TPTP Problem File: ITP220^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP220^1 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer problem VEBT_Definitions 00318_012244
% Version  : [Des22] axioms.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source   : [Des22]
% Names    : 0063_VEBT_Definitions_00318_012244 [Des22]

% Status   : Theorem
% Rating   : 0.50 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0
% Syntax   : Number of formulae    : 11103 (6718 unt; 910 typ;   0 def)
%            Number of atoms       : 24749 (12111 equ;   0 cnn)
%            Maximal formula atoms :   71 (   2 avg)
%            Number of connectives : 97635 (2153   ~; 451   |;1340   &;86640   @)
%                                         (   0 <=>;7051  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   39 (   5 avg)
%            Number of types       :   56 (  55 usr)
%            Number of type conns  : 2901 (2901   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  858 ( 855 usr;  57 con; 0-8 aty)
%            Number of variables   : 21152 (1643   ^;18983   !; 526   ?;21152   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            from the van Emde Boas Trees session in the Archive of Formal
%            proofs - 
%            www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
%            2022-02-17 17:22:39.020
%------------------------------------------------------------------------------
% Could-be-implicit typings (55)
thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_Mt__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_J,type,
    produc6756470014200349799atural: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_J,type,
    produc5835291356934675326atural: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    produc7822875418678951345atural: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc8923325533196201883nteger: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    option4927543243414619207at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    produc9072475918466114483BT_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1261947904930325089at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    set_Pr958786334691620121nt_int: $tType ).

thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Sum_sum_nat_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
    list_list_VEBT_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc6271795597528267376eger_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    product_prod_num_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    product_prod_nat_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J,type,
    sum_sum_nat_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    list_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Int__Oint_J_J,type,
    list_list_int: $tType ).

thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    list_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    set_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
    set_Product_unit: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_I_Eo_J_J,type,
    list_list_o: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
    option_num: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Int__Oint_J,type,
    filter_int: $tType ).

thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
    set_char: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__VEBT____Definitions__OVEBT,type,
    vEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Code____Numeral__Onatural,type,
    code_natural: $tType ).

thf(ty_n_t__Code____Numeral__Ointeger,type,
    code_integer: $tType ).

thf(ty_n_t__Product____Type__Ounit,type,
    product_unit: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__List__Olist_I_Eo_J,type,
    list_o: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__String__Oliteral,type,
    literal: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (855)
thf(sy_c_Archimedean__Field_Oceiling_001t__Rat__Orat,type,
    archim2889992004027027881ng_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
    archim3151403230148437115or_rat: rat > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Rat__Orat,type,
    archimedean_frac_rat: rat > rat ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Real__Oreal,type,
    archim2898591450579166408c_real: real > real ).

thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
    archim7778729529865785530nd_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J,type,
    bNF_re1962705104956426057at_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > nat > rat ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
    bNF_re895249473297799549at_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > nat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
    bNF_re728719798268516973at_o_o: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( $o > $o > $o ) > ( ( nat > rat ) > $o ) > ( ( nat > rat ) > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
    bNF_re4695409256820837752l_real: ( ( nat > rat ) > real > $o ) > ( ( ( nat > rat ) > nat > rat ) > ( real > real ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > ( real > real > real ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_Eo_J_001_062_It__Real__Oreal_M_Eo_J,type,
    bNF_re4521903465945308077real_o: ( ( nat > rat ) > real > $o ) > ( ( ( nat > rat ) > $o ) > ( real > $o ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > $o ) > ( real > real > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    bNF_re3023117138289059399t_real: ( ( nat > rat ) > real > $o ) > ( ( nat > rat ) > real > $o ) > ( ( nat > rat ) > nat > rat ) > ( real > real ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_Eo_001_Eo,type,
    bNF_re4297313714947099218al_o_o: ( ( nat > rat ) > real > $o ) > ( $o > $o > $o ) > ( ( nat > rat ) > $o ) > ( real > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Code____Numeral__Ointeger_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    bNF_re398004352372739002nteger: ( int > code_integer > $o ) > ( ( int > int ) > ( code_integer > code_integer ) > $o ) > ( int > int > int ) > ( code_integer > code_integer > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Code____Numeral__Ointeger_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    bNF_re3379532845092657523nteger: ( int > code_integer > $o ) > ( int > code_integer > $o ) > ( int > int ) > ( code_integer > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re711492959462206631nt_int: ( int > int > $o ) > ( ( int > int ) > ( int > int ) > $o ) > ( int > int > int ) > ( int > int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    bNF_re157797125943740599nt_int: ( int > int > $o ) > ( ( int > product_prod_int_int ) > ( int > product_prod_int_int ) > $o ) > ( int > int > product_prod_int_int ) > ( int > int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Int__Oint_Mt__Rat__Orat_J,type,
    bNF_re3461391660133120880nt_rat: ( int > int > $o ) > ( ( int > product_prod_int_int ) > ( int > rat ) > $o ) > ( int > int > product_prod_int_int ) > ( int > int > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    bNF_re4712519889275205905nt_int: ( int > int > $o ) > ( int > int > $o ) > ( int > int ) > ( int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re6250860962936578807nt_int: ( int > int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > ( int > product_prod_int_int ) > ( int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
    bNF_re2214769303045360666nt_rat: ( int > int > $o ) > ( product_prod_int_int > rat > $o ) > ( int > product_prod_int_int ) > ( int > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Code____Numeral__Onatural_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    bNF_re88643428490162567atural: ( nat > code_natural > $o ) > ( ( nat > nat ) > ( code_natural > code_natural ) > $o ) > ( nat > nat > nat ) > ( code_natural > code_natural > code_natural ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Code____Numeral__Onatural_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    bNF_re5252274238750452962nteger: ( nat > code_natural > $o ) > ( int > code_integer > $o ) > ( nat > int ) > ( code_natural > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Code____Numeral__Onatural_001t__Nat__Onat_001t__Code____Numeral__Onatural,type,
    bNF_re3704215830270325841atural: ( nat > code_natural > $o ) > ( nat > code_natural > $o ) > ( nat > nat ) > ( code_natural > code_natural ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    bNF_re4935368626670024657nteger: ( nat > nat > $o ) > ( ( int > int ) > ( code_integer > code_integer ) > $o ) > ( nat > int > int ) > ( nat > code_integer > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re4785983289428654063nt_int: ( nat > nat > $o ) > ( ( int > int ) > ( int > int ) > $o ) > ( nat > int > int ) > ( nat > int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    bNF_re3692170009638431535atural: ( nat > nat > $o ) > ( ( nat > nat ) > ( code_natural > code_natural ) > $o ) > ( nat > nat > nat ) > ( nat > code_natural > code_natural ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    bNF_re1345281282404953727at_nat: ( nat > nat > $o ) > ( ( nat > nat ) > ( nat > nat ) > $o ) > ( nat > nat > nat ) > ( nat > nat > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    bNF_re4153400068438556298nteger: ( nat > nat > $o ) > ( int > code_integer > $o ) > ( nat > int ) > ( nat > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Int__Oint,type,
    bNF_re6650684261131312217nt_int: ( nat > nat > $o ) > ( int > int > $o ) > ( nat > int ) > ( nat > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re5653821019739307937at_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > ( nat > nat ) > ( nat > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    bNF_re6830278522597306478at_int: ( nat > nat > $o ) > ( product_prod_nat_nat > int > $o ) > ( nat > product_prod_nat_nat ) > ( nat > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001_062_It__Num__Onum_Mt__Int__Oint_J_001_062_It__Num__Onum_Mt__Code____Numeral__Ointeger_J,type,
    bNF_re7876454716742015248nteger: ( num > num > $o ) > ( ( num > int ) > ( num > code_integer ) > $o ) > ( num > num > int ) > ( num > num > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001_062_It__Num__Onum_Mt__Int__Oint_J_001_062_It__Num__Onum_Mt__Int__Oint_J,type,
    bNF_re8402795839162346335um_int: ( num > num > $o ) > ( ( num > int ) > ( num > int ) > $o ) > ( num > num > int ) > ( num > num > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    bNF_re6501075790457514782nteger: ( num > num > $o ) > ( int > code_integer > $o ) > ( num > int ) > ( num > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001t__Int__Oint_001t__Int__Oint,type,
    bNF_re1822329894187522285nt_int: ( num > num > $o ) > ( int > int > $o ) > ( num > int ) > ( num > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    bNF_re5228765855967844073nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > ( ( product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int ) > $o ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_Eo_001_Eo,type,
    bNF_re8699439704749558557nt_o_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( $o > $o > $o ) > ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re7145576690424134365nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Rat__Orat_Mt__Rat__Orat_J,type,
    bNF_re7627151682743391978at_rat: ( product_prod_int_int > rat > $o ) > ( ( product_prod_int_int > product_prod_int_int ) > ( rat > rat ) > $o ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > ( rat > rat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001_Eo_001_Eo,type,
    bNF_re1494630372529172596at_o_o: ( product_prod_int_int > rat > $o ) > ( $o > $o > $o ) > ( product_prod_int_int > $o ) > ( rat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
    bNF_re8279943556446156061nt_rat: ( product_prod_int_int > rat > $o ) > ( product_prod_int_int > rat > $o ) > ( product_prod_int_int > product_prod_int_int ) > ( rat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
    bNF_re717283939379294677_int_o: ( product_prod_nat_nat > int > $o ) > ( ( product_prod_nat_nat > $o ) > ( int > $o ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re7408651293131936558nt_int: ( product_prod_nat_nat > int > $o ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > ( int > int ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > ( int > int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_Eo_001_Eo,type,
    bNF_re6644619430987730960nt_o_o: ( product_prod_nat_nat > int > $o ) > ( $o > $o > $o ) > ( product_prod_nat_nat > $o ) > ( int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re4555766996558763186at_nat: ( product_prod_nat_nat > int > $o ) > ( nat > nat > $o ) > ( product_prod_nat_nat > nat ) > ( int > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    bNF_re7400052026677387805at_int: ( product_prod_nat_nat > int > $o ) > ( product_prod_nat_nat > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat ) > ( int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    bNF_re4202695980764964119_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bNF_re3099431351363272937at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
    bNF_re3666534408544137501at_o_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( $o > $o > $o ) > ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re8246922863344978751at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( nat > nat > $o ) > ( product_prod_nat_nat > nat ) > ( product_prod_nat_nat > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    bNF_re2241393799969408733at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat ) > $o ).

thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
    gbinomial_complex: complex > nat > complex ).

thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
    gbinomial_int: int > nat > int ).

thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
    gbinomial_nat: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
    gbinomial_rat: rat > nat > rat ).

thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
    gbinomial_real: real > nat > real ).

thf(sy_c_Bit__Operations_Oand__int__rel,type,
    bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Bit__Operations_Oand__not__num,type,
    bit_and_not_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Oand__not__num__rel,type,
    bit_and_not_num_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oconcat__bit,type,
    bit_concat_bit: nat > int > int > int ).

thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
    bit_or_not_num_neg: num > num > num ).

thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
    bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Code____Numeral__Ointeger,type,
    bit_ri7632146776885996613nteger: code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
    bit_ri7919022796975470100ot_int: int > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
    bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Ointeger,type,
    bit_se3949692690581998587nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Onatural,type,
    bit_se2773287842338716102atural: code_natural > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
    bit_se725231765392027082nd_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
    bit_se727722235901077358nd_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Code____Numeral__Ointeger,type,
    bit_se3928097537394005634nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Code____Numeral__Onatural,type,
    bit_se2751692689150723149atural: nat > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
    bit_se8568078237143864401it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
    bit_se8570568707652914677it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1345352211410354436nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Onatural,type,
    bit_se168947363167071951atural: nat > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Code____Numeral__Ointeger,type,
    bit_se2119862282449309892nteger: nat > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Code____Numeral__Ointeger,type,
    bit_se1080825931792720795nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Code____Numeral__Onatural,type,
    bit_se9127793120404214118atural: code_natural > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
    bit_se1409905431419307370or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
    bit_se1412395901928357646or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Code____Numeral__Ointeger,type,
    bit_se7788150548672797655nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Code____Numeral__Onatural,type,
    bit_se6611745700429515170atural: nat > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
    bit_se545348938243370406it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
    bit_se547839408752420682it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se2793503036327961859nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Onatural,type,
    bit_se1617098188084679374atural: nat > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1745604003318907178nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Onatural,type,
    bit_se569199155075624693atural: nat > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
    bit_se2923211474154528505it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
    bit_se2925701944663578781it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se8260200283734997820nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Onatural,type,
    bit_se7083795435491715335atural: nat > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
    bit_se4205575877204974255it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Code____Numeral__Ointeger,type,
    bit_se3222712562003087583nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Code____Numeral__Onatural,type,
    bit_se2046307713759805098atural: code_natural > code_natural > code_natural ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
    bit_se6526347334894502574or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
    bit_se6528837805403552850or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Code____Numeral__Ointeger,type,
    bit_se9216721137139052372nteger: code_integer > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Code____Numeral__Onatural,type,
    bit_se8040316288895769887atural: code_natural > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
    bit_se1146084159140164899it_int: int > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
    bit_se1148574629649215175it_nat: nat > nat > $o ).

thf(sy_c_Bit__Operations_Otake__bit__num,type,
    bit_take_bit_num: nat > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num,type,
    bit_un1837492267222099188nd_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num__rel,type,
    bit_un5425074673868309765um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oor__num,type,
    bit_un2785000775030745342or_num: num > num > num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oor__num__rel,type,
    bit_un6909899581280750971um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num,type,
    bit_un6178654185764691216or_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num__rel,type,
    bit_un3595099601533988841um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
    bit_un7362597486090784418nd_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num__rel,type,
    bit_un4731106466462545111um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oor__num,type,
    bit_un6697907153464112080or_num: num > num > num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oor__num__rel,type,
    bit_un4773296044027857193um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
    bit_un2480387367778600638or_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num__rel,type,
    bit_un2901131394128224187um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff_001t__Code____Numeral__Ointeger,type,
    boolea2445317508997433345nteger: ( code_integer > code_integer > code_integer ) > ( code_integer > code_integer > code_integer ) > ( code_integer > code_integer ) > code_integer > code_integer > ( code_integer > code_integer > code_integer ) > $o ).

thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff_001t__Int__Oint,type,
    boolea8527374999097803216ff_int: ( int > int > int ) > ( int > int > int ) > ( int > int ) > int > int > ( int > int > int ) > $o ).

thf(sy_c_Code__Numeral_ONeg,type,
    code_Neg: num > code_integer ).

thf(sy_c_Code__Numeral_OPos,type,
    code_Pos: num > code_integer ).

thf(sy_c_Code__Numeral_OSuc,type,
    code_Suc: code_natural > code_natural ).

thf(sy_c_Code__Numeral_Obit__cut__integer,type,
    code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).

thf(sy_c_Code__Numeral_Odivmod__abs,type,
    code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odivmod__integer,type,
    code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odup,type,
    code_dup: code_integer > code_integer ).

thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
    code_int_of_integer: code_integer > int ).

thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
    code_integer_of_int: int > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__nat,type,
    code_integer_of_nat: nat > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__natural,type,
    code_i5400310926305786745atural: code_natural > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__num,type,
    code_integer_of_num: num > code_integer ).

thf(sy_c_Code__Numeral_Onat__of__integer,type,
    code_nat_of_integer: code_integer > nat ).

thf(sy_c_Code__Numeral_Onatural_Onat__of__natural,type,
    code_nat_of_natural: code_natural > nat ).

thf(sy_c_Code__Numeral_Onatural_Onatural__of__nat,type,
    code_natural_of_nat: nat > code_natural ).

thf(sy_c_Code__Numeral_Onum__of__integer,type,
    code_num_of_integer: code_integer > num ).

thf(sy_c_Code__Numeral_Opcr__integer,type,
    code_pcr_integer: int > code_integer > $o ).

thf(sy_c_Code__Numeral_Opcr__natural,type,
    code_pcr_natural: nat > code_natural > $o ).

thf(sy_c_Code__Numeral_Osub,type,
    code_sub: num > num > code_integer ).

thf(sy_c_Code__Target__Int_Onegative,type,
    code_Target_negative: num > int ).

thf(sy_c_Code__Target__Int_Opositive,type,
    code_Target_positive: num > int ).

thf(sy_c_Code__Target__Nat_Oint__of__nat,type,
    code_T6385005292777649522of_nat: nat > int ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
    comple4887499456419720421f_real: set_real > real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complex_OArg,type,
    arg: complex > real ).

thf(sy_c_Complex_Ocis,type,
    cis: real > complex ).

thf(sy_c_Complex_Ocnj,type,
    cnj: complex > complex ).

thf(sy_c_Complex_Ocomplex_OComplex,type,
    complex2: real > real > complex ).

thf(sy_c_Complex_Ocomplex_OIm,type,
    im: complex > real ).

thf(sy_c_Complex_Ocomplex_ORe,type,
    re: complex > real ).

thf(sy_c_Complex_Ocsqrt,type,
    csqrt: complex > complex ).

thf(sy_c_Complex_Oimaginary__unit,type,
    imaginary_unit: complex ).

thf(sy_c_Complex_Orcis,type,
    rcis: real > real > complex ).

thf(sy_c_Countable_Onth__item__rel,type,
    nth_item_rel: nat > nat > $o ).

thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
    differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
    has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
    has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Deriv_Ohas__vector__derivative_001t__Real__Oreal,type,
    has_ve631408500373753343e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Divides_Oadjust__div,type,
    adjust_div: product_prod_int_int > int ).

thf(sy_c_Divides_Oadjust__mod,type,
    adjust_mod: int > int > int ).

thf(sy_c_Divides_Odivmod__nat,type,
    divmod_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Divides_Oeucl__rel__int,type,
    eucl_rel_int: int > int > product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
    unique5052692396658037445od_int: num > num > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
    unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
    unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
    unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
    unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Euclidean__Division_Oeuclidean__semiring__class_Oeuclidean__size_001t__Int__Oint,type,
    euclid4774559944035922753ze_int: int > nat ).

thf(sy_c_Euclidean__Division_Oeuclidean__semiring__class_Oeuclidean__size_001t__Nat__Onat,type,
    euclid4777050414544973029ze_nat: nat > nat ).

thf(sy_c_Euclidean__Division_Ounique__euclidean__semiring__class_Odivision__segment_001t__Int__Oint,type,
    euclid3395696857347342551nt_int: int > int ).

thf(sy_c_Euclidean__Division_Ounique__euclidean__semiring__class_Odivision__segment_001t__Nat__Onat,type,
    euclid3398187327856392827nt_nat: nat > nat ).

thf(sy_c_Extended__Nat_OeSuc,type,
    extended_eSuc: extended_enat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat,type,
    extended_enat2: nat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat_Ocase__enat_001t__Extended____Nat__Oenat,type,
    extend3600170679010898289d_enat: ( nat > extended_enat ) > extended_enat > extended_enat > extended_enat ).

thf(sy_c_Extended__Nat_Oinfinity__class_Oinfinity_001t__Extended____Nat__Oenat,type,
    extend5688581933313929465d_enat: extended_enat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
    comm_s8582702949713902594nteger: code_integer > nat > code_integer ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
    comm_s2602460028002588243omplex: complex > nat > complex ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
    comm_s4660882817536571857er_int: int > nat > int ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
    comm_s4663373288045622133er_nat: nat > nat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
    comm_s4028243227959126397er_rat: rat > nat > rat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
    comm_s7457072308508201937r_real: real > nat > real ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
    semiri3624122377584611663nteger: nat > code_integer ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Onatural,type,
    semiri2447717529341329178atural: nat > code_natural ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
    semiri5044797733671781792omplex: nat > complex ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
    semiri1406184849735516958ct_int: nat > int ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
    semiri773545260158071498ct_rat: nat > rat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
    semiri2265585572941072030t_real: nat > real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
    at_bot_real: filter_real ).

thf(sy_c_Filter_Oat__top_001t__Int__Oint,type,
    at_top_int: filter_int ).

thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
    at_top_real: filter_real ).

thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
    eventually_nat: ( nat > $o ) > filter_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
    eventually_real: ( real > $o ) > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Int__Oint,type,
    filterlim_nat_int: ( nat > int ) > filter_int > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Filter_Ofiltermap_001t__Real__Oreal_001t__Real__Oreal,type,
    filtermap_real_real: ( real > real ) > filter_real > filter_real ).

thf(sy_c_Finite__Set_Ocard_001_Eo,type,
    finite_card_o: set_o > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
    finite_card_complex: set_complex > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
    finite_card_int: set_int > nat ).

thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
    finite_card_list_nat: set_list_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
    finite410649719033368117t_unit: set_Product_unit > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
    finite_card_char: set_char > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
    finite_finite_int: set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Int__Oint_001t__Nat__Onat,type,
    bij_betw_int_nat: ( int > nat ) > set_int > set_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__List__Olist_It__Nat__Onat_J_001t__Nat__Onat,type,
    bij_be8532844293280997160at_nat: ( list_nat > nat ) > set_list_nat > set_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Int__Oint,type,
    bij_betw_nat_int: ( nat > int ) > set_nat > set_int > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__List__Olist_It__Nat__Onat_J,type,
    bij_be6293887246118711976st_nat: ( nat > list_nat ) > set_nat > set_list_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
    bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    bij_be8693218025023041337at_nat: ( nat > product_prod_nat_nat ) > set_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J,type,
    bij_be4790990086886966983at_nat: ( nat > sum_sum_nat_nat ) > set_nat > set_Sum_sum_nat_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    bij_be5333170631980326235at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > set_nat > $o ).

thf(sy_c_Fun_Obij__betw_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    bij_be5432664580149595207at_nat: ( sum_sum_nat_nat > nat ) > set_Sum_sum_nat_nat > set_nat > $o ).

thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
    comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
    comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).

thf(sy_c_Fun_Oid_001_Eo,type,
    id_o: $o > $o ).

thf(sy_c_Fun_Oid_001t__Nat__Onat,type,
    id_nat: nat > nat ).

thf(sy_c_Fun_Oinj__on_001t__Int__Oint_001t__Nat__Onat,type,
    inj_on_int_nat: ( int > nat ) > set_int > $o ).

thf(sy_c_Fun_Oinj__on_001t__List__Olist_It__Nat__Onat_J_001t__Nat__Onat,type,
    inj_on_list_nat_nat: ( list_nat > nat ) > set_list_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Int__Oint,type,
    inj_on_nat_int: ( nat > int ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__List__Olist_It__Nat__Onat_J,type,
    inj_on_nat_list_nat: ( nat > list_nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
    inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    inj_on5538052773655684606at_nat: ( nat > product_prod_nat_nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__String__Ochar,type,
    inj_on_nat_char: ( nat > char ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J,type,
    inj_on5701776251185195458at_nat: ( nat > sum_sum_nat_nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    inj_on2178005380612969504at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
    inj_on_real_real: ( real > real ) > set_real > $o ).

thf(sy_c_Fun_Oinj__on_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    inj_on_set_nat_nat: ( set_nat > nat ) > set_set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    inj_on6343450744447823682at_nat: ( sum_sum_nat_nat > nat ) > set_Sum_sum_nat_nat > $o ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    map_fu8272188784021352819nteger: ( code_integer > int ) > ( ( int > int ) > code_integer > code_integer ) > ( int > int > int ) > code_integer > code_integer > code_integer ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    map_fu2599414010547811884nteger: ( code_integer > int ) > ( int > code_integer ) > ( int > int ) > code_integer > code_integer ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Onatural_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    map_fu6549440983881763648atural: ( code_natural > nat ) > ( ( nat > nat ) > code_natural > code_natural ) > ( nat > nat > nat ) > code_natural > code_natural > code_natural ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Onatural_001t__Nat__Onat_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    map_fu2787874002554666395nteger: ( code_natural > nat ) > ( int > code_integer ) > ( nat > int ) > code_natural > code_integer ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Onatural_001t__Nat__Onat_001t__Nat__Onat_001t__Code____Numeral__Onatural,type,
    map_fu1239815594074539274atural: ( code_natural > nat ) > ( nat > code_natural ) > ( nat > nat ) > code_natural > code_natural ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
    map_fu434086159418415080_int_o: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > $o ) > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > int > int > $o ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
    map_fu4826362097070443709at_o_o: ( int > product_prod_nat_nat ) > ( $o > $o ) > ( product_prod_nat_nat > $o ) > int > $o ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
    map_fu2345160673673942751at_nat: ( int > product_prod_nat_nat ) > ( nat > nat ) > ( product_prod_nat_nat > nat ) > int > nat ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).

thf(sy_c_Fun_Omap__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    map_fu8224359078269604234nteger: ( nat > nat ) > ( ( int > int ) > code_integer > code_integer ) > ( nat > int > int ) > nat > code_integer > code_integer ).

thf(sy_c_Fun_Omap__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    map_fu6981160461238011112atural: ( nat > nat ) > ( ( nat > nat ) > code_natural > code_natural ) > ( nat > nat > nat ) > nat > code_natural > code_natural ).

thf(sy_c_Fun_Omap__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    map_fu6290471996055670595nteger: ( nat > nat ) > ( int > code_integer ) > ( nat > int ) > nat > code_integer ).

thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Rat__Orat_Mt__Rat__Orat_J,type,
    map_fu4333342158222067775at_rat: ( rat > product_prod_int_int ) > ( ( product_prod_int_int > product_prod_int_int ) > rat > rat ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > rat > rat > rat ).

thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_Eo_001_Eo,type,
    map_fu898904425404107465nt_o_o: ( rat > product_prod_int_int ) > ( $o > $o ) > ( product_prod_int_int > $o ) > rat > $o ).

thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
    map_fu5673905371560938248nt_rat: ( rat > product_prod_int_int ) > ( product_prod_int_int > rat ) > ( product_prod_int_int > product_prod_int_int ) > rat > rat ).

thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
    map_fu1532550112467129777l_real: ( real > nat > rat ) > ( ( ( nat > rat ) > nat > rat ) > real > real ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > real > real > real ).

thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    map_fu7146612038024189824t_real: ( real > nat > rat ) > ( ( nat > rat ) > real ) > ( ( nat > rat ) > nat > rat ) > real > real ).

thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
    map_fu1856342031159181835at_o_o: ( real > nat > rat ) > ( $o > $o ) > ( ( nat > rat ) > $o ) > real > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
    the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).

thf(sy_c_Fun__Def_Ois__measure_001t__Int__Oint,type,
    fun_is_measure_int: ( int > nat ) > $o ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
    gcd_Gcd_int: set_int > int ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
    gcd_Gcd_nat: set_nat > nat ).

thf(sy_c_GCD_OGcd__class_OLcm_001t__Int__Oint,type,
    gcd_Lcm_int: set_int > int ).

thf(sy_c_GCD_OGcd__class_OLcm_001t__Nat__Onat,type,
    gcd_Lcm_nat: set_nat > nat ).

thf(sy_c_GCD_Obezw,type,
    bezw: nat > nat > product_prod_int_int ).

