_real @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups6591440286371151544t_real
            @ ^ [R5: nat] :
                ( times_times_real
                @ ( groups6591440286371151544t_real
                  @ ^ [K3: nat] : ( times_times_real @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_real @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_9321_gbinomial__sum__lower__neg,axiom,
    ! [A: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ M ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ M ) ) ) ).

% gbinomial_sum_lower_neg
thf(fact_9322_gbinomial__sum__lower__neg,axiom,
    ! [A: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ M ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ M ) ) ) ).

% gbinomial_sum_lower_neg
thf(fact_9323_gbinomial__sum__lower__neg,axiom,
    ! [A: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ M ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ M ) ) ) ).

% gbinomial_sum_lower_neg
thf(fact_9324_binomial__ring,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( plus_plus_complex @ A @ B ) @ N )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K3 ) ) @ ( power_power_complex @ A @ K3 ) ) @ ( power_power_complex @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_9325_binomial__ring,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( plus_plus_rat @ A @ B ) @ N )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K3 ) ) @ ( power_power_rat @ A @ K3 ) ) @ ( power_power_rat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_9326_binomial__ring,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( plus_plus_int @ A @ B ) @ N )
      = ( groups3539618377306564664at_int
        @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N @ K3 ) ) @ ( power_power_int @ A @ K3 ) ) @ ( power_power_int @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_9327_binomial__ring,axiom,
    ! [A: extended_enat,B: extended_enat,N: nat] :
      ( ( power_8040749407984259932d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ N )
      = ( groups7108830773950497114d_enat
        @ ^ [K3: nat] : ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ ( binomial @ N @ K3 ) ) @ ( power_8040749407984259932d_enat @ A @ K3 ) ) @ ( power_8040749407984259932d_enat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_9328_binomial__ring,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_9329_binomial__ring,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( plus_plus_real @ A @ B ) @ N )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K3 ) ) @ ( power_power_real @ A @ K3 ) ) @ ( power_power_real @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_9330_polynomial__product__nat,axiom,
    ! [M: nat,A: nat > nat,N: nat,B: nat > nat,X: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_nat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_nat ) )
       => ( ( times_times_nat
            @ ( groups3542108847815614940at_nat
              @ ^ [I: nat] : ( times_times_nat @ ( A @ I ) @ ( power_power_nat @ X @ I ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3542108847815614940at_nat
              @ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups3542108847815614940at_nat
            @ ^ [R5: nat] :
                ( times_times_nat
                @ ( groups3542108847815614940at_nat
                  @ ^ [K3: nat] : ( times_times_nat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_nat @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product_nat
thf(fact_9331_choose__square__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( power_power_nat @ ( binomial @ N @ K3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% choose_square_sum
thf(fact_9332_pochhammer__binomial__sum,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ B ) @ N )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ A @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_9333_pochhammer__binomial__sum,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ B ) @ N )
      = ( groups3539618377306564664at_int
        @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N @ K3 ) ) @ ( comm_s4660882817536571857er_int @ A @ K3 ) ) @ ( comm_s4660882817536571857er_int @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_9334_pochhammer__binomial__sum,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ B ) @ N )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K3 ) ) @ ( comm_s7457072308508201937r_real @ A @ K3 ) ) @ ( comm_s7457072308508201937r_real @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_9335_Cauchy__product__sums,axiom,
    ! [A: nat > complex,B: nat > complex] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
       => ( sums_complex
          @ ^ [K3: nat] :
              ( groups2073611262835488442omplex
              @ ^ [I: nat] : ( times_times_complex @ ( A @ I ) @ ( B @ ( minus_minus_nat @ K3 @ I ) ) )
              @ ( set_ord_atMost_nat @ K3 ) )
          @ ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) ) ) ) ) ).

% Cauchy_product_sums
thf(fact_9336_Cauchy__product__sums,axiom,
    ! [A: nat > real,B: nat > real] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
       => ( sums_real
          @ ^ [K3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( A @ I ) @ ( B @ ( minus_minus_nat @ K3 @ I ) ) )
              @ ( set_ord_atMost_nat @ K3 ) )
          @ ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) ) ) ) ) ).

% Cauchy_product_sums
thf(fact_9337_sum__power__add,axiom,
    ! [X: complex,M: nat,I5: set_nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [I: nat] : ( power_power_complex @ X @ ( plus_plus_nat @ M @ I ) )
        @ I5 )
      = ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_9338_sum__power__add,axiom,
    ! [X: rat,M: nat,I5: set_nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I: nat] : ( power_power_rat @ X @ ( plus_plus_nat @ M @ I ) )
        @ I5 )
      = ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_9339_sum__power__add,axiom,
    ! [X: int,M: nat,I5: set_nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I: nat] : ( power_power_int @ X @ ( plus_plus_nat @ M @ I ) )
        @ I5 )
      = ( times_times_int @ ( power_power_int @ X @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_9340_sum__power__add,axiom,
    ! [X: real,M: nat,I5: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I: nat] : ( power_power_real @ X @ ( plus_plus_nat @ M @ I ) )
        @ I5 )
      = ( times_times_real @ ( power_power_real @ X @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_9341_sum_Ozero__middle,axiom,
    ! [P5: nat,K2: nat,G: nat > complex,H2: nat > complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ P5 )
     => ( ( ord_less_eq_nat @ K2 @ P5 )
       => ( ( groups2073611262835488442omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K2 ) @ zero_zero_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P5 ) )
          = ( groups2073611262835488442omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_9342_sum_Ozero__middle,axiom,
    ! [P5: nat,K2: nat,G: nat > rat,H2: nat > rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P5 )
     => ( ( ord_less_eq_nat @ K2 @ P5 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K2 ) @ zero_zero_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P5 ) )
          = ( groups2906978787729119204at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_9343_sum_Ozero__middle,axiom,
    ! [P5: nat,K2: nat,G: nat > int,H2: nat > int] :
      ( ( ord_less_eq_nat @ one_one_nat @ P5 )
     => ( ( ord_less_eq_nat @ K2 @ P5 )
       => ( ( groups3539618377306564664at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K2 ) @ zero_zero_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P5 ) )
          = ( groups3539618377306564664at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_9344_sum_Ozero__middle,axiom,
    ! [P5: nat,K2: nat,G: nat > nat,H2: nat > nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P5 )
     => ( ( ord_less_eq_nat @ K2 @ P5 )
       => ( ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K2 ) @ zero_zero_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P5 ) )
          = ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_9345_sum_Ozero__middle,axiom,
    ! [P5: nat,K2: nat,G: nat > real,H2: nat > real] :
      ( ( ord_less_eq_nat @ one_one_nat @ P5 )
     => ( ( ord_less_eq_nat @ K2 @ P5 )
       => ( ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K2 ) @ zero_zero_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P5 ) )
          = ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K2 ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P5 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_9346_gbinomial__partial__sum__poly,axiom,
    ! [M: nat,A: complex,X: complex,Y2: complex] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K3 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ K3 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y2 ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly
thf(fact_9347_gbinomial__partial__sum__poly,axiom,
    ! [M: nat,A: rat,X: rat,Y2: rat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K3 ) @ ( power_power_rat @ ( uminus_uminus_rat @ X ) @ K3 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X @ Y2 ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly
thf(fact_9348_gbinomial__partial__sum__poly,axiom,
    ! [M: nat,A: real,X: real,Y2: real] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K3 ) @ ( power_power_real @ ( uminus_uminus_real @ X ) @ K3 ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y2 ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly
thf(fact_9349_exp__series__add__commuting,axiom,
    ! [X: real,Y2: real,N: nat] :
      ( ( ( times_times_real @ X @ Y2 )
        = ( times_times_real @ Y2 @ X ) )
     => ( ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y2 ) @ N ) )
        = ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( times_times_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ I ) ) @ ( power_power_real @ X @ I ) ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ I ) ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ N @ I ) ) ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% exp_series_add_commuting
thf(fact_9350_exp__series__add__commuting,axiom,
    ! [X: complex,Y2: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y2 )
        = ( times_times_complex @ Y2 @ X ) )
     => ( ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y2 ) @ N ) )
        = ( groups2073611262835488442omplex
          @ ^ [I: nat] : ( times_times_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ I ) ) @ ( power_power_complex @ X @ I ) ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ I ) ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ N @ I ) ) ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% exp_series_add_commuting
thf(fact_9351_root__polyfun,axiom,
    ! [N: nat,Z3: int,A: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_int @ Z3 @ N )
          = A )
        = ( ( groups3539618377306564664at_int
            @ ^ [I: nat] : ( times_times_int @ ( if_int @ ( I = zero_zero_nat ) @ ( uminus_uminus_int @ A ) @ ( if_int @ ( I = N ) @ one_one_int @ zero_zero_int ) ) @ ( power_power_int @ Z3 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_int ) ) ) ).

% root_polyfun
thf(fact_9352_root__polyfun,axiom,
    ! [N: nat,Z3: complex,A: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_complex @ Z3 @ N )
          = A )
        = ( ( groups2073611262835488442omplex
            @ ^ [I: nat] : ( times_times_complex @ ( if_complex @ ( I = zero_zero_nat ) @ ( uminus1482373934393186551omplex @ A ) @ ( if_complex @ ( I = N ) @ one_one_complex @ zero_zero_complex ) ) @ ( power_power_complex @ Z3 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_complex ) ) ) ).

% root_polyfun
thf(fact_9353_root__polyfun,axiom,
    ! [N: nat,Z3: rat,A: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_rat @ Z3 @ N )
          = A )
        = ( ( groups2906978787729119204at_rat
            @ ^ [I: nat] : ( times_times_rat @ ( if_rat @ ( I = zero_zero_nat ) @ ( uminus_uminus_rat @ A ) @ ( if_rat @ ( I = N ) @ one_one_rat @ zero_zero_rat ) ) @ ( power_power_rat @ Z3 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_rat ) ) ) ).

% root_polyfun
thf(fact_9354_root__polyfun,axiom,
    ! [N: nat,Z3: code_integer,A: code_integer] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_8256067586552552935nteger @ Z3 @ N )
          = A )
        = ( ( groups7501900531339628137nteger
            @ ^ [I: nat] : ( times_3573771949741848930nteger @ ( if_Code_integer @ ( I = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ A ) @ ( if_Code_integer @ ( I = N ) @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) @ ( power_8256067586552552935nteger @ Z3 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_z3403309356797280102nteger ) ) ) ).

% root_polyfun
thf(fact_9355_root__polyfun,axiom,
    ! [N: nat,Z3: real,A: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_real @ Z3 @ N )
          = A )
        = ( ( groups6591440286371151544t_real
            @ ^ [I: nat] : ( times_times_real @ ( if_real @ ( I = zero_zero_nat ) @ ( uminus_uminus_real @ A ) @ ( if_real @ ( I = N ) @ one_one_real @ zero_zero_real ) ) @ ( power_power_real @ Z3 @ I ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_real ) ) ) ).

% root_polyfun
thf(fact_9356_sum__gp0,axiom,
    ! [X: complex,N: nat] :
      ( ( ( X = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N ) )
          = ( semiri8010041392384452111omplex @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
      & ( ( X != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).

% sum_gp0
thf(fact_9357_sum__gp0,axiom,
    ! [X: rat,N: nat] :
      ( ( ( X = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N ) )
          = ( semiri681578069525770553at_rat @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
      & ( ( X != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).

% sum_gp0
thf(fact_9358_sum__gp0,axiom,
    ! [X: real,N: nat] :
      ( ( ( X = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N ) )
          = ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
      & ( ( X != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N ) )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% sum_gp0
thf(fact_9359_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups2073611262835488442omplex
          @ ^ [I: nat] : ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I ) @ ( semiri8010041392384452111omplex @ I ) ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_complex ) ) ).

% choose_alternating_linear_sum
thf(fact_9360_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I: nat] : ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I ) @ ( semiri681578069525770553at_rat @ I ) ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_rat ) ) ).

% choose_alternating_linear_sum
thf(fact_9361_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups7501900531339628137nteger
          @ ^ [I: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I ) @ ( semiri4939895301339042750nteger @ I ) ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_z3403309356797280102nteger ) ) ).

% choose_alternating_linear_sum
thf(fact_9362_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups3539618377306564664at_int
          @ ^ [I: nat] : ( times_times_int @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I ) @ ( semiri1314217659103216013at_int @ I ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_int ) ) ).

% choose_alternating_linear_sum
thf(fact_9363_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( semiri5074537144036343181t_real @ I ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_real ) ) ).

% choose_alternating_linear_sum
thf(fact_9364_gbinomial__sum__nat__pow2,axiom,
    ! [M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( divide1717551699836669952omplex @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ M ) ) ).

% gbinomial_sum_nat_pow2
thf(fact_9365_gbinomial__sum__nat__pow2,axiom,
    ! [M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( divide_divide_rat @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ M ) ) ).

% gbinomial_sum_nat_pow2
thf(fact_9366_gbinomial__sum__nat__pow2,axiom,
    ! [M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( divide_divide_real @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ M ) ) ).

% gbinomial_sum_nat_pow2
thf(fact_9367_gbinomial__partial__sum__poly__xpos,axiom,
    ! [M: nat,A: complex,X: complex,Y2: complex] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A ) @ one_one_complex ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y2 ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly_xpos
thf(fact_9368_gbinomial__partial__sum__poly__xpos,axiom,
    ! [M: nat,A: rat,X: rat,Y2: rat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A ) @ one_one_rat ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X @ Y2 ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly_xpos
thf(fact_9369_gbinomial__partial__sum__poly__xpos,axiom,
    ! [M: nat,A: real,X: real,Y2: real] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A ) @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y2 ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly_xpos
thf(fact_9370_binomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% binomial_r_part_sum
thf(fact_9371_choose__linear__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I: nat] : ( times_times_nat @ I @ ( binomial @ N @ I ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% choose_linear_sum
thf(fact_9372_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups2073611262835488442omplex
          @ ^ [I: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_complex ) ) ).

% choose_alternating_sum
thf(fact_9373_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_rat ) ) ).

% choose_alternating_sum
thf(fact_9374_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups7501900531339628137nteger
          @ ^ [I: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_z3403309356797280102nteger ) ) ).

% choose_alternating_sum
thf(fact_9375_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups3539618377306564664at_int
          @ ^ [I: nat] : ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_int ) ) ).

% choose_alternating_sum
thf(fact_9376_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_real ) ) ).

% choose_alternating_sum
thf(fact_9377_polyfun__extremal__lemma,axiom,
    ! [E: real,C: nat > complex,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [M8: real] :
        ! [Z4: complex] :
          ( ( ord_less_eq_real @ M8 @ ( real_V1022390504157884413omplex @ Z4 ) )
         => ( ord_less_eq_real
            @ ( real_V1022390504157884413omplex
              @ ( groups2073611262835488442omplex
                @ ^ [I: nat] : ( times_times_complex @ ( C @ I ) @ ( power_power_complex @ Z4 @ I ) )
                @ ( set_ord_atMost_nat @ N ) ) )
            @ ( times_times_real @ E @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( suc @ N ) ) ) ) ) ) ).

% polyfun_extremal_lemma
thf(fact_9378_polyfun__extremal__lemma,axiom,
    ! [E: real,C: nat > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [M8: real] :
        ! [Z4: real] :
          ( ( ord_less_eq_real @ M8 @ ( real_V7735802525324610683m_real @ Z4 ) )
         => ( ord_less_eq_real
            @ ( real_V7735802525324610683m_real
              @ ( groups6591440286371151544t_real
                @ ^ [I: nat] : ( times_times_real @ ( C @ I ) @ ( power_power_real @ Z4 @ I ) )
                @ ( set_ord_atMost_nat @ N ) ) )
            @ ( times_times_real @ E @ ( power_power_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( suc @ N ) ) ) ) ) ) ).

% polyfun_extremal_lemma
thf(fact_9379_rat__abs__code,axiom,
    ! [P5: rat] :
      ( ( quotient_of @ ( abs_abs_rat @ P5 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int] : ( product_Pair_int_int @ ( abs_abs_int @ A4 ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_abs_code
thf(fact_9380_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups2073611262835488442omplex @ ( gbinomial_complex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M ) ) @ one_one_complex ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_9381_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups2906978787729119204at_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M ) ) @ one_one_rat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_9382_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups6591440286371151544t_real @ ( gbinomial_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_9383_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I: nat] :
                ( if_complex
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I )
                @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I ) )
                @ zero_zero_complex )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_9384_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I: nat] :
                ( if_rat
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I )
                @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I ) )
                @ zero_zero_rat )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_9385_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I: nat] :
                ( if_int
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I )
                @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I ) )
                @ zero_zero_int )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_9386_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I: nat] :
                ( if_real
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I )
                @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I ) )
                @ zero_zero_real )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_9387_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I ) ) @ zero_zero_complex )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_9388_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I: nat] : ( if_rat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I ) ) @ zero_zero_rat )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_9389_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I: nat] : ( if_int @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I ) ) @ zero_zero_int )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_9390_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I ) ) @ zero_zero_real )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_9391_gbinomial__partial__row__sum,axiom,
    ! [A: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_9392_gbinomial__partial__row__sum,axiom,
    ! [A: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_9393_gbinomial__partial__row__sum,axiom,
    ! [A: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_9394_rat__uminus__code,axiom,
    ! [P5: rat] :
      ( ( quotient_of @ ( uminus_uminus_rat @ P5 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int] : ( product_Pair_int_int @ ( uminus_uminus_int @ A4 ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_uminus_code
thf(fact_9395_rat__less__code,axiom,
    ( ord_less_rat
    = ( ^ [P4: rat,Q5: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A4: int,C2: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B3: int,D4: int] : ( ord_less_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ C2 @ B3 ) )
              @ ( quotient_of @ Q5 ) )
          @ ( quotient_of @ P4 ) ) ) ) ).

% rat_less_code
thf(fact_9396_rat__floor__code,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [P4: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P4 ) ) ) ) ).

% rat_floor_code
thf(fact_9397_rat__less__eq__code,axiom,
    ( ord_less_eq_rat
    = ( ^ [P4: rat,Q5: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A4: int,C2: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B3: int,D4: int] : ( ord_less_eq_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ C2 @ B3 ) )
              @ ( quotient_of @ Q5 ) )
          @ ( quotient_of @ P4 ) ) ) ) ).

% rat_less_eq_code
thf(fact_9398_mask__eq__sum__exp,axiom,
    ! [N: nat] :
      ( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int )
      = ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_9399_mask__eq__sum__exp,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_9400_mask__eq__sum__exp__nat,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_9401_of__nat__id,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N2: nat] : N2 ) ) ).

% of_nat_id
thf(fact_9402_sum__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X4: complex] : X4
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = C ) ) )
        = zero_zero_complex ) ) ).

% sum_nth_roots
thf(fact_9403_sum__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X4: complex] : X4
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = one_one_complex ) ) )
        = zero_zero_complex ) ) ).

% sum_roots_unity
thf(fact_9404_Maclaurin__minus__cos__expansion,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ? [T3: real] :
            ( ( ord_less_real @ X @ T3 )
            & ( ord_less_real @ T3 @ zero_zero_real )
            & ( ( cos_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M2: nat] : ( times_times_real @ ( cos_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_minus_cos_expansion
thf(fact_9405_Maclaurin__cos__expansion2,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ T3 )
            & ( ord_less_real @ T3 @ X )
            & ( ( cos_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M2: nat] : ( times_times_real @ ( cos_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_cos_expansion2
thf(fact_9406_Maclaurin__sin__expansion3,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ T3 )
            & ( ord_less_real @ T3 @ X )
            & ( ( sin_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M2: nat] : ( times_times_real @ ( sin_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_sin_expansion3
thf(fact_9407_Maclaurin__sin__expansion4,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [T3: real] :
          ( ( ord_less_real @ zero_zero_real @ T3 )
          & ( ord_less_eq_real @ T3 @ X )
          & ( ( sin_real @ X )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M2: nat] : ( times_times_real @ ( sin_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).

% Maclaurin_sin_expansion4
thf(fact_9408_sumr__cos__zero__one,axiom,
    ! [N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [M2: nat] : ( times_times_real @ ( cos_coeff @ M2 ) @ ( power_power_real @ zero_zero_real @ M2 ) )
        @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = one_one_real ) ).

% sumr_cos_zero_one
thf(fact_9409_Maclaurin__lemma,axiom,
    ! [H2: real,F: real > real,J: nat > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ? [B8: real] :
          ( ( F @ H2 )
          = ( plus_plus_real
            @ ( groups6591440286371151544t_real
              @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M2 ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ H2 @ M2 ) )
              @ ( set_ord_lessThan_nat @ N ) )
            @ ( times_times_real @ B8 @ ( divide_divide_real @ ( power_power_real @ H2 @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).

% Maclaurin_lemma
thf(fact_9410_sum__split__even__odd,axiom,
    ! [F: nat > real,G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ ( F @ I ) @ ( G @ I ) )
        @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum_split_even_odd
thf(fact_9411_Maclaurin__exp__le,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
      & ( ( exp_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M2: nat] : ( divide_divide_real @ ( power_power_real @ X @ M2 ) @ ( semiri2265585572941072030t_real @ M2 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).

% Maclaurin_exp_le
thf(fact_9412_Maclaurin__sin__bound,axiom,
    ! [X: real,N: nat] :
      ( ord_less_eq_real
      @ ( abs_abs_real
        @ ( minus_minus_real @ ( sin_real @ X )
          @ ( groups6591440286371151544t_real
            @ ^ [M2: nat] : ( times_times_real @ ( sin_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) )
      @ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X ) @ N ) ) ) ).

% Maclaurin_sin_bound
thf(fact_9413_sum__pos__lt__pair,axiom,
    ! [F: nat > real,K2: nat] :
      ( ( summable_real @ F )
     => ( ! [D2: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K2 @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D2 ) ) ) @ ( F @ ( plus_plus_nat @ K2 @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D2 ) @ one_one_nat ) ) ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K2 ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_pos_lt_pair
thf(fact_9414_Maclaurin__exp__lt,axiom,
    ! [X: real,N: nat] :
      ( ( X != zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
            & ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
            & ( ( exp_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M2: nat] : ( divide_divide_real @ ( power_power_real @ X @ M2 ) @ ( semiri2265585572941072030t_real @ M2 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_exp_lt
thf(fact_9415_Maclaurin__sin__expansion,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( sin_real @ X )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [M2: nat] : ( times_times_real @ ( sin_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ).

% Maclaurin_sin_expansion
thf(fact_9416_Maclaurin__sin__expansion2,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
      & ( ( sin_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M2: nat] : ( times_times_real @ ( sin_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).

% Maclaurin_sin_expansion2
thf(fact_9417_Maclaurin__cos__expansion,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
      & ( ( cos_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M2: nat] : ( times_times_real @ ( cos_coeff @ M2 ) @ ( power_power_real @ X @ M2 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).

% Maclaurin_cos_expansion
thf(fact_9418_quotient__of__int,axiom,
    ! [A: int] :
      ( ( quotient_of @ ( of_int @ A ) )
      = ( product_Pair_int_int @ A @ one_one_int ) ) ).

% quotient_of_int
thf(fact_9419_bij__betw__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( bij_betw_nat_complex
        @ ^ [K3: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K3 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        @ ( set_ord_lessThan_nat @ N )
        @ ( collect_complex
          @ ^ [Z6: complex] :
              ( ( power_power_complex @ Z6 @ N )
              = one_one_complex ) ) ) ) ).

% bij_betw_roots_unity
thf(fact_9420_Frct__code__post_I5_J,axiom,
    ! [K2: num] :
      ( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K2 ) ) ) ).

% Frct_code_post(5)
thf(fact_9421_ex__nat__less,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ? [M2: nat] :
            ( ( ord_less_eq_nat @ M2 @ N )
            & ( P3 @ M2 ) ) )
      = ( ? [X4: nat] :
            ( ( member_nat @ X4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
            & ( P3 @ X4 ) ) ) ) ).

% ex_nat_less
thf(fact_9422_all__nat__less,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ M2 @ N )
           => ( P3 @ M2 ) ) )
      = ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
           => ( P3 @ X4 ) ) ) ) ).

% all_nat_less
thf(fact_9423_Frct__code__post_I3_J,axiom,
    ( ( frct @ ( product_Pair_int_int @ one_one_int @ one_one_int ) )
    = one_one_rat ) ).

% Frct_code_post(3)
thf(fact_9424_Frct__code__post_I4_J,axiom,
    ! [K2: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K2 ) @ one_one_int ) )
      = ( numeral_numeral_rat @ K2 ) ) ).

% Frct_code_post(4)
thf(fact_9425_gauss__sum__nat,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X4: nat] : X4
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_nat
thf(fact_9426_arith__series__nat,axiom,
    ! [A: nat,D: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series_nat
thf(fact_9427_Sum__Icc__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X4: nat] : X4
        @ ( set_or1269000886237332187st_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Icc_nat
thf(fact_9428_rat__plus__code,axiom,
    ! [P5: rat,Q: rat] :
      ( ( quotient_of @ ( plus_plus_rat @ P5 @ Q ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C2: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ B3 @ C2 ) ) @ ( times_times_int @ C2 @ D4 ) ) )
            @ ( quotient_of @ Q ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_plus_code
thf(fact_9429_rat__divide__code,axiom,
    ! [P5: rat,Q: rat] :
      ( ( quotient_of @ ( divide_divide_rat @ P5 @ Q ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C2: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ C2 @ B3 ) ) )
            @ ( quotient_of @ Q ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_divide_code
thf(fact_9430_rat__times__code,axiom,
    ! [P5: rat,Q: rat] :
      ( ( quotient_of @ ( times_times_rat @ P5 @ Q ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C2: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A4 @ B3 ) @ ( times_times_int @ C2 @ D4 ) ) )
            @ ( quotient_of @ Q ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_times_code
thf(fact_9431_normalize__denom__zero,axiom,
    ! [P5: int] :
      ( ( normalize @ ( product_Pair_int_int @ P5 @ zero_zero_int ) )
      = ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).