thf(sy_c_GCD_Obezw__rel,type,
    bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Code____Numeral__Ointeger,type,
    gcd_gcd_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
    gcd_gcd_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
    gcd_gcd_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__class_Olcm_001t__Code____Numeral__Ointeger,type,
    gcd_lcm_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_GCD_Ogcd__class_Olcm_001t__Int__Oint,type,
    gcd_lcm_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Olcm_001t__Nat__Onat,type,
    gcd_lcm_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__nat__rel,type,
    gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
    abs_abs_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
    abs_abs_complex: complex > complex ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
    abs_abs_rat: rat > rat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ocomm__monoid_001t__Nat__Onat,type,
    comm_monoid_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
    minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Onatural,type,
    minus_7197305767214868737atural: code_natural > code_natural > code_natural ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
    minus_minus_complex: complex > complex > complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
    minus_minus_rat: rat > rat > rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Omonoid_001t__Nat__Onat,type,
    monoid_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
    one_one_Code_integer: code_integer ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Onatural,type,
    one_one_Code_natural: code_natural ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
    plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Onatural,type,
    plus_p4538020629002901425atural: code_natural > code_natural > code_natural ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__String__Oliteral,type,
    plus_plus_literal: literal > literal > literal ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
    sgn_sgn_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
    sgn_sgn_complex: complex > complex ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
    sgn_sgn_int: int > int ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
    sgn_sgn_rat: rat > rat ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
    sgn_sgn_real: real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
    times_3573771949741848930nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Onatural,type,
    times_2397367101498566445atural: code_natural > code_natural > code_natural ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
    uminus1351360451143612070nteger: code_integer > code_integer ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
    uminus1482373934393186551omplex: complex > complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
    uminus_uminus_rat: rat > rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
    zero_z3403309356797280102nteger: code_integer ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Onatural,type,
    zero_z2226904508553997617atural: code_natural ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__String__Oliteral,type,
    zero_zero_literal: literal ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
    groups4538972089207619220nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
    groups1705073143266064639nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
    groups705719431365010083at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
    groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Code____Numeral__Ointeger,type,
    groups3417619833198082522nteger: ( $o > code_integer ) > code_integer > list_o > code_integer ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
    groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Nat__Onat,type,
    groups9119017779487936845_o_nat: ( $o > nat ) > nat > list_o > nat ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
    groups4561878855575611511st_nat: list_nat > nat ).

thf(sy_c_HOL_OThe_001t__Int__Oint,type,
    the_int: ( int > $o ) > int ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    the_Pr4378521158711661632nt_int: ( product_prod_int_int > $o ) > product_prod_int_int ).

thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
    the_real: ( real > $o ) > real ).

thf(sy_c_If_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    if_int_int: $o > ( int > int ) > ( int > int ) > int > int ).

thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J,type,
    if_nat_int_int: $o > ( nat > int > int ) > ( nat > int > int ) > nat > int > int ).

thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    if_nat_nat_nat: $o > ( nat > nat > nat ) > ( nat > nat > nat ) > nat > nat > nat ).

thf(sy_c_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
    if_nat_rat: $o > ( nat > rat ) > ( nat > rat ) > nat > rat ).

thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
    if_Code_integer: $o > code_integer > code_integer > code_integer ).

thf(sy_c_If_001t__Code____Numeral__Onatural,type,
    if_Code_natural: $o > code_natural > code_natural > code_natural ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Extended____Nat__Oenat,type,
    if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
    if_list_nat: $o > list_nat > list_nat > list_nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Num__Onum,type,
    if_num: $o > num > num > num ).

thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
    if_option_num: $o > option_num > option_num > option_num ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Rat__Orat,type,
    if_rat: $o > rat > rat > rat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
    if_set_int: $o > set_int > set_int > set_int ).

thf(sy_c_If_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Sum_sum_nat_nat: $o > sum_sum_nat_nat > sum_sum_nat_nat > sum_sum_nat_nat ).

thf(sy_c_Int_OAbs__Integ,type,
    abs_Integ: product_prod_nat_nat > int ).

thf(sy_c_Int_ONeg,type,
    neg: num > int ).

thf(sy_c_Int_OPos,type,
    pos: num > int ).

thf(sy_c_Int_ORep__Integ,type,
    rep_Integ: int > product_prod_nat_nat ).

thf(sy_c_Int_Ocr__int,type,
    cr_int: product_prod_nat_nat > int > $o ).

thf(sy_c_Int_Odup,type,
    dup: int > int ).

thf(sy_c_Int_Oint__ge__less__than,type,
    int_ge_less_than: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Oint__ge__less__than2,type,
    int_ge_less_than2: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Ointrel,type,
    intrel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Opcr__int,type,
    pcr_int: product_prod_nat_nat > int > $o ).

thf(sy_c_Int_Opower__int_001t__Real__Oreal,type,
    power_int_real: real > int > real ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Code____Numeral__Ointeger,type,
    ring_11222124179247155820nteger: set_Code_integer ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Complex__Ocomplex,type,
    ring_1_Ints_complex: set_complex ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Int__Oint,type,
    ring_1_Ints_int: set_int ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Rat__Orat,type,
    ring_1_Ints_rat: set_rat ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
    ring_1_Ints_real: set_real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
    ring_18347121197199848620nteger: int > code_integer ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
    ring_17405671764205052669omplex: int > complex ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
    ring_1_of_int_rat: int > rat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Int_Osub,type,
    sub: num > num > int ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Int__Oint,type,
    inf_inf_int: int > int > int ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osemilattice__neutr_001t__Nat__Onat,type,
    semila9081495762789891438tr_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
    semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices_Osemilattice__order_001t__Nat__Onat,type,
    semila1248733672344298208er_nat: ( nat > nat > nat ) > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
    sup_sup_int: int > int > int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    sup_su6327502436637775413at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
    lattic8263393255366662781ax_int: set_int > int ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
    lattic8265883725875713057ax_nat: set_nat > nat ).

thf(sy_c_Lattices__Big_Osemilattice__neutr__set_OF_001t__Nat__Onat,type,
    lattic7826324295020591184_F_nat: ( nat > nat > nat ) > nat > set_nat > nat ).

thf(sy_c_Lifting_OQuotient_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    quotie3684837364556693515t_real: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > real ) > ( real > nat > rat ) > ( ( nat > rat ) > real > $o ) > $o ).

thf(sy_c_Lifting_OQuotient_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    quotie1194848508323700631at_int: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > int ) > ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int > $o ) > $o ).

thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
    bfun_nat_real: ( nat > real ) > filter_nat > $o ).

thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
    at_infinity_real: filter_real ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Odrop_001t__Nat__Onat,type,
    drop_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Ofold_001t__Int__Oint_001t__Int__Oint,type,
    fold_int_int: ( int > int > int ) > list_int > int > int ).

thf(sy_c_List_Ofold_001t__Nat__Onat_001t__Nat__Onat,type,
    fold_nat_nat: ( nat > nat > nat ) > list_nat > nat > nat ).

thf(sy_c_List_Olast_001t__Nat__Onat,type,
    last_nat: list_nat > nat ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
    map_nat_nat: ( nat > nat ) > list_nat > list_nat ).

thf(sy_c_List_Olist_Oset_001_Eo,type,
    set_o2: list_o > set_o ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
    set_int2: list_int > set_int ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
    set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
    size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).

thf(sy_c_List_Olist_Otl_001t__Nat__Onat,type,
    tl_nat: list_nat > list_nat ).

thf(sy_c_List_Onth_001_Eo,type,
    nth_o: list_o > nat > $o ).

thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
    nth_complex: list_complex > nat > complex ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
    nth_set_nat: list_set_nat > nat > set_nat ).

thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
    nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
    replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Orotate1_001_Eo,type,
    rotate1_o: list_o > list_o ).

thf(sy_c_List_Orotate1_001t__Int__Oint,type,
    rotate1_int: list_int > list_int ).

thf(sy_c_List_Orotate1_001t__Nat__Onat,type,
    rotate1_nat: list_nat > list_nat ).

thf(sy_c_List_Orotate1_001t__VEBT____Definitions__OVEBT,type,
    rotate1_VEBT_VEBT: list_VEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Osubseqs_001_Eo,type,
    subseqs_o: list_o > list_list_o ).

thf(sy_c_List_Osubseqs_001t__Int__Oint,type,
    subseqs_int: list_int > list_list_int ).

thf(sy_c_List_Osubseqs_001t__Nat__Onat,type,
    subseqs_nat: list_nat > list_list_nat ).

thf(sy_c_List_Osubseqs_001t__VEBT____Definitions__OVEBT,type,
    subseqs_VEBT_VEBT: list_VEBT_VEBT > list_list_VEBT_VEBT ).

thf(sy_c_List_Otake_001t__Nat__Onat,type,
    take_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Oupt,type,
    upt: nat > nat > list_nat ).

thf(sy_c_List_Oupto,type,
    upto: int > int > list_int ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_List_Oupto__rel,type,
    upto_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    compow_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
    case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Complex__Ocomplex,type,
    semiri3842193898606819883omplex: set_complex ).

thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Int__Oint,type,
    semiring_1_Nats_int: set_int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
    semiri4939895301339042750nteger: nat > code_integer ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Onatural,type,
    semiri3763490453095760265atural: nat > code_natural ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
    semiri8010041392384452111omplex: nat > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
    semiri681578069525770553at_rat: nat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
    size_size_list_o: list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_I_Eo_J_J,type,
    size_s2710708370519433104list_o: list_list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Int__Oint_J_J,type,
    size_s533118279054570080st_int: list_list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    size_s3023201423986296836st_nat: list_list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
    size_s8217280938318005548T_VEBT: list_list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    size_s3254054031482475050et_nat: list_set_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
    size_size_VEBT_VEBT: vEBT_VEBT > nat ).

thf(sy_c_Nat__Bijection_Oint__decode,type,
    nat_int_decode: nat > int ).

thf(sy_c_Nat__Bijection_Oint__encode,type,
    nat_int_encode: int > nat ).

thf(sy_c_Nat__Bijection_Olist__decode,type,
    nat_list_decode: nat > list_nat ).

thf(sy_c_Nat__Bijection_Olist__decode__rel,type,
    nat_list_decode_rel: nat > nat > $o ).

thf(sy_c_Nat__Bijection_Olist__encode,type,
    nat_list_encode: list_nat > nat ).

thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
    nat_list_encode_rel: list_nat > list_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__decode,type,
    nat_prod_decode: nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
    nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__encode,type,
    nat_prod_encode: product_prod_nat_nat > nat ).

thf(sy_c_Nat__Bijection_Oset__decode,type,
    nat_set_decode: nat > set_nat ).

thf(sy_c_Nat__Bijection_Oset__encode,type,
    nat_set_encode: set_nat > nat ).

thf(sy_c_Nat__Bijection_Osum__decode,type,
    nat_sum_decode: nat > sum_sum_nat_nat ).

thf(sy_c_Nat__Bijection_Osum__encode,type,
    nat_sum_encode: sum_sum_nat_nat > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_NthRoot_Osqrt,type,
    sqrt: real > real ).

thf(sy_c_Num_OBitM,type,
    bitM: num > num ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Onat__of__num,type,
    nat_of_num: num > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
    neg_nu8804712462038260780nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
    neg_nu7009210354673126013omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
    neg_nu7757733837767384882nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
    neg_nu6511756317524482435omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
    neg_nu3179335615603231917ec_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
    neg_nu5831290666863070958nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
    neg_nu8557863876264182079omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
    neg_nu5219082963157363817nc_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Code____Numeral__Ointeger,type,
    neg_nu5755505904847501662nteger: num > num > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Complex__Ocomplex,type,
    neg_nu8416839295433526191omplex: num > num > complex ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
    neg_numeral_sub_int: num > num > int ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Rat__Orat,type,
    neg_numeral_sub_rat: num > num > rat ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Real__Oreal,type,
    neg_numeral_sub_real: num > num > real ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
    case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onum__of__nat,type,
    num_of_nat: nat > num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
    numera6620942414471956472nteger: num > code_integer ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Onatural,type,
    numera5444537566228673987atural: num > code_natural ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
    numera6690914467698888265omplex: num > complex ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
    numeral_numeral_rat: num > rat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Num_Opred__numeral,type,
    pred_numeral: num > nat ).

thf(sy_c_Num_Osqr,type,
    sqr: num > num ).

thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
    none_num: option_num ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    none_P5556105721700978146at_nat: option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
    some_num: num > option_num ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
    case_option_int_num: int > ( num > int ) > option_num > int ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
    case_option_num_num: num > ( num > num ) > option_num > num ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
    case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Omap__option_001t__Num__Onum_001t__Num__Onum,type,
    map_option_num_num: ( num > num ) > option_num > option_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
    bot_bot_set_int: set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Oord__class_OLeast_001t__Nat__Onat,type,
    ord_Least_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oord__class_OLeast_001t__Real__Oreal,type,
    ord_Least_real: ( real > $o ) > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
    ord_le6747313008572928689nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Onatural,type,
    ord_le5570908160329646204atural: code_natural > code_natural > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
    ord_le3102999989581377725nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Onatural,type,
    ord_le1926595141338095240atural: code_natural > code_natural > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
    ord_max_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
    ord_max_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
    ord_max_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
    ord_max_num: num > num > num ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
    ord_max_rat: rat > rat > rat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
    ord_max_real: real > real > real ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Int__Oint,type,
    ord_min_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
    ord_min_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_mono_nat_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_mono_real_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_5726023648592871131at_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oordering__top_001t__Nat__Onat,type,
    ordering_top_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
    top_top_set_int: set_int ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    top_top_set_list_nat: set_list_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    top_to4669805908274784177at_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    top_to1996260823553986621t_unit: set_Product_unit ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
    top_top_set_char: set_char ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    top_to6661820994512907621at_nat: set_Sum_sum_nat_nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
    power_8256067586552552935nteger: code_integer > nat > code_integer ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Onatural,type,
    power_7079662738309270450atural: code_natural > nat > code_natural ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
    power_power_rat: rat > nat > rat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Onatural_001t__Code____Numeral__Onatural,type,
    produc3574140220909816553atural: code_natural > code_natural > produc7822875418678951345atural ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Onatural_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    produc6639722614265839536atural: code_natural > produc7822875418678951345atural > produc5835291356934675326atural ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
    product_Pair_nat_num: nat > num > product_prod_nat_num ).

thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
    product_Pair_num_num: num > num > product_prod_num_num ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    produc4480994950612372183atural: produc7822875418678951345atural > produc7822875418678951345atural > produc6756470014200349799atural ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).

thf(sy_c_Product__Type_OSigma_001t__Nat__Onat_001t__Nat__Onat,type,
    produc457027306803732586at_nat: set_nat > ( nat > set_nat ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
    produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Onatural_001t__Code____Numeral__Onatural_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_Mt__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_J,type,
    produc8282080750456430313atural: ( code_natural > code_natural > produc6756470014200349799atural ) > produc7822875418678951345atural > produc6756470014200349799atural ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
    produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
    produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__List__Olist_It__Nat__Onat_J,type,
    produc2761476792215241774st_nat: ( nat > nat > list_nat ) > product_prod_nat_nat > list_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
    produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
    product_fst_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
    product_fst_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Code____Numeral__Onatural_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    produc6591912806276919810atural: produc5835291356934675326atural > produc7822875418678951345atural ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
    product_snd_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
    product_snd_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oscomp_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_001t__Code____Numeral__Onatural_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J_J,type,
    produc5538323210962509403atural: ( produc7822875418678951345atural > produc5835291356934675326atural ) > ( code_natural > produc7822875418678951345atural > produc5835291356934675326atural ) > produc7822875418678951345atural > produc5835291356934675326atural ).

thf(sy_c_Quotient_OQuotient3_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    quotie8700032322157300518t_real: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > real ) > ( real > nat > rat ) > $o ).

thf(sy_c_Quotient_OQuotient3_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    quotie6776551016481293500at_int: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > int ) > ( int > product_prod_nat_nat ) > $o ).

thf(sy_c_Random_Oinc__shift,type,
    inc_shift: code_natural > code_natural > code_natural ).

thf(sy_c_Random_Oiterate_001t__Code____Numeral__Onatural_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    iterat8892046348760725948atural: code_natural > ( code_natural > produc7822875418678951345atural > produc5835291356934675326atural ) > code_natural > produc7822875418678951345atural > produc5835291356934675326atural ).

thf(sy_c_Random_Olog,type,
    log: code_natural > code_natural > code_natural ).

thf(sy_c_Random_Olog__rel,type,
    log_rel: produc7822875418678951345atural > produc7822875418678951345atural > $o ).

thf(sy_c_Random_Ominus__shift,type,
    minus_shift: code_natural > code_natural > code_natural > code_natural ).

thf(sy_c_Random_Onext,type,
    next: produc7822875418678951345atural > produc5835291356934675326atural ).

thf(sy_c_Random_Orange,type,
    range: code_natural > produc7822875418678951345atural > produc5835291356934675326atural ).

thf(sy_c_Random_Osplit__seed,type,
    split_seed: produc7822875418678951345atural > produc6756470014200349799atural ).

thf(sy_c_Rat_OAbs__Rat,type,
    abs_Rat: product_prod_int_int > rat ).

thf(sy_c_Rat_OFract,type,
    fract: int > int > rat ).

thf(sy_c_Rat_OFrct,type,
    frct: product_prod_int_int > rat ).

thf(sy_c_Rat_ORep__Rat,type,
    rep_Rat: rat > product_prod_int_int ).

thf(sy_c_Rat_Ofield__char__0__class_ORats_001t__Real__Oreal,type,
    field_5140801741446780682s_real: set_real ).

thf(sy_c_Rat_Ofield__char__0__class_Oof__rat_001t__Real__Oreal,type,
    field_7254667332652039916t_real: rat > real ).

thf(sy_c_Rat_Onormalize,type,
    normalize: product_prod_int_int > product_prod_int_int ).

thf(sy_c_Rat_Oof__int,type,
    of_int: int > rat ).

thf(sy_c_Rat_Opcr__rat,type,
    pcr_rat: product_prod_int_int > rat > $o ).

thf(sy_c_Rat_Opositive,type,
    positive: rat > $o ).

thf(sy_c_Rat_Oquotient__of,type,
    quotient_of: rat > product_prod_int_int ).

thf(sy_c_Rat_Oratrel,type,
    ratrel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Real_ORatreal,type,
    ratreal: rat > real ).

thf(sy_c_Real_OReal,type,
    real2: ( nat > rat ) > real ).

thf(sy_c_Real_Ocauchy,type,
    cauchy: ( nat > rat ) > $o ).

thf(sy_c_Real_Ocr__real,type,
    cr_real: ( nat > rat ) > real > $o ).

thf(sy_c_Real_Opcr__real,type,
    pcr_real: ( nat > rat ) > real > $o ).

thf(sy_c_Real_Opositive,type,
    positive2: real > $o ).

thf(sy_c_Real_Orealrel,type,
    realrel: ( nat > rat ) > ( nat > rat ) > $o ).

thf(sy_c_Real_Orep__real,type,
    rep_real: real > nat > rat ).

thf(sy_c_Real_Ovanishes,type,
    vanishes: ( nat > rat ) > $o ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
    real_V2521375963428798218omplex: set_complex ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Real__Oreal,type,
    real_V470468836141973256s_real: set_real ).

thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V5970128139526366754l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
    real_V3694042436643373181omplex: complex > complex > real ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
    real_V975177566351809787t_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_Olinear_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V4572627801940501177l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
    real_V1022390504157884413omplex: complex > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
    real_V7735802525324610683m_real: real > real ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
    real_V4546457046886955230omplex: real > complex ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Real__Oreal,type,
    real_V1803761363581548252l_real: real > real ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
    real_V2046097035970521341omplex: real > complex > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
    real_V1485227260804924795R_real: real > real > real ).

thf(sy_c_Relation_Otransp_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
    transp_nat_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > $o ).

thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime_001t__Int__Oint,type,
    algebr932160517623751201me_int: int > int > $o ).

thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime_001t__Nat__Onat,type,
    algebr934650988132801477me_nat: nat > nat > $o ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
    divide6298287555418463151nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Onatural,type,
    divide5121882707175180666atural: code_natural > code_natural > code_natural ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
    divide1717551699836669952omplex: complex > complex > complex ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
    dvd_dvd_Code_integer: code_integer > code_integer > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Onatural,type,
    dvd_dvd_Code_natural: code_natural > code_natural > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
    dvd_dvd_rat: rat > rat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
    modulo364778990260209775nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Onatural,type,
    modulo8411746178871703098atural: code_natural > code_natural > code_natural ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Rings_Onormalization__semidom__class_Onormalize_001t__Int__Oint,type,
    normal571682499473568032ze_int: int > int ).

thf(sy_c_Rings_Onormalization__semidom__class_Onormalize_001t__Nat__Onat,type,
    normal574172969982618308ze_nat: nat > nat ).

thf(sy_c_Rings_Ounit__factor__class_Ounit__factor_001t__Int__Oint,type,
    unit_f2746056213392204926or_int: int > int ).

thf(sy_c_Rings_Ounit__factor__class_Ounit__factor_001t__Nat__Onat,type,
    unit_f2748546683901255202or_nat: nat > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
    zero_n356916108424825756nteger: $o > code_integer ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Onatural,type,
    zero_n8403883297036319079atural: $o > code_natural ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
    zero_n1201886186963655149omplex: $o > complex ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
    zero_n2684676970156552555ol_int: $o > int ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
    zero_n2687167440665602831ol_nat: $o > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
    zero_n2052037380579107095ol_rat: $o > rat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
    zero_n3304061248610475627l_real: $o > real ).

thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
    suminf_real: ( nat > real ) > real ).

thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
    summable_real: ( nat > real ) > $o ).

thf(sy_c_Series_Osums_001t__Real__Oreal,type,
    sums_real: ( nat > real ) > real > $o ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OPow_001t__Nat__Onat,type,
    pow_nat: set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
    image_int_nat: ( int > nat ) > set_int > set_nat ).

thf(sy_c_Set_Oimage_001t__List__Olist_It__Nat__Onat_J_001t__Nat__Onat,type,
    image_list_nat_nat: ( list_nat > nat ) > set_list_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
    image_nat_int: ( nat > int ) > set_nat > set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__List__Olist_It__Nat__Onat_J,type,
    image_nat_list_nat: ( nat > list_nat ) > set_nat > set_list_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    image_5846123807819985514at_nat: ( nat > product_prod_nat_nat ) > set_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
    image_nat_char: ( nat > char ) > set_nat > set_char ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J,type,
    image_678696785212003926at_nat: ( nat > sum_sum_nat_nat ) > set_nat > set_Sum_sum_nat_nat ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    image_2486076414777270412at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
    image_char_nat: ( char > nat ) > set_char > set_nat ).

thf(sy_c_Set_Oimage_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    image_1320371278474632150at_nat: ( sum_sum_nat_nat > nat ) > set_Sum_sum_nat_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
    insert_int: int > set_int > set_int ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Nat__Onat,type,
    vimage_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
    set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
    set_ord_atLeast_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
    set_or6656581121297822940st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
    set_or6659071591806873216st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
    set_or5832277885323065728an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
    set_or5834768355832116004an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
    set_or1210151606488870762an_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
    set_or5849166863359141190n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
    set_or5984915006950818249n_real: real > set_real ).

thf(sy_c_String_OCode_Oabort_001t__Real__Oreal,type,
    abort_real: literal > ( product_unit > real ) > real ).

thf(sy_c_String_OLiteral,type,
    literal2: $o > $o > $o > $o > $o > $o > $o > literal > literal ).

thf(sy_c_String_Oascii__of,type,
    ascii_of: char > char ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ointeger__of__char,type,
    integer_of_char: char > code_integer ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_c_Sum__Type_OInl_001t__Nat__Onat_001t__Nat__Onat,type,
    sum_Inl_nat_nat: nat > sum_sum_nat_nat ).

thf(sy_c_Sum__Type_OInr_001t__Nat__Onat_001t__Nat__Onat,type,
    sum_Inr_nat_nat: nat > sum_sum_nat_nat ).

thf(sy_c_Sum__Type_Osum_Ocase__sum_001t__Nat__Onat_001t__Int__Oint_001t__Nat__Onat,type,
    sum_ca7763040182479039464nt_nat: ( nat > int ) > ( nat > int ) > sum_sum_nat_nat > int ).

thf(sy_c_Sum__Type_Osum_Ocase__sum_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    sum_ca6763686470577984908at_nat: ( nat > nat ) > ( nat > nat ) > sum_sum_nat_nat > nat ).

thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
    topolo2177554685111907308n_real: real > set_real > filter_real ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oconvergent_001t__Real__Oreal,type,
    topolo7531315842566124627t_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Complex__Ocomplex,type,
    topolo6517432010174082258omplex: ( nat > complex ) > $o ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
    topolo4055970368930404560y_real: ( nat > real ) > $o ).

thf(sy_c_Transcendental_Oarccos,type,
    arccos: real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarcsin,type,
    arcsin: real > real ).

thf(sy_c_Transcendental_Oarctan,type,
    arctan: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
    cos_complex: complex > complex ).

thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
    cos_real: real > real ).

thf(sy_c_Transcendental_Ocos__coeff,type,
    cos_coeff: nat > real ).

thf(sy_c_Transcendental_Ocosh_001t__Complex__Ocomplex,type,
    cosh_complex: complex > complex ).

thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
    cosh_real: real > real ).

thf(sy_c_Transcendental_Ocot_001t__Complex__Ocomplex,type,
    cot_complex: complex > complex ).

thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
    cot_real: real > real ).

thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
    exp_complex: complex > complex ).

thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
    exp_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log2: real > real > real ).

thf(sy_c_Transcendental_Opi,type,
    pi: real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_Transcendental_Opowr__real,type,
    powr_real2: real > real > real ).

thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
    sin_complex: complex > complex ).

thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
    sin_real: real > real ).

thf(sy_c_Transcendental_Osin__coeff,type,
    sin_coeff: nat > real ).

thf(sy_c_Transcendental_Osinh_001t__Complex__Ocomplex,type,
    sinh_complex: complex > complex ).

thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
    sinh_real: real > real ).

thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
    tan_complex: complex > complex ).

thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
    tan_real: real > real ).

thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
    tanh_complex: complex > complex ).

thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
    tanh_real: real > real ).

thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
    vEBT_Leaf: $o > $o > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
    vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
    vEBT_size_VEBT: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
    vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
    vEBT_VEBT_high: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
    vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
    vEBT_VEBT_low: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
    vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
    vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
    vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
    vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
    vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
    vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
    vEBT_invar_vebt: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oset__vebt,type,
    vEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
    vEBT_vebt_buildup: nat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
    vEBT_v4011308405150292612up_rel: nat > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Nat__Onat_J,type,
    accp_list_nat: ( list_nat > list_nat > $o ) > list_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
    accp_nat: ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Code____Numeral__Onatural_Mt__Code____Numeral__Onatural_J,type,
    accp_P8126237942716283194atural: ( produc7822875418678951345atural > produc7822875418678951345atural > $o ) > produc7822875418678951345atural > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Code____Numeral__Ointeger,type,
    member_Code_integer: code_integer > set_Code_integer > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
    member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_v_va____,type,
    va: nat ).

thf(sy_v_y____,type,
    y: nat ).

% Relevant facts (10147)
thf(fact_0_True,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) ).

% True
thf(fact_1__C3_OIH_C_I1_J,axiom,
    ! [X: nat,Xa: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) )
     => ( ( X
          = ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
       => ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ X ) @ Xa ) ) ) ).

% "3.IH"(1)
thf(fact_2__C3_OIH_C_I4_J,axiom,
    ! [X: nat,Xa: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) )
     => ( ( X
          = ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
       => ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ ( suc @ X ) ) @ Xa ) ) ) ).

% "3.IH"(4)
thf(fact_3__C3_OIH_C_I3_J,axiom,
    ! [X: nat,Xa: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) )
     => ( ( X
          = ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
       => ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ X ) @ Xa ) ) ) ).