% normalize_denom_zero
thf(fact_9432_aset_I2_J,axiom,
    ! [D3: int,A2: set_int,P3: int > $o,Q2: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A2 )
                 => ( X5
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P3 @ X5 )
           => ( P3 @ ( plus_plus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A2 )
                   => ( X5
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q2 @ X5 )
             => ( Q2 @ ( plus_plus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
             => ( ( P3 @ ( plus_plus_int @ X2 @ D3 ) )
                | ( Q2 @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_9433_aset_I1_J,axiom,
    ! [D3: int,A2: set_int,P3: int > $o,Q2: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A2 )
                 => ( X5
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P3 @ X5 )
           => ( P3 @ ( plus_plus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A2 )
                   => ( X5
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q2 @ X5 )
             => ( Q2 @ ( plus_plus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
             => ( ( P3 @ ( plus_plus_int @ X2 @ D3 ) )
                & ( Q2 @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_9434_bset_I2_J,axiom,
    ! [D3: int,B4: set_int,P3: int > $o,Q2: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B4 )
                 => ( X5
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P3 @ X5 )
           => ( P3 @ ( minus_minus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q2 @ X5 )
             => ( Q2 @ ( minus_minus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B4 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P3 @ X2 )
                | ( Q2 @ X2 ) )
             => ( ( P3 @ ( minus_minus_int @ X2 @ D3 ) )
                | ( Q2 @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_9435_bset_I1_J,axiom,
    ! [D3: int,B4: set_int,P3: int > $o,Q2: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B4 )
                 => ( X5
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P3 @ X5 )
           => ( P3 @ ( minus_minus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q2 @ X5 )
             => ( Q2 @ ( minus_minus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B4 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P3 @ X2 )
                & ( Q2 @ X2 ) )
             => ( ( P3 @ ( minus_minus_int @ X2 @ D3 ) )
                & ( Q2 @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_9436_aset_I10_J,axiom,
    ! [D: int,D3: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(10)
thf(fact_9437_aset_I9_J,axiom,
    ! [D: int,D3: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(9)
thf(fact_9438_bset_I10_J,axiom,
    ! [D: int,D3: int,B4: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B4 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% bset(10)
thf(fact_9439_bset_I9_J,axiom,
    ! [D: int,D3: int,B4: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B4 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% bset(9)
thf(fact_9440_periodic__finite__ex,axiom,
    ! [D: int,P3: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int,K: int] :
            ( ( P3 @ X5 )
            = ( P3 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D ) ) ) )
       => ( ( ? [X6: int] : ( P3 @ X6 ) )
          = ( ? [X4: int] :
                ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
                & ( P3 @ X4 ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_9441_aset_I7_J,axiom,
    ! [D3: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ T @ X2 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ).

% aset(7)
thf(fact_9442_aset_I5_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ X2 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_9443_aset_I4_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 != T )
             => ( ( plus_plus_int @ X2 @ D3 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_9444_aset_I3_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 = T )
             => ( ( plus_plus_int @ X2 @ D3 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_9445_bset_I7_J,axiom,
    ! [D3: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B4 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B4 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ T @ X2 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ).

% bset(7)
thf(fact_9446_bset_I5_J,axiom,
    ! [D3: int,B4: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B4 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ X2 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_9447_bset_I4_J,axiom,
    ! [D3: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B4 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B4 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 != T )
             => ( ( minus_minus_int @ X2 @ D3 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_9448_bset_I3_J,axiom,
    ! [D3: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B4 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B4 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 = T )
             => ( ( minus_minus_int @ X2 @ D3 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_9449_normalize__crossproduct,axiom,
    ! [Q: int,S: int,P5: int,R: int] :
      ( ( Q != zero_zero_int )
     => ( ( S != zero_zero_int )
       => ( ( ( normalize @ ( product_Pair_int_int @ P5 @ Q ) )
            = ( normalize @ ( product_Pair_int_int @ R @ S ) ) )
         => ( ( times_times_int @ P5 @ S )
            = ( times_times_int @ R @ Q ) ) ) ) ) ).

% normalize_crossproduct
thf(fact_9450_fact__eq__fact__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1408675320244567234ct_nat @ M )
        = ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
          @ ( groups708209901874060359at_nat
            @ ^ [X4: nat] : X4
            @ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).

% fact_eq_fact_times
thf(fact_9451_aset_I8_J,axiom,
    ! [D3: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X2 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ).

% aset(8)
thf(fact_9452_aset_I6_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ X2 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_9453_bset_I8_J,axiom,
    ! [D3: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B4 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B4 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X2 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ).

% bset(8)
thf(fact_9454_bset_I6_J,axiom,
    ! [D3: int,B4: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B4 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ X2 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_9455_cpmi,axiom,
    ! [D3: int,P3: int > $o,P6: int > $o,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( P3 @ X5 )
              = ( P6 @ X5 ) ) )
       => ( ! [X5: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ B4 )
                     => ( X5
                       != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P3 @ X5 )
               => ( P3 @ ( minus_minus_int @ X5 @ D3 ) ) ) )
         => ( ! [X5: int,K: int] :
                ( ( P6 @ X5 )
                = ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D3 ) ) ) )
           => ( ( ? [X6: int] : ( P3 @ X6 ) )
              = ( ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P6 @ X4 ) )
                | ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ B4 )
                        & ( P3 @ ( plus_plus_int @ Y @ X4 ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_9456_cppi,axiom,
    ! [D3: int,P3: int > $o,P6: int > $o,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( P3 @ X5 )
              = ( P6 @ X5 ) ) )
       => ( ! [X5: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ A2 )
                     => ( X5
                       != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P3 @ X5 )
               => ( P3 @ ( plus_plus_int @ X5 @ D3 ) ) ) )
         => ( ! [X5: int,K: int] :
                ( ( P6 @ X5 )
                = ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D3 ) ) ) )
           => ( ( ? [X6: int] : ( P3 @ X6 ) )
              = ( ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P6 @ X4 ) )
                | ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ A2 )
                        & ( P3 @ ( minus_minus_int @ Y @ X4 ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_9457_fact__div__fact,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
        = ( groups708209901874060359at_nat
          @ ^ [X4: nat] : X4
          @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).

% fact_div_fact
thf(fact_9458_Sum__Icc__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ N )
     => ( ( groups4538972089207619220nt_int
          @ ^ [X4: int] : X4
          @ ( set_or1266510415728281911st_int @ M @ N ) )
        = ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% Sum_Icc_int
thf(fact_9459_rat__minus__code,axiom,
    ! [P5: rat,Q: rat] :
      ( ( quotient_of @ ( minus_minus_rat @ P5 @ Q ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C2: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B3: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ B3 @ C2 ) ) @ ( times_times_int @ C2 @ D4 ) ) )
            @ ( quotient_of @ Q ) )
        @ ( quotient_of @ P5 ) ) ) ).

% rat_minus_code
thf(fact_9460_bij__betw__nth__root__unity,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = one_one_complex ) )
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = C ) ) ) ) ) ).

% bij_betw_nth_root_unity
thf(fact_9461_horner__sum__of__bool__2__less,axiom,
    ! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).

% horner_sum_of_bool_2_less
thf(fact_9462_set__encode__def,axiom,
    ( nat_set_encode
    = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% set_encode_def
thf(fact_9463_push__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% push_bit_nonnegative_int_iff
thf(fact_9464_push__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% push_bit_negative_int_iff
thf(fact_9465_real__root__zero,axiom,
    ! [N: nat] :
      ( ( root @ N @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_9466_concat__bit__of__zero__1,axiom,
    ! [N: nat,L: int] :
      ( ( bit_concat_bit @ N @ zero_zero_int @ L )
      = ( bit_se545348938243370406it_int @ N @ L ) ) ).

% concat_bit_of_zero_1
thf(fact_9467_real__root__Suc__0,axiom,
    ! [X: real] :
      ( ( root @ ( suc @ zero_zero_nat ) @ X )
      = X ) ).

% real_root_Suc_0
thf(fact_9468_root__0,axiom,
    ! [X: real] :
      ( ( root @ zero_zero_nat @ X )
      = zero_zero_real ) ).

% root_0
thf(fact_9469_real__root__eq__iff,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = ( root @ N @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% real_root_eq_iff
thf(fact_9470_real__root__eq__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = zero_zero_real )
        = ( X = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_9471_real__root__less__iff,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y2 ) )
        = ( ord_less_real @ X @ Y2 ) ) ) ).

% real_root_less_iff
thf(fact_9472_real__root__le__iff,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y2 ) )
        = ( ord_less_eq_real @ X @ Y2 ) ) ) ).

% real_root_le_iff
thf(fact_9473_real__root__eq__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = one_one_real )
        = ( X = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_9474_real__root__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_9475_real__root__lt__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_9476_real__root__gt__0__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y2 ) )
        = ( ord_less_real @ zero_zero_real @ Y2 ) ) ) ).

% real_root_gt_0_iff
thf(fact_9477_real__root__le__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_9478_real__root__ge__0__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y2 ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ) ).

% real_root_ge_0_iff
thf(fact_9479_real__root__lt__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ one_one_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_9480_real__root__gt__1__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ one_one_real @ ( root @ N @ Y2 ) )
        = ( ord_less_real @ one_one_real @ Y2 ) ) ) ).

% real_root_gt_1_iff
thf(fact_9481_real__root__le__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ one_one_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_9482_real__root__ge__1__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y2 ) )
        = ( ord_less_eq_real @ one_one_real @ Y2 ) ) ) ).

% real_root_ge_1_iff
thf(fact_9483_push__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_Suc_0
thf(fact_9484_real__root__pow__pos2,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N @ X ) @ N )
          = X ) ) ) ).

% real_root_pow_pos2
thf(fact_9485_real__root__inverse,axiom,
    ! [N: nat,X: real] :
      ( ( root @ N @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( root @ N @ X ) ) ) ).

% real_root_inverse
thf(fact_9486_real__root__minus,axiom,
    ! [N: nat,X: real] :
      ( ( root @ N @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( root @ N @ X ) ) ) ).

% real_root_minus
thf(fact_9487_push__bit__nat__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K2 ) )
      = ( nat2 @ ( bit_se545348938243370406it_int @ N @ K2 ) ) ) ).

% push_bit_nat_eq
thf(fact_9488_real__root__commute,axiom,
    ! [M: nat,N: nat,X: real] :
      ( ( root @ M @ ( root @ N @ X ) )
      = ( root @ N @ ( root @ M @ X ) ) ) ).

% real_root_commute
thf(fact_9489_real__root__mult,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( root @ N @ ( times_times_real @ X @ Y2 ) )
      = ( times_times_real @ ( root @ N @ X ) @ ( root @ N @ Y2 ) ) ) ).

% real_root_mult
thf(fact_9490_real__root__mult__exp,axiom,
    ! [M: nat,N: nat,X: real] :
      ( ( root @ ( times_times_nat @ M @ N ) @ X )
      = ( root @ M @ ( root @ N @ X ) ) ) ).

% real_root_mult_exp
thf(fact_9491_real__root__divide,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( root @ N @ ( divide_divide_real @ X @ Y2 ) )
      = ( divide_divide_real @ ( root @ N @ X ) @ ( root @ N @ Y2 ) ) ) ).

% real_root_divide
thf(fact_9492_real__root__pos__pos__le,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ).

% real_root_pos_pos_le
thf(fact_9493_prod__int__eq,axiom,
    ! [I2: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I2 @ J ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X4: int] : X4
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).

% prod_int_eq
thf(fact_9494_flip__bit__nat__def,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [M2: nat,N2: nat] : ( bit_se6528837805403552850or_nat @ N2 @ ( bit_se547839408752420682it_nat @ M2 @ one_one_nat ) ) ) ) ).

% flip_bit_nat_def
thf(fact_9495_real__root__less__mono,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y2 ) ) ) ) ).

% real_root_less_mono
thf(fact_9496_real__root__le__mono,axiom,
    ! [N: nat,X: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ X @ Y2 )
       => ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y2 ) ) ) ) ).

% real_root_le_mono
thf(fact_9497_real__root__power,axiom,
    ! [N: nat,X: real,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( power_power_real @ X @ K2 ) )
        = ( power_power_real @ ( root @ N @ X ) @ K2 ) ) ) ).

% real_root_power
thf(fact_9498_real__root__abs,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( abs_abs_real @ X ) )
        = ( abs_abs_real @ ( root @ N @ X ) ) ) ) ).

% real_root_abs
thf(fact_9499_sgn__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( sgn_sgn_real @ ( root @ N @ X ) )
        = ( sgn_sgn_real @ X ) ) ) ).

% sgn_root
thf(fact_9500_bit__push__bit__iff__int,axiom,
    ! [M: nat,K2: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K2 ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1146084159140164899it_int @ K2 @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_int
thf(fact_9501_prod__int__plus__eq,axiom,
    ! [I2: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I2 @ ( plus_plus_nat @ I2 @ J ) ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X4: int] : X4
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I2 @ J ) ) ) ) ) ).

% prod_int_plus_eq
thf(fact_9502_bit__push__bit__iff__nat,axiom,
    ! [M: nat,Q: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1148574629649215175it_nat @ Q @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_nat
thf(fact_9503_concat__bit__eq,axiom,
    ( bit_concat_bit
    = ( ^ [N2: nat,K3: int,L3: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N2 @ K3 ) @ ( bit_se545348938243370406it_int @ N2 @ L3 ) ) ) ) ).

% concat_bit_eq
thf(fact_9504_flip__bit__int__def,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N2: nat,K3: int] : ( bit_se6526347334894502574or_int @ K3 @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ).

% flip_bit_int_def
thf(fact_9505_real__root__gt__zero,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).

% real_root_gt_zero
thf(fact_9506_real__root__strict__decreasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ one_one_real @ X )
         => ( ord_less_real @ ( root @ N4 @ X ) @ ( root @ N @ X ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_9507_sqrt__def,axiom,
    ( sqrt
    = ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% sqrt_def
thf(fact_9508_root__abs__power,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y2 @ N ) ) )
        = ( abs_abs_real @ Y2 ) ) ) ).

% root_abs_power
thf(fact_9509_unset__bit__int__def,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N2: nat,K3: int] : ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ) ).

% unset_bit_int_def
thf(fact_9510_real__root__pos__pos,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).

% real_root_pos_pos
thf(fact_9511_real__root__strict__increasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ X @ one_one_real )
           => ( ord_less_real @ ( root @ N @ X ) @ ( root @ N4 @ X ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_9512_real__root__decreasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ord_less_eq_real @ ( root @ N4 @ X ) @ ( root @ N @ X ) ) ) ) ) ).

% real_root_decreasing
thf(fact_9513_real__root__pow__pos,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N @ X ) @ N )
          = X ) ) ) ).

% real_root_pow_pos
thf(fact_9514_real__root__power__cancel,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( root @ N @ ( power_power_real @ X @ N ) )
          = X ) ) ) ).

% real_root_power_cancel
thf(fact_9515_real__root__pos__unique,axiom,
    ! [N: nat,Y2: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( power_power_real @ Y2 @ N )
            = X )
         => ( ( root @ N @ X )
            = Y2 ) ) ) ) ).

% real_root_pos_unique
thf(fact_9516_odd__real__root__power__cancel,axiom,
    ! [N: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( root @ N @ ( power_power_real @ X @ N ) )
        = X ) ) ).

% odd_real_root_power_cancel
thf(fact_9517_odd__real__root__unique,axiom,
    ! [N: nat,Y2: real,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ( power_power_real @ Y2 @ N )
          = X )
       => ( ( root @ N @ X )
          = Y2 ) ) ) ).

% odd_real_root_unique
thf(fact_9518_odd__real__root__pow,axiom,
    ! [N: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( root @ N @ X ) @ N )
        = X ) ) ).

% odd_real_root_pow
thf(fact_9519_push__bit__int__def,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N2: nat,K3: int] : ( times_times_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% push_bit_int_def
thf(fact_9520_push__bit__nat__def,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N2: nat,M2: nat] : ( times_times_nat @ M2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% push_bit_nat_def
thf(fact_9521_real__root__increasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ X @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N4 @ X ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_9522_sgn__power__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X ) ) @ N ) )
        = X ) ) ).

% sgn_power_root
thf(fact_9523_root__sgn__power,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N ) ) )
        = Y2 ) ) ).

% root_sgn_power
thf(fact_9524_push__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% push_bit_minus_one
thf(fact_9525_ln__root,axiom,
    ! [N: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% ln_root
thf(fact_9526_log__root,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( log @ B @ ( root @ N @ A ) )
          = ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_root
thf(fact_9527_log__base__root,axiom,
    ! [N: nat,B: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( log @ ( root @ N @ B ) @ X )
          = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X ) ) ) ) ) ).

% log_base_root
thf(fact_9528_split__root,axiom,
    ! [P3: real > $o,N: nat,X: real] :
      ( ( P3 @ ( root @ N @ X ) )
      = ( ( ( N = zero_zero_nat )
         => ( P3 @ zero_zero_real ) )
        & ( ( ord_less_nat @ zero_zero_nat @ N )
         => ! [Y: real] :
              ( ( ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
                = X )
             => ( P3 @ Y ) ) ) ) ) ).

% split_root
thf(fact_9529_root__powr__inverse,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( root @ N @ X )
          = ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_9530_VEBT_Osize_I3_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size(3)
thf(fact_9531_Sum__Ico__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X4: nat] : X4
        @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_9532_sum__power2,axiom,
    ! [K2: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K2 ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_9533_length__upt,axiom,
    ! [I2: nat,J: nat] :
      ( ( size_size_list_nat @ ( upt @ I2 @ J ) )
      = ( minus_minus_nat @ J @ I2 ) ) ).

% length_upt
thf(fact_9534_nth__upt,axiom,
    ! [I2: nat,K2: nat,J: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ K2 ) @ J )
     => ( ( nth_nat @ ( upt @ I2 @ J ) @ K2 )
        = ( plus_plus_nat @ I2 @ K2 ) ) ) ).

% nth_upt
thf(fact_9535_take__upt,axiom,
    ! [I2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ M ) @ N )
     => ( ( take_nat @ M @ ( upt @ I2 @ N ) )
        = ( upt @ I2 @ ( plus_plus_nat @ I2 @ M ) ) ) ) ).

% take_upt
thf(fact_9536_map__Suc__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( map_nat_nat @ suc @ ( upt @ M @ N ) )
      = ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% map_Suc_upt
thf(fact_9537_atLeastLessThan__upt,axiom,
    ( set_or4665077453230672383an_nat
    = ( ^ [I: nat,J3: nat] : ( set_nat2 @ ( upt @ I @ J3 ) ) ) ) ).

% atLeastLessThan_upt
thf(fact_9538_all__nat__less__eq,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ! [M2: nat] :
            ( ( ord_less_nat @ M2 @ N )
           => ( P3 @ M2 ) ) )
      = ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
           => ( P3 @ X4 ) ) ) ) ).

% all_nat_less_eq
thf(fact_9539_ex__nat__less__eq,axiom,
    ! [N: nat,P3: nat > $o] :
      ( ( ? [M2: nat] :
            ( ( ord_less_nat @ M2 @ N )
            & ( P3 @ M2 ) ) )
      = ( ? [X4: nat] :
            ( ( member_nat @ X4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
            & ( P3 @ X4 ) ) ) ) ).

% ex_nat_less_eq
thf(fact_9540_atLeastAtMost__upt,axiom,
    ( set_or1269000886237332187st_nat
    = ( ^ [N2: nat,M2: nat] : ( set_nat2 @ ( upt @ N2 @ ( suc @ M2 ) ) ) ) ) ).

% atLeastAtMost_upt
thf(fact_9541_atLeast__upt,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [N2: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N2 ) ) ) ) ).

% atLeast_upt
thf(fact_9542_map__add__upt,axiom,
    ! [N: nat,M: nat] :
      ( ( map_nat_nat
        @ ^ [I: nat] : ( plus_plus_nat @ I @ N )
        @ ( upt @ zero_zero_nat @ M ) )
      = ( upt @ N @ ( plus_plus_nat @ M @ N ) ) ) ).

% map_add_upt
thf(fact_9543_atMost__upto,axiom,
    ( set_ord_atMost_nat
    = ( ^ [N2: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N2 ) ) ) ) ) ).

% atMost_upto
thf(fact_9544_map__decr__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( map_nat_nat
        @ ^ [N2: nat] : ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) )
        @ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
      = ( upt @ M @ N ) ) ).

% map_decr_upt
thf(fact_9545_Chebyshev__sum__upper__nat,axiom,
    ! [N: nat,A: nat > nat,B: nat > nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_eq_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ N )
           => ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
     => ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ N )
             => ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
       => ( ord_less_eq_nat
          @ ( times_times_nat @ N
            @ ( groups3542108847815614940at_nat
              @ ^ [I: nat] : ( times_times_nat @ ( A @ I ) @ ( B @ I ) )
              @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
          @ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).

% Chebyshev_sum_upper_nat
thf(fact_9546_VEBT_Osize__gen_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size_gen(1)
thf(fact_9547_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or4662586982721622107an_int @ L @ ( plus_plus_int @ U @ one_one_int ) )
      = ( set_or1266510415728281911st_int @ L @ U ) ) ).

% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9548_VEBT_Osize__gen_I2_J,axiom,
    ! [X21: $o,X22: $o] :
      ( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X22 ) )
      = zero_zero_nat ) ).

% VEBT.size_gen(2)
thf(fact_9549_Cauchy__iff2,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X6: nat > real] :
        ! [J3: nat] :
        ? [M9: nat] :
        ! [M2: nat] :
          ( ( ord_less_eq_nat @ M9 @ M2 )
         => ! [N2: nat] :
              ( ( ord_less_eq_nat @ M9 @ N2 )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X6 @ M2 ) @ ( X6 @ N2 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).

% Cauchy_iff2
thf(fact_9550_divmod__step__integer__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L3: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q5: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L3 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L3 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_integer_def
thf(fact_9551_csqrt_Osimps_I1_J,axiom,
    ! [Z3: complex] :
      ( ( re @ ( csqrt @ Z3 ) )
      = ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( re @ Z3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% csqrt.simps(1)
thf(fact_9552_times__integer__code_I1_J,axiom,
    ! [K2: code_integer] :
      ( ( times_3573771949741848930nteger @ K2 @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(1)
thf(fact_9553_times__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(2)
thf(fact_9554_divmod__integer_H__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M2: num,N2: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M2 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M2 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ) ).

% divmod_integer'_def
thf(fact_9555_less__eq__integer__code_I1_J,axiom,
    ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).

% less_eq_integer_code(1)
thf(fact_9556_sgn__integer__code,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [K3: code_integer] : ( if_Code_integer @ ( K3 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).

% sgn_integer_code
thf(fact_9557_sums__Re,axiom,
    ! [X9: nat > complex,A: complex] :
      ( ( sums_complex @ X9 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( re @ ( X9 @ N2 ) )
        @ ( re @ A ) ) ) ).

% sums_Re
thf(fact_9558_complex__Re__le__cmod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( re @ X ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% complex_Re_le_cmod
thf(fact_9559_one__complex_Osimps_I1_J,axiom,
    ( ( re @ one_one_complex )
    = one_one_real ) ).

% one_complex.simps(1)
thf(fact_9560_scaleR__complex_Osimps_I1_J,axiom,
    ! [R: real,X: complex] :
      ( ( re @ ( real_V2046097035970521341omplex @ R @ X ) )
      = ( times_times_real @ R @ ( re @ X ) ) ) ).

% scaleR_complex.simps(1)
thf(fact_9561_summable__Re,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_real
        @ ^ [X4: nat] : ( re @ ( F @ X4 ) ) ) ) ).

% summable_Re
thf(fact_9562_abs__Re__le__cmod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% abs_Re_le_cmod
thf(fact_9563_Re__csqrt,axiom,
    ! [Z3: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z3 ) ) ) ).

% Re_csqrt
thf(fact_9564_one__integer_Orsp,axiom,
    one_one_int = one_one_int ).

% one_integer.rsp
thf(fact_9565_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_9566_cmod__plus__Re__le__0__iff,axiom,
    ! [Z3: complex] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( re @ Z3 ) ) @ zero_zero_real )
      = ( ( re @ Z3 )
        = ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z3 ) ) ) ) ).