% "3.IH"(3)
thf(fact_4_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_5_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_6_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_7_buildup__nothing__in__leaf,axiom,
    ! [N: nat,X: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X ) ).

% buildup_nothing_in_leaf
thf(fact_8_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_9_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_10_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_11_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_12_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_13_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_14_divide__numeral__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_15_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_16_divide__numeral__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_17_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_18_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_19_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera6690914467698888265omplex @ M )
        = ( numera6690914467698888265omplex @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_20_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_21_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_rat @ M )
        = ( numeral_numeral_rat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_22_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_23_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_24_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_25_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_26_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_27_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_28_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_29_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_30_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_31_div2__even__ext__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
          = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y ) )
       => ( X = Y ) ) ) ).

% div2_even_ext_nat
thf(fact_32_div__dvd__div,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
          = ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_33_div__dvd__div,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_34_div__dvd__div,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_35_bit__eq__rec,axiom,
    ( ( ^ [Y3: code_integer,Z: code_integer] : ( Y3 = Z ) )
    = ( ^ [A2: code_integer,B2: code_integer] :
          ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A2 )
            = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide6298287555418463151nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = ( divide6298287555418463151nteger @ B2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_36_bit__eq__rec,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_37_bit__eq__rec,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A2: int,B2: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_38_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_39_verit__eq__simplify_I8_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( ( bit0 @ X2 )
        = ( bit0 @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% verit_eq_simplify(8)
thf(fact_40_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_41_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_42_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_43_div__div__div__same,axiom,
    ! [D: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D ) @ ( divide6298287555418463151nteger @ B @ D ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_44_div__div__div__same,axiom,
    ! [D: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ D @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_45_div__div__div__same,axiom,
    ! [D: int,B: int,A: int] :
      ( ( dvd_dvd_int @ D @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_46_dvd__div__eq__cancel,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ C )
        = ( divide6298287555418463151nteger @ B @ C ) )
     => ( ( dvd_dvd_Code_integer @ C @ A )
       => ( ( dvd_dvd_Code_integer @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_47_dvd__div__eq__cancel,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
     => ( ( dvd_dvd_complex @ C @ A )
       => ( ( dvd_dvd_complex @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_48_dvd__div__eq__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
     => ( ( dvd_dvd_real @ C @ A )
       => ( ( dvd_dvd_real @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_49_dvd__div__eq__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
     => ( ( dvd_dvd_rat @ C @ A )
       => ( ( dvd_dvd_rat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_50_dvd__div__eq__cancel,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( divide_divide_nat @ A @ C )
        = ( divide_divide_nat @ B @ C ) )
     => ( ( dvd_dvd_nat @ C @ A )
       => ( ( dvd_dvd_nat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_51_dvd__div__eq__cancel,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( divide_divide_int @ A @ C )
        = ( divide_divide_int @ B @ C ) )
     => ( ( dvd_dvd_int @ C @ A )
       => ( ( dvd_dvd_int @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_52_dvd__div__eq__iff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( ( divide6298287555418463151nteger @ A @ C )
            = ( divide6298287555418463151nteger @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_53_dvd__div__eq__iff,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ C @ A )
     => ( ( dvd_dvd_complex @ C @ B )
       => ( ( ( divide1717551699836669952omplex @ A @ C )
            = ( divide1717551699836669952omplex @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_54_dvd__div__eq__iff,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ C @ A )
     => ( ( dvd_dvd_real @ C @ B )
       => ( ( ( divide_divide_real @ A @ C )
            = ( divide_divide_real @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_55_dvd__div__eq__iff,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ C @ A )
     => ( ( dvd_dvd_rat @ C @ B )
       => ( ( ( divide_divide_rat @ A @ C )
            = ( divide_divide_rat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_56_dvd__div__eq__iff,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( ( divide_divide_nat @ A @ C )
            = ( divide_divide_nat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_57_dvd__div__eq__iff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( ( divide_divide_int @ A @ C )
            = ( divide_divide_int @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_58_verit__eq__simplify_I10_J,axiom,
    ! [X2: num] :
      ( one
     != ( bit0 @ X2 ) ) ).

% verit_eq_simplify(10)
thf(fact_59_set__decode__Suc,axiom,
    ! [N: nat,X: nat] :
      ( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X ) )
      = ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_decode_Suc
thf(fact_60_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = ( semiri8010041392384452111omplex @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_61_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_62_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = ( semiri681578069525770553at_rat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_63_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_64_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_65_div__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% div_0
thf(fact_66_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_67_div__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% div_0
thf(fact_68_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_69_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_70_div__by__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% div_by_0
thf(fact_71_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_72_div__by__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% div_by_0
thf(fact_73_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_74_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_75_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_76_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_77_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_78_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_79_dvd__0__left__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left_iff
thf(fact_80_dvd__0__left__iff,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
      = ( A = zero_zero_real ) ) ).

% dvd_0_left_iff
thf(fact_81_dvd__0__left__iff,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
      = ( A = zero_zero_rat ) ) ).

% dvd_0_left_iff
thf(fact_82_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_83_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_84_dvd__0__right,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).

% dvd_0_right
thf(fact_85_dvd__0__right,axiom,
    ! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).

% dvd_0_right
thf(fact_86_dvd__0__right,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).

% dvd_0_right
thf(fact_87_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_88_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_89_of__nat__0,axiom,
    ( ( semiri8010041392384452111omplex @ zero_zero_nat )
    = zero_zero_complex ) ).

% of_nat_0
thf(fact_90_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_91_of__nat__0,axiom,
    ( ( semiri681578069525770553at_rat @ zero_zero_nat )
    = zero_zero_rat ) ).

% of_nat_0
thf(fact_92_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_93_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_94_mem__Collect__eq,axiom,
    ! [A: complex,P: complex > $o] :
      ( ( member_complex @ A @ ( collect_complex @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_95_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_96_mem__Collect__eq,axiom,
    ! [A: list_nat,P: list_nat > $o] :
      ( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_97_mem__Collect__eq,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_98_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_99_mem__Collect__eq,axiom,
    ! [A: int,P: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_100_Collect__mem__eq,axiom,
    ! [A3: set_complex] :
      ( ( collect_complex
        @ ^ [X3: complex] : ( member_complex @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_101_Collect__mem__eq,axiom,
    ! [A3: set_real] :
      ( ( collect_real
        @ ^ [X3: real] : ( member_real @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_102_Collect__mem__eq,axiom,
    ! [A3: set_list_nat] :
      ( ( collect_list_nat
        @ ^ [X3: list_nat] : ( member_list_nat @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_103_Collect__mem__eq,axiom,
    ! [A3: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_104_Collect__mem__eq,axiom,
    ! [A3: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_105_Collect__mem__eq,axiom,
    ! [A3: set_int] :
      ( ( collect_int
        @ ^ [X3: int] : ( member_int @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_106_Collect__cong,axiom,
    ! [P: real > $o,Q: real > $o] :
      ( ! [X4: real] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_real @ P )
        = ( collect_real @ Q ) ) ) ).

% Collect_cong
thf(fact_107_Collect__cong,axiom,
    ! [P: list_nat > $o,Q: list_nat > $o] :
      ( ! [X4: list_nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_list_nat @ P )
        = ( collect_list_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_108_Collect__cong,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X4: set_nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_set_nat @ P )
        = ( collect_set_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_109_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X4: nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_110_Collect__cong,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_int @ P )
        = ( collect_int @ Q ) ) ) ).

% Collect_cong
thf(fact_111_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_complex
        = ( semiri8010041392384452111omplex @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_112_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_113_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_rat
        = ( semiri681578069525770553at_rat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_114_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_115_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_116_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = zero_zero_complex )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_117_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_118_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_119_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_120_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_121_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
      = ( numera6690914467698888265omplex @ N ) ) ).

% of_nat_numeral
thf(fact_122_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% of_nat_numeral
thf(fact_123_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% of_nat_numeral
thf(fact_124_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ N ) ) ).

% of_nat_numeral
thf(fact_125_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% of_nat_numeral
thf(fact_126_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_127_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_128_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_129_set__decode__0,axiom,
    ! [X: nat] :
      ( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) ) ).

% set_decode_0
thf(fact_130_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ N ) )
     != zero_zero_complex ) ).

% of_nat_neq_0
thf(fact_131_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_132_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ N ) )
     != zero_zero_rat ) ).

% of_nat_neq_0
thf(fact_133_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_134_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_135_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_136_zdiv__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zdiv_int
thf(fact_137_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N2: nat] :
            ( X
           != ( suc @ N2 ) ) ) ).

% list_decode.cases
thf(fact_138_dvd__0__left,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
     => ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left
thf(fact_139_dvd__0__left,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
     => ( A = zero_zero_real ) ) ).

% dvd_0_left
thf(fact_140_dvd__0__left,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
     => ( A = zero_zero_rat ) ) ).

% dvd_0_left
thf(fact_141_dvd__0__left,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_142_dvd__0__left,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
     => ( A = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_143_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( numera6690914467698888265omplex @ N ) ) ).

% zero_neq_numeral
thf(fact_144_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N ) ) ).

% zero_neq_numeral
thf(fact_145_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( numeral_numeral_rat @ N ) ) ).

% zero_neq_numeral
thf(fact_146_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_147_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_148_vebt__buildup_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ( ( X
         != ( suc @ zero_zero_nat ) )
       => ~ ! [Va: nat] :
              ( X
             != ( suc @ ( suc @ Va ) ) ) ) ) ).

% vebt_buildup.cases
thf(fact_149_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_150_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_151_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_152_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_153_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_154_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_155_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
       => ( ! [X4: nat,Y4: nat] :
              ( ( P @ X4 @ Y4 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y4 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_156_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_157_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_158_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_159_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_160_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_161_dvd__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_162_dvd__div__eq__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_163_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_164_dvd__div__eq__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( ( divide_divide_rat @ A @ B )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_165_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_166_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_167_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_168_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_169_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_170_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_171_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_172_dvd__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_trans
thf(fact_173_dvd__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ C )
       => ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_trans
thf(fact_174_dvd__trans,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ C )
       => ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_trans
thf(fact_175_dvd__refl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% dvd_refl
thf(fact_176_dvd__refl,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ A ) ).

% dvd_refl
thf(fact_177_dvd__refl,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ A ) ).

% dvd_refl
thf(fact_178_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_179_even__zero,axiom,
    dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).

% even_zero
thf(fact_180_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_181_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_182_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_183_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_184_divide__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divide_eq_0_iff
thf(fact_185_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_186_divide__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_eq_0_iff
thf(fact_187_divide__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ C @ A )
        = ( divide1717551699836669952omplex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_188_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_189_divide__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( divide_divide_rat @ C @ A )
        = ( divide_divide_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_190_divide__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_191_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_192_divide__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_193_division__ring__divide__zero,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% division_ring_divide_zero
thf(fact_194_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_195_division__ring__divide__zero,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% division_ring_divide_zero
thf(fact_196_even__set__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_197_even__set__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_198_even__set__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_199_even__flip__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_200_even__flip__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_201_even__flip__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_202_even__unset__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_203_even__unset__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_204_even__unset__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_205_int__dvd__int__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% int_dvd_int_iff
thf(fact_206_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_207_real__of__nat__div,axiom,
    ! [D: nat,N: nat] :
      ( ( dvd_dvd_nat @ D @ N )
     => ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D ) )
        = ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div
thf(fact_208_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_209_diff__self,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% diff_self
thf(fact_210_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_211_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_212_diff__0__right,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_0_right
thf(fact_213_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_214_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_215_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_216_diff__zero,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_zero
thf(fact_217_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_218_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_219_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_220_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_221_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_222_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_223_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_224_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_225_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_226_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_227_div__diff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_228_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_229_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_230_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_231_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A2 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_232_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_233_diff__eq__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_234_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_235_diff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_236_diff__right__commute,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_237_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_238_diff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_239_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_240_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
    = ( ^ [A2: real,B2: real] :
          ( ( minus_minus_real @ A2 @ B2 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_241_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: rat,Z: rat] : ( Y3 = Z ) )
    = ( ^ [A2: rat,B2: rat] :
          ( ( minus_minus_rat @ A2 @ B2 )
          = zero_zero_rat ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_242_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A2: int,B2: int] :
          ( ( minus_minus_int @ A2 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_243_diff__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_244_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_245_diff__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_246_dvd__diff__commute,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
      = ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_247_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_248_dvd__diff,axiom,
    ! [X: code_integer,Y: code_integer,Z2: code_integer] :
      ( ( dvd_dvd_Code_integer @ X @ Y )
     => ( ( dvd_dvd_Code_integer @ X @ Z2 )
       => ( dvd_dvd_Code_integer @ X @ ( minus_8373710615458151222nteger @ Y @ Z2 ) ) ) ) ).

% dvd_diff
thf(fact_249_dvd__diff,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( ( dvd_dvd_real @ X @ Z2 )
       => ( dvd_dvd_real @ X @ ( minus_minus_real @ Y @ Z2 ) ) ) ) ).

% dvd_diff
thf(fact_250_dvd__diff,axiom,
    ! [X: rat,Y: rat,Z2: rat] :
      ( ( dvd_dvd_rat @ X @ Y )
     => ( ( dvd_dvd_rat @ X @ Z2 )
       => ( dvd_dvd_rat @ X @ ( minus_minus_rat @ Y @ Z2 ) ) ) ) ).

% dvd_diff
thf(fact_251_dvd__diff,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( dvd_dvd_int @ X @ Z2 )
       => ( dvd_dvd_int @ X @ ( minus_minus_int @ Y @ Z2 ) ) ) ) ).

% dvd_diff
thf(fact_252_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_253_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_254_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_255_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_256_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_257_zero__reorient,axiom,
    ! [X: literal] :
      ( ( zero_zero_literal = X )
      = ( X = zero_zero_literal ) ) ).

% zero_reorient
thf(fact_258_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_259_zero__reorient,axiom,
    ! [X: rat] :
      ( ( zero_zero_rat = X )
      = ( X = zero_zero_rat ) ) ).

% zero_reorient
thf(fact_260_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_261_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_262_dvd__field__iff,axiom,
    ( dvd_dvd_real
    = ( ^ [A2: real,B2: real] :
          ( ( A2 = zero_zero_real )
         => ( B2 = zero_zero_real ) ) ) ) ).

% dvd_field_iff
thf(fact_263_dvd__field__iff,axiom,
    ( dvd_dvd_rat
    = ( ^ [A2: rat,B2: rat] :
          ( ( A2 = zero_zero_rat )
         => ( B2 = zero_zero_rat ) ) ) ) ).

% dvd_field_iff
thf(fact_264_unset__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_265_unset__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_266_gcd__nat_Oextremum,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% gcd_nat.extremum
thf(fact_267_gcd__nat_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
        & ( zero_zero_nat != A ) ) ).

% gcd_nat.extremum_strict
thf(fact_268_gcd__nat_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_unique
thf(fact_269_gcd__nat_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ( dvd_dvd_nat @ A @ zero_zero_nat )
        & ( A != zero_zero_nat ) ) ) ).

% gcd_nat.not_eq_extremum
thf(fact_270_gcd__nat_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_uniqueI
thf(fact_271_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N2: nat] :
            ( ~ ( P @ N2 )
            & ( P @ ( suc @ N2 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_272_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_273_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_274_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_275_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_276_even__push__bit__iff,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se547839408752420682it_nat @ N @ A ) )
      = ( ( N != zero_zero_nat )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_push_bit_iff
thf(fact_277_even__push__bit__iff,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se545348938243370406it_int @ N @ A ) )
      = ( ( N != zero_zero_nat )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_push_bit_iff
thf(fact_278_even__push__bit__iff,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se7788150548672797655nteger @ N @ A ) )
      = ( ( N != zero_zero_nat )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_push_bit_iff
thf(fact_279_even__push__bit__iff,axiom,
    ! [N: nat,A: code_natural] :
      ( ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( bit_se6611745700429515170atural @ N @ A ) )
      = ( ( N != zero_zero_nat )
        | ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_push_bit_iff
thf(fact_280_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_281_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_282_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_283_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_284_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_285_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_286_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_287_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_288_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_289_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_290_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_291_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_292_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_293_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_294_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_295_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_296_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_297_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_298_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_299_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_300_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_301_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_302_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_303_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_304_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_305_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_306_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_307_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_308_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z2: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z2 ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_309_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z2 ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_310_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z2: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z2 ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_311_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z2 ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_312_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z2: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z2 ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_313_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_314_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_315_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_316_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_317_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_318_mult_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.right_neutral
thf(fact_319_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_320_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_321_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_322_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_323_mult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% mult_1
thf(fact_324_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_325_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_326_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_327_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_328_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_329_times__divide__eq__left,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_330_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_331_times__divide__eq__left,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_332_divide__divide__eq__left,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_333_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_334_divide__divide__eq__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_335_divide__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_336_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_337_divide__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_338_times__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_339_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_340_times__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_341_div__by__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ one_one_complex )
      = A ) ).

% div_by_1
thf(fact_342_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_343_div__by__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ one_one_rat )
      = A ) ).

% div_by_1
thf(fact_344_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_345_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_346_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_347_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_348_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( times_times_nat @ M @ N ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% of_nat_mult
thf(fact_349_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_mult
thf(fact_350_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% of_nat_mult
thf(fact_351_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_352_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_353_of__nat__1,axiom,
    ( ( semiri8010041392384452111omplex @ one_one_nat )
    = one_one_complex ) ).

% of_nat_1
thf(fact_354_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_355_of__nat__1,axiom,
    ( ( semiri681578069525770553at_rat @ one_one_nat )
    = one_one_rat ) ).

% of_nat_1
thf(fact_356_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_357_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_358_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_complex
        = ( semiri8010041392384452111omplex @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_359_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_360_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_rat
        = ( semiri681578069525770553at_rat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_361_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_362_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_363_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri8010041392384452111omplex @ N )
        = one_one_complex )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_364_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_365_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri681578069525770553at_rat @ N )
        = one_one_rat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_366_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_367_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_368_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_369_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_370_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_371_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_372_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_373_push__bit__eq__0__iff,axiom,
    ! [N: nat,A: nat] :
      ( ( ( bit_se547839408752420682it_nat @ N @ A )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% push_bit_eq_0_iff
thf(fact_374_push__bit__eq__0__iff,axiom,
    ! [N: nat,A: int] :
      ( ( ( bit_se545348938243370406it_int @ N @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% push_bit_eq_0_iff
thf(fact_375_push__bit__eq__0__iff,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( bit_se7788150548672797655nteger @ N @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% push_bit_eq_0_iff
thf(fact_376_push__bit__eq__0__iff,axiom,
    ! [N: nat,A: code_natural] :
      ( ( ( bit_se6611745700429515170atural @ N @ A )
        = zero_z2226904508553997617atural )
      = ( A = zero_z2226904508553997617atural ) ) ).

% push_bit_eq_0_iff
thf(fact_377_push__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% push_bit_of_0
thf(fact_378_push__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% push_bit_of_0
thf(fact_379_push__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se7788150548672797655nteger @ N @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% push_bit_of_0
thf(fact_380_push__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se6611745700429515170atural @ N @ zero_z2226904508553997617atural )
      = zero_z2226904508553997617atural ) ).

% push_bit_of_0
thf(fact_381_mult__cancel__right2,axiom,
    ! [A: complex,C: complex] :
      ( ( ( times_times_complex @ A @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_382_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_383_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_384_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_385_mult__cancel__right1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_386_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_387_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_388_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_389_mult__cancel__left2,axiom,
    ! [C: complex,A: complex] :
      ( ( ( times_times_complex @ C @ A )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_390_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_391_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_392_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_393_mult__cancel__left1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_394_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_395_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_396_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_397_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ one_one_complex )
    = zero_zero_complex ) ).

% diff_numeral_special(9)
thf(fact_398_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_399_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ one_one_rat )
    = zero_zero_rat ) ).

% diff_numeral_special(9)
thf(fact_400_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_401_nonzero__mult__div__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_402_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_403_nonzero__mult__div__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_404_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_405_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_406_nonzero__mult__div__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_407_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_408_nonzero__mult__div__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_409_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_410_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_411_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_412_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_413_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_414_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_415_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_416_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_417_mult__divide__mult__cancel__left__if,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( C = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = zero_zero_complex ) )
      & ( ( C != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_418_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_419_mult__divide__mult__cancel__left__if,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( C = zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = zero_zero_rat ) )
      & ( ( C != zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = ( divide_divide_rat @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_420_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_421_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_422_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_423_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_424_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_425_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_426_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_427_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_428_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_429_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_430_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_431_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_432_div__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% div_self
thf(fact_433_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_434_div__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% div_self
thf(fact_435_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_436_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_437_divide__eq__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = one_one_complex )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_438_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_439_divide__eq__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = one_one_rat )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_440_one__eq__divide__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( one_one_complex
        = ( divide1717551699836669952omplex @ A @ B ) )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_441_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_442_one__eq__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ A @ B ) )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_443_divide__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% divide_self
thf(fact_444_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_445_divide__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% divide_self
thf(fact_446_divide__self__if,axiom,
    ! [A: complex] :
      ( ( ( A = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = zero_zero_complex ) )
      & ( ( A != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = one_one_complex ) ) ) ).

% divide_self_if
thf(fact_447_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_448_divide__self__if,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = one_one_rat ) ) ) ).

% divide_self_if
thf(fact_449_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_450_divide__eq__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ A )
        = one_one_rat )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_451_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_452_eq__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ B @ A ) )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_453_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_454_one__divide__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( divide_divide_rat @ one_one_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% one_divide_eq_0_iff
thf(fact_455_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_456_zero__eq__1__divide__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( divide_divide_rat @ one_one_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_1_divide_iff
thf(fact_457_right__diff__distrib__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_458_right__diff__distrib__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_459_right__diff__distrib__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_460_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_461_left__diff__distrib__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_462_left__diff__distrib__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_463_left__diff__distrib__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_464_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_465_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera6690914467698888265omplex @ N )
        = one_one_complex )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_466_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_467_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_rat @ N )
        = one_one_rat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_468_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_469_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_470_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_complex
        = ( numera6690914467698888265omplex @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_471_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_472_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_rat
        = ( numeral_numeral_rat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_473_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_474_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_475_dvd__mult__cancel__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_476_dvd__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_477_dvd__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_478_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_479_dvd__mult__cancel__right,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_480_dvd__mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_481_dvd__mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_482_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_483_dvd__times__left__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_484_dvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_485_dvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_486_dvd__times__right__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_487_dvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_488_dvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_489_unit__prod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_prod
thf(fact_490_unit__prod,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_prod
thf(fact_491_unit__prod,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_prod
thf(fact_492_dvd__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_493_dvd__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_494_dvd__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_495_dvd__mult__div__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_496_dvd__mult__div__cancel,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_497_dvd__mult__div__cancel,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_498_unit__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_div
thf(fact_499_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_500_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_501_unit__div__1__unit,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).

% unit_div_1_unit
thf(fact_502_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_503_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_504_unit__div__1__div__1,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_505_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_506_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_507_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
        = A )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_508_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_509_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_510_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
            = B ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_511_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_512_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_513_nonzero__divide__mult__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_514_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_515_nonzero__divide__mult__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_516_nonzero__divide__mult__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_517_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_518_nonzero__divide__mult__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_519_unit__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_520_unit__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_521_unit__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_522_unit__mult__div__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = ( divide6298287555418463151nteger @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_523_unit__mult__div__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
        = ( divide_divide_nat @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_524_unit__mult__div__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_525_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_526_push__bit__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se547839408752420682it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( bit_se547839408752420682it_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% push_bit_Suc_numeral
thf(fact_527_push__bit__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se545348938243370406it_int @ ( suc @ N ) @ ( numeral_numeral_int @ K ) )
      = ( bit_se545348938243370406it_int @ N @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ).

% push_bit_Suc_numeral
thf(fact_528_push__bit__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se7788150548672797655nteger @ ( suc @ N ) @ ( numera6620942414471956472nteger @ K ) )
      = ( bit_se7788150548672797655nteger @ N @ ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ) ).

% push_bit_Suc_numeral
thf(fact_529_push__bit__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se6611745700429515170atural @ ( suc @ N ) @ ( numera5444537566228673987atural @ K ) )
      = ( bit_se6611745700429515170atural @ N @ ( numera5444537566228673987atural @ ( bit0 @ K ) ) ) ) ).

% push_bit_Suc_numeral
thf(fact_530_even__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_531_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_532_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_533_push__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se547839408752420682it_nat @ ( suc @ N ) @ A )
      = ( bit_se547839408752420682it_nat @ N @ ( times_times_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% push_bit_Suc
thf(fact_534_push__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se545348938243370406it_int @ ( suc @ N ) @ A )
      = ( bit_se545348938243370406it_int @ N @ ( times_times_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% push_bit_Suc
thf(fact_535_push__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se7788150548672797655nteger @ ( suc @ N ) @ A )
      = ( bit_se7788150548672797655nteger @ N @ ( times_3573771949741848930nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% push_bit_Suc
thf(fact_536_push__bit__Suc,axiom,
    ! [N: nat,A: code_natural] :
      ( ( bit_se6611745700429515170atural @ ( suc @ N ) @ A )
      = ( bit_se6611745700429515170atural @ N @ ( times_2397367101498566445atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ) ).

% push_bit_Suc
thf(fact_537_odd__two__times__div__two__nat,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_538_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_539_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_540_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_541_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_542_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_543_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_544_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_545_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_546_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_547_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_548_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_549_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_550_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_551_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_552_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_553_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_554_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A2: real,B2: real] : ( times_times_real @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_555_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A2: rat,B2: rat] : ( times_times_rat @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_556_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A2: nat,B2: nat] : ( times_times_nat @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_557_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A2: int,B2: int] : ( times_times_int @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_558_mult_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.comm_neutral
thf(fact_559_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_560_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_561_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_562_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_563_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_564_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_565_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_566_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_567_one__reorient,axiom,
    ! [X: complex] :
      ( ( one_one_complex = X )
      = ( X = one_one_complex ) ) ).

% one_reorient
thf(fact_568_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_569_one__reorient,axiom,
    ! [X: rat] :
      ( ( one_one_rat = X )
      = ( X = one_one_rat ) ) ).

% one_reorient
thf(fact_570_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_571_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_572_push__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
      = ( semiri1316708129612266289at_nat @ ( bit_se547839408752420682it_nat @ N @ M ) ) ) ).

% push_bit_of_nat
thf(fact_573_push__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se545348938243370406it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
      = ( semiri1314217659103216013at_int @ ( bit_se547839408752420682it_nat @ N @ M ) ) ) ).

% push_bit_of_nat
thf(fact_574_push__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se7788150548672797655nteger @ N @ ( semiri4939895301339042750nteger @ M ) )
      = ( semiri4939895301339042750nteger @ ( bit_se547839408752420682it_nat @ N @ M ) ) ) ).

% push_bit_of_nat
thf(fact_575_push__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se6611745700429515170atural @ N @ ( semiri3763490453095760265atural @ M ) )
      = ( semiri3763490453095760265atural @ ( bit_se547839408752420682it_nat @ N @ M ) ) ) ).

% push_bit_of_nat
thf(fact_576_of__nat__push__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se547839408752420682it_nat @ M @ N ) )
      = ( bit_se547839408752420682it_nat @ M @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_push_bit
thf(fact_577_of__nat__push__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se547839408752420682it_nat @ M @ N ) )
      = ( bit_se545348938243370406it_int @ M @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_push_bit
thf(fact_578_of__nat__push__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4939895301339042750nteger @ ( bit_se547839408752420682it_nat @ M @ N ) )
      = ( bit_se7788150548672797655nteger @ M @ ( semiri4939895301339042750nteger @ N ) ) ) ).