% cmod_plus_Re_le_0_iff
thf(fact_9567_cos__n__Re__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( re @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% cos_n_Re_cis_pow_n
thf(fact_9568_csqrt_Ocode,axiom,
    ( csqrt
    = ( ^ [Z6: complex] :
          ( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z6 ) @ ( re @ Z6 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          @ ( times_times_real
            @ ( if_real
              @ ( ( im @ Z6 )
                = zero_zero_real )
              @ one_one_real
              @ ( sgn_sgn_real @ ( im @ Z6 ) ) )
            @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z6 ) @ ( re @ Z6 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% csqrt.code
thf(fact_9569_csqrt_Osimps_I2_J,axiom,
    ! [Z3: complex] :
      ( ( im @ ( csqrt @ Z3 ) )
      = ( times_times_real
        @ ( if_real
          @ ( ( im @ Z3 )
            = zero_zero_real )
          @ one_one_real
          @ ( sgn_sgn_real @ ( im @ Z3 ) ) )
        @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( re @ Z3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt.simps(2)
thf(fact_9570_integer__of__int__code,axiom,
    ( code_integer_of_int
    = ( ^ [K3: int] :
          ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K3 ) ) )
          @ ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% integer_of_int_code
thf(fact_9571_csqrt__of__real__nonpos,axiom,
    ! [X: complex] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ ( re @ X ) @ zero_zero_real )
       => ( ( csqrt @ X )
          = ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X ) ) ) ) ) ) ) ) ).

% csqrt_of_real_nonpos
thf(fact_9572_Im__i__times,axiom,
    ! [Z3: complex] :
      ( ( im @ ( times_times_complex @ imaginary_unit @ Z3 ) )
      = ( re @ Z3 ) ) ).

% Im_i_times
thf(fact_9573_Re__i__times,axiom,
    ! [Z3: complex] :
      ( ( re @ ( times_times_complex @ imaginary_unit @ Z3 ) )
      = ( uminus_uminus_real @ ( im @ Z3 ) ) ) ).

% Re_i_times
thf(fact_9574_csqrt__of__real__nonneg,axiom,
    ! [X: complex] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) )
       => ( ( csqrt @ X )
          = ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X ) ) ) ) ) ) ).

% csqrt_of_real_nonneg
thf(fact_9575_csqrt__minus,axiom,
    ! [X: complex] :
      ( ( ( ord_less_real @ ( im @ X ) @ zero_zero_real )
        | ( ( ( im @ X )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) ) ) )
     => ( ( csqrt @ ( uminus1482373934393186551omplex @ X ) )
        = ( times_times_complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).

% csqrt_minus
thf(fact_9576_Cauchy__Im,axiom,
    ! [X9: nat > complex] :
      ( ( topolo6517432010174082258omplex @ X9 )
     => ( topolo4055970368930404560y_real
        @ ^ [N2: nat] : ( im @ ( X9 @ N2 ) ) ) ) ).

% Cauchy_Im
thf(fact_9577_modulo__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( modulo364778990260209775nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( modulo_modulo_int @ Xa @ X ) ) ) ).

% modulo_integer.abs_eq
thf(fact_9578_sums__Im,axiom,
    ! [X9: nat > complex,A: complex] :
      ( ( sums_complex @ X9 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( im @ ( X9 @ N2 ) )
        @ ( im @ A ) ) ) ).

% sums_Im
thf(fact_9579_imaginary__unit_Osimps_I2_J,axiom,
    ( ( im @ imaginary_unit )
    = one_one_real ) ).

% imaginary_unit.simps(2)
thf(fact_9580_one__complex_Osimps_I2_J,axiom,
    ( ( im @ one_one_complex )
    = zero_zero_real ) ).

% one_complex.simps(2)
thf(fact_9581_times__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( times_times_int @ Xa @ X ) ) ) ).

% times_integer.abs_eq
thf(fact_9582_one__integer__def,axiom,
    ( one_one_Code_integer
    = ( code_integer_of_int @ one_one_int ) ) ).

% one_integer_def
thf(fact_9583_less__eq__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( ord_le3102999989581377725nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( ord_less_eq_int @ Xa @ X ) ) ).

% less_eq_integer.abs_eq
thf(fact_9584_scaleR__complex_Osimps_I2_J,axiom,
    ! [R: real,X: complex] :
      ( ( im @ ( real_V2046097035970521341omplex @ R @ X ) )
      = ( times_times_real @ R @ ( im @ X ) ) ) ).

% scaleR_complex.simps(2)
thf(fact_9585_sums__complex__iff,axiom,
    ( sums_complex
    = ( ^ [F4: nat > complex,X4: complex] :
          ( ( sums_real
            @ ^ [Y: nat] : ( re @ ( F4 @ Y ) )
            @ ( re @ X4 ) )
          & ( sums_real
            @ ^ [Y: nat] : ( im @ ( F4 @ Y ) )
            @ ( im @ X4 ) ) ) ) ) ).

% sums_complex_iff
thf(fact_9586_summable__Im,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_real
        @ ^ [X4: nat] : ( im @ ( F @ X4 ) ) ) ) ).

% summable_Im
thf(fact_9587_abs__Im__le__cmod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% abs_Im_le_cmod
thf(fact_9588_Cauchy__Re,axiom,
    ! [X9: nat > complex] :
      ( ( topolo6517432010174082258omplex @ X9 )
     => ( topolo4055970368930404560y_real
        @ ^ [N2: nat] : ( re @ ( X9 @ N2 ) ) ) ) ).

% Cauchy_Re
thf(fact_9589_summable__complex__iff,axiom,
    ( summable_complex
    = ( ^ [F4: nat > complex] :
          ( ( summable_real
            @ ^ [X4: nat] : ( re @ ( F4 @ X4 ) ) )
          & ( summable_real
            @ ^ [X4: nat] : ( im @ ( F4 @ X4 ) ) ) ) ) ) ).

% summable_complex_iff
thf(fact_9590_times__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y2: complex] :
      ( ( im @ ( times_times_complex @ X @ Y2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y2 ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y2 ) ) ) ) ).

% times_complex.simps(2)
thf(fact_9591_cmod__Im__le__iff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( re @ X )
        = ( re @ Y2 ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( abs_abs_real @ ( im @ Y2 ) ) ) ) ) ).

% cmod_Im_le_iff
thf(fact_9592_cmod__Re__le__iff,axiom,
    ! [X: complex,Y2: complex] :
      ( ( ( im @ X )
        = ( im @ Y2 ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y2 ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( abs_abs_real @ ( re @ Y2 ) ) ) ) ) ).

% cmod_Re_le_iff
thf(fact_9593_times__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y2: complex] :
      ( ( re @ ( times_times_complex @ X @ Y2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y2 ) ) ) ) ).

% times_complex.simps(1)
thf(fact_9594_scaleR__complex_Ocode,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real,X4: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X4 ) ) @ ( times_times_real @ R5 @ ( im @ X4 ) ) ) ) ) ).

% scaleR_complex.code
thf(fact_9595_csqrt__principal,axiom,
    ! [Z3: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z3 ) ) )
      | ( ( ( re @ ( csqrt @ Z3 ) )
          = zero_zero_real )
        & ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z3 ) ) ) ) ) ).

% csqrt_principal
thf(fact_9596_cmod__le,axiom,
    ! [Z3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z3 ) ) @ ( abs_abs_real @ ( im @ Z3 ) ) ) ) ).

% cmod_le
thf(fact_9597_sin__n__Im__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( im @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% sin_n_Im_cis_pow_n
thf(fact_9598_Re__exp,axiom,
    ! [Z3: complex] :
      ( ( re @ ( exp_complex @ Z3 ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z3 ) ) @ ( cos_real @ ( im @ Z3 ) ) ) ) ).

% Re_exp
thf(fact_9599_Im__exp,axiom,
    ! [Z3: complex] :
      ( ( im @ ( exp_complex @ Z3 ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z3 ) ) @ ( sin_real @ ( im @ Z3 ) ) ) ) ).

% Im_exp
thf(fact_9600_complex__eq,axiom,
    ! [A: complex] :
      ( A
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( re @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( im @ A ) ) ) ) ) ).

% complex_eq
thf(fact_9601_times__complex_Ocode,axiom,
    ( times_times_complex
    = ( ^ [X4: complex,Y: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X4 ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X4 ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X4 ) @ ( im @ Y ) ) @ ( times_times_real @ ( im @ X4 ) @ ( re @ Y ) ) ) ) ) ) ).

% times_complex.code
thf(fact_9602_exp__eq__polar,axiom,
    ( exp_complex
    = ( ^ [Z6: complex] : ( times_times_complex @ ( real_V4546457046886955230omplex @ ( exp_real @ ( re @ Z6 ) ) ) @ ( cis @ ( im @ Z6 ) ) ) ) ) ).

% exp_eq_polar
thf(fact_9603_cmod__power2,axiom,
    ! [Z3: complex] :
      ( ( power_power_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( re @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cmod_power2
thf(fact_9604_Im__power2,axiom,
    ! [X: complex] :
      ( ( im @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X ) ) @ ( im @ X ) ) ) ).

% Im_power2
thf(fact_9605_Re__power2,axiom,
    ! [X: complex] :
      ( ( re @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Re_power2
thf(fact_9606_complex__eq__0,axiom,
    ! [Z3: complex] :
      ( ( Z3 = zero_zero_complex )
      = ( ( plus_plus_real @ ( power_power_real @ ( re @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real ) ) ).

% complex_eq_0
thf(fact_9607_norm__complex__def,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z6: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% norm_complex_def
thf(fact_9608_inverse__complex_Osimps_I1_J,axiom,
    ! [X: complex] :
      ( ( re @ ( invers8013647133539491842omplex @ X ) )
      = ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(1)
thf(fact_9609_complex__neq__0,axiom,
    ! [Z3: complex] :
      ( ( Z3 != zero_zero_complex )
      = ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_neq_0
thf(fact_9610_Re__divide,axiom,
    ! [X: complex,Y2: complex] :
      ( ( re @ ( divide1717551699836669952omplex @ X @ Y2 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_divide
thf(fact_9611_csqrt__square,axiom,
    ! [B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
        | ( ( ( re @ B )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
     => ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = B ) ) ).

% csqrt_square
thf(fact_9612_csqrt__unique,axiom,
    ! [W: complex,Z3: complex] :
      ( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = Z3 )
     => ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
          | ( ( ( re @ W )
              = zero_zero_real )
            & ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
       => ( ( csqrt @ Z3 )
          = W ) ) ) ).

% csqrt_unique
thf(fact_9613_inverse__complex_Osimps_I2_J,axiom,
    ! [X: complex] :
      ( ( im @ ( invers8013647133539491842omplex @ X ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(2)
thf(fact_9614_Im__divide,axiom,
    ! [X: complex,Y2: complex] :
      ( ( im @ ( divide1717551699836669952omplex @ X @ Y2 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_divide
thf(fact_9615_complex__abs__le__norm,axiom,
    ! [Z3: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z3 ) ) @ ( abs_abs_real @ ( im @ Z3 ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z3 ) ) ) ).

% complex_abs_le_norm
thf(fact_9616_complex__unit__circle,axiom,
    ! [Z3: complex] :
      ( ( Z3 != zero_zero_complex )
     => ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z3 ) @ ( real_V1022390504157884413omplex @ Z3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z3 ) @ ( real_V1022390504157884413omplex @ Z3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real ) ) ).

% complex_unit_circle
thf(fact_9617_inverse__complex_Ocode,axiom,
    ( invers8013647133539491842omplex
    = ( ^ [X4: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X4 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X4 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% inverse_complex.code
thf(fact_9618_Complex__divide,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X4: complex,Y: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X4 ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X4 ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X4 ) @ ( re @ Y ) ) @ ( times_times_real @ ( re @ X4 ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% Complex_divide
thf(fact_9619_Im__Reals__divide,axiom,
    ! [R: complex,Z3: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ R @ Z3 ) )
        = ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R ) ) @ ( im @ Z3 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_Reals_divide
thf(fact_9620_Re__Reals__divide,axiom,
    ! [R: complex,Z3: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ R @ Z3 ) )
        = ( divide_divide_real @ ( times_times_real @ ( re @ R ) @ ( re @ Z3 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_Reals_divide
thf(fact_9621_real__eq__imaginary__iff,axiom,
    ! [Y2: complex,X: complex] :
      ( ( member_complex @ Y2 @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X @ real_V2521375963428798218omplex )
       => ( ( X
            = ( times_times_complex @ imaginary_unit @ Y2 ) )
          = ( ( X = zero_zero_complex )
            & ( Y2 = zero_zero_complex ) ) ) ) ) ).

% real_eq_imaginary_iff
thf(fact_9622_imaginary__eq__real__iff,axiom,
    ! [Y2: complex,X: complex] :
      ( ( member_complex @ Y2 @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X @ real_V2521375963428798218omplex )
       => ( ( ( times_times_complex @ imaginary_unit @ Y2 )
            = X )
          = ( ( X = zero_zero_complex )
            & ( Y2 = zero_zero_complex ) ) ) ) ) ).

% imaginary_eq_real_iff
thf(fact_9623_complex__mult__cnj,axiom,
    ! [Z3: complex] :
      ( ( times_times_complex @ Z3 @ ( cnj @ Z3 ) )
      = ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_mult_cnj
thf(fact_9624_integer__of__num_I3_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit1 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) @ one_one_Code_integer ) ) ).

% integer_of_num(3)
thf(fact_9625_complex__cnj__mult,axiom,
    ! [X: complex,Y2: complex] :
      ( ( cnj @ ( times_times_complex @ X @ Y2 ) )
      = ( times_times_complex @ ( cnj @ X ) @ ( cnj @ Y2 ) ) ) ).

% complex_cnj_mult
thf(fact_9626_complex__cnj__one,axiom,
    ( ( cnj @ one_one_complex )
    = one_one_complex ) ).

% complex_cnj_one
thf(fact_9627_complex__cnj__one__iff,axiom,
    ! [Z3: complex] :
      ( ( ( cnj @ Z3 )
        = one_one_complex )
      = ( Z3 = one_one_complex ) ) ).

% complex_cnj_one_iff
thf(fact_9628_complex__In__mult__cnj__zero,axiom,
    ! [Z3: complex] :
      ( ( im @ ( times_times_complex @ Z3 @ ( cnj @ Z3 ) ) )
      = zero_zero_real ) ).

% complex_In_mult_cnj_zero
thf(fact_9629_sums__cnj,axiom,
    ! [F: nat > complex,L: complex] :
      ( ( sums_complex
        @ ^ [X4: nat] : ( cnj @ ( F @ X4 ) )
        @ ( cnj @ L ) )
      = ( sums_complex @ F @ L ) ) ).

% sums_cnj
thf(fact_9630_Re__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Re_complex_div_eq_0
thf(fact_9631_Im__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Im_complex_div_eq_0
thf(fact_9632_complex__mod__sqrt__Re__mult__cnj,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z6: complex] : ( sqrt @ ( re @ ( times_times_complex @ Z6 @ ( cnj @ Z6 ) ) ) ) ) ) ).

% complex_mod_sqrt_Re_mult_cnj
thf(fact_9633_integer__of__num__triv_I1_J,axiom,
    ( ( code_integer_of_num @ one )
    = one_one_Code_integer ) ).

% integer_of_num_triv(1)
thf(fact_9634_Re__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_gt_0
thf(fact_9635_Re__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_lt_0
thf(fact_9636_Re__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_ge_0
thf(fact_9637_Re__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_le_0
thf(fact_9638_Im__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_gt_0
thf(fact_9639_Im__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_lt_0
thf(fact_9640_Im__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_ge_0
thf(fact_9641_Im__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_le_0
thf(fact_9642_integer__of__num_I2_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit0 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).

% integer_of_num(2)
thf(fact_9643_complex__mod__mult__cnj,axiom,
    ! [Z3: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z3 @ ( cnj @ Z3 ) ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% complex_mod_mult_cnj
thf(fact_9644_complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
      & ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).

% complex_div_gt_0
thf(fact_9645_integer__of__num__triv_I2_J,axiom,
    ( ( code_integer_of_num @ ( bit0 @ one ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% integer_of_num_triv(2)
thf(fact_9646_complex__norm__square,axiom,
    ! [Z3: complex] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ Z3 @ ( cnj @ Z3 ) ) ) ).

% complex_norm_square
thf(fact_9647_complex__add__cnj,axiom,
    ! [Z3: complex] :
      ( ( plus_plus_complex @ Z3 @ ( cnj @ Z3 ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z3 ) ) ) ) ).

% complex_add_cnj
thf(fact_9648_complex__diff__cnj,axiom,
    ! [Z3: complex] :
      ( ( minus_minus_complex @ Z3 @ ( cnj @ Z3 ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z3 ) ) ) @ imaginary_unit ) ) ).

% complex_diff_cnj
thf(fact_9649_complex__div__cnj,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A4: complex,B3: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A4 @ ( cnj @ B3 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_div_cnj
thf(fact_9650_cnj__add__mult__eq__Re,axiom,
    ! [Z3: complex,W: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ Z3 @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z3 ) @ W ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z3 @ ( cnj @ W ) ) ) ) ) ) ).

% cnj_add_mult_eq_Re
thf(fact_9651_int__of__integer__code,axiom,
    ( code_int_of_integer
    = ( ^ [K3: code_integer] :
          ( if_int @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K3 ) ) )
          @ ( if_int @ ( K3 = zero_z3403309356797280102nteger ) @ zero_zero_int
            @ ( produc1553301316500091796er_int
              @ ^ [L3: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L3 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L3 ) ) @ one_one_int ) )
              @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% int_of_integer_code
thf(fact_9652_bit__cut__integer__def,axiom,
    ( code_bit_cut_integer
    = ( ^ [K3: code_integer] :
          ( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K3 ) ) ) ) ).

% bit_cut_integer_def
thf(fact_9653_times__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X @ Xa ) )
      = ( times_times_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% times_integer.rep_eq
thf(fact_9654_one__integer_Orep__eq,axiom,
    ( ( code_int_of_integer @ one_one_Code_integer )
    = one_one_int ) ).

% one_integer.rep_eq
thf(fact_9655_modulo__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( modulo364778990260209775nteger @ X @ Xa ) )
      = ( modulo_modulo_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% modulo_integer.rep_eq
thf(fact_9656_integer__less__eq__iff,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [K3: code_integer,L3: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L3 ) ) ) ) ).

% integer_less_eq_iff
thf(fact_9657_less__eq__integer_Orep__eq,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [X4: code_integer,Xa4: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ X4 ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_eq_integer.rep_eq
thf(fact_9658_divmod__integer__def,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L3: code_integer] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ K3 @ L3 ) @ ( modulo364778990260209775nteger @ K3 @ L3 ) ) ) ) ).

% divmod_integer_def
thf(fact_9659_num__of__integer__code,axiom,
    ( code_num_of_integer
    = ( ^ [K3: code_integer] :
          ( if_num @ ( ord_le3102999989581377725nteger @ K3 @ one_one_Code_integer ) @ one
          @ ( produc7336495610019696514er_num
            @ ^ [L3: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L3 ) @ ( code_num_of_integer @ L3 ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L3 ) @ ( code_num_of_integer @ L3 ) ) @ one ) )
            @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% num_of_integer_code
thf(fact_9660_bit__cut__integer__code,axiom,
    ( code_bit_cut_integer
    = ( ^ [K3: code_integer] :
          ( if_Pro5737122678794959658eger_o @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
          @ ( produc9125791028180074456eger_o
            @ ^ [R5: code_integer,S4: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S4 ) ) @ ( S4 = one_one_Code_integer ) )
            @ ( code_divmod_abs @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_cut_integer_code
thf(fact_9661_nat__of__integer__code,axiom,
    ( code_nat_of_integer
    = ( ^ [K3: code_integer] :
          ( if_nat @ ( ord_le3102999989581377725nteger @ K3 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
          @ ( produc1555791787009142072er_nat
            @ ^ [L3: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L3 ) @ ( code_nat_of_integer @ L3 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L3 ) @ ( code_nat_of_integer @ L3 ) ) @ one_one_nat ) )
            @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% nat_of_integer_code
thf(fact_9662_nat__of__integer__non__positive,axiom,
    ! [K2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ K2 @ zero_z3403309356797280102nteger )
     => ( ( code_nat_of_integer @ K2 )
        = zero_zero_nat ) ) ).

% nat_of_integer_non_positive
thf(fact_9663_nat__of__integer__code__post_I3_J,axiom,
    ! [K2: num] :
      ( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K2 ) )
      = ( numeral_numeral_nat @ K2 ) ) ).

% nat_of_integer_code_post(3)
thf(fact_9664_nat__of__integer__code__post_I2_J,axiom,
    ( ( code_nat_of_integer @ one_one_Code_integer )
    = one_one_nat ) ).

% nat_of_integer_code_post(2)
thf(fact_9665_divmod__abs__def,axiom,
    ( code_divmod_abs
    = ( ^ [K3: code_integer,L3: code_integer] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( abs_abs_Code_integer @ K3 ) @ ( abs_abs_Code_integer @ L3 ) ) @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K3 ) @ ( abs_abs_Code_integer @ L3 ) ) ) ) ) ).

% divmod_abs_def
thf(fact_9666_divmod__integer__code,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L3: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L3 )
            @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ ( code_divmod_abs @ K3 @ L3 )
              @ ( produc6916734918728496179nteger
                @ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L3 @ S4 ) ) )
                @ ( code_divmod_abs @ K3 @ L3 ) ) )
            @ ( if_Pro6119634080678213985nteger @ ( L3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
              @ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
                @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K3 @ L3 )
                  @ ( produc6916734918728496179nteger
                    @ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L3 ) @ S4 ) ) )
                    @ ( code_divmod_abs @ K3 @ L3 ) ) ) ) ) ) ) ) ) ).

% divmod_integer_code
thf(fact_9667_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu3: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_9668_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu3: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_9669_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).

% less_eq_nat.simps(2)
thf(fact_9670_diff__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K3: nat] : K3
        @ ( minus_minus_nat @ M @ N ) ) ) ).

% diff_Suc
thf(fact_9671_or__int__rec,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L3: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
              | ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_int_rec
thf(fact_9672_or__nonnegative__int__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K2 @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K2 )
        & ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% or_nonnegative_int_iff
thf(fact_9673_or__negative__int__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K2 @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K2 @ zero_zero_int )
        | ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% or_negative_int_iff
thf(fact_9674_or__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(2)
thf(fact_9675_or__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(6)
thf(fact_9676_and__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% and_minus_minus_numerals
thf(fact_9677_or__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% or_minus_minus_numerals
thf(fact_9678_bit__or__int__iff,axiom,
    ! [K2: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K2 @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K2 @ N )
        | ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_or_int_iff
thf(fact_9679_OR__lower,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X @ Y2 ) ) ) ) ).

% OR_lower
thf(fact_9680_or__greater__eq,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ K2 @ ( bit_se1409905431419307370or_int @ K2 @ L ) ) ) ).

% or_greater_eq
thf(fact_9681_plus__and__or,axiom,
    ! [X: int,Y2: int] :
      ( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X @ Y2 ) @ ( bit_se1409905431419307370or_int @ X @ Y2 ) )
      = ( plus_plus_int @ X @ Y2 ) ) ).

% plus_and_or
thf(fact_9682_or__int__def,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L3: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ ( bit_ri7919022796975470100ot_int @ L3 ) ) ) ) ) ).

% or_int_def
thf(fact_9683_or__not__numerals_I1_J,axiom,
    ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(1)
thf(fact_9684_xor__int__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L3: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ L3 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ L3 ) ) ) ) ).

% xor_int_def
thf(fact_9685_concat__bit__def,axiom,
    ( bit_concat_bit
    = ( ^ [N2: nat,K3: int,L3: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N2 @ K3 ) @ ( bit_se545348938243370406it_int @ N2 @ L3 ) ) ) ) ).

% concat_bit_def
thf(fact_9686_set__bit__int__def,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N2: nat,K3: int] : ( bit_se1409905431419307370or_int @ K3 @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ).

% set_bit_int_def
thf(fact_9687_or__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(2)
thf(fact_9688_or__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).

% or_not_numerals(4)
thf(fact_9689_or__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(3)
thf(fact_9690_or__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(7)
thf(fact_9691_or__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% or_not_numerals(6)
thf(fact_9692_OR__upper,axiom,
    ! [X: int,N: nat,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se1409905431419307370or_int @ X @ Y2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% OR_upper
thf(fact_9693_or__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(5)
thf(fact_9694_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X25: nat] : X25 ) ) ).

% pred_def
thf(fact_9695_or__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(9)
thf(fact_9696_or__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(8)
thf(fact_9697_or__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(1)
thf(fact_9698_or__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(5)
thf(fact_9699_or__int__unfold,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L3: int] :
          ( if_int
          @ ( ( K3
              = ( uminus_uminus_int @ one_one_int ) )
            | ( L3
              = ( uminus_uminus_int @ one_one_int ) ) )
          @ ( uminus_uminus_int @ one_one_int )
          @ ( if_int @ ( K3 = zero_zero_int ) @ L3 @ ( if_int @ ( L3 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% or_int_unfold
thf(fact_9700_or__nat__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% or_nat_numerals(2)
thf(fact_9701_or__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_nat_numerals(4)
thf(fact_9702_or__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_nat_numerals(3)
thf(fact_9703_or__nat__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% or_nat_numerals(1)
thf(fact_9704_or__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(8)
thf(fact_9705_or__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(4)
thf(fact_9706_or__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(3)
thf(fact_9707_or__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(7)
thf(fact_9708_or__not__num__neg_Osimps_I1_J,axiom,
    ( ( bit_or_not_num_neg @ one @ one )
    = one ) ).

% or_not_num_neg.simps(1)
thf(fact_9709_set__bit__nat__def,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [M2: nat,N2: nat] : ( bit_se1412395901928357646or_nat @ N2 @ ( bit_se547839408752420682it_nat @ M2 @ one_one_nat ) ) ) ) ).