% of_nat_push_bit
thf(fact_579_of__nat__push__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri3763490453095760265atural @ ( bit_se547839408752420682it_nat @ M @ N ) )
      = ( bit_se6611745700429515170atural @ M @ ( semiri3763490453095760265atural @ N ) ) ) ).

% of_nat_push_bit
thf(fact_580_is__unit__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        & ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).

% is_unit_mult_iff
thf(fact_581_is__unit__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        & ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).

% is_unit_mult_iff
thf(fact_582_is__unit__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        & ( dvd_dvd_int @ B @ one_one_int ) ) ) ).

% is_unit_mult_iff
thf(fact_583_dvd__mult__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_584_dvd__mult__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_585_dvd__mult__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_586_mult__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_587_mult__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_588_mult__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_589_dvd__mult__unit__iff_H,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_590_dvd__mult__unit__iff_H,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_591_dvd__mult__unit__iff_H,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_592_mult__unit__dvd__iff_H,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_593_mult__unit__dvd__iff_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_594_mult__unit__dvd__iff_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_595_unit__mult__left__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ A @ B )
          = ( times_3573771949741848930nteger @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_596_unit__mult__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ A @ B )
          = ( times_times_nat @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_597_unit__mult__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ A @ B )
          = ( times_times_int @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_598_unit__mult__right__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ B @ A )
          = ( times_3573771949741848930nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_599_unit__mult__right__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ B @ A )
          = ( times_times_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_600_unit__mult__right__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ B @ A )
          = ( times_times_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_601_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_602_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_603_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_604_division__decomp,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
     => ? [B3: nat,C2: nat] :
          ( ( A
            = ( times_times_nat @ B3 @ C2 ) )
          & ( dvd_dvd_nat @ B3 @ B )
          & ( dvd_dvd_nat @ C2 @ C ) ) ) ).

% division_decomp
thf(fact_605_division__decomp,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
     => ? [B3: int,C2: int] :
          ( ( A
            = ( times_times_int @ B3 @ C2 ) )
          & ( dvd_dvd_int @ B3 @ B )
          & ( dvd_dvd_int @ C2 @ C ) ) ) ).

% division_decomp
thf(fact_606_dvd__productE,axiom,
    ! [P2: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ P2 @ ( times_times_nat @ A @ B ) )
     => ~ ! [X4: nat,Y4: nat] :
            ( ( P2
              = ( times_times_nat @ X4 @ Y4 ) )
           => ( ( dvd_dvd_nat @ X4 @ A )
             => ~ ( dvd_dvd_nat @ Y4 @ B ) ) ) ) ).

% dvd_productE
thf(fact_607_dvd__productE,axiom,
    ! [P2: int,A: int,B: int] :
      ( ( dvd_dvd_int @ P2 @ ( times_times_int @ A @ B ) )
     => ~ ! [X4: int,Y4: int] :
            ( ( P2
              = ( times_times_int @ X4 @ Y4 ) )
           => ( ( dvd_dvd_int @ X4 @ A )
             => ~ ( dvd_dvd_int @ Y4 @ B ) ) ) ) ).

% dvd_productE
thf(fact_608_unit__dvdE,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [C3: code_integer] :
              ( B
             != ( times_3573771949741848930nteger @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_609_unit__dvdE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [C3: nat] :
              ( B
             != ( times_times_nat @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_610_unit__dvdE,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [C3: int] :
              ( B
             != ( times_times_int @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_611_is__unit__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_612_is__unit__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ C @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_613_is__unit__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ C @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_614_unit__div__mult__swap,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_615_unit__div__mult__swap,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_616_unit__div__mult__swap,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_617_unit__div__commute,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_618_unit__div__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_619_unit__div__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_620_div__mult__unit2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_621_div__mult__unit2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_622_div__mult__unit2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_623_unit__eq__div2,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( A
          = ( divide6298287555418463151nteger @ C @ B ) )
        = ( ( times_3573771949741848930nteger @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_624_unit__eq__div2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( A
          = ( divide_divide_nat @ C @ B ) )
        = ( ( times_times_nat @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_625_unit__eq__div2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( A
          = ( divide_divide_int @ C @ B ) )
        = ( ( times_times_int @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_626_unit__eq__div1,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = C )
        = ( A
          = ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_627_unit__eq__div1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = C )
        = ( A
          = ( times_times_nat @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_628_unit__eq__div1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = C )
        = ( A
          = ( times_times_int @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_629_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_630_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_631_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_632_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_633_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_634_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_635_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_636_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_637_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_638_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_639_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_640_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_641_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_642_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_643_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_644_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_645_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_646_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_647_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_648_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_649_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_650_left__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_651_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_652_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_653_right__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_654_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_655_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_656_left__diff__distrib_H,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
      = ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_657_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_658_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_659_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_660_right__diff__distrib_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_661_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_662_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_663_times__divide__times__eq,axiom,
    ! [X: complex,Y: complex,Z2: complex,W: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ Z2 @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X @ Z2 ) @ ( times_times_complex @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_664_times__divide__times__eq,axiom,
    ! [X: real,Y: real,Z2: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z2 @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_665_times__divide__times__eq,axiom,
    ! [X: rat,Y: rat,Z2: rat,W: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ Z2 @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_666_divide__divide__times__eq,axiom,
    ! [X: complex,Y: complex,Z2: complex,W: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ Z2 @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X @ W ) @ ( times_times_complex @ Y @ Z2 ) ) ) ).

% divide_divide_times_eq
thf(fact_667_divide__divide__times__eq,axiom,
    ! [X: real,Y: real,Z2: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z2 @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z2 ) ) ) ).

% divide_divide_times_eq
thf(fact_668_divide__divide__times__eq,axiom,
    ! [X: rat,Y: rat,Z2: rat,W: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ Z2 @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X @ W ) @ ( times_times_rat @ Y @ Z2 ) ) ) ).

% divide_divide_times_eq
thf(fact_669_divide__divide__eq__left_H,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_670_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_671_divide__divide__eq__left_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_672_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_673_dvd__triv__right,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).

% dvd_triv_right
thf(fact_674_dvd__triv__right,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).

% dvd_triv_right
thf(fact_675_dvd__triv__right,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_676_dvd__triv__right,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_677_dvd__triv__right,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).

% dvd_triv_right
thf(fact_678_dvd__mult__right,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ B @ C ) ) ).

% dvd_mult_right
thf(fact_679_dvd__mult__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ B @ C ) ) ).

% dvd_mult_right
thf(fact_680_dvd__mult__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_681_dvd__mult__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_682_dvd__mult__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ B @ C ) ) ).

% dvd_mult_right
thf(fact_683_mult__dvd__mono,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ C @ D )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_684_mult__dvd__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ C @ D )
       => ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_685_mult__dvd__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ C @ D )
       => ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_686_mult__dvd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ C @ D )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_687_mult__dvd__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ C @ D )
       => ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_688_dvd__triv__left,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).

% dvd_triv_left
thf(fact_689_dvd__triv__left,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).

% dvd_triv_left
thf(fact_690_dvd__triv__left,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_691_dvd__triv__left,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_692_dvd__triv__left,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).

% dvd_triv_left
thf(fact_693_dvd__mult__left,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ A @ C ) ) ).

% dvd_mult_left
thf(fact_694_dvd__mult__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ A @ C ) ) ).

% dvd_mult_left
thf(fact_695_dvd__mult__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_696_dvd__mult__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_697_dvd__mult__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ A @ C ) ) ).

% dvd_mult_left
thf(fact_698_dvd__mult2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_699_dvd__mult2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_700_dvd__mult2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_701_dvd__mult2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_702_dvd__mult2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_703_dvd__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult
thf(fact_704_dvd__mult,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult
thf(fact_705_dvd__mult,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_706_dvd__mult,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_707_dvd__mult,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult
thf(fact_708_dvd__def,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [B2: code_integer,A2: code_integer] :
        ? [K2: code_integer] :
          ( A2
          = ( times_3573771949741848930nteger @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_709_dvd__def,axiom,
    ( dvd_dvd_real
    = ( ^ [B2: real,A2: real] :
        ? [K2: real] :
          ( A2
          = ( times_times_real @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_710_dvd__def,axiom,
    ( dvd_dvd_rat
    = ( ^ [B2: rat,A2: rat] :
        ? [K2: rat] :
          ( A2
          = ( times_times_rat @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_711_dvd__def,axiom,
    ( dvd_dvd_nat
    = ( ^ [B2: nat,A2: nat] :
        ? [K2: nat] :
          ( A2
          = ( times_times_nat @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_712_dvd__def,axiom,
    ( dvd_dvd_int
    = ( ^ [B2: int,A2: int] :
        ? [K2: int] :
          ( A2
          = ( times_times_int @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_713_dvdI,axiom,
    ! [A: code_integer,B: code_integer,K: code_integer] :
      ( ( A
        = ( times_3573771949741848930nteger @ B @ K ) )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% dvdI
thf(fact_714_dvdI,axiom,
    ! [A: real,B: real,K: real] :
      ( ( A
        = ( times_times_real @ B @ K ) )
     => ( dvd_dvd_real @ B @ A ) ) ).

% dvdI
thf(fact_715_dvdI,axiom,
    ! [A: rat,B: rat,K: rat] :
      ( ( A
        = ( times_times_rat @ B @ K ) )
     => ( dvd_dvd_rat @ B @ A ) ) ).

% dvdI
thf(fact_716_dvdI,axiom,
    ! [A: nat,B: nat,K: nat] :
      ( ( A
        = ( times_times_nat @ B @ K ) )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% dvdI
thf(fact_717_dvdI,axiom,
    ! [A: int,B: int,K: int] :
      ( ( A
        = ( times_times_int @ B @ K ) )
     => ( dvd_dvd_int @ B @ A ) ) ).

% dvdI
thf(fact_718_dvdE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ~ ! [K3: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ B @ K3 ) ) ) ).

% dvdE
thf(fact_719_dvdE,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ~ ! [K3: real] :
            ( A
           != ( times_times_real @ B @ K3 ) ) ) ).

% dvdE
thf(fact_720_dvdE,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ~ ! [K3: rat] :
            ( A
           != ( times_times_rat @ B @ K3 ) ) ) ).

% dvdE
thf(fact_721_dvdE,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ~ ! [K3: nat] :
            ( A
           != ( times_times_nat @ B @ K3 ) ) ) ).

% dvdE
thf(fact_722_dvdE,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ~ ! [K3: int] :
            ( A
           != ( times_times_int @ B @ K3 ) ) ) ).

% dvdE
thf(fact_723_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_724_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_725_mult__of__nat__commute,axiom,
    ! [X: nat,Y: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ X ) @ Y )
      = ( times_times_complex @ Y @ ( semiri8010041392384452111omplex @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_726_mult__of__nat__commute,axiom,
    ! [X: nat,Y: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
      = ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_727_mult__of__nat__commute,axiom,
    ! [X: nat,Y: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ X ) @ Y )
      = ( times_times_rat @ Y @ ( semiri681578069525770553at_rat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_728_mult__of__nat__commute,axiom,
    ! [X: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_729_mult__of__nat__commute,axiom,
    ! [X: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_730_zero__neq__one,axiom,
    zero_zero_complex != one_one_complex ).

% zero_neq_one
thf(fact_731_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_732_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_733_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_734_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_735_int__diff__cases,axiom,
    ! [Z2: int] :
      ~ ! [M2: nat,N2: nat] :
          ( Z2
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_diff_cases
thf(fact_736_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_737_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_738_dvd__unit__imp__unit,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).

% dvd_unit_imp_unit
thf(fact_739_dvd__unit__imp__unit,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_740_dvd__unit__imp__unit,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_741_unit__imp__dvd,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_742_unit__imp__dvd,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_743_unit__imp__dvd,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_744_one__dvd,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).

% one_dvd
thf(fact_745_one__dvd,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).

% one_dvd
thf(fact_746_one__dvd,axiom,
    ! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).

% one_dvd
thf(fact_747_one__dvd,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).

% one_dvd
thf(fact_748_one__dvd,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).

% one_dvd
thf(fact_749_one__dvd,axiom,
    ! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).

% one_dvd
thf(fact_750_zdvd__zdiffD,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N ) )
     => ( ( dvd_dvd_int @ K @ N )
       => ( dvd_dvd_int @ K @ M ) ) ) ).

% zdvd_zdiffD
thf(fact_751_div__mult2__eq,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q2 ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) ).

% div_mult2_eq
thf(fact_752_zdvd__mult__cancel,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
     => ( ( K != zero_zero_int )
       => ( dvd_dvd_int @ M @ N ) ) ) ).

% zdvd_mult_cancel
thf(fact_753_bezout1__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D2: nat,X4: nat,Y4: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
      & ( dvd_dvd_nat @ D2 @ B )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y4 ) )
          = D2 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y4 ) )
          = D2 ) ) ) ).

% bezout1_nat
thf(fact_754_push__bit__double,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( times_times_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% push_bit_double
thf(fact_755_push__bit__double,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( times_times_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% push_bit_double
thf(fact_756_push__bit__double,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( times_3573771949741848930nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( times_3573771949741848930nteger @ ( bit_se7788150548672797655nteger @ N @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% push_bit_double
thf(fact_757_push__bit__double,axiom,
    ! [N: nat,A: code_natural] :
      ( ( bit_se6611745700429515170atural @ N @ ( times_2397367101498566445atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) )
      = ( times_2397367101498566445atural @ ( bit_se6611745700429515170atural @ N @ A ) @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ).

% push_bit_double
thf(fact_758_is__unit__div__mult__cancel__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_759_is__unit__div__mult__cancel__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_760_is__unit__div__mult__cancel__right,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_761_is__unit__div__mult__cancel__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_762_is__unit__div__mult__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_763_is__unit__div__mult__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_764_is__unitE,axiom,
    ! [A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [B4: code_integer] :
              ( ( B4 != zero_z3403309356797280102nteger )
             => ( ( dvd_dvd_Code_integer @ B4 @ one_one_Code_integer )
               => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
                    = B4 )
                 => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B4 )
                      = A )
                   => ( ( ( times_3573771949741848930nteger @ A @ B4 )
                        = one_one_Code_integer )
                     => ( ( divide6298287555418463151nteger @ C @ A )
                       != ( times_3573771949741848930nteger @ C @ B4 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_765_is__unitE,axiom,
    ! [A: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [B4: nat] :
              ( ( B4 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ B4 @ one_one_nat )
               => ( ( ( divide_divide_nat @ one_one_nat @ A )
                    = B4 )
                 => ( ( ( divide_divide_nat @ one_one_nat @ B4 )
                      = A )
                   => ( ( ( times_times_nat @ A @ B4 )
                        = one_one_nat )
                     => ( ( divide_divide_nat @ C @ A )
                       != ( times_times_nat @ C @ B4 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_766_is__unitE,axiom,
    ! [A: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [B4: int] :
              ( ( B4 != zero_zero_int )
             => ( ( dvd_dvd_int @ B4 @ one_one_int )
               => ( ( ( divide_divide_int @ one_one_int @ A )
                    = B4 )
                 => ( ( ( divide_divide_int @ one_one_int @ B4 )
                      = A )
                   => ( ( ( times_times_int @ A @ B4 )
                        = one_one_int )
                     => ( ( divide_divide_int @ C @ A )
                       != ( times_times_int @ C @ B4 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_767_frac__eq__eq,axiom,
    ! [Y: complex,Z2: complex,X: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z2 != zero_zero_complex )
       => ( ( ( divide1717551699836669952omplex @ X @ Y )
            = ( divide1717551699836669952omplex @ W @ Z2 ) )
          = ( ( times_times_complex @ X @ Z2 )
            = ( times_times_complex @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_768_frac__eq__eq,axiom,
    ! [Y: real,Z2: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z2 != zero_zero_real )
       => ( ( ( divide_divide_real @ X @ Y )
            = ( divide_divide_real @ W @ Z2 ) )
          = ( ( times_times_real @ X @ Z2 )
            = ( times_times_real @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_769_frac__eq__eq,axiom,
    ! [Y: rat,Z2: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z2 != zero_zero_rat )
       => ( ( ( divide_divide_rat @ X @ Y )
            = ( divide_divide_rat @ W @ Z2 ) )
          = ( ( times_times_rat @ X @ Z2 )
            = ( times_times_rat @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_770_divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq
thf(fact_771_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_772_divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ C )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq
thf(fact_773_eq__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq
thf(fact_774_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_775_eq__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq
thf(fact_776_divide__eq__imp,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( B
          = ( times_times_complex @ A @ C ) )
       => ( ( divide1717551699836669952omplex @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_777_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_778_divide__eq__imp,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( B
          = ( times_times_rat @ A @ C ) )
       => ( ( divide_divide_rat @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_779_eq__divide__imp,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = B )
       => ( A
          = ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_780_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_781_eq__divide__imp,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = B )
       => ( A
          = ( divide_divide_rat @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_782_nonzero__divide__eq__eq,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ B @ C )
          = A )
        = ( B
          = ( times_times_complex @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_783_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_784_nonzero__divide__eq__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( divide_divide_rat @ B @ C )
          = A )
        = ( B
          = ( times_times_rat @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_785_nonzero__eq__divide__eq,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( A
          = ( divide1717551699836669952omplex @ B @ C ) )
        = ( ( times_times_complex @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_786_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_787_nonzero__eq__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( A
          = ( divide_divide_rat @ B @ C ) )
        = ( ( times_times_rat @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_788_mult__numeral__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_789_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_790_mult__numeral__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_791_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_792_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_793_mult__numeral__1__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_794_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_795_mult__numeral__1__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_796_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_797_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_798_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_799_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_800_dvd__div__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_801_dvd__div__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
        = ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_802_dvd__div__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
        = ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_803_div__mult__swap,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_804_div__mult__swap,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_805_div__mult__swap,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_806_div__div__eq__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_807_div__div__eq__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_808_div__div__eq__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_809_dvd__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_810_dvd__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_811_dvd__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_812_dvd__mult__imp__div,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
     => ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_813_dvd__mult__imp__div,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
     => ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_814_dvd__mult__imp__div,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
     => ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_815_div__mult__div__if__dvd,axiom,
    ! [B: code_integer,A: code_integer,D: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( dvd_dvd_Code_integer @ D @ C )
       => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D ) )
          = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_816_div__mult__div__if__dvd,axiom,
    ! [B: nat,A: nat,D: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( dvd_dvd_nat @ D @ C )
       => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
          = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_817_div__mult__div__if__dvd,axiom,
    ! [B: int,A: int,D: int,C: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( dvd_dvd_int @ D @ C )
       => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
          = ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_818_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% div_mult2_eq'
thf(fact_819_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% div_mult2_eq'
thf(fact_820_right__inverse__eq,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = one_one_complex )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_821_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_822_right__inverse__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( divide_divide_rat @ A @ B )
          = one_one_rat )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_823_numeral__One,axiom,
    ( ( numera6690914467698888265omplex @ one )
    = one_one_complex ) ).

% numeral_One
thf(fact_824_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_825_numeral__One,axiom,
    ( ( numeral_numeral_rat @ one )
    = one_one_rat ) ).

% numeral_One
thf(fact_826_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_827_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_828_not__is__unit__0,axiom,
    ~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).

% not_is_unit_0
thf(fact_829_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_830_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_831_unit__div__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ B @ A )
          = ( divide6298287555418463151nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_832_unit__div__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A )
          = ( divide_divide_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_833_unit__div__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A )
          = ( divide_divide_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_834_div__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_835_div__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_836_div__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_837_dvd__div__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_838_dvd__div__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_839_dvd__div__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_840_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_841_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_842_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_843_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_844_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( numeral_numeral_real @ W ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_845_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( numeral_numeral_rat @ W ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_846_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( numera6690914467698888265omplex @ W )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_847_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( numeral_numeral_real @ W )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_848_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( numeral_numeral_rat @ W )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_849_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z2: complex,A: complex,B: complex] :
      ( ( ( Z2 = zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
          = A ) )
      & ( ( Z2 != zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_850_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z2: real,A: real,B: real] :
      ( ( ( Z2 = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
          = A ) )
      & ( ( Z2 != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_851_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z2: rat,A: rat,B: rat] :
      ( ( ( Z2 = zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
          = A ) )
      & ( ( Z2 != zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_852_diff__frac__eq,axiom,
    ! [Y: complex,Z2: complex,X: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z2 != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ W @ Z2 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z2 ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z2 ) ) ) ) ) ).

% diff_frac_eq
thf(fact_853_diff__frac__eq,axiom,
    ! [Y: real,Z2: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z2 != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z2 ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) ) ) ) ).

% diff_frac_eq
thf(fact_854_diff__frac__eq,axiom,
    ! [Y: rat,Z2: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z2 != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z2 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) ) ) ) ).

% diff_frac_eq
thf(fact_855_diff__divide__eq__iff,axiom,
    ! [Z2: complex,X: complex,Y: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( minus_minus_complex @ X @ ( divide1717551699836669952omplex @ Y @ Z2 ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).

% diff_divide_eq_iff
thf(fact_856_diff__divide__eq__iff,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( Z2 != zero_zero_real )
     => ( ( minus_minus_real @ X @ ( divide_divide_real @ Y @ Z2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).

% diff_divide_eq_iff
thf(fact_857_diff__divide__eq__iff,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( Z2 != zero_zero_rat )
     => ( ( minus_minus_rat @ X @ ( divide_divide_rat @ Y @ Z2 ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).

% diff_divide_eq_iff
thf(fact_858_divide__diff__eq__iff,axiom,
    ! [Z2: complex,X: complex,Y: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Z2 ) @ Y )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ X @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% divide_diff_eq_iff
thf(fact_859_divide__diff__eq__iff,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( Z2 != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X @ Z2 ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% divide_diff_eq_iff
thf(fact_860_divide__diff__eq__iff,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( Z2 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Z2 ) @ Y )
        = ( divide_divide_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% divide_diff_eq_iff
thf(fact_861_dvd__div__div__eq__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( C != zero_z3403309356797280102nteger )
       => ( ( dvd_dvd_Code_integer @ A @ B )
         => ( ( dvd_dvd_Code_integer @ C @ D )
           => ( ( ( divide6298287555418463151nteger @ B @ A )
                = ( divide6298287555418463151nteger @ D @ C ) )
              = ( ( times_3573771949741848930nteger @ B @ C )
                = ( times_3573771949741848930nteger @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_862_dvd__div__div__eq__mult,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( A != zero_zero_nat )
     => ( ( C != zero_zero_nat )
       => ( ( dvd_dvd_nat @ A @ B )
         => ( ( dvd_dvd_nat @ C @ D )
           => ( ( ( divide_divide_nat @ B @ A )
                = ( divide_divide_nat @ D @ C ) )
              = ( ( times_times_nat @ B @ C )
                = ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_863_dvd__div__div__eq__mult,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( A != zero_zero_int )
     => ( ( C != zero_zero_int )
       => ( ( dvd_dvd_int @ A @ B )
         => ( ( dvd_dvd_int @ C @ D )
           => ( ( ( divide_divide_int @ B @ A )
                = ( divide_divide_int @ D @ C ) )
              = ( ( times_times_int @ B @ C )
                = ( times_times_int @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_864_dvd__div__iff__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( C != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_865_dvd__div__iff__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( C != zero_zero_nat )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_866_dvd__div__iff__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( C != zero_zero_int )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_867_div__dvd__iff__mult,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( B != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
          = ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_868_div__dvd__iff__mult,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
          = ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_869_div__dvd__iff__mult,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
          = ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_870_dvd__div__eq__mult,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ A @ B )
       => ( ( ( divide6298287555418463151nteger @ B @ A )
            = C )
          = ( B
            = ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_871_dvd__div__eq__mult,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( ( divide_divide_nat @ B @ A )
            = C )
          = ( B
            = ( times_times_nat @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_872_dvd__div__eq__mult,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ A @ B )
       => ( ( ( divide_divide_int @ B @ A )
            = C )
          = ( B
            = ( times_times_int @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_873_unit__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% unit_div_eq_0_iff
thf(fact_874_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_875_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_876_gcd__nat_Onot__eq__order__implies__strict,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( dvd_dvd_nat @ A @ B )
          & ( A != B ) ) ) ) ).

% gcd_nat.not_eq_order_implies_strict
thf(fact_877_gcd__nat_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( A != B ) ) ).

% gcd_nat.strict_implies_not_eq
thf(fact_878_gcd__nat_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( dvd_dvd_nat @ A @ B ) ) ).

% gcd_nat.strict_implies_order
thf(fact_879_gcd__nat_Ostrict__iff__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) ) ) ).

% gcd_nat.strict_iff_order
thf(fact_880_gcd__nat_Oorder__iff__strict,axiom,
    ( dvd_dvd_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ A2 @ B2 )
            & ( A2 != B2 ) )
          | ( A2 = B2 ) ) ) ) ).

% gcd_nat.order_iff_strict
thf(fact_881_gcd__nat_Ostrict__iff__not,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% gcd_nat.strict_iff_not
thf(fact_882_gcd__nat_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( ( dvd_dvd_nat @ A @ C )
          & ( A != C ) ) ) ) ).

% gcd_nat.strict_trans2
thf(fact_883_gcd__nat_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( ( dvd_dvd_nat @ B @ C )
          & ( B != C ) )
       => ( ( dvd_dvd_nat @ A @ C )
          & ( A != C ) ) ) ) ).

% gcd_nat.strict_trans1
thf(fact_884_gcd__nat_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( ( ( dvd_dvd_nat @ B @ C )
          & ( B != C ) )
       => ( ( dvd_dvd_nat @ A @ C )
          & ( A != C ) ) ) ) ).

% gcd_nat.strict_trans
thf(fact_885_gcd__nat_Oantisym,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( A = B ) ) ) ).

% gcd_nat.antisym
thf(fact_886_gcd__nat_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ A @ A )
        & ( A != A ) ) ).

% gcd_nat.irrefl
thf(fact_887_gcd__nat_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( dvd_dvd_nat @ A2 @ B2 )
          & ( dvd_dvd_nat @ B2 @ A2 ) ) ) ) ).

% gcd_nat.eq_iff
thf(fact_888_gcd__nat_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% gcd_nat.trans
thf(fact_889_gcd__nat_Orefl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% gcd_nat.refl
thf(fact_890_gcd__nat_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ~ ( ( dvd_dvd_nat @ B @ A )
          & ( B != A ) ) ) ).

% gcd_nat.asym
thf(fact_891_evenE,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_892_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_893_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_894_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_895_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_896_odd__one,axiom,
    ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).

% odd_one
thf(fact_897_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_898_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_899_even__two__times__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_900_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_901_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_902_dbl__simps_I3_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_903_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_904_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_905_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_906_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N3: nat] : ( divide_divide_nat @ ( times_times_nat @ N3 @ ( suc @ N3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_907_set__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_908_set__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_909_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_910_odd__two__times__div__two__succ,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_911_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_912_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_913_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_914_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_915_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_916_zdvd__mono,axiom,
    ! [K: int,M: int,T: int] :
      ( ( K != zero_zero_int )
     => ( ( dvd_dvd_int @ M @ T )
        = ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).

% zdvd_mono
thf(fact_917_even__succ__div__2,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_918_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_919_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_920_odd__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% odd_succ_div_two
thf(fact_921_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_922_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_923_even__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_924_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_925_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_926_inf__period_I1_J,axiom,
    ! [P: real > $o,D3: real,Q: real > $o] :
      ( ! [X4: real,K3: real] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
     => ( ! [X4: real,K3: real] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
       => ! [X5: real,K4: real] :
            ( ( ( P @ X5 )
              & ( Q @ X5 ) )
            = ( ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_927_inf__period_I1_J,axiom,
    ! [P: rat > $o,D3: rat,Q: rat > $o] :
      ( ! [X4: rat,K3: rat] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
     => ( ! [X4: rat,K3: rat] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
       => ! [X5: rat,K4: rat] :
            ( ( ( P @ X5 )
              & ( Q @ X5 ) )
            = ( ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_928_inf__period_I1_J,axiom,
    ! [P: int > $o,D3: int,Q: int > $o] :
      ( ! [X4: int,K3: int] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
     => ( ! [X4: int,K3: int] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
       => ! [X5: int,K4: int] :
            ( ( ( P @ X5 )
              & ( Q @ X5 ) )
            = ( ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_929_even__odd__cases,axiom,
    ! [X: nat] :
      ( ! [N2: nat] :
          ( X
         != ( plus_plus_nat @ N2 @ N2 ) )
     => ~ ! [N2: nat] :
            ( X
           != ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) ) ) ).

% even_odd_cases
thf(fact_930_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_931_add__right__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_932_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_933_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_934_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_935_add__left__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_936_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_937_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_938_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_939_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_940_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_941_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_942_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_943_push__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( bit_se547839408752420682it_nat @ M @ ( bit_se547839408752420682it_nat @ N @ A ) )
      = ( bit_se547839408752420682it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ).

% push_bit_push_bit
thf(fact_944_push__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_se545348938243370406it_int @ M @ ( bit_se545348938243370406it_int @ N @ A ) )
      = ( bit_se545348938243370406it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ).

% push_bit_push_bit
thf(fact_945_push__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( bit_se7788150548672797655nteger @ M @ ( bit_se7788150548672797655nteger @ N @ A ) )
      = ( bit_se7788150548672797655nteger @ ( plus_plus_nat @ M @ N ) @ A ) ) ).

% push_bit_push_bit
thf(fact_946_push__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: code_natural] :
      ( ( bit_se6611745700429515170atural @ M @ ( bit_se6611745700429515170atural @ N @ A ) )
      = ( bit_se6611745700429515170atural @ ( plus_plus_nat @ M @ N ) @ A ) ) ).

% push_bit_push_bit
thf(fact_947_add_Oright__neutral,axiom,
    ! [A: literal] :
      ( ( plus_plus_literal @ A @ zero_zero_literal )
      = A ) ).

% add.right_neutral
thf(fact_948_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_949_add_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.right_neutral
thf(fact_950_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_951_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_952_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_953_double__zero__sym,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( plus_plus_rat @ A @ A ) )
      = ( A = zero_zero_rat ) ) ).

% double_zero_sym
thf(fact_954_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_955_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_956_add__cancel__left__left,axiom,
    ! [B: rat,A: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_left
thf(fact_957_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_958_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_959_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_960_add__cancel__left__right,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_right
thf(fact_961_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_962_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_963_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_964_add__cancel__right__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ B @ A ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_left
thf(fact_965_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_966_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_967_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_968_add__cancel__right__right,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ A @ B ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_right
thf(fact_969_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_970_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_971_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_972_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_973_add__0,axiom,
    ! [A: literal] :
      ( ( plus_plus_literal @ zero_zero_literal @ A )
      = A ) ).

% add_0
thf(fact_974_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_975_add__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add_0
thf(fact_976_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_977_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_978_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_979_double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( plus_plus_rat @ A @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% double_eq_0_iff
thf(fact_980_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_981_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_982_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_983_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_984_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_985_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_986_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_987_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_988_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_989_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_990_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_991_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_992_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_993_add__diff__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_994_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_995_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_996_diff__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_997_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_998_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_999_add__diff__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1000_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1001_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1002_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1003_add__diff__cancel__left_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1004_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1005_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1006_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1007_add__diff__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1008_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1009_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1010_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1011_add__diff__cancel__right_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1012_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1013_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1014_dvd__add__triv__left__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_1015_dvd__add__triv__left__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_1016_dvd__add__triv__left__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_1017_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_1018_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_1019_dvd__add__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_1020_dvd__add__triv__right__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_1021_dvd__add__triv__right__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_1022_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_1023_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_1024_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% of_nat_add
thf(fact_1025_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_1026_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% of_nat_add
thf(fact_1027_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_1028_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_1029_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1030_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1031_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1032_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_1033_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_1034_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_1035_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_1036_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_1037_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_1038_distrib__left__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_1039_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_1040_distrib__left__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_1041_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_1042_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_1043_distrib__right__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_1044_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_1045_distrib__right__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_1046_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_1047_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_1048_dvd__add__times__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1049_dvd__add__times__triv__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1050_dvd__add__times__triv__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1051_dvd__add__times__triv__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1052_dvd__add__times__triv__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_1053_dvd__add__times__triv__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1054_dvd__add__times__triv__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1055_dvd__add__times__triv__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1056_dvd__add__times__triv__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1057_dvd__add__times__triv__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_1058_div__add,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_1059_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_1060_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_1061_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_1062_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1063_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1064_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1065_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1066_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_1067_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_1068_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_1069_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_1070_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_1071_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_1072_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_1073_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_1074_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1075_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1076_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1077_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1078_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1079_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1080_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1081_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1082_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1083_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1084_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_1085_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_1086_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ M ) )
      = ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).

% of_nat_Suc
thf(fact_1087_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_1088_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ M ) )
      = ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).

% of_nat_Suc
thf(fact_1089_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_1090_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_1091_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_1092_one__add__one,axiom,
    ( ( plus_plus_complex @ one_one_complex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1093_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1094_one__add__one,axiom,
    ( ( plus_plus_rat @ one_one_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1095_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1096_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1097_even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_1098_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_1099_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_1100_odd__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_1101_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_1102_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_1103_even__plus__one__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_1104_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_1105_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_1106_even__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).

% even_diff
thf(fact_1107_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_1108_push__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ one_one_nat )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_1
thf(fact_1109_push__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ one_one_int )
      = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_1
thf(fact_1110_push__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se7788150548672797655nteger @ N @ one_one_Code_integer )
      = ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_1
thf(fact_1111_push__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se6611745700429515170atural @ N @ one_one_Code_natural )
      = ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_1
thf(fact_1112_push__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_Suc_0
thf(fact_1113_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_1114_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(3)
thf(fact_1115_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_1116_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_1117_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1118_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1119_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1120_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1121_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_1122_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X3: real] : ( plus_plus_real @ X3 @ X3 ) ) ) ).

% dbl_def
thf(fact_1123_dbl__def,axiom,
    ( neg_numeral_dbl_rat
    = ( ^ [X3: rat] : ( plus_plus_rat @ X3 @ X3 ) ) ) ).

% dbl_def
thf(fact_1124_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X3: int] : ( plus_plus_int @ X3 @ X3 ) ) ) ).

% dbl_def
thf(fact_1125_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_1126_is__num__normalize_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_1127_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_1128_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1129_add__right__imp__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1130_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1131_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1132_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1133_add__left__imp__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1134_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1135_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1136_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1137_add_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1138_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1139_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1140_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A2: real,B2: real] : ( plus_plus_real @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_1141_add_Ocommute,axiom,
    ( plus_plus_rat
    = ( ^ [A2: rat,B2: rat] : ( plus_plus_rat @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_1142_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A2: nat,B2: nat] : ( plus_plus_nat @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_1143_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A2: int,B2: int] : ( plus_plus_int @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_1144_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_1145_add_Oright__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_1146_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_1147_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_1148_add_Oleft__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_1149_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_1150_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_1151_add_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.assoc
thf(fact_1152_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_1153_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_1154_group__cancel_Oadd2,axiom,
    ! [B5: real,K: real,B: real,A: real] :
      ( ( B5
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B5 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1155_group__cancel_Oadd2,axiom,
    ! [B5: rat,K: rat,B: rat,A: rat] :
      ( ( B5
        = ( plus_plus_rat @ K @ B ) )
     => ( ( plus_plus_rat @ A @ B5 )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1156_group__cancel_Oadd2,axiom,
    ! [B5: nat,K: nat,B: nat,A: nat] :
      ( ( B5
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B5 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1157_group__cancel_Oadd2,axiom,
    ! [B5: int,K: int,B: int,A: int] :
      ( ( B5
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B5 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1158_group__cancel_Oadd1,axiom,
    ! [A3: real,K: real,A: real,B: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A3 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1159_group__cancel_Oadd1,axiom,
    ! [A3: rat,K: rat,A: rat,B: rat] :
      ( ( A3
        = ( plus_plus_rat @ K @ A ) )
     => ( ( plus_plus_rat @ A3 @ B )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1160_group__cancel_Oadd1,axiom,
    ! [A3: nat,K: nat,A: nat,B: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A3 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1161_group__cancel_Oadd1,axiom,
    ! [A3: int,K: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A3 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1162_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1163_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_rat @ I @ K )
        = ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1164_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1165_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1166_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1167_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1168_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1169_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1170_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z2: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).

% zadd_int_left
thf(fact_1171_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_1172_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1173_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1174_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1175_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1176_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1177_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_1178_add_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.comm_neutral
thf(fact_1179_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_1180_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_1181_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1182_add_Ogroup__left__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1183_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1184_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_1185_verit__sum__simplify,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% verit_sum_simplify
thf(fact_1186_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_1187_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_1188_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1189_combine__common__factor,axiom,
    ! [A: rat,E: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1190_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1191_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1192_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_1193_distrib__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1194_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1195_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_1196_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_1197_distrib__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1198_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1199_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_1200_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1201_comm__semiring__class_Odistrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1202_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1203_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1204_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1205_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1206_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1207_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1208_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1209_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1210_group__cancel_Osub1,axiom,
    ! [A3: real,K: real,A: real,B: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A3 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1211_group__cancel_Osub1,axiom,
    ! [A3: rat,K: rat,A: rat,B: rat] :
      ( ( A3
        = ( plus_plus_rat @ K @ A ) )
     => ( ( minus_minus_rat @ A3 @ B )
        = ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1212_group__cancel_Osub1,axiom,
    ! [A3: int,K: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A3 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1213_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1214_diff__eq__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = C )
      = ( A
        = ( plus_plus_rat @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1215_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1216_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1217_eq__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( A
        = ( minus_minus_rat @ C @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1218_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1219_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1220_add__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1221_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1222_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1223_diff__diff__eq2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1224_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1225_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1226_diff__add__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1227_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1228_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1229_diff__add__eq__diff__diff__swap,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1230_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1231_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1232_add__implies__diff,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ( plus_plus_rat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_rat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1233_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1234_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1235_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1236_add__diff__add,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
      = ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1237_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1238_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1239_diff__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1240_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1241_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1242_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_1243_add__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
      = ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_1244_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_1245_add__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_1246_dvd__add,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_1247_dvd__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ C )
       => ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_1248_dvd__add,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ C )
       => ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_1249_dvd__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_1250_dvd__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_1251_dvd__add__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_1252_dvd__add__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_1253_dvd__add__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_1254_dvd__add__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_1255_dvd__add__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_1256_dvd__add__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1257_dvd__add__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1258_dvd__add__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1259_dvd__add__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1260_dvd__add__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_1261_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1262_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1263_nat__arith_Osuc1,axiom,
    ! [A3: nat,K: nat,A: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A3 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1264_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1265_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1266_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1267_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1268_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1269_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1270_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P @ A4 @ B4 )
          = ( P @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ A4 @ B4 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_1271_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1272_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1273_odd__nonzero,axiom,
    ! [Z2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1274_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_1275_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_1276_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_1277_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_1278_bezout__lemma__nat,axiom,
    ! [D: nat,A: nat,B: nat,X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ D @ A )
     => ( ( dvd_dvd_nat @ D @ B )
       => ( ( ( ( times_times_nat @ A @ X )
              = ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D ) )
            | ( ( times_times_nat @ B @ X )
              = ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D ) ) )
         => ? [X4: nat,Y4: nat] :
              ( ( dvd_dvd_nat @ D @ A )
              & ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
              & ( ( ( times_times_nat @ A @ X4 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y4 ) @ D ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X4 )
                  = ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_1279_bezout__add__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D2: nat,X4: nat,Y4: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
      & ( dvd_dvd_nat @ D2 @ B )
      & ( ( ( times_times_nat @ A @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D2 ) )
        | ( ( times_times_nat @ B @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D2 ) ) ) ) ).

% bezout_add_nat
thf(fact_1280_zdvd__period,axiom,
    ! [A: int,D: int,X: int,T: int,C: int] :
      ( ( dvd_dvd_int @ A @ D )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X @ T ) )
        = ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).

% zdvd_period
thf(fact_1281_zdvd__reduce,axiom,
    ! [K: int,N: int,M: int] :
      ( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
      = ( dvd_dvd_int @ K @ N ) ) ).

% zdvd_reduce
thf(fact_1282_push__bit__add,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).

% push_bit_add
thf(fact_1283_push__bit__add,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).

% push_bit_add
thf(fact_1284_push__bit__add,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( bit_se7788150548672797655nteger @ N @ A ) @ ( bit_se7788150548672797655nteger @ N @ B ) ) ) ).

% push_bit_add
thf(fact_1285_push__bit__add,axiom,
    ! [N: nat,A: code_natural,B: code_natural] :
      ( ( bit_se6611745700429515170atural @ N @ ( plus_p4538020629002901425atural @ A @ B ) )
      = ( plus_p4538020629002901425atural @ ( bit_se6611745700429515170atural @ N @ A ) @ ( bit_se6611745700429515170atural @ N @ B ) ) ) ).

% push_bit_add
thf(fact_1286_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_1287_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_1288_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_1289_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_1290_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_1291_div__exp__eq,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_1292_div__exp__eq,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_1293_unity__coeff__ex,axiom,
    ! [P: code_integer > $o,L: code_integer] :
      ( ( ? [X3: code_integer] : ( P @ ( times_3573771949741848930nteger @ L @ X3 ) ) )
      = ( ? [X3: code_integer] :
            ( ( dvd_dvd_Code_integer @ L @ ( plus_p5714425477246183910nteger @ X3 @ zero_z3403309356797280102nteger ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_1294_unity__coeff__ex,axiom,
    ! [P: real > $o,L: real] :
      ( ( ? [X3: real] : ( P @ ( times_times_real @ L @ X3 ) ) )
      = ( ? [X3: real] :
            ( ( dvd_dvd_real @ L @ ( plus_plus_real @ X3 @ zero_zero_real ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_1295_unity__coeff__ex,axiom,
    ! [P: rat > $o,L: rat] :
      ( ( ? [X3: rat] : ( P @ ( times_times_rat @ L @ X3 ) ) )
      = ( ? [X3: rat] :
            ( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X3 @ zero_zero_rat ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_1296_unity__coeff__ex,axiom,
    ! [P: nat > $o,L: nat] :
      ( ( ? [X3: nat] : ( P @ ( times_times_nat @ L @ X3 ) ) )
      = ( ? [X3: nat] :
            ( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X3 @ zero_zero_nat ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_1297_unity__coeff__ex,axiom,
    ! [P: int > $o,L: int] :
      ( ( ? [X3: int] : ( P @ ( times_times_int @ L @ X3 ) ) )
      = ( ? [X3: int] :
            ( ( dvd_dvd_int @ L @ ( plus_plus_int @ X3 @ zero_zero_int ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_1298_four__x__squared,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_1299_inf__period_I4_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X5: code_integer,K4: code_integer] :
          ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ T ) ) )
          = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X5 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_1300_inf__period_I4_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X5: real,K4: real] :
          ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ T ) ) )
          = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_1301_inf__period_I4_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X5: rat,K4: rat] :
          ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ T ) ) )
          = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_1302_inf__period_I4_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X5: int,K4: int] :
          ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) ) )
          = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_1303_inf__period_I3_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X5: code_integer,K4: code_integer] :
          ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ T ) )
          = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X5 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_1304_inf__period_I3_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X5: real,K4: real] :
          ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ T ) )
          = ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_1305_inf__period_I3_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X5: rat,K4: rat] :
          ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ T ) )
          = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_1306_inf__period_I3_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X5: int,K4: int] :
          ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
          = ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_1307_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).

% one_plus_numeral_commute
thf(fact_1308_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_1309_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).

% one_plus_numeral_commute
thf(fact_1310_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_1311_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_1312_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_Bit0
thf(fact_1313_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_Bit0
thf(fact_1314_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_Bit0
thf(fact_1315_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_1316_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_1317_square__diff__square__factored,axiom,
    ! [X: real,Y: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
      = ( times_times_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_real @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_1318_square__diff__square__factored,axiom,
    ! [X: rat,Y: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) )
      = ( times_times_rat @ ( plus_plus_rat @ X @ Y ) @ ( minus_minus_rat @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_1319_square__diff__square__factored,axiom,
    ! [X: int,Y: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
      = ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_1320_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1321_eq__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1322_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1323_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1324_eq__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1325_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1326_mult__diff__mult,axiom,
    ! [X: real,Y: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ Y ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X @ ( minus_minus_real @ Y @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1327_mult__diff__mult,axiom,
    ! [X: rat,Y: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ Y ) @ ( times_times_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ X @ ( minus_minus_rat @ Y @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1328_mult__diff__mult,axiom,
    ! [X: int,Y: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ Y ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X @ ( minus_minus_int @ Y @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1329_div__plus__div__distrib__dvd__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_1330_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_1331_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_1332_div__plus__div__distrib__dvd__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_1333_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_1334_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_1335_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1336_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1337_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1338_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% mult_eq_if
thf(fact_1339_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1340_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1341_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D2: nat,X4: nat,Y4: nat] :
          ( ( dvd_dvd_nat @ D2 @ A )
          & ( dvd_dvd_nat @ D2 @ B )
          & ( ( times_times_nat @ A @ X4 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D2 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_1342_divide__add__eq__iff,axiom,
    ! [Z2: complex,X: complex,Y: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Z2 ) @ Y )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% divide_add_eq_iff
thf(fact_1343_divide__add__eq__iff,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( Z2 != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Z2 ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% divide_add_eq_iff
thf(fact_1344_divide__add__eq__iff,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( Z2 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Z2 ) @ Y )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% divide_add_eq_iff
thf(fact_1345_add__divide__eq__iff,axiom,
    ! [Z2: complex,X: complex,Y: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ Y @ Z2 ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).

% add_divide_eq_iff
thf(fact_1346_add__divide__eq__iff,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( Z2 != zero_zero_real )
     => ( ( plus_plus_real @ X @ ( divide_divide_real @ Y @ Z2 ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).

% add_divide_eq_iff
thf(fact_1347_add__divide__eq__iff,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( Z2 != zero_zero_rat )
     => ( ( plus_plus_rat @ X @ ( divide_divide_rat @ Y @ Z2 ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).

% add_divide_eq_iff
thf(fact_1348_add__num__frac,axiom,
    ! [Y: complex,Z2: complex,X: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( plus_plus_complex @ Z2 @ ( divide1717551699836669952omplex @ X @ Y ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z2 @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_1349_add__num__frac,axiom,
    ! [Y: real,Z2: real,X: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ Z2 @ ( divide_divide_real @ X @ Y ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z2 @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_1350_add__num__frac,axiom,
    ! [Y: rat,Z2: rat,X: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( plus_plus_rat @ Z2 @ ( divide_divide_rat @ X @ Y ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z2 @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_1351_add__frac__num,axiom,
    ! [Y: complex,X: complex,Z2: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ Z2 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z2 @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_1352_add__frac__num,axiom,
    ! [Y: real,X: real,Z2: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ Z2 )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z2 @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_1353_add__frac__num,axiom,
    ! [Y: rat,X: rat,Z2: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y ) @ Z2 )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z2 @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_1354_add__frac__eq,axiom,
    ! [Y: complex,Z2: complex,X: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z2 != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ W @ Z2 ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z2 ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z2 ) ) ) ) ) ).

% add_frac_eq
thf(fact_1355_add__frac__eq,axiom,
    ! [Y: real,Z2: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z2 != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z2 ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) ) ) ) ).

% add_frac_eq
thf(fact_1356_add__frac__eq,axiom,
    ! [Y: rat,Z2: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z2 != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z2 ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) ) ) ) ).

% add_frac_eq
thf(fact_1357_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z2: complex,A: complex,B: complex] :
      ( ( ( Z2 = zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
          = A ) )
      & ( ( Z2 != zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z2 ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_1358_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z2: real,A: real,B: real] :
      ( ( ( Z2 = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
          = A ) )
      & ( ( Z2 != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z2 ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_1359_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z2: rat,A: rat,B: rat] :
      ( ( ( Z2 = zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
          = A ) )
      & ( ( Z2 != zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z2 ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z2 ) @ B ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_1360_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z2: complex,A: complex,B: complex] :
      ( ( ( Z2 = zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
          = B ) )
      & ( ( Z2 != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_1361_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z2: real,A: real,B: real] :
      ( ( ( Z2 = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
          = B ) )
      & ( ( Z2 != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_1362_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z2: rat,A: rat,B: rat] :
      ( ( ( Z2 = zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
          = B ) )
      & ( ( Z2 != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_1363_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_1364_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_1365_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_1366_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_1367_square__diff__one__factored,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X @ X ) @ one_one_complex )
      = ( times_times_complex @ ( plus_plus_complex @ X @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ).

% square_diff_one_factored
thf(fact_1368_square__diff__one__factored,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ one_one_real )
      = ( times_times_real @ ( plus_plus_real @ X @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% square_diff_one_factored
thf(fact_1369_square__diff__one__factored,axiom,
    ! [X: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ one_one_rat )
      = ( times_times_rat @ ( plus_plus_rat @ X @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ).

% square_diff_one_factored
thf(fact_1370_square__diff__one__factored,axiom,
    ! [X: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_1371_push__bit__nat__def,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N3: nat,M3: nat] : ( times_times_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_nat_def
thf(fact_1372_push__bit__int__def,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N3: nat,K2: int] : ( times_times_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_int_def
thf(fact_1373_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_1374_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_1375_left__add__twice,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_1376_left__add__twice,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_1377_left__add__twice,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_1378_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_1379_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_1380_mult__2__right,axiom,
    ! [Z2: complex] :
      ( ( times_times_complex @ Z2 @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ Z2 @ Z2 ) ) ).

% mult_2_right
thf(fact_1381_mult__2__right,axiom,
    ! [Z2: real] :
      ( ( times_times_real @ Z2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ Z2 @ Z2 ) ) ).

% mult_2_right
thf(fact_1382_mult__2__right,axiom,
    ! [Z2: rat] :
      ( ( times_times_rat @ Z2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ Z2 @ Z2 ) ) ).

% mult_2_right
thf(fact_1383_mult__2__right,axiom,
    ! [Z2: nat] :
      ( ( times_times_nat @ Z2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z2 @ Z2 ) ) ).

% mult_2_right
thf(fact_1384_mult__2__right,axiom,
    ! [Z2: int] :
      ( ( times_times_int @ Z2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z2 @ Z2 ) ) ).

% mult_2_right
thf(fact_1385_mult__2,axiom,
    ! [Z2: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z2 )
      = ( plus_plus_complex @ Z2 @ Z2 ) ) ).

% mult_2
thf(fact_1386_mult__2,axiom,
    ! [Z2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z2 )
      = ( plus_plus_real @ Z2 @ Z2 ) ) ).

% mult_2
thf(fact_1387_mult__2,axiom,
    ! [Z2: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z2 )
      = ( plus_plus_rat @ Z2 @ Z2 ) ) ).

% mult_2
thf(fact_1388_mult__2,axiom,
    ! [Z2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z2 )
      = ( plus_plus_nat @ Z2 @ Z2 ) ) ).

% mult_2
thf(fact_1389_mult__2,axiom,
    ! [Z2: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z2 )
      = ( plus_plus_int @ Z2 @ Z2 ) ) ).

% mult_2
thf(fact_1390_field__sum__of__halves,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_1391_field__sum__of__halves,axiom,
    ! [X: rat] :
      ( ( plus_plus_rat @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_1392_odd__even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_1393_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_1394_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_1395_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( P @ N2 )
             => ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_1396_even__diff__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_diff_iff
thf(fact_1397_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_1398_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_1399_push__bit__eq__mult,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N3: nat,A2: nat] : ( times_times_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_eq_mult
thf(fact_1400_push__bit__eq__mult,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N3: nat,A2: int] : ( times_times_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_eq_mult
thf(fact_1401_push__bit__eq__mult,axiom,
    ( bit_se7788150548672797655nteger
    = ( ^ [N3: nat,A2: code_integer] : ( times_3573771949741848930nteger @ A2 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_eq_mult
thf(fact_1402_push__bit__eq__mult,axiom,
    ( bit_se6611745700429515170atural
    = ( ^ [N3: nat,A2: code_natural] : ( times_2397367101498566445atural @ A2 @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_eq_mult
thf(fact_1403_exp__dvdE,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( bit_se547839408752420682it_nat @ N @ B4 ) ) ) ).

% exp_dvdE
thf(fact_1404_exp__dvdE,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( bit_se545348938243370406it_int @ N @ B4 ) ) ) ).

% exp_dvdE
thf(fact_1405_exp__dvdE,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ A )
     => ~ ! [B4: code_integer] :
            ( A
           != ( bit_se7788150548672797655nteger @ N @ B4 ) ) ) ).

% exp_dvdE
thf(fact_1406_exp__dvdE,axiom,
    ! [N: nat,A: code_natural] :
      ( ( dvd_dvd_Code_natural @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) @ A )
     => ~ ! [B4: code_natural] :
            ( A
           != ( bit_se6611745700429515170atural @ N @ B4 ) ) ) ).

% exp_dvdE
thf(fact_1407_oddE,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: code_integer] :
            ( A
           != ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) @ one_one_Code_integer ) ) ) ).

% oddE
thf(fact_1408_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_1409_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_1410_inf__period_I2_J,axiom,
    ! [P: real > $o,D3: real,Q: real > $o] :
      ( ! [X4: real,K3: real] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
     => ( ! [X4: real,K3: real] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
       => ! [X5: real,K4: real] :
            ( ( ( P @ X5 )
              | ( Q @ X5 ) )
            = ( ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1411_inf__period_I2_J,axiom,
    ! [P: rat > $o,D3: rat,Q: rat > $o] :
      ( ! [X4: rat,K3: rat] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
     => ( ! [X4: rat,K3: rat] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
       => ! [X5: rat,K4: rat] :
            ( ( ( P @ X5 )
              | ( Q @ X5 ) )
            = ( ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1412_inf__period_I2_J,axiom,
    ! [P: int > $o,D3: int,Q: int > $o] :
      ( ! [X4: int,K3: int] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
     => ( ! [X4: int,K3: int] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
       => ! [X5: int,K4: int] :
            ( ( ( P @ X5 )
              | ( Q @ X5 ) )
            = ( ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1413_sum__power2__eq__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_1414_sum__power2__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_1415_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_1416_zero__eq__power2,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_power2
thf(fact_1417_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_1418_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_1419_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_1420_zero__eq__power2,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% zero_eq_power2
thf(fact_1421_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri8010041392384452111omplex @ Y )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_1422_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ Y )
        = ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_1423_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri681578069525770553at_rat @ Y )
        = ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_1424_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_1425_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_1426_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
        = ( semiri8010041392384452111omplex @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_1427_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
        = ( semiri5074537144036343181t_real @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_1428_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
        = ( semiri681578069525770553at_rat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_1429_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = ( semiri1316708129612266289at_nat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_1430_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = ( semiri1314217659103216013at_int @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_1431_power__mult__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_1432_power__mult__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_1433_power__mult__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_1434_power__mult__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_1435_power2__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_1436_power2__diff,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_1437_power2__diff,axiom,
    ! [X: rat,Y: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_1438_power2__diff,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_1439_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_1440_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_1441_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1442_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1443_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1444_power__Suc0__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_1445_power__add__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_1446_power__add__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_1447_power__add__numeral,axiom,
    ! [A: rat,M: num,N: num] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_1448_power__add__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_1449_power__add__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_1450_power__add__numeral2,axiom,
    ! [A: complex,M: num,N: num,B: complex] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_1451_power__add__numeral2,axiom,
    ! [A: real,M: num,N: num,B: real] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_1452_power__add__numeral2,axiom,
    ! [A: rat,M: num,N: num,B: rat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_1453_power__add__numeral2,axiom,
    ! [A: nat,M: num,N: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_1454_power__add__numeral2,axiom,
    ! [A: int,M: num,N: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_1455_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ one_one_rat @ N )
      = one_one_rat ) ).