% set_bit_nat_def
thf(fact_9710_or__not__num__neg_Osimps_I4_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
      = ( bit0 @ one ) ) ).

% or_not_num_neg.simps(4)
thf(fact_9711_or__not__num__neg_Osimps_I6_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
      = ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(6)
thf(fact_9712_or__not__num__neg_Osimps_I3_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(3)
thf(fact_9713_or__not__num__neg_Osimps_I7_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
      = one ) ).

% or_not_num_neg.simps(7)
thf(fact_9714_or__not__num__neg_Osimps_I5_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(5)
thf(fact_9715_or__not__num__neg_Osimps_I9_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(9)
thf(fact_9716_or__nat__def,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M2: nat,N2: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% or_nat_def
thf(fact_9717_or__not__num__neg_Osimps_I2_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(2)
thf(fact_9718_or__not__num__neg_Osimps_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(8)
thf(fact_9719_or__not__num__neg_Oelims,axiom,
    ! [X: num,Xa: num,Y2: num] :
      ( ( ( bit_or_not_num_neg @ X @ Xa )
        = Y2 )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y2 != one ) ) )
       => ( ( ( X = one )
           => ! [M4: num] :
                ( ( Xa
                  = ( bit0 @ M4 ) )
               => ( Y2
                 != ( bit1 @ M4 ) ) ) )
         => ( ( ( X = one )
             => ! [M4: num] :
                  ( ( Xa
                    = ( bit1 @ M4 ) )
                 => ( Y2
                   != ( bit1 @ M4 ) ) ) )
           => ( ( ? [N3: num] :
                    ( X
                    = ( bit0 @ N3 ) )
               => ( ( Xa = one )
                 => ( Y2
                   != ( bit0 @ one ) ) ) )
             => ( ! [N3: num] :
                    ( ( X
                      = ( bit0 @ N3 ) )
                   => ! [M4: num] :
                        ( ( Xa
                          = ( bit0 @ M4 ) )
                       => ( Y2
                         != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
               => ( ! [N3: num] :
                      ( ( X
                        = ( bit0 @ N3 ) )
                     => ! [M4: num] :
                          ( ( Xa
                            = ( bit1 @ M4 ) )
                         => ( Y2
                           != ( bit0 @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
                 => ( ( ? [N3: num] :
                          ( X
                          = ( bit1 @ N3 ) )
                     => ( ( Xa = one )
                       => ( Y2 != one ) ) )
                   => ( ! [N3: num] :
                          ( ( X
                            = ( bit1 @ N3 ) )
                         => ! [M4: num] :
                              ( ( Xa
                                = ( bit0 @ M4 ) )
                             => ( Y2
                               != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
                     => ~ ! [N3: num] :
                            ( ( X
                              = ( bit1 @ N3 ) )
                           => ! [M4: num] :
                                ( ( Xa
                                  = ( bit1 @ M4 ) )
                               => ( Y2
                                 != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.elims
thf(fact_9720_int__numeral__or__not__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).

% int_numeral_or_not_num_neg
thf(fact_9721_int__numeral__not__or__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).

% int_numeral_not_or_num_neg
thf(fact_9722_numeral__or__not__num__eq,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
      = ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% numeral_or_not_num_eq
thf(fact_9723_or__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% or_Suc_0_eq
thf(fact_9724_Suc__0__or__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_or_eq
thf(fact_9725_or__nat__rec,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M2: nat,N2: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 )
              | ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_nat_rec
thf(fact_9726_max__enat__simps_I4_J,axiom,
    ! [Q: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q @ extend5688581933313929465d_enat )
      = extend5688581933313929465d_enat ) ).

% max_enat_simps(4)
thf(fact_9727_max__enat__simps_I5_J,axiom,
    ! [Q: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ extend5688581933313929465d_enat @ Q )
      = extend5688581933313929465d_enat ) ).

% max_enat_simps(5)
thf(fact_9728_max__enat__simps_I2_J,axiom,
    ! [Q: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q @ zero_z5237406670263579293d_enat )
      = Q ) ).

% max_enat_simps(2)
thf(fact_9729_max__enat__simps_I3_J,axiom,
    ! [Q: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q )
      = Q ) ).

% max_enat_simps(3)
thf(fact_9730_max__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ M @ N ) ) ) ).

% max_Suc_Suc
thf(fact_9731_max__0R,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ N @ zero_zero_nat )
      = N ) ).

% max_0R
thf(fact_9732_max__0L,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ N )
      = N ) ).

% max_0L
thf(fact_9733_max__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ zero_zero_nat )
      = A ) ).

% max_nat.right_neutral
thf(fact_9734_max__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( ord_max_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.neutr_eq_iff
thf(fact_9735_max__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ A )
      = A ) ).

% max_nat.left_neutral
thf(fact_9736_max__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_max_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.eq_neutr_iff
thf(fact_9737_max__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_ma741700101516333627d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( ord_max_nat @ M @ N ) ) ) ).

% max_enat_simps(1)
thf(fact_9738_max__Suc__numeral,axiom,
    ! [N: nat,K2: num] :
      ( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K2 ) )
      = ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K2 ) ) ) ) ).

% max_Suc_numeral
thf(fact_9739_max__numeral__Suc,axiom,
    ! [K2: num,N: nat] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ K2 ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ ( pred_numeral @ K2 ) @ N ) ) ) ).

% max_numeral_Suc
thf(fact_9740_nat__mult__max__left,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q )
      = ( ord_max_nat @ ( times_times_nat @ M @ Q ) @ ( times_times_nat @ N @ Q ) ) ) ).

% nat_mult_max_left
thf(fact_9741_nat__mult__max__right,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q ) )
      = ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q ) ) ) ).

% nat_mult_max_right
thf(fact_9742_nat__add__max__left,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ Q ) @ ( plus_plus_nat @ N @ Q ) ) ) ).

% nat_add_max_left
thf(fact_9743_nat__add__max__right,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q ) )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q ) ) ) ).

% nat_add_max_right
thf(fact_9744_nat__minus__add__max,axiom,
    ! [N: nat,M: nat] :
      ( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
      = ( ord_max_nat @ N @ M ) ) ).

% nat_minus_add_max
thf(fact_9745_max__Suc1,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_max_nat @ ( suc @ N ) @ M )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ N @ M5 ) )
        @ M ) ) ).

% max_Suc1
thf(fact_9746_max__Suc2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ M5 @ N ) )
        @ M ) ) ).

% max_Suc2
thf(fact_9747_or__nat__unfold,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M2: nat,N2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ N2 @ ( if_nat @ ( N2 = zero_zero_nat ) @ M2 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% or_nat_unfold
thf(fact_9748_or__not__num__neg_Opelims,axiom,
    ! [X: num,Xa: num,Y2: num] :
      ( ( ( bit_or_not_num_neg @ X @ Xa )
        = Y2 )
     => ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X @ Xa ) )
       => ( ( ( X = one )
           => ( ( Xa = one )
             => ( ( Y2 = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [M4: num] :
                  ( ( Xa
                    = ( bit0 @ M4 ) )
                 => ( ( Y2
                      = ( bit1 @ M4 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M4 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [M4: num] :
                    ( ( Xa
                      = ( bit1 @ M4 ) )
                   => ( ( Y2
                        = ( bit1 @ M4 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M4 ) ) ) ) ) )
             => ( ! [N3: num] :
                    ( ( X
                      = ( bit0 @ N3 ) )
                   => ( ( Xa = one )
                     => ( ( Y2
                          = ( bit0 @ one ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ one ) ) ) ) )
               => ( ! [N3: num] :
                      ( ( X
                        = ( bit0 @ N3 ) )
                     => ! [M4: num] :
                          ( ( Xa
                            = ( bit0 @ M4 ) )
                         => ( ( Y2
                              = ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ ( bit0 @ M4 ) ) ) ) ) )
                 => ( ! [N3: num] :
                        ( ( X
                          = ( bit0 @ N3 ) )
                       => ! [M4: num] :
                            ( ( Xa
                              = ( bit1 @ M4 ) )
                           => ( ( Y2
                                = ( bit0 @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ ( bit1 @ M4 ) ) ) ) ) )
                   => ( ! [N3: num] :
                          ( ( X
                            = ( bit1 @ N3 ) )
                         => ( ( Xa = one )
                           => ( ( Y2 = one )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ one ) ) ) ) )
                     => ( ! [N3: num] :
                            ( ( X
                              = ( bit1 @ N3 ) )
                           => ! [M4: num] :
                                ( ( Xa
                                  = ( bit0 @ M4 ) )
                               => ( ( Y2
                                    = ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ ( bit0 @ M4 ) ) ) ) ) )
                       => ~ ! [N3: num] :
                              ( ( X
                                = ( bit1 @ N3 ) )
                             => ! [M4: num] :
                                  ( ( Xa
                                    = ( bit1 @ M4 ) )
                                 => ( ( Y2
                                      = ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ ( bit1 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.pelims
thf(fact_9749_prod__decode__aux_Oelims,axiom,
    ! [X: nat,Xa: nat,Y2: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa )
        = Y2 )
     => ( ( ( ord_less_eq_nat @ Xa @ X )
         => ( Y2
            = ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X @ Xa ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa @ X )
         => ( Y2
            = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa @ ( suc @ X ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_9750_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K3: nat,M2: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M2 @ K3 ) @ ( product_Pair_nat_nat @ M2 @ ( minus_minus_nat @ K3 @ M2 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus_nat @ M2 @ ( suc @ K3 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_9751_prod__decode__aux_Opelims,axiom,
    ! [X: nat,Xa: nat,Y2: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa )
        = Y2 )
     => ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
       => ~ ( ( ( ( ord_less_eq_nat @ Xa @ X )
               => ( Y2
                  = ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X @ Xa ) ) ) )
              & ( ~ ( ord_less_eq_nat @ Xa @ X )
               => ( Y2
                  = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa @ ( suc @ X ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).

% prod_decode_aux.pelims
thf(fact_9752_bezw__0,axiom,
    ! [X: nat] :
      ( ( bezw @ X @ zero_zero_nat )
      = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) ).

% bezw_0
thf(fact_9753_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ N3 @ ( F @ N3 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_9754_finite__M__bounded__by__nat,axiom,
    ! [P3: nat > $o,I2: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [K3: nat] :
            ( ( P3 @ K3 )
            & ( ord_less_nat @ K3 @ I2 ) ) ) ) ).

% finite_M_bounded_by_nat
thf(fact_9755_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N9: set_nat] :
        ? [M2: nat] :
        ! [X4: nat] :
          ( ( member_nat @ X4 @ N9 )
         => ( ord_less_nat @ X4 @ M2 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_9756_bounded__nat__set__is__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ N4 )
         => ( ord_less_nat @ X5 @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% bounded_nat_set_is_finite
thf(fact_9757_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N9: set_nat] :
        ? [M2: nat] :
        ! [X4: nat] :
          ( ( member_nat @ X4 @ N9 )
         => ( ord_less_eq_nat @ X4 @ M2 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_9758_finite__divisors__nat,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M ) ) ) ) ).

% finite_divisors_nat
thf(fact_9759_subset__eq__atLeast0__atMost__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_atMost_finite
thf(fact_9760_subset__eq__atLeast0__lessThan__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_lessThan_finite
thf(fact_9761_even__set__encode__iff,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
        = ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).

% even_set_encode_iff
thf(fact_9762_finite__Collect__le__nat,axiom,
    ! [K2: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N2: nat] : ( ord_less_eq_nat @ N2 @ K2 ) ) ) ).

% finite_Collect_le_nat
thf(fact_9763_finite__Collect__less__nat,axiom,
    ! [K2: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N2: nat] : ( ord_less_nat @ N2 @ K2 ) ) ) ).

% finite_Collect_less_nat
thf(fact_9764_finite__interval__int1,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I: int] :
            ( ( ord_less_eq_int @ A @ I )
            & ( ord_less_eq_int @ I @ B ) ) ) ) ).

% finite_interval_int1
thf(fact_9765_finite__interval__int4,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I: int] :
            ( ( ord_less_int @ A @ I )
            & ( ord_less_int @ I @ B ) ) ) ) ).

% finite_interval_int4
thf(fact_9766_finite__interval__int3,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I: int] :
            ( ( ord_less_int @ A @ I )
            & ( ord_less_eq_int @ I @ B ) ) ) ) ).

% finite_interval_int3
thf(fact_9767_finite__interval__int2,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I: int] :
            ( ( ord_less_eq_int @ A @ I )
            & ( ord_less_int @ I @ B ) ) ) ) ).

% finite_interval_int2
thf(fact_9768_finite__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z6: complex] :
              ( ( power_power_complex @ Z6 @ N )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_9769_finite__enat__bounded,axiom,
    ! [A2: set_Extended_enat,N: nat] :
      ( ! [Y5: extended_enat] :
          ( ( member_Extended_enat @ Y5 @ A2 )
         => ( ord_le2932123472753598470d_enat @ Y5 @ ( extended_enat2 @ N ) ) )
     => ( finite4001608067531595151d_enat @ A2 ) ) ).

% finite_enat_bounded
thf(fact_9770_finite__divisors__int,axiom,
    ! [I2: int] :
      ( ( I2 != zero_zero_int )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [D4: int] : ( dvd_dvd_int @ D4 @ I2 ) ) ) ) ).

% finite_divisors_int
thf(fact_9771_finite__nat__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_atMost_nat @ K3 ) ) ) ) ).

% finite_nat_iff_bounded_le
thf(fact_9772_finite__nat__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_lessThan_nat @ K3 ) ) ) ) ).

% finite_nat_iff_bounded
thf(fact_9773_finite__nat__bounded,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [K: nat] : ( ord_less_eq_set_nat @ S3 @ ( set_ord_lessThan_nat @ K ) ) ) ).

% finite_nat_bounded
thf(fact_9774_infinite__int__iff__unbounded__le,axiom,
    ! [S3: set_int] :
      ( ( ~ ( finite_finite_int @ S3 ) )
      = ( ! [M2: int] :
          ? [N2: int] :
            ( ( ord_less_eq_int @ M2 @ ( abs_abs_int @ N2 ) )
            & ( member_int @ N2 @ S3 ) ) ) ) ).

% infinite_int_iff_unbounded_le
thf(fact_9775_unbounded__k__infinite,axiom,
    ! [K2: nat,S3: set_nat] :
      ( ! [M4: nat] :
          ( ( ord_less_nat @ K2 @ M4 )
         => ? [N8: nat] :
              ( ( ord_less_nat @ M4 @ N8 )
              & ( member_nat @ N8 @ S3 ) ) )
     => ~ ( finite_finite_nat @ S3 ) ) ).

% unbounded_k_infinite
thf(fact_9776_infinite__nat__iff__unbounded,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M2: nat] :
          ? [N2: nat] :
            ( ( ord_less_nat @ M2 @ N2 )
            & ( member_nat @ N2 @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_9777_infinite__nat__iff__unbounded__le,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M2: nat] :
          ? [N2: nat] :
            ( ( ord_less_eq_nat @ M2 @ N2 )
            & ( member_nat @ N2 @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_9778_set__encode__insert,axiom,
    ! [A2: set_nat,N: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ N @ A2 )
       => ( ( nat_set_encode @ ( insert_nat @ N @ A2 ) )
          = ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).

% set_encode_insert
thf(fact_9779_card__Collect__less__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I: nat] : ( ord_less_nat @ I @ N ) ) )
      = N ) ).

% card_Collect_less_nat
thf(fact_9780_card__Collect__le__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I: nat] : ( ord_less_eq_nat @ I @ N ) ) )
      = ( suc @ N ) ) ).

% card_Collect_le_nat
thf(fact_9781_card__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L ) @ one_one_int ) ) ) ).

% card_atLeastAtMost_int
thf(fact_9782_atLeastAtMost__insertL,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% atLeastAtMost_insertL
thf(fact_9783_atLeastAtMostSuc__conv,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
        = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).

% atLeastAtMostSuc_conv
thf(fact_9784_Icc__eq__insert__lb__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( set_or1269000886237332187st_nat @ M @ N )
        = ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).

% Icc_eq_insert_lb_nat
thf(fact_9785_lessThan__nat__numeral,axiom,
    ! [K2: num] :
      ( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K2 ) )
      = ( insert_nat @ ( pred_numeral @ K2 ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K2 ) ) ) ) ).

% lessThan_nat_numeral
thf(fact_9786_card__less,axiom,
    ! [M7: set_nat,I2: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I2 ) ) ) ) )
       != zero_zero_nat ) ) ).

% card_less
thf(fact_9787_card__less__Suc,axiom,
    ! [M7: set_nat,I2: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( suc
          @ ( finite_card_nat
            @ ( collect_nat
              @ ^ [K3: nat] :
                  ( ( member_nat @ ( suc @ K3 ) @ M7 )
                  & ( ord_less_nat @ K3 @ I2 ) ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I2 ) ) ) ) ) ) ) ).

% card_less_Suc
thf(fact_9788_card__less__Suc2,axiom,
    ! [M7: set_nat,I2: nat] :
      ( ~ ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ ( suc @ K3 ) @ M7 )
                & ( ord_less_nat @ K3 @ I2 ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I2 ) ) ) ) ) ) ) ).

% card_less_Suc2
thf(fact_9789_atMost__nat__numeral,axiom,
    ! [K2: num] :
      ( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K2 ) )
      = ( insert_nat @ ( numeral_numeral_nat @ K2 ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K2 ) ) ) ) ).

% atMost_nat_numeral
thf(fact_9790_subset__card__intvl__is__intvl,axiom,
    ! [A2: set_nat,K2: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K2 @ ( plus_plus_nat @ K2 @ ( finite_card_nat @ A2 ) ) ) )
     => ( A2
        = ( set_or4665077453230672383an_nat @ K2 @ ( plus_plus_nat @ K2 @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% subset_card_intvl_is_intvl
thf(fact_9791_subset__eq__atLeast0__lessThan__card,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( ord_less_eq_nat @ ( finite_card_nat @ N4 ) @ N ) ) ).

% subset_eq_atLeast0_lessThan_card
thf(fact_9792_card__sum__le__nat__sum,axiom,
    ! [S3: set_nat] :
      ( ord_less_eq_nat
      @ ( groups3542108847815614940at_nat
        @ ^ [X4: nat] : X4
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S3 ) ) )
      @ ( groups3542108847815614940at_nat
        @ ^ [X4: nat] : X4
        @ S3 ) ) ).

% card_sum_le_nat_sum
thf(fact_9793_card__nth__roots,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( finite_card_complex
            @ ( collect_complex
              @ ^ [Z6: complex] :
                  ( ( power_power_complex @ Z6 @ N )
                  = C ) ) )
          = N ) ) ) ).

% card_nth_roots
thf(fact_9794_card__roots__unity__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( finite_card_complex
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = one_one_complex ) ) )
        = N ) ) ).

% card_roots_unity_eq
thf(fact_9795_set__decode__plus__power__2,axiom,
    ! [N: nat,Z3: nat] :
      ( ~ ( member_nat @ N @ ( nat_set_decode @ Z3 ) )
     => ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z3 ) )
        = ( insert_nat @ N @ ( nat_set_decode @ Z3 ) ) ) ) ).

% set_decode_plus_power_2
thf(fact_9796_sum__list__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups4561878855575611511st_nat @ ( upt @ M @ N ) )
        = ( groups3542108847815614940at_nat
          @ ^ [X4: nat] : X4
          @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) ) ).

% sum_list_upt
thf(fact_9797_distinct__upt,axiom,
    ! [I2: nat,J: nat] : ( distinct_nat @ ( upt @ I2 @ J ) ) ).

% distinct_upt
thf(fact_9798_atLeastAtMostPlus1__int__conv,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
     => ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
        = ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).

% atLeastAtMostPlus1_int_conv
thf(fact_9799_card__length__sum__list__rec,axiom,
    ! [M: nat,N4: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( finite_card_list_nat
          @ ( collect_list_nat
            @ ^ [L3: list_nat] :
                ( ( ( size_size_list_nat @ L3 )
                  = M )
                & ( ( groups4561878855575611511st_nat @ L3 )
                  = N4 ) ) ) )
        = ( plus_plus_nat
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L3: list_nat] :
                  ( ( ( size_size_list_nat @ L3 )
                    = ( minus_minus_nat @ M @ one_one_nat ) )
                  & ( ( groups4561878855575611511st_nat @ L3 )
                    = N4 ) ) ) )
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L3: list_nat] :
                  ( ( ( size_size_list_nat @ L3 )
                    = M )
                  & ( ( plus_plus_nat @ ( groups4561878855575611511st_nat @ L3 ) @ one_one_nat )
                    = N4 ) ) ) ) ) ) ) ).

% card_length_sum_list_rec
thf(fact_9800_card__length__sum__list,axiom,
    ! [M: nat,N4: nat] :
      ( ( finite_card_list_nat
        @ ( collect_list_nat
          @ ^ [L3: list_nat] :
              ( ( ( size_size_list_nat @ L3 )
                = M )
              & ( ( groups4561878855575611511st_nat @ L3 )
                = N4 ) ) ) )
      = ( binomial @ ( minus_minus_nat @ ( plus_plus_nat @ N4 @ M ) @ one_one_nat ) @ N4 ) ) ).

% card_length_sum_list
thf(fact_9801_and__int_Osimps,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L3: int] :
          ( if_int
          @ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
          @ ( uminus_uminus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) ) )
          @ ( plus_plus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) )
            @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_int.simps
thf(fact_9802_and__int_Oelims,axiom,
    ! [X: int,Xa: int,Y2: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Xa )
        = Y2 )
     => ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y2
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
        & ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y2
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.elims
thf(fact_9803_and__int_Opelims,axiom,
    ! [X: int,Xa: int,Y2: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Xa )
        = Y2 )
     => ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa ) )
       => ~ ( ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                  & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y2
                  = ( uminus_uminus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
              & ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y2
                  = ( plus_plus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
                    @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa ) ) ) ) ) ).

% and_int.pelims
thf(fact_9804_simp__from__to,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I ) @ bot_bot_set_int @ ( insert_int @ I @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I @ one_one_int ) @ J3 ) ) ) ) ) ).

% simp_from_to
thf(fact_9805_and__int_Opinduct,axiom,
    ! [A0: int,A12: int,P3: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A12 ) )
     => ( ! [K: int,L2: int] :
            ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L2 ) )
           => ( ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( P3 @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
             => ( P3 @ K @ L2 ) ) )
       => ( P3 @ A0 @ A12 ) ) ) ).

% and_int.pinduct
thf(fact_9806_and__int_Opsimps,axiom,
    ! [K2: int,L: int] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K2 @ L ) )
     => ( ( ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K2 @ L )
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
        & ( ~ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K2 @ L )
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.psimps
thf(fact_9807_bot__enat__def,axiom,
    bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).

% bot_enat_def
thf(fact_9808_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_9809_sorted__wrt__upt,axiom,
    ! [M: nat,N: nat] : ( sorted_wrt_nat @ ord_less_nat @ ( upt @ M @ N ) ) ).

% sorted_wrt_upt
thf(fact_9810_sorted__upt,axiom,
    ! [M: nat,N: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( upt @ M @ N ) ) ).

% sorted_upt
thf(fact_9811_atLeastLessThanSuc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThanSuc
thf(fact_9812_sorted__wrt__less__idx,axiom,
    ! [Ns: list_nat,I2: nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Ns )
     => ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Ns ) )
       => ( ord_less_eq_nat @ I2 @ ( nth_nat @ Ns @ I2 ) ) ) ) ).

% sorted_wrt_less_idx
thf(fact_9813_atLeastLessThan__nat__numeral,axiom,
    ! [M: nat,K2: num] :
      ( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K2 ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K2 ) )
          = ( insert_nat @ ( pred_numeral @ K2 ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K2 ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K2 ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K2 ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThan_nat_numeral
thf(fact_9814_sorted__list__of__set__range,axiom,
    ! [M: nat,N: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( upt @ M @ N ) ) ).

% sorted_list_of_set_range
thf(fact_9815_Suc__0__div__numeral,axiom,
    ! [K2: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K2 ) )
      = ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K2 ) ) ) ).

% Suc_0_div_numeral
thf(fact_9816_Suc__0__mod__numeral,axiom,
    ! [K2: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K2 ) )
      = ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K2 ) ) ) ).

% Suc_0_mod_numeral
thf(fact_9817_fst__divmod__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( product_fst_nat_nat @ ( divmod_nat @ M @ N ) )
      = ( divide_divide_nat @ M @ N ) ) ).

% fst_divmod_nat
thf(fact_9818_snd__divmod__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( product_snd_nat_nat @ ( divmod_nat @ M @ N ) )
      = ( modulo_modulo_nat @ M @ N ) ) ).

% snd_divmod_nat
thf(fact_9819_binomial__def,axiom,
    ( binomial
    = ( ^ [N2: nat,K3: nat] :
          ( finite_card_set_nat
          @ ( collect_set_nat
            @ ^ [K7: set_nat] :
                ( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) )
                & ( ( finite_card_nat @ K7 )
                  = K3 ) ) ) ) ) ) ).

% binomial_def
thf(fact_9820_snd__divmod__integer,axiom,
    ! [K2: code_integer,L: code_integer] :
      ( ( produc6174133586879617921nteger @ ( code_divmod_integer @ K2 @ L ) )
      = ( modulo364778990260209775nteger @ K2 @ L ) ) ).