% power_one
thf(fact_1456_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_1457_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_1458_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_1459_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ one_one_complex @ N )
      = one_one_complex ) ).

% power_one
thf(fact_1460_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1461_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1462_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1463_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1464_sum__squares__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1465_sum__squares__eq__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) )
        = zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1466_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1467_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
      = zero_zero_rat ) ).

% power_0_Suc
thf(fact_1468_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_1469_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_1470_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_1471_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
      = zero_zero_complex ) ).

% power_0_Suc
thf(fact_1472_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_rat ) ).

% power_zero_numeral
thf(fact_1473_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_1474_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_1475_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_1476_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
      = zero_zero_complex ) ).

% power_zero_numeral
thf(fact_1477_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_1478_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_1479_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri8010041392384452111omplex @ X )
        = ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_1480_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_1481_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri681578069525770553at_rat @ X )
        = ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_1482_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_1483_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_1484_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
        = ( semiri8010041392384452111omplex @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_1485_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_1486_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W )
        = ( semiri681578069525770553at_rat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_1487_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_1488_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_1489_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
      = ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).

% of_nat_power
thf(fact_1490_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).

% of_nat_power
thf(fact_1491_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( power_power_nat @ M @ N ) )
      = ( power_power_rat @ ( semiri681578069525770553at_rat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_1492_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_1493_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_1494_power__not__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( A != zero_zero_rat )
     => ( ( power_power_rat @ A @ N )
       != zero_zero_rat ) ) ).

% power_not_zero
thf(fact_1495_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_1496_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_1497_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_1498_power__not__zero,axiom,
    ! [A: complex,N: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_1499_power__commuting__commutes,axiom,
    ! [X: complex,Y: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = ( times_times_complex @ Y @ X ) )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ Y )
        = ( times_times_complex @ Y @ ( power_power_complex @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1500_power__commuting__commutes,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y )
        = ( times_times_real @ Y @ ( power_power_real @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1501_power__commuting__commutes,axiom,
    ! [X: rat,Y: rat,N: nat] :
      ( ( ( times_times_rat @ X @ Y )
        = ( times_times_rat @ Y @ X ) )
     => ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ Y )
        = ( times_times_rat @ Y @ ( power_power_rat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1502_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1503_power__commuting__commutes,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = ( times_times_int @ Y @ X ) )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y )
        = ( times_times_int @ Y @ ( power_power_int @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_1504_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_1505_power__mult__distrib,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_1506_power__mult__distrib,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_1507_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_1508_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_1509_power__commutes,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_commutes
thf(fact_1510_power__commutes,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_commutes
thf(fact_1511_power__commutes,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_commutes
thf(fact_1512_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_1513_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_1514_power__add,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_add
thf(fact_1515_power__add,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% power_add
thf(fact_1516_power__add,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_add
thf(fact_1517_power__add,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% power_add
thf(fact_1518_power__add,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% power_add
thf(fact_1519_power__divide,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
      = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_divide
thf(fact_1520_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_1521_power__divide,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
      = ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_divide
thf(fact_1522_dvd__power__same,axiom,
    ! [X: code_integer,Y: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ X @ Y )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_1523_dvd__power__same,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_1524_dvd__power__same,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_1525_dvd__power__same,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_1526_dvd__power__same,axiom,
    ! [X: complex,Y: complex,N: nat] :
      ( ( dvd_dvd_complex @ X @ Y )
     => ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_1527_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_1528_power__mult,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_1529_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_1530_power__mult,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_1531_left__right__inverse__power,axiom,
    ! [X: complex,Y: complex,N: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y @ N ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_1532_left__right__inverse__power,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( ( times_times_real @ X @ Y )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_1533_left__right__inverse__power,axiom,
    ! [X: rat,Y: rat,N: nat] :
      ( ( ( times_times_rat @ X @ Y )
        = one_one_rat )
     => ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ Y @ N ) )
        = one_one_rat ) ) ).

% left_right_inverse_power
thf(fact_1534_left__right__inverse__power,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_1535_left__right__inverse__power,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_1536_power__one__over,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).

% power_one_over
thf(fact_1537_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_1538_power__one__over,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
      = ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% power_one_over
thf(fact_1539_power__Suc2,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1540_power__Suc2,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1541_power__Suc2,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1542_power__Suc2,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1543_power__Suc2,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_1544_power__Suc,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_Suc
thf(fact_1545_power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_Suc
thf(fact_1546_power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_Suc
thf(fact_1547_power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_Suc
thf(fact_1548_power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_Suc
thf(fact_1549_power__0,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% power_0
thf(fact_1550_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_1551_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_1552_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_1553_power__0,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% power_0
thf(fact_1554_div__power,axiom,
    ! [B: code_integer,A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
        = ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% div_power
thf(fact_1555_div__power,axiom,
    ! [B: nat,A: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_1556_div__power,axiom,
    ! [B: int,A: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_1557_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% power_0_left
thf(fact_1558_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_1559_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_1560_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_1561_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% power_0_left
thf(fact_1562_is__unit__power__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_1563_is__unit__power__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_1564_is__unit__power__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_1565_zero__power2,axiom,
    ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_rat ) ).

% zero_power2
thf(fact_1566_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_1567_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_1568_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_1569_zero__power2,axiom,
    ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_complex ) ).

% zero_power2
thf(fact_1570_power4__eq__xxxx,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_1571_power4__eq__xxxx,axiom,
    ! [X: real] :
      ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_1572_power4__eq__xxxx,axiom,
    ! [X: rat] :
      ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_1573_power4__eq__xxxx,axiom,
    ! [X: nat] :
      ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_1574_power4__eq__xxxx,axiom,
    ! [X: int] :
      ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_1575_power2__eq__square,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_complex @ A @ A ) ) ).

% power2_eq_square
thf(fact_1576_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_1577_power2__eq__square,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_rat @ A @ A ) ) ).

% power2_eq_square
thf(fact_1578_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_1579_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_1580_one__power2,axiom,
    ( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_rat ) ).

% one_power2
thf(fact_1581_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_1582_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_1583_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_1584_one__power2,axiom,
    ( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_complex ) ).

% one_power2
thf(fact_1585_power2__commute,axiom,
    ! [X: complex,Y: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ ( minus_minus_complex @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1586_power2__commute,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1587_power2__commute,axiom,
    ! [X: rat,Y: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ ( minus_minus_rat @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1588_power2__commute,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1589_power__even__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_1590_power__even__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_1591_power__even__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_1592_power__even__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_1593_power__eq__if,axiom,
    ( power_power_complex
    = ( ^ [P3: complex,M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P3 @ ( power_power_complex @ P3 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1594_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P3: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P3 @ ( power_power_real @ P3 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1595_power__eq__if,axiom,
    ( power_power_rat
    = ( ^ [P3: rat,M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P3 @ ( power_power_rat @ P3 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1596_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P3: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P3 @ ( power_power_nat @ P3 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1597_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P3: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P3 @ ( power_power_int @ P3 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1598_power2__sum,axiom,
    ! [X: complex,Y: complex] :
      ( ( power_power_complex @ ( plus_plus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_1599_power2__sum,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_1600_power2__sum,axiom,
    ! [X: rat,Y: rat] :
      ( ( power_power_rat @ ( plus_plus_rat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_1601_power2__sum,axiom,
    ! [X: nat,Y: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_1602_power2__sum,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( plus_plus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_1603_power__odd__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1604_power__odd__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1605_power__odd__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1606_power__odd__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1607_power__odd__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1608_high__def,axiom,
    ( vEBT_VEBT_high
    = ( ^ [X3: nat,N3: nat] : ( divide_divide_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% high_def
thf(fact_1609_even__succ__div__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_1610_even__succ__div__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_1611_even__succ__div__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_1612_flip__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
      = ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_1613_flip__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_1614_flip__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_1615_add__scale__eq__noteq,axiom,
    ! [R: real,A: real,B: real,C: real,D: real] :
      ( ( R != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1616_add__scale__eq__noteq,axiom,
    ! [R: rat,A: rat,B: rat,C: rat,D: rat] :
      ( ( R != zero_zero_rat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_rat @ A @ ( times_times_rat @ R @ C ) )
         != ( plus_plus_rat @ B @ ( times_times_rat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1617_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1618_add__scale__eq__noteq,axiom,
    ! [R: int,A: int,B: int,C: int,D: int] :
      ( ( R != zero_zero_int )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_int @ A @ ( times_times_int @ R @ C ) )
         != ( plus_plus_int @ B @ ( times_times_int @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1619_num_Osize__gen_I2_J,axiom,
    ! [X2: num] :
      ( ( size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_1620_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_complex @ ( numera6690914467698888265omplex @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numera6690914467698888265omplex @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_1621_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_1622_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_rat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_1623_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_1624_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_1625_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_1626_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_1627_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_1628_arith__geo__mean,axiom,
    ! [U: real,X: real,Y: real] :
      ( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_real @ X @ Y ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_1629_arith__geo__mean,axiom,
    ! [U: rat,X: rat,Y: rat] :
      ( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_rat @ X @ Y ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
         => ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_1630_zero__less__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1631_zero__less__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1632_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1633_Bernoulli__inequality__even,axiom,
    ! [N: nat,X: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).

% Bernoulli_inequality_even
thf(fact_1634_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_1635_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_1636_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_1637_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_1638_set__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_1639_flip__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_1640_unset__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% unset_bit_negative_int_iff
thf(fact_1641_set__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_1642_flip__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_1643_unset__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_1644_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_1645_high__bound__aux,axiom,
    ! [Ma: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% high_bound_aux
thf(fact_1646_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_1647_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_1648_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_1649_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_1650_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_1651_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_1652_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_1653_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_1654_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_1655_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_1656_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1657_add__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1658_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1659_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1660_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1661_add__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1662_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1663_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1664_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1665_add__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1666_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1667_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1668_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1669_add__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1670_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1671_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1672_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_1673_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_1674_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_1675_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_1676_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_1677_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1678_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_1679_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1680_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1681_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1682_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1683_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_1684_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1685_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1686_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_1687_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_1688_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_1689_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_1690_of__bool__eq_I1_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $false )
    = zero_zero_real ) ).

% of_bool_eq(1)
thf(fact_1691_of__bool__eq_I1_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $false )
    = zero_zero_rat ) ).

% of_bool_eq(1)
thf(fact_1692_of__bool__eq_I1_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $false )
    = zero_zero_nat ) ).

% of_bool_eq(1)
thf(fact_1693_of__bool__eq_I1_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $false )
    = zero_zero_int ) ).

% of_bool_eq(1)
thf(fact_1694_of__bool__eq_I1_J,axiom,
    ( ( zero_n356916108424825756nteger @ $false )
    = zero_z3403309356797280102nteger ) ).

% of_bool_eq(1)
thf(fact_1695_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = zero_zero_real )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_1696_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = zero_zero_rat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_1697_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = zero_zero_nat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_1698_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = zero_zero_int )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_1699_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = zero_z3403309356797280102nteger )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_1700_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_1701_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_1702_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_1703_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_1704_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_1705_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = one_one_complex )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_1706_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = one_one_real )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_1707_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = one_one_rat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_1708_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = one_one_nat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_1709_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = one_one_int )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_1710_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = one_one_Code_integer )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_1711_of__bool__eq_I2_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $true )
    = one_one_complex ) ).

% of_bool_eq(2)
thf(fact_1712_of__bool__eq_I2_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $true )
    = one_one_real ) ).

% of_bool_eq(2)
thf(fact_1713_of__bool__eq_I2_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $true )
    = one_one_rat ) ).

% of_bool_eq(2)
thf(fact_1714_of__bool__eq_I2_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $true )
    = one_one_nat ) ).

% of_bool_eq(2)
thf(fact_1715_of__bool__eq_I2_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $true )
    = one_one_int ) ).

% of_bool_eq(2)
thf(fact_1716_of__bool__eq_I2_J,axiom,
    ( ( zero_n356916108424825756nteger @ $true )
    = one_one_Code_integer ) ).

% of_bool_eq(2)
thf(fact_1717_zle__add1__eq__le,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_1718_div__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_1719_div__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_1720_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri8010041392384452111omplex @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n1201886186963655149omplex @ P ) ) ).

% of_nat_of_bool
thf(fact_1721_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% of_nat_of_bool
thf(fact_1722_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri681578069525770553at_rat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2052037380579107095ol_rat @ P ) ) ).

% of_nat_of_bool
thf(fact_1723_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2687167440665602831ol_nat @ P ) ) ).

% of_nat_of_bool
thf(fact_1724_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% of_nat_of_bool
thf(fact_1725_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri4939895301339042750nteger @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% of_nat_of_bool
thf(fact_1726_zle__diff1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z2 @ one_one_int ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% zle_diff1_eq
thf(fact_1727_push__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% push_bit_negative_int_iff
thf(fact_1728_push__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% push_bit_nonnegative_int_iff
thf(fact_1729_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1730_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1731_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1732_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1733_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1734_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1735_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_1736_le__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1737_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1738_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_1739_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_1740_le__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1741_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1742_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_1743_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_1744_add__le__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel2
thf(fact_1745_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_1746_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_1747_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_1748_add__le__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel1
thf(fact_1749_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_1750_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_1751_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1752_diff__ge__0__iff__ge,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1753_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1754_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1755_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1756_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1757_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1758_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1759_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1760_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_1761_less__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1762_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1763_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_1764_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_1765_less__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1766_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1767_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_1768_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_1769_add__less__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel2
thf(fact_1770_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_1771_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_1772_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_1773_add__less__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel1
thf(fact_1774_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_1775_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_1776_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1777_diff__gt__0__iff__gt,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_rat @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1778_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1779_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1780_le__add__diff__inverse2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1781_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1782_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1783_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1784_le__add__diff__inverse,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1785_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1786_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1787_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1788_power__inject__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ( power_power_rat @ A @ M )
          = ( power_power_rat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1789_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1790_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1791_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_1792_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_1793_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_1794_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_1795_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_1796_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_1797_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_1798_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_1799_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1800_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_1801_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1802_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_1803_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_1804_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_1805_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_1806_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_1807_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_1808_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1809_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1810_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1811_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1812_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1813_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_1814_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_1815_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_1816_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_1817_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_1818_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1819_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n1201886186963655149omplex @ ~ P )
      = ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).

% of_bool_not_iff
thf(fact_1820_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n3304061248610475627l_real @ ~ P )
      = ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).

% of_bool_not_iff
thf(fact_1821_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2052037380579107095ol_rat @ ~ P )
      = ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).

% of_bool_not_iff
thf(fact_1822_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2684676970156552555ol_int @ ~ P )
      = ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).

% of_bool_not_iff
thf(fact_1823_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n356916108424825756nteger @ ~ P )
      = ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P ) ) ) ).

% of_bool_not_iff
thf(fact_1824_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1825_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1826_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1827_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1828_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1829_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_1830_zero__le__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_1831_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_1832_divide__le__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% divide_le_0_1_iff
thf(fact_1833_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1834_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1835_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1836_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1837_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_1838_zero__less__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_1839_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_1840_less__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_1841_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_1842_less__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_1843_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_1844_divide__less__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_1845_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_1846_divide__less__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_1847_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_1848_divide__less__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% divide_less_0_1_iff
thf(fact_1849_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_1850_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_1851_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_1852_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_1853_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1854_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1855_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1856_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1857_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_1858_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_1859_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_1860_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_1861_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_1862_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_1863_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_1864_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_1865_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1866_power__strict__increasing__iff,axiom,
    ! [B: rat,X: nat,Y: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1867_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1868_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1869_power__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( power_power_rat @ A @ N )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1870_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1871_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1872_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1873_power__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( power_power_complex @ A @ N )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_1874_pow__divides__pow__iff,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_1875_pow__divides__pow__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_1876_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1877_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_1878_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1879_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1880_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1881_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1882_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_1883_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_1884_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_1885_real__of__nat__less__numeral__iff,axiom,
    ! [N: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_1886_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_1887_le__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_1888_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_1889_le__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_1890_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_1891_divide__le__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_1892_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_1893_divide__le__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_1894_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1895_power__strict__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1896_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1897_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1898_power__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1899_power__increasing__iff,axiom,
    ! [B: rat,X: nat,Y: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1900_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1901_power__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1902_power__mono__iff,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1903_power__mono__iff,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
            = ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1904_power__mono__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1905_power__mono__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1906_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_1907_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_1908_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_1909_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_1910_odd__of__bool__self,axiom,
    ! [P2: $o] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P2 ) ) )
      = P2 ) ).

% odd_of_bool_self
thf(fact_1911_odd__of__bool__self,axiom,
    ! [P2: $o] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P2 ) ) )
      = P2 ) ).

% odd_of_bool_self
thf(fact_1912_odd__of__bool__self,axiom,
    ! [P2: $o] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P2 ) ) )
      = P2 ) ).

% odd_of_bool_self
thf(fact_1913_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_1914_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_1915_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_1916_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_1917_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_1918_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_1919_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_1920_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_1921_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_1922_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_1923_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_1924_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_1925_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_1926_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_1927_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_1928_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_1929_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1930_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_1931_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_1932_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_1933_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1934_power__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1935_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1936_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1937_power2__eq__iff__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1938_power2__eq__iff__nonneg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1939_power2__eq__iff__nonneg,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1940_power2__eq__iff__nonneg,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_1941_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_1942_power2__less__eq__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% power2_less_eq_zero_iff
thf(fact_1943_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_1944_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_1945_zero__less__power2,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_power2
thf(fact_1946_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_1947_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_1948_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_1949_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_1950_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_1951_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% of_bool_half_eq_0
thf(fact_1952_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = zero_zero_int ) ).

% of_bool_half_eq_0
thf(fact_1953_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = zero_z3403309356797280102nteger ) ).

% of_bool_half_eq_0
thf(fact_1954_zero__le__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_1955_zero__le__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_1956_zero__le__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_1957_even__power,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_1958_even__power,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_1959_even__power,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_1960_power__less__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1961_power__less__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1962_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1963_power__less__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_1964_power__less__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq
thf(fact_1965_power__less__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_1966_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_1967_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_1968_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_1969_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_1970_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_1971_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_1972_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_1973_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_1974_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_1975_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_1976_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_1977_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_1978_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_1979_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_1980_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_1981_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_1982_even__diff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% even_diff_nat
thf(fact_1983_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_1984_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_1985_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_1986_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_1987_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_1988_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_1989_power__le__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1990_power__le__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1991_power__le__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1992_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_1993_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_1994_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_1995_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_1996_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_1997_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).

% of_bool_less_eq_one
thf(fact_1998_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).

% of_bool_less_eq_one
thf(fact_1999_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).

% of_bool_less_eq_one
thf(fact_2000_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).

% of_bool_less_eq_one
thf(fact_2001_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer ) ).

% of_bool_less_eq_one
thf(fact_2002_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_2003_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_2004_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_2005_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_2006_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_2007_linorder__neqE__linordered__idom,axiom,
    ! [X: rat,Y: rat] :
      ( ( X != Y )
     => ( ~ ( ord_less_rat @ X @ Y )
       => ( ord_less_rat @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_2008_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_2009_of__bool__eq__iff,axiom,
    ! [P2: $o,Q2: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P2 )
        = ( zero_n2687167440665602831ol_nat @ Q2 ) )
      = ( P2 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_2010_of__bool__eq__iff,axiom,
    ! [P2: $o,Q2: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P2 )
        = ( zero_n2684676970156552555ol_int @ Q2 ) )
      = ( P2 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_2011_of__bool__eq__iff,axiom,
    ! [P2: $o,Q2: $o] :
      ( ( ( zero_n356916108424825756nteger @ P2 )
        = ( zero_n356916108424825756nteger @ Q2 ) )
      = ( P2 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_2012_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_2013_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_2014_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_2015_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_2016_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_2017_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_2018_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_2019_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_2020_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_2021_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_2022_verit__comp__simplify1_I3_J,axiom,
    ! [B6: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B6 @ A5 ) )
      = ( ord_less_real @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_2023_verit__comp__simplify1_I3_J,axiom,
    ! [B6: rat,A5: rat] :
      ( ( ~ ( ord_less_eq_rat @ B6 @ A5 ) )
      = ( ord_less_rat @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_2024_verit__comp__simplify1_I3_J,axiom,
    ! [B6: num,A5: num] :
      ( ( ~ ( ord_less_eq_num @ B6 @ A5 ) )
      = ( ord_less_num @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_2025_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A5 ) )
      = ( ord_less_nat @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_2026_verit__comp__simplify1_I3_J,axiom,
    ! [B6: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B6 @ A5 ) )
      = ( ord_less_int @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_2027_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_2028_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_2029_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_2030_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_2031_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_2032_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
          | ( M3 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_2033_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N2 )
              & ~ ( P @ M4 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_2034_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N2 )
             => ( P @ M4 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_2035_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_2036_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_2037_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_2038_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_2039_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_2040_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_2041_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_2042_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M3 @ N3 )
          & ( M3 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_2043_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_2044_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_2045_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_2046_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_2047_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X3: real,Y6: real] :
          ( ( ord_less_real @ X3 @ Y6 )
          | ( X3 = Y6 ) ) ) ) ).

% less_eq_real_def
thf(fact_2048_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X5: real] : ( member_real @ X5 @ S2 )
     => ( ? [Z3: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S2 )
           => ( ord_less_eq_real @ X4 @ Z3 ) )
       => ? [Y4: real] :
            ( ! [X5: real] :
                ( ( member_real @ X5 @ S2 )
               => ( ord_less_eq_real @ X5 @ Y4 ) )
            & ! [Z3: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S2 )
                   => ( ord_less_eq_real @ X4 @ Z3 ) )
               => ( ord_less_eq_real @ Y4 @ Z3 ) ) ) ) ) ).

% complete_real
thf(fact_2049_linordered__field__no__ub,axiom,
    ! [X5: real] :
    ? [X_12: real] : ( ord_less_real @ X5 @ X_12 ) ).

% linordered_field_no_ub
thf(fact_2050_linordered__field__no__ub,axiom,
    ! [X5: rat] :
    ? [X_12: rat] : ( ord_less_rat @ X5 @ X_12 ) ).

% linordered_field_no_ub
thf(fact_2051_linordered__field__no__lb,axiom,
    ! [X5: real] :
    ? [Y4: real] : ( ord_less_real @ Y4 @ X5 ) ).

% linordered_field_no_lb
thf(fact_2052_linordered__field__no__lb,axiom,
    ! [X5: rat] :
    ? [Y4: rat] : ( ord_less_rat @ Y4 @ X5 ) ).

% linordered_field_no_lb
thf(fact_2053_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
      ( ? [Z3: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2054_pinf_I1_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
      ( ? [Z3: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2055_pinf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X4: num] :
          ( ( ord_less_num @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2056_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2057_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_2058_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
      ( ? [Z3: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2059_pinf_I2_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
      ( ? [Z3: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2060_pinf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X4: num] :
          ( ( ord_less_num @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2061_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2062_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z3 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z3 @ X4 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_2063_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_2064_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_2065_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_2066_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_2067_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_2068_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_2069_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_2070_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_2071_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_2072_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_2073_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ~ ( ord_less_real @ X5 @ T ) ) ).

% pinf(5)
thf(fact_2074_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ~ ( ord_less_rat @ X5 @ T ) ) ).

% pinf(5)
thf(fact_2075_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z4 @ X5 )
     => ~ ( ord_less_num @ X5 @ T ) ) ).

% pinf(5)
thf(fact_2076_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ~ ( ord_less_nat @ X5 @ T ) ) ).

% pinf(5)
thf(fact_2077_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ~ ( ord_less_int @ X5 @ T ) ) ).

% pinf(5)
thf(fact_2078_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ~ ( ord_less_eq_real @ X5 @ T ) ) ).

% pinf(6)
thf(fact_2079_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ~ ( ord_less_eq_rat @ X5 @ T ) ) ).

% pinf(6)
thf(fact_2080_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z4 @ X5 )
     => ~ ( ord_less_eq_num @ X5 @ T ) ) ).

% pinf(6)
thf(fact_2081_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ~ ( ord_less_eq_nat @ X5 @ T ) ) ).

% pinf(6)
thf(fact_2082_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ~ ( ord_less_eq_int @ X5 @ T ) ) ).

% pinf(6)
thf(fact_2083_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ( ord_less_real @ T @ X5 ) ) ).

% pinf(7)
thf(fact_2084_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ( ord_less_rat @ T @ X5 ) ) ).

% pinf(7)
thf(fact_2085_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z4 @ X5 )
     => ( ord_less_num @ T @ X5 ) ) ).

% pinf(7)
thf(fact_2086_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( ord_less_nat @ T @ X5 ) ) ).

% pinf(7)
thf(fact_2087_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( ord_less_int @ T @ X5 ) ) ).

% pinf(7)
thf(fact_2088_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ( ord_less_eq_real @ T @ X5 ) ) ).

% pinf(8)
thf(fact_2089_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ( ord_less_eq_rat @ T @ X5 ) ) ).

% pinf(8)
thf(fact_2090_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ Z4 @ X5 )
     => ( ord_less_eq_num @ T @ X5 ) ) ).

% pinf(8)
thf(fact_2091_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( ord_less_eq_nat @ T @ X5 ) ) ).

% pinf(8)
thf(fact_2092_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( ord_less_eq_int @ T @ X5 ) ) ).

% pinf(8)
thf(fact_2093_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
      ( ? [Z3: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2094_minf_I1_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
      ( ? [Z3: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2095_minf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X4: num] :
          ( ( ord_less_num @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2096_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2097_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_2098_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
      ( ? [Z3: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2099_minf_I2_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q3: rat > $o] :
      ( ? [Z3: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2100_minf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X4: num] :
          ( ( ord_less_num @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2101_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2102_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z3 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z3: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z3 )
           => ( ( Q @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q3 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_2103_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_2104_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_2105_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_2106_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_2107_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_2108_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_2109_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_2110_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_2111_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_2112_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_2113_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ( ord_less_real @ X5 @ T ) ) ).

% minf(5)
thf(fact_2114_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ( ord_less_rat @ X5 @ T ) ) ).

% minf(5)
thf(fact_2115_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z4 )
     => ( ord_less_num @ X5 @ T ) ) ).

% minf(5)
thf(fact_2116_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( ord_less_nat @ X5 @ T ) ) ).

% minf(5)
thf(fact_2117_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( ord_less_int @ X5 @ T ) ) ).

% minf(5)
thf(fact_2118_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ( ord_less_eq_real @ X5 @ T ) ) ).

% minf(6)
thf(fact_2119_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ( ord_less_eq_rat @ X5 @ T ) ) ).

% minf(6)
thf(fact_2120_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z4 )
     => ( ord_less_eq_num @ X5 @ T ) ) ).

% minf(6)
thf(fact_2121_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( ord_less_eq_nat @ X5 @ T ) ) ).

% minf(6)
thf(fact_2122_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( ord_less_eq_int @ X5 @ T ) ) ).

% minf(6)
thf(fact_2123_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ~ ( ord_less_real @ T @ X5 ) ) ).

% minf(7)
thf(fact_2124_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ~ ( ord_less_rat @ T @ X5 ) ) ).

% minf(7)
thf(fact_2125_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z4 )
     => ~ ( ord_less_num @ T @ X5 ) ) ).

% minf(7)
thf(fact_2126_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ~ ( ord_less_nat @ T @ X5 ) ) ).

% minf(7)
thf(fact_2127_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ~ ( ord_less_int @ T @ X5 ) ) ).

% minf(7)
thf(fact_2128_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ~ ( ord_less_eq_real @ T @ X5 ) ) ).

% minf(8)
thf(fact_2129_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ~ ( ord_less_eq_rat @ T @ X5 ) ) ).

% minf(8)
thf(fact_2130_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X5: num] :
      ( ( ord_less_num @ X5 @ Z4 )
     => ~ ( ord_less_eq_num @ T @ X5 ) ) ).

% minf(8)
thf(fact_2131_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X5 ) ) ).

% minf(8)
thf(fact_2132_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X5 ) ) ).

% minf(8)
thf(fact_2133_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2134_add__less__le__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2135_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2136_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2137_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2138_add__le__less__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2139_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2140_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2141_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2142_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2143_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2144_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2145_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2146_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2147_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2148_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2149_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_2150_lift__Suc__mono__less,axiom,
    ! [F: nat > rat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_rat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_2151_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_2152_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_2153_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_2154_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_2155_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > rat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_2156_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_2157_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_2158_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_2159_lift__Suc__mono__le,axiom,
    ! [F: nat > set_nat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_set_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_2160_lift__Suc__mono__le,axiom,
    ! [F: nat > rat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_2161_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_2162_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_2163_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_2164_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_nat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_set_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_set_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_2165_lift__Suc__antimono__le,axiom,
    ! [F: nat > rat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_rat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_2166_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_num @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_2167_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_2168_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_2169_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_2170_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_2171_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ N2 )
                 => ( P @ ( suc @ N2 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_2172_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ ( suc @ N2 ) )
                 => ( P @ N2 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_2173_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_2174_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_2175_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_2176_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_2177_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_2178_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K3 )
               => ~ ( P @ I3 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_2179_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_2180_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_2181_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_2182_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_2183_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_2184_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_2185_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_2186_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_2187_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_2188_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).

% of_nat_mono
thf(fact_2189_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_2190_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_2191_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
         => ( ord_less_nat @ ( F @ M2 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_2192_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_2193_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_2194_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_2195_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_2196_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_2197_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_2198_power__le__imp__le__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_2199_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_2200_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_2201_subset__decode__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% subset_decode_imp_le
thf(fact_2202_power__strict__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_2203_power__strict__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_2204_power__strict__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_2205_power__strict__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_2206_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2207_mult__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2208_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_2209_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2210_mult__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2211_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_2212_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2213_mult__left__less__imp__less,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2214_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2215_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_2216_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2217_mult__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2218_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2219_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_2220_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2221_mult__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2222_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_2223_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2224_mult__right__less__imp__less,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2225_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2226_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_2227_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2228_mult__strict__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2229_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2230_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_2231_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2232_mult__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2233_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_2234_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2235_mult__le__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2236_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_2237_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2238_mult__le__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2239_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_2240_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2241_mult__left__le__imp__le,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2242_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2243_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_2244_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2245_mult__right__le__imp__le,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2246_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2247_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_2248_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2249_mult__le__less__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2250_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2251_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_2252_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2253_mult__less__le__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2254_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2255_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_2256_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2257_add__strict__increasing2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2258_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2259_add__strict__increasing2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2260_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2261_add__strict__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2262_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2263_add__strict__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2264_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2265_add__pos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2266_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2267_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2268_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_2269_add__nonpos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_neg
thf(fact_2270_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_2271_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_2272_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2273_add__nonneg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2274_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2275_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2276_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_2277_add__neg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_nonpos
thf(fact_2278_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_2279_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_2280_field__le__epsilon,axiom,
    ! [X: real,Y: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ E2 ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_epsilon
thf(fact_2281_field__le__epsilon,axiom,
    ! [X: rat,Y: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ X @ ( plus_plus_rat @ Y @ E2 ) ) )
     => ( ord_less_eq_rat @ X @ Y ) ) ).

% field_le_epsilon
thf(fact_2282_divide__nonpos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_2283_divide__nonpos__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_pos
thf(fact_2284_divide__nonpos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2285_divide__nonpos__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2286_divide__nonneg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2287_divide__nonneg__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2288_divide__nonneg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_2289_divide__nonneg__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_neg
thf(fact_2290_divide__le__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2291_divide__le__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2292_frac__less2,axiom,
    ! [X: real,Y: real,W: real,Z2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_real @ W @ Z2 )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2293_frac__less2,axiom,
    ! [X: rat,Y: rat,W: rat,Z2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ X @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_rat @ W @ Z2 )
           => ( ord_less_rat @ ( divide_divide_rat @ X @ Z2 ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2294_frac__less,axiom,
    ! [X: real,Y: real,W: real,Z2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z2 )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2295_frac__less,axiom,
    ! [X: rat,Y: rat,W: rat,Z2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ X @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z2 )
           => ( ord_less_rat @ ( divide_divide_rat @ X @ Z2 ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2296_frac__le,axiom,
    ! [Y: real,X: real,W: real,Z2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z2 )
           => ( ord_less_eq_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2297_frac__le,axiom,
    ! [Y: rat,X: rat,W: rat,Z2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ X @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z2 )
           => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Z2 ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2298_div__positive,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2299_div__positive,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2300_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2301_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( divide_divide_int @ A @ B )
          = zero_zero_int ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2302_power__less__imp__less__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2303_power__less__imp__less__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2304_power__less__imp__less__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2305_power__less__imp__less__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_2306_discrete,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) ) ) ) ).

% discrete
thf(fact_2307_discrete,axiom,
    ( ord_less_int
    = ( ^ [A2: int] : ( ord_less_eq_int @ ( plus_plus_int @ A2 @ one_one_int ) ) ) ) ).

% discrete
thf(fact_2308_power__strict__increasing,axiom,
    ! [N: nat,N5: nat,A: real] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).

% power_strict_increasing
thf(fact_2309_power__strict__increasing,axiom,
    ! [N: nat,N5: nat,A: rat] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_rat @ one_one_rat @ A )
       => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).

% power_strict_increasing
thf(fact_2310_power__strict__increasing,axiom,
    ! [N: nat,N5: nat,A: nat] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).

% power_strict_increasing
thf(fact_2311_power__strict__increasing,axiom,
    ! [N: nat,N5: nat,A: int] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).

% power_strict_increasing
thf(fact_2312_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_2313_power__less__imp__less__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_2314_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_2315_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_2316_power__increasing,axiom,
    ! [N: nat,N5: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).

% power_increasing
thf(fact_2317_power__increasing,axiom,
    ! [N: nat,N5: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_rat @ one_one_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).

% power_increasing
thf(fact_2318_power__increasing,axiom,
    ! [N: nat,N5: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).

% power_increasing
thf(fact_2319_power__increasing,axiom,
    ! [N: nat,N5: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).

% power_increasing
thf(fact_2320_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I3: nat] :
                ( ( ord_less_eq_nat @ I3 @ K3 )
               => ~ ( P @ I3 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_2321_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_2322_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X4: real] :
            ( ( ord_less_real @ zero_zero_real @ X4 )
            & ( ( power_power_real @ X4 @ N )
              = A )
            & ! [Y5: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y5 )
                  & ( ( power_power_real @ Y5 @ N )
                    = A ) )
               => ( Y5 = X4 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_2323_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ( ( power_power_real @ R2 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_2324_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_2325_dvd__imp__le,axiom,
    ! [K: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K @ N ) ) ) ).

% dvd_imp_le
thf(fact_2326_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_2327_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_2328_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_2329_add1__zle__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W @ Z2 ) ) ).

% add1_zle_eq
thf(fact_2330_zless__imp__add1__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_2331_zdiv__mono1,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_2332_zdiv__mono2,axiom,
    ! [A: int,B6: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B6 )
       => ( ( ord_less_eq_int @ B6 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B6 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_2333_zdiv__eq__0__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( divide_divide_int @ I @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_2334_zdiv__mono1__neg,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_2335_zdiv__mono2__neg,axiom,
    ! [A: int,B6: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B6 )
       => ( ( ord_less_eq_int @ B6 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B6 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_2336_div__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
      = ( ( K = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_2337_div__positive__int,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ L @ K )
     => ( ( ord_less_int @ zero_zero_int @ L )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) ) ) ) ).

% div_positive_int
thf(fact_2338_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_2339_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_2340_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
        = ( ord_less_eq_int @ K @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_2341_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_2342_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_2343_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_2344_zdvd__imp__le,axiom,
    ! [Z2: int,N: int] :
      ( ( dvd_dvd_int @ Z2 @ N )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int @ Z2 @ N ) ) ) ).

% zdvd_imp_le
thf(fact_2345_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_2346_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_2347_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n3304061248610475627l_real
        @ ( P
          & Q ) )
      = ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).

% of_bool_conj
thf(fact_2348_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2052037380579107095ol_rat
        @ ( P
          & Q ) )
      = ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).

% of_bool_conj
thf(fact_2349_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          & Q ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_conj
thf(fact_2350_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          & Q ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_conj
thf(fact_2351_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          & Q ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_conj
thf(fact_2352_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_2353_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_2354_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_2355_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_2356_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_2357_field__lbound__gt__zero,axiom,
    ! [D1: rat,D22: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D22 )
       => ? [E2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E2 )
            & ( ord_less_rat @ E2 @ D1 )
            & ( ord_less_rat @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_2358_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_2359_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_2360_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_2361_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_2362_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_2363_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_2364_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_2365_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_2366_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_2367_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_2368_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_2369_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_2370_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_2371_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2372_add__less__imp__less__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2373_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2374_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2375_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2376_add__less__imp__less__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2377_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2378_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2379_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2380_add__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2381_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2382_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2383_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2384_add__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2385_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2386_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2387_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2388_add__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2389_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2390_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2391_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2392_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( K = L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2393_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2394_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2395_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2396_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2397_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2398_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2399_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2400_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2401_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2402_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2403_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_2404_diff__strict__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ D @ C )
       => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_2405_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_2406_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_2407_diff__eq__diff__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_rat @ A @ B )
        = ( ord_less_rat @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_2408_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_2409_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2410_diff__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2411_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2412_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2413_diff__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2414_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2415_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_2416_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_2417_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_2418_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_2419_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2420_add__le__imp__le__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2421_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2422_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2423_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2424_add__le__imp__le__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2425_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2426_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2427_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,B2: nat] :
        ? [C4: nat] :
          ( B2
          = ( plus_plus_nat @ A2 @ C4 ) ) ) ) ).

% le_iff_add
thf(fact_2428_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2429_add__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2430_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2431_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2432_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_2433_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2434_add__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2435_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2436_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2437_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2438_add__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2439_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2440_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2441_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2442_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2443_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2444_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2445_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2446_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2447_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2448_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2449_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2450_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2451_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2452_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2453_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_2454_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_2455_diff__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ D @ C )
       => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_2456_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_2457_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2458_diff__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2459_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2460_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2461_diff__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2462_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2463_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2464_diff__eq__diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_eq_rat @ A @ B )
        = ( ord_less_eq_rat @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2465_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2466_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% reals_Archimedean2
thf(fact_2467_reals__Archimedean2,axiom,
    ! [X: rat] :
    ? [N2: nat] : ( ord_less_rat @ X @ ( semiri681578069525770553at_rat @ N2 ) ) ).

% reals_Archimedean2
thf(fact_2468_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_2469_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] :
            ( ( J
              = ( suc @ I2 ) )
           => ( P @ I2 ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ( P @ ( suc @ I2 ) )
               => ( P @ I2 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_2470_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
       => ( ! [I2: nat,J2: nat,K3: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( ( ord_less_nat @ J2 @ K3 )
               => ( ( P @ I2 @ J2 )
                 => ( ( P @ J2 @ K3 )
                   => ( P @ I2 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_2471_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_2472_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_2473_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_2474_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M5: nat] :
            ( ( M
              = ( suc @ M5 ) )
            & ( ord_less_nat @ N @ M5 ) ) ) ) ).

% Suc_less_eq2
thf(fact_2475_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_2476_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_2477_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_2478_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_2479_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_2480_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_2481_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_2482_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_2483_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_2484_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_2485_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N2 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_2486_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_2487_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_2488_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_2489_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_2490_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_2491_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_2492_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R3: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X4: nat] : ( R3 @ X4 @ X4 )
       => ( ! [X4: nat,Y4: nat,Z4: nat] :
              ( ( R3 @ X4 @ Y4 )
             => ( ( R3 @ Y4 @ Z4 )
               => ( R3 @ X4 @ Z4 ) ) )
         => ( ! [N2: nat] : ( R3 @ N2 @ ( suc @ N2 ) )
           => ( R3 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_2493_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_2494_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N2 )
             => ( P @ M4 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_2495_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_2496_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_2497_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_2498_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M2: nat] :
          ( M6
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_2499_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_2500_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_2501_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_2502_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_2503_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_2504_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_2505_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_2506_real__arch__simple,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% real_arch_simple
thf(fact_2507_real__arch__simple,axiom,
    ! [X: rat] :
    ? [N2: nat] : ( ord_less_eq_rat @ X @ ( semiri681578069525770553at_rat @ N2 ) ) ).

% real_arch_simple
thf(fact_2508_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_2509_imp__le__cong,axiom,
    ! [X: int,X6: int,P: $o,P4: $o] :
      ( ( X = X6 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X6 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_2510_conj__le__cong,axiom,
    ! [X: int,X6: int,P: $o,P4: $o] :
      ( ( X = X6 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X6 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_2511_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_2512_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_2513_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_2514_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_2515_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_2516_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_2517_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_2518_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_2519_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_2520_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_2521_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_2522_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_2523_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_2524_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_2525_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_2526_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_2527_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_2528_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_2529_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_2530_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_2531_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_2532_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_2533_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_2534_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_2535_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_2536_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_2537_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_2538_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_2539_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_2540_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_2541_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_2542_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_2543_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_2544_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_2545_real__arch__pow,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N2: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ).

% real_arch_pow
thf(fact_2546_real__arch__pow__inv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_2547_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_2548_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_2549_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_2550_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_2551_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_2552_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_2553_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_2554_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_2555_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_2556_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_2557_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_2558_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_2559_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_2560_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_2561_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_2562_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_2563_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_2564_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_2565_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_2566_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_2567_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_2568_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_2569_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_2570_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_2571_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_2572_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_2573_field__le__mult__one__interval,axiom,
    ! [X: real,Y: real] :
      ( ! [Z4: real] :
          ( ( ord_less_real @ zero_zero_real @ Z4 )
         => ( ( ord_less_real @ Z4 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z4 @ X ) @ Y ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_2574_field__le__mult__one__interval,axiom,
    ! [X: rat,Y: rat] :
      ( ! [Z4: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z4 )
         => ( ( ord_less_rat @ Z4 @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z4 @ X ) @ Y ) ) )
     => ( ord_less_eq_rat @ X @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_2575_divide__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_2576_divide__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_2577_mult__imp__le__div__pos,axiom,
    ! [Y: real,Z2: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ Y ) @ X )
       => ( ord_less_eq_real @ Z2 @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_2578_mult__imp__le__div__pos,axiom,
    ! [Y: rat,Z2: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ Y ) @ X )
       => ( ord_less_eq_rat @ Z2 @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_2579_mult__imp__div__pos__le,axiom,
    ! [Y: real,X: real,Z2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X @ ( times_times_real @ Z2 @ Y ) )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ Z2 ) ) ) ).

% mult_imp_div_pos_le
thf(fact_2580_mult__imp__div__pos__le,axiom,
    ! [Y: rat,X: rat,Z2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ X @ ( times_times_rat @ Z2 @ Y ) )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ Z2 ) ) ) ).

% mult_imp_div_pos_le
thf(fact_2581_pos__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_2582_pos__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_2583_pos__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_2584_pos__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_2585_neg__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_2586_neg__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_2587_neg__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_2588_neg__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_2589_divide__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_2590_divide__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_2591_le__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_2592_le__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_2593_divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_2594_divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_2595_le__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_2596_le__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_2597_divide__le__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_2598_divide__le__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_le_eq_1
thf(fact_2599_power__strict__decreasing,axiom,
    ! [N: nat,N5: nat,A: real] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2600_power__strict__decreasing,axiom,
    ! [N: nat,N5: nat,A: rat] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ( ord_less_rat @ A @ one_one_rat )
         => ( ord_less_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2601_power__strict__decreasing,axiom,
    ! [N: nat,N5: nat,A: nat] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2602_power__strict__decreasing,axiom,
    ! [N: nat,N5: nat,A: int] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_2603_power__decreasing,axiom,
    ! [N: nat,N5: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2604_power__decreasing,axiom,
    ! [N: nat,N5: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ A @ one_one_rat )
         => ( ord_less_eq_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2605_power__decreasing,axiom,
    ! [N: nat,N5: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2606_power__decreasing,axiom,
    ! [N: nat,N5: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_2607_power__eq__imp__eq__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ N )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2608_power__eq__imp__eq__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ N )
        = ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2609_power__eq__imp__eq__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N )
        = ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2610_power__eq__imp__eq__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ N )
        = ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_2611_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N )
              = ( power_power_real @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2612_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ( power_power_rat @ A @ N )
              = ( power_power_rat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2613_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N )
              = ( power_power_nat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2614_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N )
              = ( power_power_int @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_2615_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2616_one__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2617_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2618_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_2619_self__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2620_self__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2621_self__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2622_self__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_2623_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_2624_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_2625_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_2626_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_2627_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_2628_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_2629_div__nat__eqI,axiom,
    ! [N: nat,Q2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q2 ) @ M )
     => ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q2 ) ) )
       => ( ( divide_divide_nat @ M @ N )
          = Q2 ) ) ) ).

% div_nat_eqI
thf(fact_2630_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q2 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_2631_unique__quotient__lemma__neg,axiom,
    ! [B: int,Q4: int,R4: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q4 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( ord_less_int @ B @ R4 )
           => ( ord_less_eq_int @ Q2 @ Q4 ) ) ) ) ) ).

% unique_quotient_lemma_neg
thf(fact_2632_unique__quotient__lemma,axiom,
    ! [B: int,Q4: int,R4: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q4 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
       => ( ( ord_less_int @ R4 @ B )
         => ( ( ord_less_int @ R @ B )
           => ( ord_less_eq_int @ Q4 @ Q2 ) ) ) ) ) ).

% unique_quotient_lemma
thf(fact_2633_zdiv__mono2__neg__lemma,axiom,
    ! [B: int,Q2: int,R: int,B6: int,Q4: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R )
        = ( plus_plus_int @ ( times_times_int @ B6 @ Q4 ) @ R4 ) )
     => ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q4 ) @ R4 ) @ zero_zero_int )
       => ( ( ord_less_int @ R @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
           => ( ( ord_less_int @ zero_zero_int @ B6 )
             => ( ( ord_less_eq_int @ B6 @ B )
               => ( ord_less_eq_int @ Q4 @ Q2 ) ) ) ) ) ) ) ).

% zdiv_mono2_neg_lemma
thf(fact_2634_incr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X5: int] :
              ( ( P @ X5 )
             => ( P @ ( plus_plus_int @ X5 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_2635_zdiv__mono2__lemma,axiom,
    ! [B: int,Q2: int,R: int,B6: int,Q4: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R )
        = ( plus_plus_int @ ( times_times_int @ B6 @ Q4 ) @ R4 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q4 ) @ R4 ) )
       => ( ( ord_less_int @ R4 @ B6 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R )
           => ( ( ord_less_int @ zero_zero_int @ B6 )
             => ( ( ord_less_eq_int @ B6 @ B )
               => ( ord_less_eq_int @ Q2 @ Q4 ) ) ) ) ) ) ) ).

% zdiv_mono2_lemma
thf(fact_2636_q__pos__lemma,axiom,
    ! [B6: int,Q4: int,R4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q4 ) @ R4 ) )
     => ( ( ord_less_int @ R4 @ B6 )
       => ( ( ord_less_int @ zero_zero_int @ B6 )
         => ( ord_less_eq_int @ zero_zero_int @ Q4 ) ) ) ) ).

% q_pos_lemma
thf(fact_2637_real__archimedian__rdiv__eq__0,axiom,
    ! [X: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M2 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ X ) @ C ) )
         => ( X = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_2638_decr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X5: int] :
              ( ( P @ X5 )
             => ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_2639_power__dvd__imp__le,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
     => ( ( ord_less_nat @ one_one_nat @ I )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_dvd_imp_le
thf(fact_2640_convex__bound__lt,axiom,
    ! [X: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_real @ X @ A )
     => ( ( ord_less_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_2641_convex__bound__lt,axiom,
    ! [X: rat,A: rat,Y: rat,U: rat,V: rat] :
      ( ( ord_less_rat @ X @ A )
     => ( ( ord_less_rat @ Y @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_2642_convex__bound__lt,axiom,
    ! [X: int,A: int,Y: int,U: int,V: int] :
      ( ( ord_less_int @ X @ A )
     => ( ( ord_less_int @ Y @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_2643_divide__le__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_2644_divide__le__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_2645_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_2646_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_2647_of__bool__def,axiom,
    ( zero_n1201886186963655149omplex
    = ( ^ [P3: $o] : ( if_complex @ P3 @ one_one_complex @ zero_zero_complex ) ) ) ).

% of_bool_def
thf(fact_2648_of__bool__def,axiom,
    ( zero_n3304061248610475627l_real
    = ( ^ [P3: $o] : ( if_real @ P3 @ one_one_real @ zero_zero_real ) ) ) ).

% of_bool_def
thf(fact_2649_of__bool__def,axiom,
    ( zero_n2052037380579107095ol_rat
    = ( ^ [P3: $o] : ( if_rat @ P3 @ one_one_rat @ zero_zero_rat ) ) ) ).

% of_bool_def
thf(fact_2650_of__bool__def,axiom,
    ( zero_n2687167440665602831ol_nat
    = ( ^ [P3: $o] : ( if_nat @ P3 @ one_one_nat @ zero_zero_nat ) ) ) ).

% of_bool_def
thf(fact_2651_of__bool__def,axiom,
    ( zero_n2684676970156552555ol_int
    = ( ^ [P3: $o] : ( if_int @ P3 @ one_one_int @ zero_zero_int ) ) ) ).

% of_bool_def
thf(fact_2652_of__bool__def,axiom,
    ( zero_n356916108424825756nteger
    = ( ^ [P3: $o] : ( if_Code_integer @ P3 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).

% of_bool_def
thf(fact_2653_split__of__bool,axiom,
    ! [P: complex > $o,P2: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P2 ) )
      = ( ( P2
         => ( P @ one_one_complex ) )
        & ( ~ P2
         => ( P @ zero_zero_complex ) ) ) ) ).

% split_of_bool
thf(fact_2654_split__of__bool,axiom,
    ! [P: real > $o,P2: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P2 ) )
      = ( ( P2
         => ( P @ one_one_real ) )
        & ( ~ P2
         => ( P @ zero_zero_real ) ) ) ) ).

% split_of_bool
thf(fact_2655_split__of__bool,axiom,
    ! [P: rat > $o,P2: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P2 ) )
      = ( ( P2
         => ( P @ one_one_rat ) )
        & ( ~ P2
         => ( P @ zero_zero_rat ) ) ) ) ).

% split_of_bool
thf(fact_2656_split__of__bool,axiom,
    ! [P: nat > $o,P2: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P2 ) )
      = ( ( P2
         => ( P @ one_one_nat ) )
        & ( ~ P2
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_of_bool
thf(fact_2657_split__of__bool,axiom,
    ! [P: int > $o,P2: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P2 ) )
      = ( ( P2
         => ( P @ one_one_int ) )
        & ( ~ P2
         => ( P @ zero_zero_int ) ) ) ) ).

% split_of_bool
thf(fact_2658_split__of__bool,axiom,
    ! [P: code_integer > $o,P2: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P2 ) )
      = ( ( P2
         => ( P @ one_one_Code_integer ) )
        & ( ~ P2
         => ( P @ zero_z3403309356797280102nteger ) ) ) ) ).

% split_of_bool
thf(fact_2659_split__of__bool__asm,axiom,
    ! [P: complex > $o,P2: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_complex ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_complex ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_2660_split__of__bool__asm,axiom,
    ! [P: real > $o,P2: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_real ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_real ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_2661_split__of__bool__asm,axiom,
    ! [P: rat > $o,P2: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_rat ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_rat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_2662_split__of__bool__asm,axiom,
    ! [P: nat > $o,P2: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_nat ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_nat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_2663_split__of__bool__asm,axiom,
    ! [P: int > $o,P2: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_int ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_int ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_2664_split__of__bool__asm,axiom,
    ! [P: code_integer > $o,P2: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_Code_integer ) )
            | ( ~ P2
              & ~ ( P @ zero_z3403309356797280102nteger ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_2665_inverse__of__nat__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_2666_inverse__of__nat__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_2667_le__div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% le_div_geq
thf(fact_2668_split__div_H,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
          & ( P @ zero_zero_nat ) )
        | ? [Q5: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q5 ) @ M )
            & ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q5 ) ) )
            & ( P @ Q5 ) ) ) ) ).

% split_div'
thf(fact_2669_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_less_numeral
thf(fact_2670_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_less_numeral
thf(fact_2671_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_2672_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_2673_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_2674_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_less_zero
thf(fact_2675_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_2676_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_2677_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_2678_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_2679_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_2680_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_2681_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_2682_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_2683_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_2684_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_2685_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_2686_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_2687_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_2688_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_2689_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_2690_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_2691_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_2692_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_2693_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_2694_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2695_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2696_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2697_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_2698_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_2699_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_2700_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_2701_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_2702_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_2703_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_2704_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_2705_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2706_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2707_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2708_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_2709_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2710_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2711_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2712_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_2713_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_2714_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_2715_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_2716_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_2717_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_2718_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_2719_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_2720_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_2721_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_2722_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2723_mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2724_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2725_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_2726_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_2727_mult__less__cancel__left__disj,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_2728_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_2729_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_2730_mult__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_2731_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_2732_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2733_mult__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2734_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2735_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_2736_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_2737_mult__less__cancel__right__disj,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_2738_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_2739_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2740_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2741_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2742_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2743_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_2744_int__div__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R )
       => ( ( ord_less_int @ R @ B )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_pos_eq
thf(fact_2745_int__div__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_neg_eq
thf(fact_2746_split__zdiv,axiom,
    ! [P: int > $o,N: int,K: int] :
      ( ( P @ ( divide_divide_int @ N @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ zero_zero_int ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) ) ) ) ).