% snd_divmod_integer
thf(fact_9821_snd__divmod__abs,axiom,
    ! [K2: code_integer,L: code_integer] :
      ( ( produc6174133586879617921nteger @ ( code_divmod_abs @ K2 @ L ) )
      = ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L ) ) ) ).

% snd_divmod_abs
thf(fact_9822_bezw__non__0,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Y2 )
     => ( ( bezw @ X @ Y2 )
        = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y2 ) ) ) ) ) ) ) ).

% bezw_non_0
thf(fact_9823_bezw_Osimps,axiom,
    ( bezw
    = ( ^ [X4: nat,Y: nat] : ( if_Pro3027730157355071871nt_int @ ( Y = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X4 @ Y ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X4 @ Y ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X4 @ Y ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X4 @ Y ) ) ) ) ) ) ) ) ).

% bezw.simps
thf(fact_9824_bezw_Oelims,axiom,
    ! [X: nat,Xa: nat,Y2: product_prod_int_int] :
      ( ( ( bezw @ X @ Xa )
        = Y2 )
     => ( ( ( Xa = zero_zero_nat )
         => ( Y2
            = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
        & ( ( Xa != zero_zero_nat )
         => ( Y2
            = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa ) ) ) ) ) ) ) ) ) ).

% bezw.elims
thf(fact_9825_rat__sgn__code,axiom,
    ! [P5: rat] :
      ( ( quotient_of @ ( sgn_sgn_rat @ P5 ) )
      = ( product_Pair_int_int @ ( sgn_sgn_int @ ( product_fst_int_int @ ( quotient_of @ P5 ) ) ) @ one_one_int ) ) ).

% rat_sgn_code
thf(fact_9826_bezw_Opelims,axiom,
    ! [X: nat,Xa: nat,Y2: product_prod_int_int] :
      ( ( ( bezw @ X @ Xa )
        = Y2 )
     => ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
       => ~ ( ( ( ( Xa = zero_zero_nat )
               => ( Y2
                  = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
              & ( ( Xa != zero_zero_nat )
               => ( Y2
                  = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa ) ) ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).

% bezw.pelims
thf(fact_9827_minus__one__mod__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_mod_numeral
thf(fact_9828_one__mod__minus__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ) ).

% one_mod_minus_numeral
thf(fact_9829_minus__numeral__mod__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_mod_numeral
thf(fact_9830_numeral__mod__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ) ).

% numeral_mod_minus_numeral
thf(fact_9831_normalize__def,axiom,
    ( normalize
    = ( ^ [P4: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P4 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P4 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P4 ) @ ( product_snd_int_int @ P4 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P4 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P4 ) @ ( product_snd_int_int @ P4 ) ) ) )
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_snd_int_int @ P4 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P4 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P4 ) @ ( product_snd_int_int @ P4 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P4 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P4 ) @ ( product_snd_int_int @ P4 ) ) ) ) ) ) ) ) ) ).

% normalize_def
thf(fact_9832_drop__bit__numeral__minus__bit1,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K2 ) ) ) ) ) ).

% drop_bit_numeral_minus_bit1
thf(fact_9833_gcd__1__int,axiom,
    ! [M: int] :
      ( ( gcd_gcd_int @ M @ one_one_int )
      = one_one_int ) ).

% gcd_1_int
thf(fact_9834_drop__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% drop_bit_nonnegative_int_iff
thf(fact_9835_drop__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% drop_bit_negative_int_iff
thf(fact_9836_drop__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% drop_bit_minus_one
thf(fact_9837_drop__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) ) ).

% drop_bit_Suc_minus_bit0
thf(fact_9838_drop__bit__numeral__minus__bit0,axiom,
    ! [L: num,K2: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) ) ) ).

% drop_bit_numeral_minus_bit0
thf(fact_9839_drop__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K2: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K2 ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K2 ) ) ) ) ) ).

% drop_bit_Suc_minus_bit1
thf(fact_9840_gcd__red__int,axiom,
    ( gcd_gcd_int
    = ( ^ [X4: int,Y: int] : ( gcd_gcd_int @ Y @ ( modulo_modulo_int @ X4 @ Y ) ) ) ) ).

% gcd_red_int
thf(fact_9841_gcd__ge__0__int,axiom,
    ! [X: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X @ Y2 ) ) ).

% gcd_ge_0_int
thf(fact_9842_bezout__int,axiom,
    ! [X: int,Y2: int] :
    ? [U3: int,V2: int] :
      ( ( plus_plus_int @ ( times_times_int @ U3 @ X ) @ ( times_times_int @ V2 @ Y2 ) )
      = ( gcd_gcd_int @ X @ Y2 ) ) ).

% bezout_int
thf(fact_9843_gcd__mult__distrib__int,axiom,
    ! [K2: int,M: int,N: int] :
      ( ( times_times_int @ ( abs_abs_int @ K2 ) @ ( gcd_gcd_int @ M @ N ) )
      = ( gcd_gcd_int @ ( times_times_int @ K2 @ M ) @ ( times_times_int @ K2 @ N ) ) ) ).

% gcd_mult_distrib_int
thf(fact_9844_drop__bit__push__bit__int,axiom,
    ! [M: nat,N: nat,K2: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K2 ) )
      = ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K2 ) ) ) ).

% drop_bit_push_bit_int
thf(fact_9845_gcd__le2__int,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).

% gcd_le2_int
thf(fact_9846_gcd__le1__int,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).

% gcd_le1_int
thf(fact_9847_gcd__cases__int,axiom,
    ! [X: int,Y2: int,P3: int > $o] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
         => ( P3 @ ( gcd_gcd_int @ X @ Y2 ) ) ) )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
           => ( P3 @ ( gcd_gcd_int @ X @ ( uminus_uminus_int @ Y2 ) ) ) ) )
       => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
           => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
             => ( P3 @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ Y2 ) ) ) )
         => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
             => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
               => ( P3 @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ ( uminus_uminus_int @ Y2 ) ) ) ) )
           => ( P3 @ ( gcd_gcd_int @ X @ Y2 ) ) ) ) ) ) ).

% gcd_cases_int
thf(fact_9848_gcd__unique__int,axiom,
    ! [D: int,A: int,B: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ D )
        & ( dvd_dvd_int @ D @ A )
        & ( dvd_dvd_int @ D @ B )
        & ! [E3: int] :
            ( ( ( dvd_dvd_int @ E3 @ A )
              & ( dvd_dvd_int @ E3 @ B ) )
           => ( dvd_dvd_int @ E3 @ D ) ) )
      = ( D
        = ( gcd_gcd_int @ A @ B ) ) ) ).

% gcd_unique_int
thf(fact_9849_gcd__non__0__int,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ Y2 )
     => ( ( gcd_gcd_int @ X @ Y2 )
        = ( gcd_gcd_int @ Y2 @ ( modulo_modulo_int @ X @ Y2 ) ) ) ) ).

% gcd_non_0_int
thf(fact_9850_gcd__code__int,axiom,
    ( gcd_gcd_int
    = ( ^ [K3: int,L3: int] : ( abs_abs_int @ ( if_int @ ( L3 = zero_zero_int ) @ K3 @ ( gcd_gcd_int @ L3 @ ( modulo_modulo_int @ ( abs_abs_int @ K3 ) @ ( abs_abs_int @ L3 ) ) ) ) ) ) ) ).

% gcd_code_int
thf(fact_9851_drop__bit__int__def,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N2: nat,K3: int] : ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% drop_bit_int_def
thf(fact_9852_nat__descend__induct,axiom,
    ! [N: nat,P3: nat > $o,M: nat] :
      ( ! [K: nat] :
          ( ( ord_less_nat @ N @ K )
         => ( P3 @ K ) )
     => ( ! [K: nat] :
            ( ( ord_less_eq_nat @ K @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K @ I4 )
                 => ( P3 @ I4 ) )
             => ( P3 @ K ) ) )
       => ( P3 @ M ) ) ) ).

% nat_descend_induct
thf(fact_9853_finite__enumerate,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [R3: nat > nat] :
          ( ( strict1292158309912662752at_nat @ R3 @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S3 ) ) )
          & ! [N8: nat] :
              ( ( ord_less_nat @ N8 @ ( finite_card_nat @ S3 ) )
             => ( member_nat @ ( R3 @ N8 ) @ S3 ) ) ) ) ).

% finite_enumerate
thf(fact_9854_divmod__integer__eq__cases,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L3: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( L3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
            @ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L3
              @ ( if_Pro6119634080678213985nteger
                @ ( ( sgn_sgn_Code_integer @ K3 )
                  = ( sgn_sgn_Code_integer @ L3 ) )
                @ ( code_divmod_abs @ K3 @ L3 )
                @ ( produc6916734918728496179nteger
                  @ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L3 ) @ S4 ) ) )
                  @ ( code_divmod_abs @ K3 @ L3 ) ) ) ) ) ) ) ) ).

% divmod_integer_eq_cases
thf(fact_9855_gcd__1__nat,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ one_one_nat )
      = one_one_nat ) ).

% gcd_1_nat
thf(fact_9856_gcd__pos__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N ) )
      = ( ( M != zero_zero_nat )
        | ( N != zero_zero_nat ) ) ) ).

% gcd_pos_nat
thf(fact_9857_drop__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_Suc_0
thf(fact_9858_gcd__mult__distrib__nat,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K2 @ ( gcd_gcd_nat @ M @ N ) )
      = ( gcd_gcd_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) ) ) ).

% gcd_mult_distrib_nat
thf(fact_9859_gcd__red__nat,axiom,
    ( gcd_gcd_nat
    = ( ^ [X4: nat,Y: nat] : ( gcd_gcd_nat @ Y @ ( modulo_modulo_nat @ X4 @ Y ) ) ) ) ).

% gcd_red_nat
thf(fact_9860_gcd__le1__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).

% gcd_le1_nat
thf(fact_9861_gcd__le2__nat,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).

% gcd_le2_nat
thf(fact_9862_gcd__diff1__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff1_nat
thf(fact_9863_gcd__diff2__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ N @ M ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff2_nat
thf(fact_9864_gcd__nat_Oelims,axiom,
    ! [X: nat,Xa: nat,Y2: nat] :
      ( ( ( gcd_gcd_nat @ X @ Xa )
        = Y2 )
     => ( ( ( Xa = zero_zero_nat )
         => ( Y2 = X ) )
        & ( ( Xa != zero_zero_nat )
         => ( Y2
            = ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) ) ) ) ).

% gcd_nat.elims
thf(fact_9865_gcd__nat_Osimps,axiom,
    ( gcd_gcd_nat
    = ( ^ [X4: nat,Y: nat] : ( if_nat @ ( Y = zero_zero_nat ) @ X4 @ ( gcd_gcd_nat @ Y @ ( modulo_modulo_nat @ X4 @ Y ) ) ) ) ) ).

% gcd_nat.simps
thf(fact_9866_gcd__non__0__nat,axiom,
    ! [Y2: nat,X: nat] :
      ( ( Y2 != zero_zero_nat )
     => ( ( gcd_gcd_nat @ X @ Y2 )
        = ( gcd_gcd_nat @ Y2 @ ( modulo_modulo_nat @ X @ Y2 ) ) ) ) ).

% gcd_non_0_nat
thf(fact_9867_drop__bit__nat__eq,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K2 ) )
      = ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K2 ) ) ) ).

% drop_bit_nat_eq
thf(fact_9868_bezout__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [X5: nat,Y5: nat] :
          ( ( times_times_nat @ A @ X5 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y5 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_nat
thf(fact_9869_bezout__gcd__nat_H,axiom,
    ! [B: nat,A: nat] :
    ? [X5: nat,Y5: nat] :
      ( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y5 ) @ ( times_times_nat @ A @ X5 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y5 ) )
          = ( gcd_gcd_nat @ A @ B ) ) )
      | ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y5 ) @ ( times_times_nat @ B @ X5 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y5 ) )
          = ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_gcd_nat'
thf(fact_9870_gcd__code__integer,axiom,
    ( gcd_gcd_Code_integer
    = ( ^ [K3: code_integer,L3: code_integer] : ( abs_abs_Code_integer @ ( if_Code_integer @ ( L3 = zero_z3403309356797280102nteger ) @ K3 @ ( gcd_gcd_Code_integer @ L3 @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K3 ) @ ( abs_abs_Code_integer @ L3 ) ) ) ) ) ) ) ).

% gcd_code_integer
thf(fact_9871_drop__bit__nat__def,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N2: nat,M2: nat] : ( divide_divide_nat @ M2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% drop_bit_nat_def
thf(fact_9872_bezw__aux,axiom,
    ! [X: nat,Y2: nat] :
      ( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X @ Y2 ) )
      = ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X @ Y2 ) ) @ ( semiri1314217659103216013at_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X @ Y2 ) ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) ) ).

% bezw_aux
thf(fact_9873_gcd__nat_Opelims,axiom,
    ! [X: nat,Xa: nat,Y2: nat] :
      ( ( ( gcd_gcd_nat @ X @ Xa )
        = Y2 )
     => ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
       => ~ ( ( ( ( Xa = zero_zero_nat )
               => ( Y2 = X ) )
              & ( ( Xa != zero_zero_nat )
               => ( Y2
                  = ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).

% gcd_nat.pelims
thf(fact_9874_card__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).

% card_greaterThanLessThan_int
thf(fact_9875_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
      = ( set_or5832277885323065728an_int @ L @ U ) ) ).

% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9876_nth__sorted__list__of__set__greaterThanLessThan,axiom,
    ! [N: nat,J: nat,I2: nat] :
      ( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ ( suc @ I2 ) ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I2 @ J ) ) @ N )
        = ( suc @ ( plus_plus_nat @ I2 @ N ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9877_xor__minus__numerals_I2_J,axiom,
    ! [K2: int,N: num] :
      ( ( bit_se6526347334894502574or_int @ K2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K2 @ ( neg_numeral_sub_int @ N @ one ) ) ) ) ).

% xor_minus_numerals(2)
thf(fact_9878_xor__minus__numerals_I1_J,axiom,
    ! [N: num,K2: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ K2 )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N @ one ) @ K2 ) ) ) ).

% xor_minus_numerals(1)
thf(fact_9879_tanh__real__bounds,axiom,
    ! [X: real] : ( member_real @ ( tanh_real @ X ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) ).

% tanh_real_bounds
thf(fact_9880_greaterThanLessThan__upt,axiom,
    ( set_or5834768355832116004an_nat
    = ( ^ [N2: nat,M2: nat] : ( set_nat2 @ ( upt @ ( suc @ N2 ) @ M2 ) ) ) ) ).

% greaterThanLessThan_upt
thf(fact_9881_sub__BitM__One__eq,axiom,
    ! [N: num] :
      ( ( neg_numeral_sub_int @ ( bitM @ N ) @ one )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N @ one ) ) ) ).

% sub_BitM_One_eq
thf(fact_9882_Suc__funpow,axiom,
    ! [N: nat] :
      ( ( compow_nat_nat @ N @ suc )
      = ( plus_plus_nat @ N ) ) ).

% Suc_funpow
thf(fact_9883_max__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
    @ ^ [X4: nat,Y: nat] : ( ord_less_eq_nat @ Y @ X4 )
    @ ^ [X4: nat,Y: nat] : ( ord_less_nat @ Y @ X4 ) ) ).

% max_nat.semilattice_neutr_order_axioms
thf(fact_9884_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
    @ ^ [M2: nat,N2: nat] :
        ( ( dvd_dvd_nat @ M2 @ N2 )
        & ( M2 != N2 ) ) ) ).

% gcd_nat.semilattice_neutr_order_axioms
thf(fact_9885_nth__sorted__list__of__set__greaterThanAtMost,axiom,
    ! [N: nat,J: nat,I2: nat] :
      ( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ I2 ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I2 @ J ) ) @ N )
        = ( suc @ ( plus_plus_nat @ I2 @ N ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9886_greaterThanAtMost__upt,axiom,
    ( set_or6659071591806873216st_nat
    = ( ^ [N2: nat,M2: nat] : ( set_nat2 @ ( upt @ ( suc @ N2 ) @ ( suc @ M2 ) ) ) ) ) ).

% greaterThanAtMost_upt
thf(fact_9887_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
      = ( set_or6656581121297822940st_int @ L @ U ) ) ).

% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_9888_times__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( times_times_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X4: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X4 @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X4 @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) )
          @ Xa
          @ X ) ) ) ).

% times_int.abs_eq
thf(fact_9889_uminus__int_Oabs__eq,axiom,
    ! [X: product_prod_nat_nat] :
      ( ( uminus_uminus_int @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc2626176000494625587at_nat
          @ ^ [X4: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X4 )
          @ X ) ) ) ).

% uminus_int.abs_eq
thf(fact_9890_one__int__def,axiom,
    ( one_one_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).

% one_int_def
thf(fact_9891_less__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( ord_less_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X4: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X4 @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) )
        @ Xa
        @ X ) ) ).

% less_int.abs_eq
thf(fact_9892_less__eq__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( ord_less_eq_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X4: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X4 @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) )
        @ Xa
        @ X ) ) ).

% less_eq_int.abs_eq
thf(fact_9893_plus__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( plus_plus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X4: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X4 @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) )
          @ Xa
          @ X ) ) ) ).

% plus_int.abs_eq
thf(fact_9894_minus__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( minus_minus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X4: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X4 @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) )
          @ Xa
          @ X ) ) ) ).

% minus_int.abs_eq
thf(fact_9895_less__eq__int_Orep__eq,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y: nat,Z6: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y @ V4 ) @ ( plus_plus_nat @ U2 @ Z6 ) ) )
          @ ( rep_Integ @ X4 )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_eq_int.rep_eq
thf(fact_9896_less__int_Orep__eq,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y: nat,Z6: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y @ V4 ) @ ( plus_plus_nat @ U2 @ Z6 ) ) )
          @ ( rep_Integ @ X4 )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_int.rep_eq
thf(fact_9897_upt__conv__Nil,axiom,
    ! [J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( upt @ I2 @ J )
        = nil_nat ) ) ).

% upt_conv_Nil
thf(fact_9898_upt__eq__Nil__conv,axiom,
    ! [I2: nat,J: nat] :
      ( ( ( upt @ I2 @ J )
        = nil_nat )
      = ( ( J = zero_zero_nat )
        | ( ord_less_eq_nat @ J @ I2 ) ) ) ).

% upt_eq_Nil_conv
thf(fact_9899_upt__0,axiom,
    ! [I2: nat] :
      ( ( upt @ I2 @ zero_zero_nat )
      = nil_nat ) ).

% upt_0
thf(fact_9900_hd__upt,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( hd_nat @ ( upt @ I2 @ J ) )
        = I2 ) ) ).

% hd_upt
thf(fact_9901_uminus__int__def,axiom,
    ( uminus_uminus_int
    = ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
      @ ( produc2626176000494625587at_nat
        @ ^ [X4: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X4 ) ) ) ) ).

% uminus_int_def
thf(fact_9902_bij__betw__Suc,axiom,
    ! [M7: set_nat,N4: set_nat] :
      ( ( bij_betw_nat_nat @ suc @ M7 @ N4 )
      = ( ( image_nat_nat @ suc @ M7 )
        = N4 ) ) ).

% bij_betw_Suc
thf(fact_9903_image__Suc__lessThan,axiom,
    ! [N: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ).

% image_Suc_lessThan
thf(fact_9904_image__Suc__atMost,axiom,
    ! [N: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N ) ) ) ).

% image_Suc_atMost
thf(fact_9905_image__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ U )
     => ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
        = ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).

% image_atLeastZeroLessThan_int
thf(fact_9906_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y2: nat,X: nat] :
      ( ( ( ord_less_nat @ C @ Y2 )
       => ( ( image_nat_nat
            @ ^ [I: nat] : ( minus_minus_nat @ I @ C )
            @ ( set_or4665077453230672383an_nat @ X @ Y2 ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X @ C ) @ ( minus_minus_nat @ Y2 @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y2 )
       => ( ( ( ord_less_nat @ X @ Y2 )
           => ( ( image_nat_nat
                @ ^ [I: nat] : ( minus_minus_nat @ I @ C )
                @ ( set_or4665077453230672383an_nat @ X @ Y2 ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X @ Y2 )
           => ( ( image_nat_nat
                @ ^ [I: nat] : ( minus_minus_nat @ I @ C )
                @ ( set_or4665077453230672383an_nat @ X @ Y2 ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_9907_Inf__real__def,axiom,
    ( comple4887499456419720421f_real
    = ( ^ [X6: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X6 ) ) ) ) ) ).

% Inf_real_def
thf(fact_9908_finite__int__iff__bounded,axiom,
    ( finite_finite_int
    = ( ^ [S5: set_int] :
        ? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_lessThan_int @ K3 ) ) ) ) ).

% finite_int_iff_bounded
thf(fact_9909_finite__int__iff__bounded__le,axiom,
    ( finite_finite_int
    = ( ^ [S5: set_int] :
        ? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_atMost_int @ K3 ) ) ) ) ).

% finite_int_iff_bounded_le
thf(fact_9910_image__add__int__atLeastLessThan,axiom,
    ! [L: int,U: int] :
      ( ( image_int_int
        @ ^ [X4: int] : ( plus_plus_int @ X4 @ L )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L ) ) )
      = ( set_or4662586982721622107an_int @ L @ U ) ) ).

% image_add_int_atLeastLessThan
thf(fact_9911_times__int__def,axiom,
    ( times_times_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X4: nat,Y: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X4 @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X4 @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) ) ) ) ) ).

% times_int_def
thf(fact_9912_minus__int__def,axiom,
    ( minus_minus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X4: nat,Y: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X4 @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) ) ) ) ) ).

% minus_int_def
thf(fact_9913_plus__int__def,axiom,
    ( plus_plus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X4: nat,Y: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X4 @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) ) ) ) ) ).

% plus_int_def
thf(fact_9914_remdups__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( remdups_nat @ ( upt @ M @ N ) )
      = ( upt @ M @ N ) ) ).

% remdups_upt
thf(fact_9915_suminf__eq__SUP__real,axiom,
    ! [X9: nat > real] :
      ( ( summable_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X9 @ I3 ) )
       => ( ( suminf_real @ X9 )
          = ( comple1385675409528146559p_real
            @ ( image_nat_real
              @ ^ [I: nat] : ( groups6591440286371151544t_real @ X9 @ ( set_ord_lessThan_nat @ I ) )
              @ top_top_set_nat ) ) ) ) ) ).

% suminf_eq_SUP_real
thf(fact_9916_UN__atMost__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atMost_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atMost_UNIV
thf(fact_9917_UN__lessThan__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_lessThan_UNIV
thf(fact_9918_range__mod,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( image_nat_nat
          @ ^ [M2: nat] : ( modulo_modulo_nat @ M2 @ N )
          @ top_top_set_nat )
        = ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% range_mod
thf(fact_9919_card__UNIV__unit,axiom,
    ( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
    = one_one_nat ) ).

% card_UNIV_unit
thf(fact_9920_card__UNIV__bool,axiom,
    ( ( finite_card_o @ top_top_set_o )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% card_UNIV_bool
thf(fact_9921_range__mult,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
      & ( ( A != zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = top_top_set_real ) ) ) ).

% range_mult
thf(fact_9922_top__enat__def,axiom,
    top_to3028658606643905974d_enat = extend5688581933313929465d_enat ).

% top_enat_def
thf(fact_9923_root__def,axiom,
    ( root
    = ( ^ [N2: nat,X4: real] :
          ( if_real @ ( N2 = zero_zero_nat ) @ zero_zero_real
          @ ( the_in5290026491893676941l_real @ top_top_set_real
            @ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N2 ) )
            @ X4 ) ) ) ) ).

% root_def
thf(fact_9924_card__UNIV__char,axiom,
    ( ( finite_card_char @ top_top_set_char )
    = ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% card_UNIV_char
thf(fact_9925_UNIV__char__of__nat,axiom,
    ( top_top_set_char
    = ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% UNIV_char_of_nat
thf(fact_9926_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_9927_range__nat__of__char,axiom,
    ( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
    = ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% range_nat_of_char
thf(fact_9928_integer__of__char__code,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
      ( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).

% integer_of_char_code
thf(fact_9929_char__of__integer__code,axiom,
    ( char_of_integer
    = ( ^ [K3: code_integer] :
          ( produc4188289175737317920o_char
          @ ^ [Q0: code_integer,B02: $o] :
              ( produc4188289175737317920o_char
              @ ^ [Q1: code_integer,B12: $o] :
                  ( produc4188289175737317920o_char
                  @ ^ [Q22: code_integer,B23: $o] :
                      ( produc4188289175737317920o_char
                      @ ^ [Q32: code_integer,B33: $o] :
                          ( produc4188289175737317920o_char
                          @ ^ [Q42: code_integer,B43: $o] :
                              ( produc4188289175737317920o_char
                              @ ^ [Q52: code_integer,B53: $o] :
                                  ( produc4188289175737317920o_char
                                  @ ^ [Q62: code_integer,B63: $o] :
                                      ( produc4188289175737317920o_char
                                      @ ^ [Uu3: code_integer] : ( char2 @ B02 @ B12 @ B23 @ B33 @ B43 @ B53 @ B63 )
                                      @ ( code_bit_cut_integer @ Q62 ) )
                                  @ ( code_bit_cut_integer @ Q52 ) )
                              @ ( code_bit_cut_integer @ Q42 ) )
                          @ ( code_bit_cut_integer @ Q32 ) )
                      @ ( code_bit_cut_integer @ Q22 ) )
                  @ ( code_bit_cut_integer @ Q1 ) )
              @ ( code_bit_cut_integer @ Q0 ) )
          @ ( code_bit_cut_integer @ K3 ) ) ) ) ).

% char_of_integer_code
thf(fact_9930_String_Ochar__of__ascii__of,axiom,
    ! [C: char] :
      ( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
      = ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).

% String.char_of_ascii_of
thf(fact_9931_upt__rec__numeral,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) ) ) ) )
      & ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = nil_nat ) ) ) ).

% upt_rec_numeral
thf(fact_9932_upt__conv__Cons__Cons,axiom,
    ! [M: nat,N: nat,Ns: list_nat,Q: nat] :
      ( ( ( cons_nat @ M @ ( cons_nat @ N @ Ns ) )
        = ( upt @ M @ Q ) )
      = ( ( cons_nat @ N @ Ns )
        = ( upt @ ( suc @ M ) @ Q ) ) ) ).

% upt_conv_Cons_Cons
thf(fact_9933_upt__conv__Cons,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( upt @ I2 @ J )
        = ( cons_nat @ I2 @ ( upt @ ( suc @ I2 ) @ J ) ) ) ) ).

% upt_conv_Cons
thf(fact_9934_upt__eq__Cons__conv,axiom,
    ! [I2: nat,J: nat,X: nat,Xs: list_nat] :
      ( ( ( upt @ I2 @ J )
        = ( cons_nat @ X @ Xs ) )
      = ( ( ord_less_nat @ I2 @ J )
        & ( I2 = X )
        & ( ( upt @ ( plus_plus_nat @ I2 @ one_one_nat ) @ J )
          = Xs ) ) ) ).

% upt_eq_Cons_conv
thf(fact_9935_upt__rec,axiom,
    ( upt
    = ( ^ [I: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I @ J3 ) @ ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J3 ) ) @ nil_nat ) ) ) ).

% upt_rec
thf(fact_9936_sorted__list__of__set__greaterThanAtMost,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( suc @ I2 ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I2 @ J ) )
        = ( cons_nat @ ( suc @ I2 ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I2 ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanAtMost
thf(fact_9937_sorted__list__of__set__greaterThanLessThan,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I2 @ J ) )
        = ( cons_nat @ ( suc @ I2 ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I2 ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanLessThan
thf(fact_9938_tl__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( tl_nat @ ( upt @ M @ N ) )
      = ( upt @ ( suc @ M ) @ N ) ) ).

% tl_upt
thf(fact_9939_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I ) @ Js @ ( upto_aux @ I @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_9940_sorted__list__of__set__lessThan__Suc,axiom,
    ! [K2: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K2 ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K2 ) ) @ ( cons_nat @ K2 @ nil_nat ) ) ) ).

% sorted_list_of_set_lessThan_Suc
thf(fact_9941_sorted__list__of__set__atMost__Suc,axiom,
    ! [K2: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K2 ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K2 ) ) @ ( cons_nat @ ( suc @ K2 ) @ nil_nat ) ) ) ).

% sorted_list_of_set_atMost_Suc
thf(fact_9942_sup__enat__def,axiom,
    sup_su3973961784419623482d_enat = ord_ma741700101516333627d_enat ).

% sup_enat_def
thf(fact_9943_sup__nat__def,axiom,
    sup_sup_nat = ord_max_nat ).

% sup_nat_def
thf(fact_9944_upt__add__eq__append,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( upt @ I2 @ ( plus_plus_nat @ J @ K2 ) )
        = ( append_nat @ ( upt @ I2 @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K2 ) ) ) ) ) ).

% upt_add_eq_append
thf(fact_9945_atLeastLessThan__add__Un,axiom,
    ! [I2: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( set_or4665077453230672383an_nat @ I2 @ ( plus_plus_nat @ J @ K2 ) )
        = ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I2 @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K2 ) ) ) ) ) ).

% atLeastLessThan_add_Un
thf(fact_9946_upt__Suc,axiom,
    ! [I2: nat,J: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
       => ( ( upt @ I2 @ ( suc @ J ) )
          = ( append_nat @ ( upt @ I2 @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
      & ( ~ ( ord_less_eq_nat @ I2 @ J )
       => ( ( upt @ I2 @ ( suc @ J ) )
          = nil_nat ) ) ) ).

% upt_Suc
thf(fact_9947_upt__Suc__append,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( upt @ I2 @ ( suc @ J ) )
        = ( append_nat @ ( upt @ I2 @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).

% upt_Suc_append
thf(fact_9948_drop__upt,axiom,
    ! [M: nat,I2: nat,J: nat] :
      ( ( drop_nat @ M @ ( upt @ I2 @ J ) )
      = ( upt @ ( plus_plus_nat @ I2 @ M ) @ J ) ) ).

% drop_upt
thf(fact_9949_upto_Opsimps,axiom,
    ! [I2: int,J: int] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I2 @ J ) )
     => ( ( ( ord_less_eq_int @ I2 @ J )
         => ( ( upto @ I2 @ J )
            = ( cons_int @ I2 @ ( upto @ ( plus_plus_int @ I2 @ one_one_int ) @ J ) ) ) )
        & ( ~ ( ord_less_eq_int @ I2 @ J )
         => ( ( upto @ I2 @ J )
            = nil_int ) ) ) ) ).

% upto.psimps
thf(fact_9950_upto__empty,axiom,
    ! [J: int,I2: int] :
      ( ( ord_less_int @ J @ I2 )
     => ( ( upto @ I2 @ J )
        = nil_int ) ) ).

% upto_empty
thf(fact_9951_upto__Nil2,axiom,
    ! [I2: int,J: int] :
      ( ( nil_int
        = ( upto @ I2 @ J ) )
      = ( ord_less_int @ J @ I2 ) ) ).

% upto_Nil2
thf(fact_9952_upto__Nil,axiom,
    ! [I2: int,J: int] :
      ( ( ( upto @ I2 @ J )
        = nil_int )
      = ( ord_less_int @ J @ I2 ) ) ).

% upto_Nil
thf(fact_9953_upto__single,axiom,
    ! [I2: int] :
      ( ( upto @ I2 @ I2 )
      = ( cons_int @ I2 @ nil_int ) ) ).

% upto_single
thf(fact_9954_nth__upto,axiom,
    ! [I2: int,K2: nat,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ ( semiri1314217659103216013at_int @ K2 ) ) @ J )
     => ( ( nth_int @ ( upto @ I2 @ J ) @ K2 )
        = ( plus_plus_int @ I2 @ ( semiri1314217659103216013at_int @ K2 ) ) ) ) ).

% nth_upto
thf(fact_9955_length__upto,axiom,
    ! [I2: int,J: int] :
      ( ( size_size_list_int @ ( upto @ I2 @ J ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I2 ) @ one_one_int ) ) ) ).

% length_upto
thf(fact_9956_upto__rec__numeral_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(1)
thf(fact_9957_upto__rec__numeral_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(2)
thf(fact_9958_upto__rec__numeral_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(3)
thf(fact_9959_upto__rec__numeral_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(4)
thf(fact_9960_upto__aux__def,axiom,
    ( upto_aux
    = ( ^ [I: int,J3: int] : ( append_int @ ( upto @ I @ J3 ) ) ) ) ).

% upto_aux_def
thf(fact_9961_sorted__upto,axiom,
    ! [M: int,N: int] : ( sorted_wrt_int @ ord_less_eq_int @ ( upto @ M @ N ) ) ).

% sorted_upto
thf(fact_9962_sorted__wrt__upto,axiom,
    ! [I2: int,J: int] : ( sorted_wrt_int @ ord_less_int @ ( upto @ I2 @ J ) ) ).

% sorted_wrt_upto
thf(fact_9963_atLeastAtMost__upto,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I: int,J3: int] : ( set_int2 @ ( upto @ I @ J3 ) ) ) ) ).

% atLeastAtMost_upto
thf(fact_9964_distinct__upto,axiom,
    ! [I2: int,J: int] : ( distinct_int @ ( upto @ I2 @ J ) ) ).

% distinct_upto
thf(fact_9965_upto__code,axiom,
    ( upto
    = ( ^ [I: int,J3: int] : ( upto_aux @ I @ J3 @ nil_int ) ) ) ).

% upto_code
thf(fact_9966_upto__split2,axiom,
    ! [I2: int,J: int,K2: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( ord_less_eq_int @ J @ K2 )
       => ( ( upto @ I2 @ K2 )
          = ( append_int @ ( upto @ I2 @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K2 ) ) ) ) ) ).

% upto_split2
thf(fact_9967_upto__split1,axiom,
    ! [I2: int,J: int,K2: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( ord_less_eq_int @ J @ K2 )
       => ( ( upto @ I2 @ K2 )
          = ( append_int @ ( upto @ I2 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K2 ) ) ) ) ) ).

% upto_split1
thf(fact_9968_atLeastLessThan__upto,axiom,
    ( set_or4662586982721622107an_int
    = ( ^ [I: int,J3: int] : ( set_int2 @ ( upto @ I @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% atLeastLessThan_upto
thf(fact_9969_greaterThanAtMost__upto,axiom,
    ( set_or6656581121297822940st_int
    = ( ^ [I: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J3 ) ) ) ) ).

% greaterThanAtMost_upto
thf(fact_9970_upto__rec1,axiom,
    ! [I2: int,J: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( upto @ I2 @ J )
        = ( cons_int @ I2 @ ( upto @ ( plus_plus_int @ I2 @ one_one_int ) @ J ) ) ) ) ).

% upto_rec1
thf(fact_9971_upto_Osimps,axiom,
    ( upto
    = ( ^ [I: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I @ J3 ) @ ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).

% upto.simps
thf(fact_9972_upto_Oelims,axiom,
    ! [X: int,Xa: int,Y2: list_int] :
      ( ( ( upto @ X @ Xa )
        = Y2 )
     => ( ( ( ord_less_eq_int @ X @ Xa )
         => ( Y2
            = ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa ) ) ) )
        & ( ~ ( ord_less_eq_int @ X @ Xa )
         => ( Y2 = nil_int ) ) ) ) ).

% upto.elims
thf(fact_9973_upto__rec2,axiom,
    ! [I2: int,J: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( upto @ I2 @ J )
        = ( append_int @ ( upto @ I2 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).

% upto_rec2
thf(fact_9974_greaterThanLessThan__upto,axiom,
    ( set_or5832277885323065728an_int
    = ( ^ [I: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% greaterThanLessThan_upto
thf(fact_9975_upto__split3,axiom,
    ! [I2: int,J: int,K2: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( ord_less_eq_int @ J @ K2 )
       => ( ( upto @ I2 @ K2 )
          = ( append_int @ ( upto @ I2 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K2 ) ) ) ) ) ) ).

% upto_split3
thf(fact_9976_upto_Opelims,axiom,
    ! [X: int,Xa: int,Y2: list_int] :
      ( ( ( upto @ X @ Xa )
        = Y2 )
     => ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa ) )
       => ~ ( ( ( ( ord_less_eq_int @ X @ Xa )
               => ( Y2
                  = ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa ) ) ) )
              & ( ~ ( ord_less_eq_int @ X @ Xa )
               => ( Y2 = nil_int ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa ) ) ) ) ) ).

% upto.pelims
thf(fact_9977_take__bit__numeral__minus__numeral__int,axiom,
    ! [M: num,N: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( case_option_int_num @ zero_zero_int
        @ ^ [Q5: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q5 ) ) )
        @ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N ) ) ) ).

% take_bit_numeral_minus_numeral_int
thf(fact_9978_take__bit__num__simps_I1_J,axiom,
    ! [M: num] :
      ( ( bit_take_bit_num @ zero_zero_nat @ M )
      = none_num ) ).

% take_bit_num_simps(1)
thf(fact_9979_take__bit__num__simps_I2_J,axiom,
    ! [N: nat] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(2)
thf(fact_9980_take__bit__num__simps_I5_J,axiom,
    ! [R: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(5)
thf(fact_9981_take__bit__num__simps_I3_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
        @ ( bit_take_bit_num @ N @ M ) ) ) ).

% take_bit_num_simps(3)
thf(fact_9982_take__bit__num__simps_I4_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).

% take_bit_num_simps(4)
thf(fact_9983_take__bit__num__simps_I6_J,axiom,
    ! [R: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
        @ ( bit_take_bit_num @ ( pred_numeral @ R ) @ M ) ) ) ).

% take_bit_num_simps(6)
thf(fact_9984_take__bit__num__simps_I7_J,axiom,
    ! [R: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R ) @ M ) ) ) ) ).

% take_bit_num_simps(7)
thf(fact_9985_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N2: nat] :
            ( case_o6005452278849405969um_num @ none_num
            @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
            @ ( bit_take_bit_num @ N2 @ M ) )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_9986_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
    ! [N: nat] :
      ( ( bit_take_bit_num @ N @ one )
      = ( case_nat_option_num @ none_num
        @ ^ [N2: nat] : ( some_num @ one )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_9987_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N2: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N2 @ M ) ) )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_9988_and__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).

% and_minus_numerals(7)
thf(fact_9989_and__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).

% and_minus_numerals(3)
thf(fact_9990_and__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).

% and_minus_numerals(4)
thf(fact_9991_and__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).

% and_minus_numerals(8)
thf(fact_9992_and__not__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_and_not_num @ one @ ( bit1 @ N ) )
      = none_num ) ).

% and_not_num.simps(3)
thf(fact_9993_and__not__num_Osimps_I1_J,axiom,
    ( ( bit_and_not_num @ one @ one )
    = none_num ) ).

% and_not_num.simps(1)
thf(fact_9994_and__not__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_and_not_num @ one @ ( bit0 @ N ) )
      = ( some_num @ one ) ) ).

% and_not_num.simps(2)
thf(fact_9995_and__not__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(4)
thf(fact_9996_and__not__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(7)
thf(fact_9997_and__not__num__eq__Some__iff,axiom,
    ! [M: num,N: num,Q: num] :
      ( ( ( bit_and_not_num @ M @ N )
        = ( some_num @ Q ) )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
        = ( numeral_numeral_int @ Q ) ) ) ).

% and_not_num_eq_Some_iff
thf(fact_9998_and__not__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
        @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(8)
thf(fact_9999_and__not__num__eq__None__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( bit_and_not_num @ M @ N )
        = none_num )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
        = zero_zero_int ) ) ).

% and_not_num_eq_None_iff
thf(fact_10000_int__numeral__not__and__num,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N @ M ) ) ) ).

% int_numeral_not_and_num
thf(fact_10001_int__numeral__and__not__num,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N ) ) ) ).

% int_numeral_and_not_num
thf(fact_10002_Bit__Operations_Otake__bit__num__code,axiom,
    ( bit_take_bit_num
    = ( ^ [N2: nat,M2: num] :
          ( produc478579273971653890on_num
          @ ^ [A4: nat,X4: num] :
              ( case_nat_option_num @ none_num
              @ ^ [O: nat] :
                  ( case_num_option_num @ ( some_num @ one )
                  @ ^ [P4: num] :
                      ( case_o6005452278849405969um_num @ none_num
                      @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
                      @ ( bit_take_bit_num @ O @ P4 ) )
                  @ ^ [P4: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P4 ) ) )
                  @ X4 )
              @ A4 )
          @ ( product_Pair_nat_num @ N2 @ M2 ) ) ) ) ).

% Bit_Operations.take_bit_num_code
thf(fact_10003_take__bit__num__def,axiom,
    ( bit_take_bit_num
    = ( ^ [N2: nat,M2: num] :
          ( if_option_num
          @ ( ( bit_se2925701944663578781it_nat @ N2 @ ( numeral_numeral_nat @ M2 ) )
            = zero_zero_nat )
          @ none_num
          @ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N2 @ ( numeral_numeral_nat @ M2 ) ) ) ) ) ) ) ).

% take_bit_num_def
thf(fact_10004_num__of__nat__numeral__eq,axiom,
    ! [Q: num] :
      ( ( num_of_nat @ ( numeral_numeral_nat @ Q ) )
      = Q ) ).

% num_of_nat_numeral_eq
thf(fact_10005_num__of__nat_Osimps_I1_J,axiom,
    ( ( num_of_nat @ zero_zero_nat )
    = one ) ).

% num_of_nat.simps(1)
thf(fact_10006_numeral__num__of__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( numeral_numeral_nat @ ( num_of_nat @ N ) )
        = N ) ) ).

% numeral_num_of_nat
thf(fact_10007_num__of__nat__One,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ one_one_nat )
     => ( ( num_of_nat @ N )
        = one ) ) ).

% num_of_nat_One
thf(fact_10008_num__of__nat__double,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( num_of_nat @ ( plus_plus_nat @ N @ N ) )
        = ( bit0 @ ( num_of_nat @ N ) ) ) ) ).

% num_of_nat_double
thf(fact_10009_num__of__nat__plus__distrib,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( plus_plus_nat @ M @ N ) )
          = ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).

% num_of_nat_plus_distrib
thf(fact_10010_num__of__nat_Osimps_I2_J,axiom,
    ! [N: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( suc @ N ) )
          = ( inc @ ( num_of_nat @ N ) ) ) )
      & ( ~ ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( suc @ N ) )
          = one ) ) ) ).

% num_of_nat.simps(2)
thf(fact_10011_DERIV__real__root__generic,axiom,
    ! [N: nat,X: real,D3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( X != zero_zero_real )
       => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
           => ( ( ord_less_real @ zero_zero_real @ X )
             => ( D3
                = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
         => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
             => ( ( ord_less_real @ X @ zero_zero_real )
               => ( D3
                  = ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
           => ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
               => ( D3
                  = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
             => ( has_fi5821293074295781190e_real @ ( root @ N ) @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).

% DERIV_real_root_generic
thf(fact_10012_DERIV__mirror,axiom,
    ! [F: real > real,Y2: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ X ) @ top_top_set_real ) )
      = ( has_fi5821293074295781190e_real
        @ ^ [X4: real] : ( F @ ( uminus_uminus_real @ X4 ) )
        @ ( uminus_uminus_real @ Y2 )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_mirror
thf(fact_10013_DERIV__const__ratio__const,axiom,
    ! [A: real,B: real,F: real > real,K2: real] :
      ( ( A != B )
     => ( ! [X5: real] : ( has_fi5821293074295781190e_real @ F @ K2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
          = ( times_times_real @ ( minus_minus_real @ B @ A ) @ K2 ) ) ) ) ).

% DERIV_const_ratio_const
thf(fact_10014_DERIV__neg__imp__decreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_real @ Y6 @ zero_zero_real ) ) ) )
       => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_neg_imp_decreasing
thf(fact_10015_DERIV__pos__imp__increasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y6 ) ) ) )
       => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing
thf(fact_10016_MVT2,axiom,
    ! [A: real,B: real,F: real > real,F5: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ( has_fi5821293074295781190e_real @ F @ ( F5 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
       => ? [Z: real] :
            ( ( ord_less_real @ A @ Z )
            & ( ord_less_real @ Z @ B )
            & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
              = ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F5 @ Z ) ) ) ) ) ) ).

% MVT2
thf(fact_10017_DERIV__nonneg__imp__nondecreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ zero_zero_real @ Y6 ) ) ) )
       => ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_nonneg_imp_nondecreasing
thf(fact_10018_DERIV__nonpos__imp__nonincreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ Y6 @ zero_zero_real ) ) ) )
       => ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_nonpos_imp_nonincreasing
thf(fact_10019_deriv__nonneg__imp__mono,axiom,
    ! [A: real,B: real,G: real > real,G2: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_or1222579329274155063t_real @ A @ B ) )
         => ( has_fi5821293074295781190e_real @ G @ ( G2 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ ( set_or1222579329274155063t_real @ A @ B ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X5 ) ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).

% deriv_nonneg_imp_mono
thf(fact_10020_DERIV__const__average,axiom,
    ! [A: real,B: real,V: real > real,K2: real] :
      ( ( A != B )
     => ( ! [X5: real] : ( has_fi5821293074295781190e_real @ V @ K2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% DERIV_const_average
thf(fact_10021_DERIV__local__max,axiom,
    ! [F: real > real,L: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y5: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ Y5 ) @ ( F @ X ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_max
thf(fact_10022_DERIV__local__min,axiom,
    ! [F: real > real,L: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y5: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y5 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_min
thf(fact_10023_DERIV__ln__divide,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_ln_divide
thf(fact_10024_DERIV__pow,axiom,
    ! [N: nat,X: real,S: set_real] :
      ( has_fi5821293074295781190e_real
      @ ^ [X4: real] : ( power_power_real @ X4 @ N )
      @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
      @ ( topolo2177554685111907308n_real @ X @ S ) ) ).

% DERIV_pow
thf(fact_10025_DERIV__fun__pow,axiom,
    ! [G: real > real,M: real,X: real,N: nat] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( has_fi5821293074295781190e_real
        @ ^ [X4: real] : ( power_power_real @ ( G @ X4 ) @ N )
        @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_fun_pow
thf(fact_10026_has__real__derivative__powr,axiom,
    ! [Z3: real,R: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( has_fi5821293074295781190e_real
        @ ^ [Z6: real] : ( powr_real @ Z6 @ R )
        @ ( times_times_real @ R @ ( powr_real @ Z3 @ ( minus_minus_real @ R @ one_one_real ) ) )
        @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) ).

% has_real_derivative_powr
thf(fact_10027_DERIV__log,axiom,
    ! [X: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_log
thf(fact_10028_DERIV__fun__powr,axiom,
    ! [G: real > real,M: real,X: real,R: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
       => ( has_fi5821293074295781190e_real
          @ ^ [X4: real] : ( powr_real @ ( G @ X4 ) @ R )
          @ ( times_times_real @ ( times_times_real @ R @ ( powr_real @ ( G @ X ) @ ( minus_minus_real @ R @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
          @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_fun_powr
thf(fact_10029_DERIV__powr,axiom,
    ! [G: real > real,M: real,X: real,F: real > real,R: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
       => ( ( has_fi5821293074295781190e_real @ F @ R @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( has_fi5821293074295781190e_real
            @ ^ [X4: real] : ( powr_real @ ( G @ X4 ) @ ( F @ X4 ) )
            @ ( times_times_real @ ( powr_real @ ( G @ X ) @ ( F @ X ) ) @ ( plus_plus_real @ ( times_times_real @ R @ ( ln_ln_real @ ( G @ X ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X ) ) @ ( G @ X ) ) ) )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_powr
thf(fact_10030_DERIV__real__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_real_sqrt
thf(fact_10031_DERIV__series_H,axiom,
    ! [F: real > nat > real,F5: real > nat > real,X0: real,A: real,B: real,L4: nat > real] :
      ( ! [N3: nat] :
          ( has_fi5821293074295781190e_real
          @ ^ [X4: real] : ( F @ X4 @ N3 )
          @ ( F5 @ X0 @ N3 )
          @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ A @ B ) )
           => ( summable_real @ ( F @ X5 ) ) )
       => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ( summable_real @ ( F5 @ X0 ) )
           => ( ( summable_real @ L4 )
             => ( ! [N3: nat,X5: real,Y5: real] :
                    ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ A @ B ) )
                   => ( ( member_real @ Y5 @ ( set_or1633881224788618240n_real @ A @ B ) )
                     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X5 @ N3 ) @ ( F @ Y5 @ N3 ) ) ) @ ( times_times_real @ ( L4 @ N3 ) @ ( abs_abs_real @ ( minus_minus_real @ X5 @ Y5 ) ) ) ) ) )
               => ( has_fi5821293074295781190e_real
                  @ ^ [X4: real] : ( suminf_real @ ( F @ X4 ) )
                  @ ( suminf_real @ ( F5 @ X0 ) )
                  @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_series'
thf(fact_10032_DERIV__arctan,axiom,
    ! [X: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ).

% DERIV_arctan
thf(fact_10033_arsinh__real__has__field__derivative,axiom,
    ! [X: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ).

% arsinh_real_has_field_derivative
thf(fact_10034_DERIV__real__sqrt__generic,axiom,
    ! [X: real,D3: real] :
      ( ( X != zero_zero_real )
     => ( ( ( ord_less_real @ zero_zero_real @ X )
         => ( D3
            = ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( ( ord_less_real @ X @ zero_zero_real )
           => ( D3
              = ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
         => ( has_fi5821293074295781190e_real @ sqrt @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_real_sqrt_generic
thf(fact_10035_arcosh__real__has__field__derivative,axiom,
    ! [X: real,A2: set_real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).

% arcosh_real_has_field_derivative
thf(fact_10036_artanh__real__has__field__derivative,axiom,
    ! [X: real,A2: set_real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).

% artanh_real_has_field_derivative
thf(fact_10037_DERIV__power__series_H,axiom,
    ! [R4: real,F: nat > real,X0: real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R4 ) @ R4 ) )
         => ( summable_real
            @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( F @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X5 @ N2 ) ) ) )
     => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R4 ) @ R4 ) )
       => ( ( ord_less_real @ zero_zero_real @ R4 )
         => ( has_fi5821293074295781190e_real
            @ ^ [X4: real] :
                ( suminf_real
                @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X4 @ ( suc @ N2 ) ) ) )
            @ ( suminf_real
              @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( F @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X0 @ N2 ) ) )
            @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).

% DERIV_power_series'
thf(fact_10038_DERIV__real__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_real_root
thf(fact_10039_DERIV__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_arccos
thf(fact_10040_DERIV__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_arcsin
thf(fact_10041_Maclaurin__all__le,axiom,
    ! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
            & ( ( F @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ X @ M2 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_all_le
thf(fact_10042_Maclaurin__all__le__objl,axiom,
    ! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
      ( ( ( ( Diff @ zero_zero_nat )
          = F )
        & ! [M4: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
     => ? [T3: real] :
          ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
          & ( ( F @ X )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ X @ M2 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).

% Maclaurin_all_le_objl
thf(fact_10043_DERIV__odd__real__root,axiom,
    ! [N: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( X != zero_zero_real )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_odd_real_root
thf(fact_10044_Maclaurin,axiom,
    ! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T3: real] :
                ( ( ( ord_less_nat @ M4 @ N )
                  & ( ord_less_eq_real @ zero_zero_real @ T3 )
                  & ( ord_less_eq_real @ T3 @ H2 ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
           => ? [T3: real] :
                ( ( ord_less_real @ zero_zero_real @ T3 )
                & ( ord_less_real @ T3 @ H2 )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ H2 @ M2 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin
thf(fact_10045_Maclaurin2,axiom,
    ! [H2: real,Diff: nat > real > real,F: real > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ zero_zero_real @ T3 )
                & ( ord_less_eq_real @ T3 @ H2 ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ? [T3: real] :
              ( ( ord_less_real @ zero_zero_real @ T3 )
              & ( ord_less_eq_real @ T3 @ H2 )
              & ( ( F @ H2 )
                = ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ H2 @ M2 ) )
                    @ ( set_ord_lessThan_nat @ N ) )
                  @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ).

% Maclaurin2
thf(fact_10046_Maclaurin__minus,axiom,
    ! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ H2 @ zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T3: real] :
                ( ( ( ord_less_nat @ M4 @ N )
                  & ( ord_less_eq_real @ H2 @ T3 )
                  & ( ord_less_eq_real @ T3 @ zero_zero_real ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
           => ? [T3: real] :
                ( ( ord_less_real @ H2 @ T3 )
                & ( ord_less_real @ T3 @ zero_zero_real )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ H2 @ M2 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_minus
thf(fact_10047_Maclaurin__all__lt,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( X != zero_zero_real )
         => ( ! [M4: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
           => ? [T3: real] :
                ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
                & ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
                & ( ( F @ X )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ X @ M2 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_all_lt
thf(fact_10048_Maclaurin__bi__le,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,T3: real] :
            ( ( ( ord_less_nat @ M4 @ N )
              & ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) ) )
           => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
            & ( ( F @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ X @ M2 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_bi_le
thf(fact_10049_Taylor,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ( ( ord_less_eq_real @ A @ X )
               => ( ( ord_less_eq_real @ X @ B )
                 => ( ( X != C )
                   => ? [T3: real] :
                        ( ( ( ord_less_real @ X @ C )
                         => ( ( ord_less_real @ X @ T3 )
                            & ( ord_less_real @ T3 @ C ) ) )
                        & ( ~ ( ord_less_real @ X @ C )
                         => ( ( ord_less_real @ C @ T3 )
                            & ( ord_less_real @ T3 @ X ) ) )
                        & ( ( F @ X )
                          = ( plus_plus_real
                            @ ( groups6591440286371151544t_real
                              @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ C ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ M2 ) )
                              @ ( set_ord_lessThan_nat @ N ) )
                            @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% Taylor
thf(fact_10050_Taylor__up,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_real @ C @ B )
             => ? [T3: real] :
                  ( ( ord_less_real @ C @ T3 )
                  & ( ord_less_real @ T3 @ B )
                  & ( ( F @ B )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ C ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M2 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_up
thf(fact_10051_Taylor__down,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ? [T3: real] :
                  ( ( ord_less_real @ A @ T3 )
                  & ( ord_less_real @ T3 @ C )
                  & ( ( F @ A )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M2: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M2 @ C ) @ ( semiri2265585572941072030t_real @ M2 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M2 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_down
thf(fact_10052_Maclaurin__lemma2,axiom,
    ! [N: nat,H2: real,Diff: nat > real > real,K2: nat,B4: real] :
      ( ! [M4: nat,T3: real] :
          ( ( ( ord_less_nat @ M4 @ N )
            & ( ord_less_eq_real @ zero_zero_real @ T3 )
            & ( ord_less_eq_real @ T3 @ H2 ) )
         => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
     => ( ( N
          = ( suc @ K2 ) )
       => ! [M3: nat,T4: real] :
            ( ( ( ord_less_nat @ M3 @ N )
              & ( ord_less_eq_real @ zero_zero_real @ T4 )
              & ( ord_less_eq_real @ T4 @ H2 ) )
           => ( has_fi5821293074295781190e_real
              @ ^ [U2: real] :
                  ( minus_minus_real @ ( Diff @ M3 @ U2 )
                  @ ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [P4: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M3 @ P4 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P4 ) ) @ ( power_power_real @ U2 @ P4 ) )
                      @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M3 ) ) )
                    @ ( times_times_real @ B4 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N @ M3 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M3 ) ) ) ) ) )
              @ ( minus_minus_real @ ( Diff @ ( suc @ M3 ) @ T4 )
                @ ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [P4: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M3 ) @ P4 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P4 ) ) @ ( power_power_real @ T4 @ P4 ) )
                    @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M3 ) ) ) )
                  @ ( times_times_real @ B4 @ ( divide_divide_real @ ( power_power_real @ T4 @ ( minus_minus_nat @ N @ ( suc @ M3 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M3 ) ) ) ) ) ) )
              @ ( topolo2177554685111907308n_real @ T4 @ top_top_set_real ) ) ) ) ) ).

% Maclaurin_lemma2
thf(fact_10053_DERIV__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( has_fi5821293074295781190e_real
        @ ^ [X7: real] :
            ( suminf_real
            @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X7 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
        @ ( suminf_real
          @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_arctan_series
thf(fact_10054_DERIV__even__real__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( ord_less_real @ X @ zero_zero_real )
         => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_even_real_root
thf(fact_10055_isCont__Lb__Ub,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ( ord_less_eq_real @ A @ X5 )
              & ( ord_less_eq_real @ X5 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ F ) )
       => ? [L5: real,M8: real] :
            ( ! [X2: real] :
                ( ( ( ord_less_eq_real @ A @ X2 )
                  & ( ord_less_eq_real @ X2 @ B ) )
               => ( ( ord_less_eq_real @ L5 @ ( F @ X2 ) )
                  & ( ord_less_eq_real @ ( F @ X2 ) @ M8 ) ) )
            & ! [Y6: real] :
                ( ( ( ord_less_eq_real @ L5 @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ M8 ) )
               => ? [X5: real] :
                    ( ( ord_less_eq_real @ A @ X5 )
                    & ( ord_less_eq_real @ X5 @ B )
                    & ( ( F @ X5 )
                      = Y6 ) ) ) ) ) ) ).

% isCont_Lb_Ub
thf(fact_10056_isCont__real__sqrt,axiom,
    ! [X: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ sqrt ) ).

% isCont_real_sqrt
thf(fact_10057_isCont__real__root,axiom,
    ! [X: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ ( root @ N ) ) ).

% isCont_real_root
thf(fact_10058_isCont__inverse__function2,axiom,
    ! [A: real,X: real,B: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ( ! [Z: real] :
              ( ( ord_less_eq_real @ A @ Z )
             => ( ( ord_less_eq_real @ Z @ B )
               => ( ( G @ ( F @ Z ) )
                  = Z ) ) )
         => ( ! [Z: real] :
                ( ( ord_less_eq_real @ A @ Z )
               => ( ( ord_less_eq_real @ Z @ B )
                 => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) @ F ) ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ) ).

% isCont_inverse_function2
thf(fact_10059_isCont__arcosh,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arcosh_real ) ) ).

% isCont_arcosh
thf(fact_10060_LIM__cos__div__sin,axiom,
    ( filterlim_real_real
    @ ^ [X4: real] : ( divide_divide_real @ ( cos_real @ X4 ) @ ( sin_real @ X4 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).

% LIM_cos_div_sin
thf(fact_10061_isCont__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arccos ) ) ) ).

% isCont_arccos
thf(fact_10062_isCont__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arcsin ) ) ) ).

% isCont_arcsin
thf(fact_10063_LIM__less__bound,axiom,
    ! [B: real,X: real,F: real > real] :
      ( ( ord_less_real @ B @ X )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ B @ X ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
       => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ F )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X ) ) ) ) ) ).

% LIM_less_bound
thf(fact_10064_isCont__artanh,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ artanh_real ) ) ) ).

% isCont_artanh
thf(fact_10065_isCont__inverse__function,axiom,
    ! [D: real,X: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ! [Z: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ X ) ) @ D )
           => ( ( G @ ( F @ Z ) )
              = Z ) )
       => ( ! [Z: real] :
              ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ X ) ) @ D )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) @ F ) )
         => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ).

% isCont_inverse_function
thf(fact_10066_GMVT_H,axiom,
    ! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F5: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [Z: real] :
            ( ( ord_less_eq_real @ A @ Z )
           => ( ( ord_less_eq_real @ Z @ B )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) @ F ) ) )
       => ( ! [Z: real] :
              ( ( ord_less_eq_real @ A @ Z )
             => ( ( ord_less_eq_real @ Z @ B )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) @ G ) ) )
         => ( ! [Z: real] :
                ( ( ord_less_real @ A @ Z )
               => ( ( ord_less_real @ Z @ B )
                 => ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z ) @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) )
           => ( ! [Z: real] :
                  ( ( ord_less_real @ A @ Z )
                 => ( ( ord_less_real @ Z @ B )
                   => ( has_fi5821293074295781190e_real @ F @ ( F5 @ Z ) @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) )
             => ? [C3: real] :
                  ( ( ord_less_real @ A @ C3 )
                  & ( ord_less_real @ C3 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C3 ) )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F5 @ C3 ) ) ) ) ) ) ) ) ) ).

% GMVT'
thf(fact_10067_summable__Leibniz_I2_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
         => ! [N8: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) @ one_one_nat ) ) ) ) ) ) ) ) ).

% summable_Leibniz(2)
thf(fact_10068_summable__Leibniz_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
         => ! [N8: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) @ one_one_nat ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) ) ) ) ) ) ) ) ).

% summable_Leibniz(3)
thf(fact_10069_mult__nat__right__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat
        @ ^ [X4: nat] : ( times_times_nat @ X4 @ C )
        @ at_top_nat
        @ at_top_nat ) ) ).

% mult_nat_right_at_top
thf(fact_10070_mult__nat__left__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).

% mult_nat_left_at_top
thf(fact_10071_monoseq__convergent,axiom,
    ! [X9: nat > real,B4: real] :
      ( ( topolo6980174941875973593q_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X9 @ I3 ) ) @ B4 )
       => ~ ! [L5: real] :
              ~ ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L5 ) @ at_top_nat ) ) ) ).

% monoseq_convergent
thf(fact_10072_LIMSEQ__root,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( root @ N2 @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_root
thf(fact_10073_nested__sequence__unique,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N3 ) ) @ ( G @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
         => ( ( filterlim_nat_real
              @ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L2: real] :
                ( ! [N8: nat] : ( ord_less_eq_real @ ( F @ N8 ) @ L2 )
                & ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat )
                & ! [N8: nat] : ( ord_less_eq_real @ L2 @ ( G @ N8 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_10074_LIMSEQ__inverse__zero,axiom,
    ! [X9: nat > real] :
      ( ! [R3: real] :
        ? [N6: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N6 @ N3 )
         => ( ord_less_real @ R3 @ ( X9 @ N3 ) ) )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( inverse_inverse_real @ ( X9 @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_zero
thf(fact_10075_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_10076_LIMSEQ__root__const,axiom,
    ! [C: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( root @ N2 @ C )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat ) ) ).

% LIMSEQ_root_const
thf(fact_10077_LIMSEQ__inverse__real__of__nat,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat
thf(fact_10078_LIMSEQ__inverse__real__of__nat__add,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( plus_plus_real @ R @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add
thf(fact_10079_increasing__LIMSEQ,axiom,
    ! [F: nat > real,L: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ L )
       => ( ! [E2: real] :
              ( ( ord_less_real @ zero_zero_real @ E2 )
             => ? [N8: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N8 ) @ E2 ) ) )
         => ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_10080_LIMSEQ__realpow__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_10081_LIMSEQ__divide__realpow__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( divide_divide_real @ A @ ( power_power_real @ X @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_10082_LIMSEQ__abs__realpow__zero,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero
thf(fact_10083_LIMSEQ__abs__realpow__zero2,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero2
thf(fact_10084_LIMSEQ__inverse__realpow__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( inverse_inverse_real @ ( power_power_real @ X @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_realpow_zero
thf(fact_10085_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( plus_plus_real @ R @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_10086_tendsto__exp__limit__sequentially,axiom,
    ! [X: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ at_top_nat ) ).

% tendsto_exp_limit_sequentially
thf(fact_10087_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( times_times_real @ R @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_10088_summable__Leibniz_I1_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( summable_real
          @ ^ [N2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( A @ N2 ) ) ) ) ) ).

% summable_Leibniz(1)
thf(fact_10089_summable,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( summable_real
            @ ^ [N2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( A @ N2 ) ) ) ) ) ) ).

% summable
thf(fact_10090_cos__diff__limit__1,axiom,
    ! [Theta: nat > real,Theta2: real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ~ ! [K: nat > int] :
            ~ ( filterlim_nat_real
              @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
              @ ( topolo2815343760600316023s_real @ Theta2 )
              @ at_top_nat ) ) ).

% cos_diff_limit_1
thf(fact_10091_cos__limit__1,axiom,
    ! [Theta: nat > real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ? [K: nat > int] :
          ( filterlim_nat_real
          @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat ) ) ).

% cos_limit_1
thf(fact_10092_summable__Leibniz_I4_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N2: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(4)
thf(fact_10093_zeroseq__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% zeroseq_arctan_series
thf(fact_10094_summable__Leibniz_H_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( filterlim_nat_real
            @ ^ [N2: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(3)
thf(fact_10095_summable__Leibniz_H_I2_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( ord_less_eq_real
            @ ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
            @ ( suminf_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) ) ) ) ) ) ).

% summable_Leibniz'(2)
thf(fact_10096_sums__alternating__upper__lower,axiom,
    ! [A: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
         => ? [L2: real] :
              ( ! [N8: nat] :
                  ( ord_less_eq_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) ) )
                  @ L2 )
              & ( filterlim_nat_real
                @ ^ [N2: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
                @ ( topolo2815343760600316023s_real @ L2 )
                @ at_top_nat )
              & ! [N8: nat] :
                  ( ord_less_eq_real @ L2
                  @ ( groups6591440286371151544t_real
                    @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) @ one_one_nat ) ) ) )
              & ( filterlim_nat_real
                @ ^ [N2: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
                @ ( topolo2815343760600316023s_real @ L2 )
                @ at_top_nat ) ) ) ) ) ).

% sums_alternating_upper_lower
thf(fact_10097_summable__Leibniz_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N2: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(5)
thf(fact_10098_summable__Leibniz_H_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( filterlim_nat_real
            @ ^ [N2: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
                @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(5)
thf(fact_10099_summable__Leibniz_H_I4_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( ord_less_eq_real
            @ ( suminf_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) ) )
            @ ( groups6591440286371151544t_real
              @ ^ [I: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I ) @ ( A @ I ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).

% summable_Leibniz'(4)
thf(fact_10100_real__bounded__linear,axiom,
    ( real_V5970128139526366754l_real
    = ( ^ [F4: real > real] :
        ? [C2: real] :
          ( F4
          = ( ^ [X4: real] : ( times_times_real @ X4 @ C2 ) ) ) ) ) ).

% real_bounded_linear
thf(fact_10101_tendsto__exp__limit__at__right,axiom,
    ! [X: real] :
      ( filterlim_real_real
      @ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X @ Y ) ) @ ( divide_divide_real @ one_one_real @ Y ) )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% tendsto_exp_limit_at_right
thf(fact_10102_tendsto__arcosh__at__left__1,axiom,
    filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).

% tendsto_arcosh_at_left_1
thf(fact_10103_INT__greaterThan__UNIV,axiom,
    ( ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) )
    = bot_bot_set_nat ) ).

% INT_greaterThan_UNIV
thf(fact_10104_filterlim__tan__at__right,axiom,
    filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% filterlim_tan_at_right
thf(fact_10105_UN__atLeast__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atLeast_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atLeast_UNIV
thf(fact_10106_tanh__real__at__bot,axiom,
    filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ one_one_real ) ) @ at_bot_real ).

% tanh_real_at_bot
thf(fact_10107_ln__at__0,axiom,
    filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% ln_at_0
thf(fact_10108_filterlim__inverse__at__bot__neg,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_bot_neg
thf(fact_10109_artanh__real__at__right__1,axiom,
    filterlim_real_real @ artanh_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ one_one_real ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% artanh_real_at_right_1
thf(fact_10110_DERIV__pos__imp__increasing__at__bot,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X5: real] :
          ( ( ord_less_eq_real @ X5 @ B )
         => ? [Y6: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
              & ( ord_less_real @ zero_zero_real @ Y6 ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing_at_bot
thf(fact_10111_filterlim__pow__at__bot__odd,axiom,
    ! [N: nat,F: real > real,F6: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F6 )
       => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X4: real] : ( power_power_real @ ( F @ X4 ) @ N )
            @ at_bot_real
            @ F6 ) ) ) ) ).

% filterlim_pow_at_bot_odd
thf(fact_10112_tendsto__arctan__at__bot,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).

% tendsto_arctan_at_bot
thf(fact_10113_filterlim__pow__at__bot__even,axiom,
    ! [N: nat,F: real > real,F6: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F6 )
       => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X4: real] : ( power_power_real @ ( F @ X4 ) @ N )
            @ at_top_real
            @ F6 ) ) ) ) ).

% filterlim_pow_at_bot_even
thf(fact_10114_at__bot__le__at__infinity,axiom,
    ord_le4104064031414453916r_real @ at_bot_real @ at_infinity_real ).

% at_bot_le_at_infinity
thf(fact_10115_at__top__le__at__infinity,axiom,
    ord_le4104064031414453916r_real @ at_top_real @ at_infinity_real ).

% at_top_le_at_infinity
thf(fact_10116_ln__at__top,axiom,
    filterlim_real_real @ ln_ln_real @ at_top_real @ at_top_real ).

% ln_at_top
thf(fact_10117_sqrt__at__top,axiom,
    filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).

% sqrt_at_top
thf(fact_10118_exp__at__top,axiom,
    filterlim_real_real @ exp_real @ at_top_real @ at_top_real ).

% exp_at_top
thf(fact_10119_filterlim__real__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).

% filterlim_real_sequentially
thf(fact_10120_filterlim__uminus__at__top__at__bot,axiom,
    filterlim_real_real @ uminus_uminus_real @ at_top_real @ at_bot_real ).

% filterlim_uminus_at_top_at_bot
thf(fact_10121_filterlim__uminus__at__bot__at__top,axiom,
    filterlim_real_real @ uminus_uminus_real @ at_bot_real @ at_top_real ).

% filterlim_uminus_at_bot_at_top
thf(fact_10122_tanh__real__at__top,axiom,
    filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ one_one_real ) @ at_top_real ).

% tanh_real_at_top
thf(fact_10123_ln__x__over__x__tendsto__0,axiom,
    ( filterlim_real_real
    @ ^ [X4: real] : ( divide_divide_real @ ( ln_ln_real @ X4 ) @ X4 )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_real ) ).

% ln_x_over_x_tendsto_0
thf(fact_10124_artanh__real__at__left__1,axiom,
    filterlim_real_real @ artanh_real @ at_top_real @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5984915006950818249n_real @ one_one_real ) ) ).

% artanh_real_at_left_1
thf(fact_10125_filterlim__inverse__at__top__right,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_top_right
thf(fact_10126_filterlim__inverse__at__right__top,axiom,
    filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).

% filterlim_inverse_at_right_top
thf(fact_10127_tendsto__power__div__exp__0,axiom,
    ! [K2: nat] :
      ( filterlim_real_real
      @ ^ [X4: real] : ( divide_divide_real @ ( power_power_real @ X4 @ K2 ) @ ( exp_real @ X4 ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_real ) ).

% tendsto_power_div_exp_0
thf(fact_10128_tendsto__exp__limit__at__top,axiom,
    ! [X: real] :
      ( filterlim_real_real
      @ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ Y ) ) @ Y )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ at_top_real ) ).

% tendsto_exp_limit_at_top
thf(fact_10129_DERIV__neg__imp__decreasing__at__top,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X5: real] :
          ( ( ord_less_eq_real @ B @ X5 )
         => ? [Y6: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
              & ( ord_less_real @ Y6 @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_neg_imp_decreasing_at_top
thf(fact_10130_tendsto__arctan__at__top,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).

% tendsto_arctan_at_top
thf(fact_10131_filterlim__tan__at__left,axiom,
    filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% filterlim_tan_at_left
thf(fact_10132_lhopital__left__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F5: real > real,Y2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
     => ( ( eventually_real
          @ ^ [X4: real] :
              ( ( G2 @ X4 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top
thf(fact_10133_eventually__sequentially__Suc,axiom,
    ! [P3: nat > $o] :
      ( ( eventually_nat
        @ ^ [I: nat] : ( P3 @ ( suc @ I ) )
        @ at_top_nat )
      = ( eventually_nat @ P3 @ at_top_nat ) ) ).

% eventually_sequentially_Suc
thf(fact_10134_eventually__sequentially__seg,axiom,
    ! [P3: nat > $o,K2: nat] :
      ( ( eventually_nat
        @ ^ [N2: nat] : ( P3 @ ( plus_plus_nat @ N2 @ K2 ) )
        @ at_top_nat )
      = ( eventually_nat @ P3 @ at_top_nat ) ) ).

% eventually_sequentially_seg
thf(fact_10135_sequentially__offset,axiom,
    ! [P3: nat > $o,K2: nat] :
      ( ( eventually_nat @ P3 @ at_top_nat )
     => ( eventually_nat
        @ ^ [I: nat] : ( P3 @ ( plus_plus_nat @ I @ K2 ) )
        @ at_top_nat ) ) ).

% sequentially_offset
thf(fact_10136_eventually__False__sequentially,axiom,
    ~ ( eventually_nat
      @ ^ [N2: nat] : $false
      @ at_top_nat ) ).

% eventually_False_sequentially
thf(fact_10137_le__sequentially,axiom,
    ! [F6: filter_nat] :
      ( ( ord_le2510731241096832064er_nat @ F6 @ at_top_nat )
      = ( ! [N9: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N9 ) @ F6 ) ) ) ).

% le_sequentially
thf(fact_10138_eventually__sequentially,axiom,
    ! [P3: nat > $o] :
      ( ( eventually_nat @ P3 @ at_top_nat )
      = ( ? [N9: nat] :
          ! [N2: nat] :
            ( ( ord_less_eq_nat @ N9 @ N2 )
           => ( P3 @ N2 ) ) ) ) ).

% eventually_sequentially
thf(fact_10139_eventually__sequentiallyI,axiom,
    ! [C: nat,P3: nat > $o] :
      ( ! [X5: nat] :
          ( ( ord_less_eq_nat @ C @ X5 )
         => ( P3 @ X5 ) )
     => ( eventually_nat @ P3 @ at_top_nat ) ) ).

% eventually_sequentiallyI
thf(fact_10140_eventually__at__right__to__0,axiom,
    ! [P3: real > $o,A: real] :
      ( ( eventually_real @ P3 @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X4: real] : ( P3 @ ( plus_plus_real @ X4 @ A ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_right_to_0
thf(fact_10141_eventually__at__left__to__right,axiom,
    ! [P3: real > $o,A: real] :
      ( ( eventually_real @ P3 @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X4: real] : ( P3 @ ( uminus_uminus_real @ X4 ) )
        @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).

% eventually_at_left_to_right
thf(fact_10142_eventually__at__right__real,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( eventually_real
        @ ^ [X4: real] : ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).

% eventually_at_right_real
thf(fact_10143_eventually__at__left__real,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( eventually_real
        @ ^ [X4: real] : ( member_real @ X4 @ ( set_or1633881224788618240n_real @ B @ A ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).

% eventually_at_left_real
thf(fact_10144_eventually__at__top__to__right,axiom,
    ! [P3: real > $o] :
      ( ( eventually_real @ P3 @ at_top_real )
      = ( eventually_real
        @ ^ [X4: real] : ( P3 @ ( inverse_inverse_real @ X4 ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_top_to_right
thf(fact_10145_eventually__at__right__to__top,axiom,
    ! [P3: real > $o] :
      ( ( eventually_real @ P3 @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
      = ( eventually_real
        @ ^ [X4: real] : ( P3 @ ( inverse_inverse_real @ X4 ) )
        @ at_top_real ) ) ).

% eventually_at_right_to_top
thf(fact_10146_lhopital__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F5: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_top
thf(fact_10147_lhopital,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F5: real > real,F6: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X4: real] :
                ( ( G @ X4 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X4: real] :
                  ( ( G2 @ X4 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
           => ( ( eventually_real
                @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
             => ( ( eventually_real
                  @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
               => ( ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                 => ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ) ) ).

% lhopital
thf(fact_10148_lhopital__right__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F5: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_top
thf(fact_10149_lhopital__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F5: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_bot
thf(fact_10150_lhopital__left__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F5: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_top
thf(fact_10151_lhopital__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F5: real > real,Y2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( eventually_real
          @ ^ [X4: real] :
              ( ( G2 @ X4 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top
thf(fact_10152_lhospital__at__top__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F5: real > real,X: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
     => ( ( eventually_real
          @ ^ [X4: real] :
              ( ( G2 @ X4 )
             != zero_zero_real )
          @ at_top_real )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ at_top_real )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ at_top_real )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ at_top_real )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ at_top_real ) ) ) ) ) ) ).

% lhospital_at_top_at_top
thf(fact_10153_lhopital__right,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F5: real > real,F6: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] :
                ( ( G @ X4 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] :
                  ( ( G2 @ X4 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
           => ( ( eventually_real
                @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
             => ( ( eventually_real
                  @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
                 => ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right
thf(fact_10154_lhopital__right__0,axiom,
    ! [F0: real > real,G0: real > real,G2: real > real,F5: real > real,F6: filter_real] :
      ( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] :
                ( ( G0 @ X4 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] :
                  ( ( G2 @ X4 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( eventually_real
                @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( ( eventually_real
                  @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
                 => ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F0 @ X4 ) @ ( G0 @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right_0
thf(fact_10155_lhopital__left,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F5: real > real,F6: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] :
                ( ( G @ X4 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] :
                  ( ( G2 @ X4 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
           => ( ( eventually_real
                @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
             => ( ( eventually_real
                  @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
                 => ( filterlim_real_real
                    @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                    @ F6
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ) ) ).

% lhopital_left
thf(fact_10156_lhopital__right__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F5: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_bot
thf(fact_10157_lhopital__left__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F5: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_bot
thf(fact_10158_lhopital__right__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F5: real > real,Y2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
     => ( ( eventually_real
          @ ^ [X4: real] :
              ( ( G2 @ X4 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top
thf(fact_10159_lhopital__right__0__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F5: real > real,X: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( eventually_real
          @ ^ [X4: real] :
              ( ( G2 @ X4 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X4: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F5 @ X4 ) @ ( G2 @ X4 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( filterlim_real_real
                @ ^ [X4: real] : ( divide_divide_real @ ( F @ X4 ) @ ( G @ X4 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).

% lhopital_right_0_at_top
thf(fact_10160_GreatestI__nat,axiom,
    ! [P3: nat > $o,K2: nat,B: nat] :
      ( ( P3 @ K2 )
     => ( ! [Y5: nat] :
            ( ( P3 @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ( P3 @ ( order_Greatest_nat @ P3 ) ) ) ) ).

% GreatestI_nat
thf(fact_10161_Greatest__le__nat,axiom,
    ! [P3: nat > $o,K2: nat,B: nat] :
      ( ( P3 @ K2 )
     => ( ! [Y5: nat] :
            ( ( P3 @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ( ord_less_eq_nat @ K2 @ ( order_Greatest_nat @ P3 ) ) ) ) ).

% Greatest_le_nat
thf(fact_10162_GreatestI__ex__nat,axiom,
    ! [P3: nat > $o,B: nat] :
      ( ? [X_1: nat] : ( P3 @ X_1 )
     => ( ! [Y5: nat] :
            ( ( P3 @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ( P3 @ ( order_Greatest_nat @ P3 ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_10163_Bseq__eq__bounded,axiom,
    ! [F: nat > real,A: real,B: real] :
      ( ( ord_less_eq_set_real @ ( image_nat_real @ F @ top_top_set_nat ) @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( bfun_nat_real @ F @ at_top_nat ) ) ).

% Bseq_eq_bounded
thf(fact_10164_Bseq__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( bfun_nat_real @ ( power_power_real @ X ) @ at_top_nat ) ) ) ).

% Bseq_realpow
thf(fact_10165_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa = one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( ( Deg2 = Xa )
                & ! [X5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                   => ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                  = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                & ( case_o184042715313410164at_nat
                  @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
                    & ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                  @ ( produc6081775807080527818_nat_o
                    @ ^ [Mi2: nat,Ma2: nat] :
                        ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                        & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                        & ! [I: nat] :
                            ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                           => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X6 ) )
                              = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                        & ( ( Mi2 = Ma2 )
                         => ! [X4: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                        & ( ( Mi2 != Ma2 )
                         => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma2 )
                            & ! [X4: nat] :
                                ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X4 )
                                 => ( ( ord_less_nat @ Mi2 @ X4 )
                                    & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
                  @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(3)
thf(fact_10166_decseq__bounded,axiom,
    ! [X9: nat > real,B4: real] :
      ( ( order_9091379641038594480t_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B4 @ ( X9 @ I3 ) )
       => ( bfun_nat_real @ X9 @ at_top_nat ) ) ) ).

% decseq_bounded
thf(fact_10167_decseq__convergent,axiom,
    ! [X9: nat > real,B4: real] :
      ( ( order_9091379641038594480t_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B4 @ ( X9 @ I3 ) )
       => ~ ! [L5: real] :
              ( ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L5 ) @ at_top_nat )
             => ~ ! [I4: nat] : ( ord_less_eq_real @ L5 @ ( X9 @ I4 ) ) ) ) ) ).

% decseq_convergent
thf(fact_10168_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
    ! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg4: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList @ Summary ) @ Deg4 )
      = ( ( Deg = Deg4 )
        & ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
           => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( ( size_s6755466524823107622T_VEBT @ TreeList )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( case_o184042715313410164at_nat
          @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X6 )
            & ! [X4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
               => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
          @ ( produc6081775807080527818_nat_o
            @ ^ [Mi2: nat,Ma2: nat] :
                ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                & ! [I: nat] :
                    ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                   => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I ) @ X6 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I ) ) )
                & ( ( Mi2 = Ma2 )
                 => ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                & ( ( Mi2 != Ma2 )
                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ Ma2 )
                    & ! [X4: nat] :
                        ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                       => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ X4 )
                         => ( ( ord_less_nat @ Mi2 @ X4 )
                            & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
          @ Mima2 ) ) ) ).

% VEBT_internal.valid'.simps(2)
thf(fact_10169_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y2: $o] :
      ( ( ( vEBT_VEBT_valid @ X @ Xa )
        = Y2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Y2
            = ( Xa != one_one_nat ) ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( Y2
                = ( ~ ( ( Deg2 = Xa )
                      & ! [X4: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
                          & ! [X4: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi2: nat,Ma2: nat] :
                              ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                              & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I: nat] :
                                  ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X6 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                              & ( ( Mi2 = Ma2 )
                               => ! [X4: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                              & ( ( Mi2 != Ma2 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma2 )
                                  & ! [X4: nat] :
                                      ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X4 )
                                       => ( ( ord_less_nat @ Mi2 @ X4 )
                                          & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.elims(1)
thf(fact_10170_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa != one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
             => ~ ( ( Deg2 = Xa )
                  & ! [X2: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( case_o184042715313410164at_nat
                    @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
                      & ! [X4: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                    @ ( produc6081775807080527818_nat_o
                      @ ^ [Mi2: nat,Ma2: nat] :
                          ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                          & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                          & ! [I: nat] :
                              ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                             => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X6 ) )
                                = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                          & ( ( Mi2 = Ma2 )
                           => ! [X4: vEBT_VEBT] :
                                ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                               => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                          & ( ( Mi2 != Ma2 )
                           => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma2 )
                              & ! [X4: nat] :
                                  ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X4 )
                                   => ( ( ord_less_nat @ Mi2 @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
                    @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(2)
thf(fact_10171_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y2: $o] :
      ( ( ( vEBT_VEBT_valid @ X @ Xa )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( Y2
                  = ( Xa = one_one_nat ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( Y2
                    = ( ( Deg2 = Xa )
                      & ! [X4: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
                          & ! [X4: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi2: nat,Ma2: nat] :
                              ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                              & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I: nat] :
                                  ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X6 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                              & ( ( Mi2 = Ma2 )
                               => ! [X4: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                              & ( ( Mi2 != Ma2 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma2 )
                                  & ! [X4: nat] :
                                      ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X4 )
                                       => ( ( ord_less_nat @ Mi2 @ X4 )
                                          & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
                        @ Mima ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(1)
thf(fact_10172_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) )
               => ( Xa != one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa ) )
                 => ~ ( ( Deg2 = Xa )
                      & ! [X2: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
                          & ! [X4: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi2: nat,Ma2: nat] :
                              ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                              & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I: nat] :
                                  ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X6 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                              & ( ( Mi2 = Ma2 )
                               => ! [X4: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                              & ( ( Mi2 != Ma2 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma2 )
                                  & ! [X4: nat] :
                                      ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X4 )
                                       => ( ( ord_less_nat @ Mi2 @ X4 )
                                          & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(2)
thf(fact_10173_Sup__int__def,axiom,
    ( complete_Sup_Sup_int
    = ( ^ [X6: set_int] :
          ( the_int
          @ ^ [X4: int] :
              ( ( member_int @ X4 @ X6 )
              & ! [Y: int] :
                  ( ( member_int @ Y @ X6 )
                 => ( ord_less_eq_int @ Y @ X4 ) ) ) ) ) ) ).

% Sup_int_def
thf(fact_10174_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) )
               => ( Xa = one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa ) )
                 => ( ( Deg2 = Xa )
                    & ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( case_o184042715313410164at_nat
                      @ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
                        & ! [X4: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                           => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                      @ ( produc6081775807080527818_nat_o
                        @ ^ [Mi2: nat,Ma2: nat] :
                            ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                            & ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                            & ! [I: nat] :
                                ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                               => ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X6 ) )
                                  = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                            & ( ( Mi2 = Ma2 )
                             => ! [X4: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                 => ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X6 ) ) )
                            & ( ( Mi2 != Ma2 )
                             => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma2 )
                                & ! [X4: nat] :
                                    ( ( ord_less_nat @ X4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                   => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X4 )
                                     => ( ( ord_less_nat @ Mi2 @ X4 )
                                        & ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) )
                      @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(3)
thf(fact_10175_open__bool__def,axiom,
    ( topolo9180104560040979295open_o
    = ( topolo4667128019001906403logy_o @ ( sup_sup_set_set_o @ ( image_o_set_o @ set_ord_lessThan_o @ top_top_set_o ) @ ( image_o_set_o @ set_or6416164934427428222Than_o @ top_top_set_o ) ) ) ) ).

% open_bool_def
thf(fact_10176_open__int__def,axiom,
    ( topolo4325760605701065253en_int
    = ( topolo1611008123915946401gy_int @ ( sup_sup_set_set_int @ ( image_int_set_int @ set_ord_lessThan_int @ top_top_set_int ) @ ( image_int_set_int @ set_or1207661135979820486an_int @ top_top_set_int ) ) ) ) ).

% open_int_def
thf(fact_10177_open__nat__def,axiom,
    ( topolo4328251076210115529en_nat
    = ( topolo1613498594424996677gy_nat @ ( sup_sup_set_set_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) ) ) ) ).

% open_nat_def
thf(fact_10178_GMVT,axiom,
    ! [A: real,B: real,F: real > real,G: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ( ord_less_eq_real @ A @ X5 )
              & ( ord_less_eq_real @ X5 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ F ) )
       => ( ! [X5: real] :
              ( ( ( ord_less_real @ A @ X5 )
                & ( ord_less_real @ X5 @ B ) )
             => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
         => ( ! [X5: real] :
                ( ( ( ord_less_eq_real @ A @ X5 )
                  & ( ord_less_eq_real @ X5 @ B ) )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ G ) )
           => ( ! [X5: real] :
                  ( ( ( ord_less_real @ A @ X5 )
                    & ( ord_less_real @ X5 @ B ) )
                 => ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
             => ? [G_c: real,F_c: real,C3: real] :
                  ( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
                  & ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
                  & ( ord_less_real @ A @ C3 )
                  & ( ord_less_real @ C3 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).

% GMVT
thf(fact_10179_MVT,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X5: real] :
              ( ( ord_less_real @ A @ X5 )
             => ( ( ord_less_real @ X5 @ B )
               => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
         => ? [L2: real,Z: real] :
              ( ( ord_less_real @ A @ Z )
              & ( ord_less_real @ Z @ B )
              & ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) )
              & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                = ( times_times_real @ ( minus_minus_real @ B @ A ) @ L2 ) ) ) ) ) ) ).

% MVT
thf(fact_10180_continuous__on__arsinh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( topolo5044208981011980120l_real @ A2
        @ ^ [X4: real] : ( arsinh_real @ ( F @ X4 ) ) ) ) ).

% continuous_on_arsinh'
thf(fact_10181_continuous__on__arcosh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( ord_less_eq_real @ one_one_real @ ( F @ X5 ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X4: real] : ( arcosh_real @ ( F @ X4 ) ) ) ) ) ).

% continuous_on_arcosh'
thf(fact_10182_continuous__image__closed__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ? [C3: real,D2: real] :
            ( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ C3 @ D2 ) )
            & ( ord_less_eq_real @ C3 @ D2 ) ) ) ) ).

% continuous_image_closed_interval
thf(fact_10183_continuous__on__arcosh,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( set_ord_atLeast_real @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A2 @ arcosh_real ) ) ).

% continuous_on_arcosh
thf(fact_10184_continuous__on__arccos_H,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arccos ).

% continuous_on_arccos'
thf(fact_10185_continuous__on__arcsin_H,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arcsin ).

% continuous_on_arcsin'
thf(fact_10186_continuous__on__artanh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( member_real @ ( F @ X5 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X4: real] : ( artanh_real @ ( F @ X4 ) ) ) ) ) ).

% continuous_on_artanh'
thf(fact_10187_continuous__on__artanh,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A2 @ artanh_real ) ) ).

% continuous_on_artanh
thf(fact_10188_DERIV__isconst2,axiom,
    ! [A: real,B: real,F: real > real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X5: real] :
              ( ( ord_less_real @ A @ X5 )
             => ( ( ord_less_real @ X5 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
         => ( ( ord_less_eq_real @ A @ X )
           => ( ( ord_less_eq_real @ X @ B )
             => ( ( F @ X )
                = ( F @ A ) ) ) ) ) ) ) ).

% DERIV_isconst2
thf(fact_10189_uniformity__complex__def,axiom,
    ( topolo896644834953643431omplex
    = ( comple8358262395181532106omplex
      @ ( image_5971271580939081552omplex
        @ ^ [E3: real] :
            ( princi3496590319149328850omplex
            @ ( collec8663557070575231912omplex
              @ ( produc6771430404735790350plex_o
                @ ^ [X4: complex,Y: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X4 @ Y ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_complex_def
thf(fact_10190_uniformity__real__def,axiom,
    ( topolo1511823702728130853y_real
    = ( comple2936214249959783750l_real
      @ ( image_2178119161166701260l_real
        @ ^ [E3: real] :
            ( princi6114159922880469582l_real
            @ ( collec3799799289383736868l_real
              @ ( produc5414030515140494994real_o
                @ ^ [X4: real,Y: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X4 @ Y ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_real_def
thf(fact_10191_open__real__def,axiom,
    ( topolo4860482606490270245n_real
    = ( ^ [U4: set_real] :
        ! [X4: real] :
          ( ( member_real @ X4 @ U4 )
         => ( eventu3244425730907250241l_real
            @ ( produc5414030515140494994real_o
              @ ^ [X7: real,Y: real] :
                  ( ( X7 = X4 )
                 => ( member_real @ Y @ U4 ) ) )
            @ topolo1511823702728130853y_real ) ) ) ) ).

% open_real_def
thf(fact_10192_open__complex__def,axiom,
    ( topolo4110288021797289639omplex
    = ( ^ [U4: set_complex] :
        ! [X4: complex] :
          ( ( member_complex @ X4 @ U4 )
         => ( eventu5826381225784669381omplex
            @ ( produc6771430404735790350plex_o
              @ ^ [X7: complex,Y: complex] :
                  ( ( X7 = X4 )
                 => ( member_complex @ Y @ U4 ) ) )
            @ topolo896644834953643431omplex ) ) ) ) ).

% open_complex_def
thf(fact_10193_eventually__prod__sequentially,axiom,
    ! [P3: product_prod_nat_nat > $o] :
      ( ( eventu1038000079068216329at_nat @ P3 @ ( prod_filter_nat_nat @ at_top_nat @ at_top_nat ) )
      = ( ? [N9: nat] :
          ! [M2: nat] :
            ( ( ord_less_eq_nat @ N9 @ M2 )
           => ! [N2: nat] :
                ( ( ord_less_eq_nat @ N9 @ N2 )
               => ( P3 @ ( product_Pair_nat_nat @ N2 @ M2 ) ) ) ) ) ) ).

% eventually_prod_sequentially
thf(fact_10194_incseq__bounded,axiom,
    ! [X9: nat > real,B4: real] :
      ( ( order_mono_nat_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X9 @ I3 ) @ B4 )
       => ( bfun_nat_real @ X9 @ at_top_nat ) ) ) ).

% incseq_bounded
thf(fact_10195_mono__times__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( order_mono_nat_nat @ ( times_times_nat @ N ) ) ) ).

% mono_times_nat
thf(fact_10196_mono__Suc,axiom,
    order_mono_nat_nat @ suc ).

% mono_Suc
thf(fact_10197_incseq__convergent,axiom,
    ! [X9: nat > real,B4: real] :
      ( ( order_mono_nat_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X9 @ I3 ) @ B4 )
       => ~ ! [L5: real] :
              ( ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L5 ) @ at_top_nat )
             => ~ ! [I4: nat] : ( ord_less_eq_real @ ( X9 @ I4 ) @ L5 ) ) ) ) ).

% incseq_convergent
thf(fact_10198_mono__ge2__power__minus__self,axiom,
    ! [K2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
     => ( order_mono_nat_nat
        @ ^ [M2: nat] : ( minus_minus_nat @ ( power_power_nat @ K2 @ M2 ) @ M2 ) ) ) ).

% mono_ge2_power_minus_self
thf(fact_10199_tendsto__at__topI__sequentially__real,axiom,
    ! [F: real > real,Y2: real] :
      ( ( order_mono_real_real @ F )
     => ( ( filterlim_nat_real
          @ ^ [N2: nat] : ( F @ ( semiri5074537144036343181t_real @ N2 ) )
          @ ( topolo2815343760600316023s_real @ Y2 )
          @ at_top_nat )
       => ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Y2 ) @ at_top_real ) ) ) ).

% tendsto_at_topI_sequentially_real
thf(fact_10200_and__not__num_Oelims,axiom,
    ! [X: num,Xa: num,Y2: option_num] :
      ( ( ( bit_and_not_num @ X @ Xa )
        = Y2 )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y2 != none_num ) ) )
       => ( ( ( X = one )
           => ( ? [N3: num] :
                  ( Xa
                  = ( bit0 @ N3 ) )
             => ( Y2
               != ( some_num @ one ) ) ) )
         => ( ( ( X = one )
             => ( ? [N3: num] :
                    ( Xa
                    = ( bit1 @ N3 ) )
               => ( Y2 != none_num ) ) )
           => ( ! [M4: num] :
                  ( ( X
                    = ( bit0 @ M4 ) )
                 => ( ( Xa = one )
                   => ( Y2
                     != ( some_num @ ( bit0 @ M4 ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X
                      = ( bit0 @ M4 ) )
                   => ! [N3: num] :
                        ( ( Xa
                          = ( bit0 @ N3 ) )
                       => ( Y2
                         != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X
                        = ( bit0 @ M4 ) )
                     => ! [N3: num] :
                          ( ( Xa
                            = ( bit1 @ N3 ) )
                         => ( Y2
                           != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X
                          = ( bit1 @ M4 ) )
                       => ( ( Xa = one )
                         => ( Y2
                           != ( some_num @ ( bit0 @ M4 ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X
                            = ( bit1 @ M4 ) )
                         => ! [N3: num] :
                              ( ( Xa
                                = ( bit0 @ N3 ) )
                             => ( Y2
                               != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                  @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                  @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X
                              = ( bit1 @ M4 ) )
                           => ! [N3: num] :
                                ( ( Xa
                                  = ( bit1 @ N3 ) )
                               => ( Y2
                                 != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_not_num.elims
thf(fact_10201_nonneg__incseq__Bseq__subseq__iff,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ! [X5: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) )
     => ( ( order_mono_nat_real @ F )
       => ( ( order_5726023648592871131at_nat @ G )
         => ( ( bfun_nat_real
              @ ^ [X4: nat] : ( F @ ( G @ X4 ) )
              @ at_top_nat )
            = ( bfun_nat_real @ F @ at_top_nat ) ) ) ) ) ).

% nonneg_incseq_Bseq_subseq_iff

% Helper facts (49)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y2: int] :
      ( ( if_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y2: int] :
      ( ( if_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
    ! [X: num,Y2: num] :
      ( ( if_num @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
    ! [X: num,Y2: num] :
      ( ( if_num @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
    ! [X: rat,Y2: rat] :
      ( ( if_rat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
    ! [X: rat,Y2: rat] :
      ( ( if_rat @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y2: real] :
      ( ( if_real @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y2: real] :
      ( ( if_real @ $true @ X @ Y2 )
      = X ) ).

thf(help_fChoice_1_1_fChoice_001t__Int__Oint_T,axiom,
    ! [P3: int > $o] :
      ( ( P3 @ ( fChoice_int @ P3 ) )
      = ( ? [X6: int] : ( P3 @ X6 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001t__Nat__Onat_T,axiom,
    ! [P3: nat > $o] :
      ( ( P3 @ ( fChoice_nat @ P3 ) )
      = ( ? [X6: nat] : ( P3 @ X6 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
    ! [P3: real > $o] :
      ( ( P3 @ ( fChoice_real @ P3 ) )
      = ( ? [X6: real] : ( P3 @ X6 ) ) ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y2: complex] :
      ( ( if_complex @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y2: complex] :
      ( ( if_complex @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( if_Extended_enat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( if_Extended_enat @ $true @ X @ Y2 )
      = X ) ).

thf(help_fChoice_1_1_fChoice_001t__Complex__Ocomplex_T,axiom,
    ! [P3: complex > $o] :
      ( ( P3 @ ( fChoice_complex @ P3 ) )
      = ( ? [X6: complex] : ( P3 @ X6 ) ) ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X: code_integer,Y2: code_integer] :
      ( ( if_Code_integer @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X: code_integer,Y2: code_integer] :
      ( ( if_Code_integer @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( if_set_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X: set_int,Y2: set_int] :
      ( ( if_set_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y2: list_int] :
      ( ( if_list_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y2: list_int] :
      ( ( if_list_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X: list_nat,Y2: list_nat] :
      ( ( if_list_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X: list_nat,Y2: list_nat] :
      ( ( if_list_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_fChoice_1_1_fChoice_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [P3: set_nat > $o] :
      ( ( P3 @ ( fChoice_set_nat @ P3 ) )
      = ( ? [X6: set_nat] : ( P3 @ X6 ) ) ) ).

thf(help_If_2_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: int > int,Y2: int > int] :
      ( ( if_int_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: int > int,Y2: int > int] :
      ( ( if_int_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X: option_num,Y2: option_num] :
      ( ( if_option_num @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X: option_num,Y2: option_num] :
      ( ( if_option_num @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: product_prod_int_int,Y2: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: product_prod_int_int,Y2: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y2: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y2: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J_T,axiom,
    ! [X: nat > int > int,Y2: nat > int > int] :
      ( ( if_nat_int_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J_T,axiom,
    ! [X: nat > int > int,Y2: nat > int > int] :
      ( ( if_nat_int_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
    ! [X: nat > nat > nat,Y2: nat > nat > nat] :
      ( ( if_nat_nat_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
    ! [X: nat > nat > nat,Y2: nat > nat > nat] :
      ( ( if_nat_nat_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_fChoice_1_1_fChoice_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [P3: product_prod_int_int > $o] :
      ( ( P3 @ ( fChoic3800441565783186701nt_int @ P3 ) )
      = ( ? [X6: product_prod_int_int] : ( P3 @ X6 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [P3: product_prod_nat_nat > $o] :
      ( ( P3 @ ( fChoic6978938873391328853at_nat @ P3 ) )
      = ( ? [X6: product_prod_nat_nat] : ( P3 @ X6 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_T,axiom,
    ! [P3: product_prod_nat_num > $o] :
      ( ( P3 @ ( fChoic7687182810340166559at_num @ P3 ) )
      = ( ? [X6: product_prod_nat_num] : ( P3 @ X6 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_T,axiom,
    ! [P3: product_prod_num_num > $o] :
      ( ( P3 @ ( fChoic5817513213647635945um_num @ P3 ) )
      = ( ? [X6: product_prod_num_num] : ( P3 @ X6 ) ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X: produc6271795597528267376eger_o,Y2: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X: produc6271795597528267376eger_o,Y2: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $true @ X @ Y2 )
      = X ) ).

thf(help_fChoice_1_1_fChoice_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [P3: produc6271795597528267376eger_o > $o] :
      ( ( P3 @ ( fChoic166683996008689692eger_o @ P3 ) )
      = ( ? [X6: produc6271795597528267376eger_o] : ( P3 @ X6 ) ) ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [P3: $o] :
      ( ( P3 = $true )
      | ( P3 = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X: produc8923325533196201883nteger,Y2: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X: produc8923325533196201883nteger,Y2: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $true @ X @ Y2 )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( vEBT_VEBT_elim_dead @ summarya @ extend5688581933313929465d_enat )
    = summarya ) ).

%------------------------------------------------------------------------------