% split_zdiv
thf(fact_2747_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_2748_zero__less__one,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one
thf(fact_2749_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_2750_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_2751_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_2752_not__one__less__zero,axiom,
    ~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_less_zero
thf(fact_2753_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_2754_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_2755_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_2756_less__numeral__extra_I1_J,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% less_numeral_extra(1)
thf(fact_2757_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_2758_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_2759_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2760_pos__add__strict,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2761_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2762_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2763_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_2764_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2765_add__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2766_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2767_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2768_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_2769_add__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_neg
thf(fact_2770_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_2771_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_2772_add__less__zeroD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_2773_add__less__zeroD,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ X @ Y ) @ zero_zero_rat )
     => ( ( ord_less_rat @ X @ zero_zero_rat )
        | ( ord_less_rat @ Y @ zero_zero_rat ) ) ) ).

% add_less_zeroD
thf(fact_2774_add__less__zeroD,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_2775_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A2: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_2776_less__iff__diff__less__0,axiom,
    ( ord_less_rat
    = ( ^ [A2: rat,B2: rat] : ( ord_less_rat @ ( minus_minus_rat @ A2 @ B2 ) @ zero_zero_rat ) ) ) ).

% less_iff_diff_less_0
thf(fact_2777_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A2: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_2778_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2779_divide__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2780_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2781_divide__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2782_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2783_zero__less__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2784_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_2785_divide__less__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) )
        & ( C != zero_zero_rat ) ) ) ).

% divide_less_cancel
thf(fact_2786_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2787_divide__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2788_divide__pos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_2789_divide__pos__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_2790_divide__pos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_2791_divide__pos__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_pos_neg
thf(fact_2792_divide__neg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_2793_divide__neg__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_neg_pos
thf(fact_2794_divide__neg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_2795_divide__neg__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_2796_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_2797_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).

% not_numeral_less_one
thf(fact_2798_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_2799_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_2800_less__1__mult,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_2801_less__1__mult,axiom,
    ! [M: rat,N: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_2802_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_2803_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_2804_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_le_numeral
thf(fact_2805_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_le_numeral
thf(fact_2806_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_2807_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_le_numeral
thf(fact_2808_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_2809_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_le_zero
thf(fact_2810_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_2811_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_2812_zero__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2813_zero__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2814_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2815_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_2816_mult__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_2817_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_2818_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_2819_mult__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_2820_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2821_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2822_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2823_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_2824_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_2825_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_2826_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_2827_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_2828_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_2829_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_2830_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_2831_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_2832_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_2833_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_2834_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_2835_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_2836_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2837_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2838_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2839_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_2840_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_2841_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_2842_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_2843_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2844_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2845_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2846_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_2847_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_2848_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_2849_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_2850_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_2851_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_2852_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_2853_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_2854_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2855_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2856_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2857_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_2858_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2859_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2860_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2861_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_2862_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2863_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2864_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2865_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_2866_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2867_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2868_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2869_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_2870_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_2871_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_2872_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_2873_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2874_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2875_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2876_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_2877_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_2878_add__mono1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).

% add_mono1
thf(fact_2879_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_2880_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_2881_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_2882_less__add__one,axiom,
    ! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).

% less_add_one
thf(fact_2883_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_2884_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_2885_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_2886_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one_class.zero_le_one
thf(fact_2887_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_2888_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_2889_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2890_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2891_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2892_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2893_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_2894_not__one__le__zero,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_le_zero
thf(fact_2895_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_2896_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_2897_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2898_add__nonpos__eq__0__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ( ( plus_plus_rat @ X @ Y )
            = zero_zero_rat )
          = ( ( X = zero_zero_rat )
            & ( Y = zero_zero_rat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2899_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2900_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2901_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2902_add__nonneg__eq__0__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ( plus_plus_rat @ X @ Y )
            = zero_zero_rat )
          = ( ( X = zero_zero_rat )
            & ( Y = zero_zero_rat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2903_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2904_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2905_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_2906_add__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_nonpos
thf(fact_2907_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_2908_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_2909_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2910_add__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2911_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2912_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2913_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2914_add__increasing2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2915_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2916_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2917_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2918_add__decreasing2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2919_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2920_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2921_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2922_add__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2923_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2924_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2925_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2926_add__decreasing,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2927_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2928_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2929_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2930_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ~ ( ord_less_rat @ A @ B )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2931_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2932_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2933_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2934_diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2935_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2936_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2937_less__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2938_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2939_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A2: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_2940_le__iff__diff__le__0,axiom,
    ( ord_less_eq_rat
    = ( ^ [A2: rat,B2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A2 @ B2 ) @ zero_zero_rat ) ) ) ).

% le_iff_diff_le_0
thf(fact_2941_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_2942_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_2943_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).

% of_nat_less_0_iff
thf(fact_2944_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_2945_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_2946_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2947_divide__right__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2948_divide__nonpos__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2949_divide__nonpos__nonpos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2950_divide__nonpos__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2951_divide__nonpos__nonneg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2952_divide__nonneg__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2953_divide__nonneg__nonpos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2954_divide__nonneg__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2955_divide__nonneg__nonneg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2956_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2957_zero__le__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2958_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2959_divide__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2960_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2961_divide__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2962_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_2963_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).

% one_le_numeral
thf(fact_2964_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_2965_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_2966_zero__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2967_zero__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2968_zero__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2969_zero__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_power
thf(fact_2970_power__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2971_power__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2972_power__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2973_power__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_2974_pinf_I9_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z4: code_integer] :
    ! [X5: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z4 @ X5 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2975_pinf_I9_J,axiom,
    ! [D: real,S: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2976_pinf_I9_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2977_pinf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2978_pinf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2979_pinf_I10_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z4: code_integer] :
    ! [X5: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z4 @ X5 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2980_pinf_I10_J,axiom,
    ! [D: real,S: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ Z4 @ X5 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2981_pinf_I10_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ Z4 @ X5 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2982_pinf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2983_pinf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2984_minf_I9_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z4: code_integer] :
    ! [X5: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X5 @ Z4 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) ) ) ) ).

% minf(9)
thf(fact_2985_minf_I9_J,axiom,
    ! [D: real,S: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) ) ) ) ).

% minf(9)
thf(fact_2986_minf_I9_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) ) ) ) ).

% minf(9)
thf(fact_2987_minf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) ) ) ) ).

% minf(9)
thf(fact_2988_minf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) ) ) ) ).

% minf(9)
thf(fact_2989_minf_I10_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z4: code_integer] :
    ! [X5: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X5 @ Z4 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2990_minf_I10_J,axiom,
    ! [D: real,S: real] :
    ? [Z4: real] :
    ! [X5: real] :
      ( ( ord_less_real @ X5 @ Z4 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2991_minf_I10_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z4: rat] :
    ! [X5: rat] :
      ( ( ord_less_rat @ X5 @ Z4 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2992_minf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2993_minf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2994_add__le__add__imp__diff__le,axiom,
    ! [I: real,K: real,N: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
         => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2995_add__le__add__imp__diff__le,axiom,
    ! [I: rat,K: rat,N: rat,J: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
     => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
       => ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
         => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
           => ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2996_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2997_add__le__add__imp__diff__le,axiom,
    ! [I: int,K: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2998_add__le__imp__le__diff,axiom,
    ! [I: real,K: real,N: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_2999_add__le__imp__le__diff,axiom,
    ! [I: rat,K: rat,N: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
     => ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_3000_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_3001_add__le__imp__le__diff,axiom,
    ! [I: int,K: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_3002_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_3003_diff__le__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_3004_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_3005_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_3006_le__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_3007_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_3008_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_3009_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_3010_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_3011_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_3012_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_3013_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_3014_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_3015_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_3016_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_3017_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_3018_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_3019_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_3020_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_3021_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_3022_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_3023_one__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% one_le_power
thf(fact_3024_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_3025_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_3026_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_3027_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_3028_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_3029_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% gr0_implies_Suc
thf(fact_3030_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_3031_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3032_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3033_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3034_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3035_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_3036_power__le__dvd,axiom,
    ! [A: code_integer,N: nat,B: code_integer,M: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3037_power__le__dvd,axiom,
    ! [A: nat,N: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3038_power__le__dvd,axiom,
    ! [A: real,N: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3039_power__le__dvd,axiom,
    ! [A: int,N: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3040_power__le__dvd,axiom,
    ! [A: complex,N: nat,B: complex,M: nat] :
      ( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_3041_dvd__power__le,axiom,
    ! [X: code_integer,Y: code_integer,N: nat,M: nat] :
      ( ( dvd_dvd_Code_integer @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3042_dvd__power__le,axiom,
    ! [X: nat,Y: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3043_dvd__power__le,axiom,
    ! [X: real,Y: real,N: nat,M: nat] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3044_dvd__power__le,axiom,
    ! [X: int,Y: int,N: nat,M: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3045_dvd__power__le,axiom,
    ! [X: complex,Y: complex,N: nat,M: nat] :
      ( ( dvd_dvd_complex @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_3046_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q6: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q6 ) ) ) ) ).

% less_natE
thf(fact_3047_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_3048_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_3049_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_3050_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_3051_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_3052_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_3053_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_3054_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_3055_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_3056_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_3057_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_3058_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_3059_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_3060_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_3061_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_3062_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R2: real] :
          ( ( ord_less_real @ zero_zero_real @ R2 )
          & ( ( power_power_real @ R2 @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_3063_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_3064_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_3065_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_3066_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_3067_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_3068_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_3069_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_3070_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_3071_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_3072_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_3073_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_3074_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_3075_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_3076_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I2: int] :
              ( ( ord_less_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_3077_zless__add1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z2 )
        | ( W = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_3078_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_3079_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_3080_dvd__minus__self,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
      = ( ( ord_less_nat @ N @ M )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_minus_self
thf(fact_3081_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_3082_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_3083_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_3084_dvd__diffD,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_3085_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ N ) ) ) ) ).

% dvd_diffD1
thf(fact_3086_less__eq__dvd__minus,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( dvd_dvd_nat @ M @ N )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_3087_zdvd__not__zless,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_int @ M @ N )
       => ~ ( dvd_dvd_int @ N @ M ) ) ) ).

% zdvd_not_zless
thf(fact_3088_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_3089_int__less__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I2: int] :
              ( ( ord_less_int @ I2 @ K )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_less_induct
thf(fact_3090_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_3091_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_3092_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_3093_zdvd__antisym__nonneg,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ N )
       => ( ( dvd_dvd_int @ M @ N )
         => ( ( dvd_dvd_int @ N @ M )
           => ( M = N ) ) ) ) ) ).

% zdvd_antisym_nonneg
thf(fact_3094_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y5: real] :
        ? [N2: nat] : ( ord_less_real @ Y5 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).

% reals_Archimedean3
thf(fact_3095_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z5: int] :
        ? [N3: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_3096_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct
thf(fact_3097_power2__less__imp__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_real @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3098_power2__less__imp__less,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3099_power2__less__imp__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_nat @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3100_power2__less__imp__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_int @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3101_pow_Osimps_I1_J,axiom,
    ! [X: num] :
      ( ( pow @ X @ one )
      = X ) ).

% pow.simps(1)
thf(fact_3102_div__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_3103_not__sum__squares__lt__zero,axiom,
    ! [X: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_3104_not__sum__squares__lt__zero,axiom,
    ! [X: rat,Y: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat ) ).

% not_sum_squares_lt_zero
thf(fact_3105_not__sum__squares__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_3106_sum__squares__gt__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) )
      = ( ( X != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3107_sum__squares__gt__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) )
      = ( ( X != zero_zero_rat )
        | ( Y != zero_zero_rat ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3108_sum__squares__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3109_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_3110_zero__less__two,axiom,
    ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).

% zero_less_two
thf(fact_3111_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_3112_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_3113_ex__power__ivl2,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
       => ? [N2: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_3114_ex__power__ivl1,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K )
       => ? [N2: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_3115_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_3116_divide__strict__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_3117_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_3118_divide__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_3119_mult__imp__less__div__pos,axiom,
    ! [Y: real,Z2: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ ( times_times_real @ Z2 @ Y ) @ X )
       => ( ord_less_real @ Z2 @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_3120_mult__imp__less__div__pos,axiom,
    ! [Y: rat,Z2: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_rat @ ( times_times_rat @ Z2 @ Y ) @ X )
       => ( ord_less_rat @ Z2 @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_3121_mult__imp__div__pos__less,axiom,
    ! [Y: real,X: real,Z2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ ( times_times_real @ Z2 @ Y ) )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ Z2 ) ) ) ).

% mult_imp_div_pos_less
thf(fact_3122_mult__imp__div__pos__less,axiom,
    ! [Y: rat,X: rat,Z2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_rat @ X @ ( times_times_rat @ Z2 @ Y ) )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ Z2 ) ) ) ).

% mult_imp_div_pos_less
thf(fact_3123_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_3124_pos__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_3125_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_3126_pos__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_3127_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_3128_neg__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_3129_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_3130_neg__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_3131_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_3132_less__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_3133_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_3134_divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_3135_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_3136_less__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_3137_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_3138_divide__less__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_less_eq_1
thf(fact_3139_less__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_3140_less__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_3141_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_3142_less__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_3143_less__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_3144_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_3145_mult__left__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3146_mult__left__le__one__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3147_mult__left__le__one__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3148_mult__right__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3149_mult__right__le__one__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3150_mult__right__le__one__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3151_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_3152_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_3153_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_3154_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_3155_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3156_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3157_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3158_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3159_sum__squares__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_3160_sum__squares__ge__zero,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_3161_sum__squares__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_3162_sum__squares__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3163_sum__squares__le__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3164_sum__squares__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3165_ex__less__of__nat__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N2: nat] : ( ord_less_real @ Y @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_3166_ex__less__of__nat__mult,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N2: nat] : ( ord_less_rat @ Y @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_3167_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_3168_less__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).

% less_half_sum
thf(fact_3169_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_3170_gt__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).

% gt_half_sum
thf(fact_3171_power__gt1__lemma,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3172_power__gt1__lemma,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3173_power__gt1__lemma,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3174_power__gt1__lemma,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3175_power__less__power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3176_power__less__power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3177_power__less__power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3178_power__less__power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3179_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3180_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3181_power__le__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_3182_power__le__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).

% power_le_one
thf(fact_3183_power__le__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_3184_power__le__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_3185_power__gt1,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3186_power__gt1,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3187_power__gt1,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3188_power__gt1,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3189_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_3190_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_3191_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_3192_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_3193_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_3194_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_3195_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_3196_power__inject__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N ) )
        = ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3197_power__inject__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ ( suc @ N ) )
        = ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3198_power__inject__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3199_power__inject__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3200_power__le__imp__le__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3201_power__le__imp__le__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3202_power__le__imp__le__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3203_power__le__imp__le__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3204_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_rat @ zero_zero_rat @ N )
        = zero_zero_rat ) ) ).

% zero_power
thf(fact_3205_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_3206_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ zero_zero_real @ N )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_3207_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_3208_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_complex @ zero_zero_complex @ N )
        = zero_zero_complex ) ) ).

% zero_power
thf(fact_3209_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_3210_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_3211_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_3212_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_3213_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri8010041392384452111omplex @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).

% of_nat_diff
thf(fact_3214_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% of_nat_diff
thf(fact_3215_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_3216_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_3217_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% of_nat_diff
thf(fact_3218_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_3219_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D4: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D4 ) )
           => ( P @ D4 ) ) ) ) ).

% nat_diff_split
thf(fact_3220_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D4: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D4 ) )
                & ~ ( P @ D4 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_3221_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_3222_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z5: int] :
        ? [N3: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_3223_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_3224_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_3225_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_3226_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_mult_cancel
thf(fact_3227_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_3228_div__less__iff__less__mult,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_3229_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_3230_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_3231_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_3232_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_3233_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_3234_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_3235_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_3236_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_3237_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_3238_int__div__less__self,axiom,
    ! [X: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).

% int_div_less_self
thf(fact_3239_plusinfinity,axiom,
    ! [D: int,P4: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int,K3: int] :
            ( ( P4 @ X4 )
            = ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ? [Z3: int] :
            ! [X4: int] :
              ( ( ord_less_int @ Z3 @ X4 )
             => ( ( P @ X4 )
                = ( P4 @ X4 ) ) )
         => ( ? [X_1: int] : ( P4 @ X_1 )
           => ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).

% plusinfinity
thf(fact_3240_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int,K3: int] :
            ( ( P1 @ X4 )
            = ( P1 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ? [Z3: int] :
            ! [X4: int] :
              ( ( ord_less_int @ X4 @ Z3 )
             => ( ( P @ X4 )
                = ( P1 @ X4 ) ) )
         => ( ? [X_1: int] : ( P1 @ X_1 )
           => ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).

% minusinfinity
thf(fact_3241_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_3242_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I2: int] :
            ( ( ord_less_eq_int @ K @ I2 )
           => ( ( P @ I2 )
             => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_3243_real__of__nat__div4,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% real_of_nat_div4
thf(fact_3244_power__le__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_3245_power__le__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_3246_power__le__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_3247_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat
        @ ( zero_n2687167440665602831ol_nat
          @ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
             != zero_zero_nat )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_3248_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int
        @ ( zero_n2684676970156552555ol_int
          @ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
             != zero_zero_int )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_3249_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger
        @ ( zero_n356916108424825756nteger
          @ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
             != zero_z3403309356797280102nteger )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_3250_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_3251_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_3252_divide__less__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_3253_divide__less__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_3254_frac__less__eq,axiom,
    ! [Y: real,Z2: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z2 != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z2 ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_3255_frac__less__eq,axiom,
    ! [Y: rat,Z2: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z2 != zero_zero_rat )
       => ( ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z2 ) )
          = ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) @ zero_zero_rat ) ) ) ) ).

% frac_less_eq
thf(fact_3256_power__Suc__less,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_3257_power__Suc__less,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_3258_power__Suc__less,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_3259_power__Suc__less,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_3260_power__Suc__less__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_3261_power__Suc__less__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).

% power_Suc_less_one
thf(fact_3262_power__Suc__less__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_3263_power__Suc__less__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_3264_convex__bound__le,axiom,
    ! [X: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X @ A )
     => ( ( ord_less_eq_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3265_convex__bound__le,axiom,
    ! [X: rat,A: rat,Y: rat,U: rat,V: rat] :
      ( ( ord_less_eq_rat @ X @ A )
     => ( ( ord_less_eq_rat @ Y @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3266_convex__bound__le,axiom,
    ! [X: int,A: int,Y: int,U: int,V: int] :
      ( ( ord_less_eq_int @ X @ A )
     => ( ( ord_less_eq_int @ Y @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3267_frac__le__eq,axiom,
    ! [Y: real,Z2: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z2 != zero_zero_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z2 ) )
          = ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) @ zero_zero_real ) ) ) ) ).

% frac_le_eq
thf(fact_3268_frac__le__eq,axiom,
    ! [Y: rat,Z2: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z2 != zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z2 ) )
          = ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z2 ) ) @ zero_zero_rat ) ) ) ) ).

% frac_le_eq
thf(fact_3269_power__Suc__le__self,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3270_power__Suc__le__self,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3271_power__Suc__le__self,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3272_power__Suc__le__self,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3273_dvd__power__iff,axiom,
    ! [X: code_integer,M: nat,N: nat] :
      ( ( X != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ M ) @ ( power_8256067586552552935nteger @ X @ N ) )
        = ( ( dvd_dvd_Code_integer @ X @ one_one_Code_integer )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_3274_dvd__power__iff,axiom,
    ! [X: nat,M: nat,N: nat] :
      ( ( X != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N ) )
        = ( ( dvd_dvd_nat @ X @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_3275_dvd__power__iff,axiom,
    ! [X: int,M: nat,N: nat] :
      ( ( X != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N ) )
        = ( ( dvd_dvd_int @ X @ one_one_int )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_3276_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_3277_dvd__power,axiom,
    ! [N: nat,X: code_integer] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_Code_integer ) )
     => ( dvd_dvd_Code_integer @ X @ ( power_8256067586552552935nteger @ X @ N ) ) ) ).

% dvd_power
thf(fact_3278_dvd__power,axiom,
    ! [N: nat,X: rat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_rat ) )
     => ( dvd_dvd_rat @ X @ ( power_power_rat @ X @ N ) ) ) ).

% dvd_power
thf(fact_3279_dvd__power,axiom,
    ! [N: nat,X: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_nat ) )
     => ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N ) ) ) ).

% dvd_power
thf(fact_3280_dvd__power,axiom,
    ! [N: nat,X: real] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_real ) )
     => ( dvd_dvd_real @ X @ ( power_power_real @ X @ N ) ) ) ).

% dvd_power
thf(fact_3281_dvd__power,axiom,
    ! [N: nat,X: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_int ) )
     => ( dvd_dvd_int @ X @ ( power_power_int @ X @ N ) ) ) ).

% dvd_power
thf(fact_3282_dvd__power,axiom,
    ! [N: nat,X: complex] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_complex ) )
     => ( dvd_dvd_complex @ X @ ( power_power_complex @ X @ N ) ) ) ).

% dvd_power
thf(fact_3283_power__diff,axiom,
    ! [A: complex,N: nat,M: nat] :
      ( ( A != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_3284_power__diff,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_3285_power__diff,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( A != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_3286_power__diff,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_3287_power__diff,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_3288_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_3289_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_3290_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_3291_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_3292_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_3293_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_3294_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_3295_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M3 @ N3 )
            | ( N3 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ) ).

% div_if
thf(fact_3296_div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% div_geq
thf(fact_3297_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_3298_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_3299_split__div,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) )
               => ( P @ I4 ) ) ) ) ) ) ).

% split_div
thf(fact_3300_dvd__mult__cancel2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_3301_dvd__mult__cancel1,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_3302_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_3303_dvd__minus__add,axiom,
    ! [Q2: nat,N: nat,R: nat,M: nat] :
      ( ( ord_less_eq_nat @ Q2 @ N )
     => ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R @ M ) )
       => ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q2 ) )
          = ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R @ M ) @ Q2 ) ) ) ) ) ) ).

% dvd_minus_add
thf(fact_3304_even__mult__exp__div__exp__iff,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_3305_even__mult__exp__div__exp__iff,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_3306_even__mult__exp__div__exp__iff,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_3307_real__of__nat__div2,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) ) ).

% real_of_nat_div2
thf(fact_3308_real__of__nat__div3,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_3309_half__gt__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% half_gt_zero_iff
thf(fact_3310_half__gt__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% half_gt_zero_iff
thf(fact_3311_half__gt__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_3312_half__gt__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_3313_field__less__half__sum,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_real @ X @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_3314_field__less__half__sum,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( ord_less_rat @ X @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_3315_power2__less__0,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).

% power2_less_0
thf(fact_3316_power2__less__0,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).

% power2_less_0
thf(fact_3317_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_3318_nat__approx__posE,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ~ ! [N2: nat] :
            ~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_3319_nat__approx__posE,axiom,
    ! [E: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ E )
     => ~ ! [N2: nat] :
            ~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_3320_scaling__mono,axiom,
    ! [U: real,V: real,R: real,S: real] :
      ( ( ord_less_eq_real @ U @ V )
     => ( ( ord_less_eq_real @ zero_zero_real @ R )
       => ( ( ord_less_eq_real @ R @ S )
         => ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R @ ( minus_minus_real @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_3321_scaling__mono,axiom,
    ! [U: rat,V: rat,R: rat,S: rat] :
      ( ( ord_less_eq_rat @ U @ V )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ R )
       => ( ( ord_less_eq_rat @ R @ S )
         => ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R @ ( minus_minus_rat @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_3322_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_3323_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_3324_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_3325_power2__le__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3326_power2__le__imp__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3327_power2__le__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3328_power2__le__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3329_power2__eq__imp__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3330_power2__eq__imp__eq,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3331_power2__eq__imp__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3332_power2__eq__imp__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3333_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3334_zero__le__power2,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3335_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3336_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_3337_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_3338_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_3339_power__diff__power__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_3340_power__diff__power__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_3341_power__mono__odd,axiom,
    ! [N: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_3342_power__mono__odd,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_3343_power__mono__odd,axiom,
    ! [N: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_3344_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_3345_power__minus__mult,axiom,
    ! [N: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_complex @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_3346_power__minus__mult,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_3347_power__minus__mult,axiom,
    ! [N: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_3348_power__minus__mult,axiom,
    ! [N: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_3349_power__minus__mult,axiom,
    ! [N: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_3350_diff__le__diff__pow,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).

% diff_le_diff_pow
thf(fact_3351_dvd__power__iff__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% dvd_power_iff_le
thf(fact_3352_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_3353_bits__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [A4: nat] :
          ( ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = A4 )
         => ( P @ A4 ) )
     => ( ! [A4: nat,B4: $o] :
            ( ( P @ A4 )
           => ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                = A4 )
             => ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B4 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_3354_bits__induct,axiom,
    ! [P: int > $o,A: int] :
      ( ! [A4: int] :
          ( ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = A4 )
         => ( P @ A4 ) )
     => ( ! [A4: int,B4: $o] :
            ( ( P @ A4 )
           => ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B4 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = A4 )
             => ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B4 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_3355_bits__induct,axiom,
    ! [P: code_integer > $o,A: code_integer] :
      ( ! [A4: code_integer] :
          ( ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = A4 )
         => ( P @ A4 ) )
     => ( ! [A4: code_integer,B4: $o] :
            ( ( P @ A4 )
           => ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B4 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
                = A4 )
             => ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B4 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_3356_sum__power2__gt__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3357_sum__power2__gt__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_rat )
        | ( Y != zero_zero_rat ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3358_sum__power2__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3359_not__sum__power2__lt__zero,axiom,
    ! [X: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).

% not_sum_power2_lt_zero
thf(fact_3360_not__sum__power2__lt__zero,axiom,
    ! [X: rat,Y: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).

% not_sum_power2_lt_zero
thf(fact_3361_not__sum__power2__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_3362_sum__power2__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3363_sum__power2__le__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3364_sum__power2__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3365_sum__power2__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3366_sum__power2__ge__zero,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3367_sum__power2__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3368_zero__le__even__power_H,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_3369_zero__le__even__power_H,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_3370_zero__le__even__power_H,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_3371_zero__le__even__power,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_3372_zero__le__even__power,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_3373_zero__le__even__power,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_3374_zero__le__odd__power,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_3375_zero__le__odd__power,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
        = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).

% zero_le_odd_power
thf(fact_3376_zero__le__odd__power,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_3377_zero__le__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_3378_zero__le__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_3379_zero__le__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_3380_nat__bit__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
       => ( ! [N2: nat] :
              ( ( P @ N2 )
             => ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_bit_induct
thf(fact_3381_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_3382_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_3383_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_3384_add__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( B
        = ( plus_plus_rat @ B @ A ) )
      = ( A = zero_zero_rat ) ) ).

% add_0_iff
thf(fact_3385_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_3386_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_3387_crossproduct__eq,axiom,
    ! [W: real,Y: real,X: real,Z2: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y ) @ ( times_times_real @ X @ Z2 ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z2 ) @ ( times_times_real @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_3388_crossproduct__eq,axiom,
    ! [W: rat,Y: rat,X: rat,Z2: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y ) @ ( times_times_rat @ X @ Z2 ) )
        = ( plus_plus_rat @ ( times_times_rat @ W @ Z2 ) @ ( times_times_rat @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_3389_crossproduct__eq,axiom,
    ! [W: nat,Y: nat,X: nat,Z2: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X @ Z2 ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z2 ) @ ( times_times_nat @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_3390_crossproduct__eq,axiom,
    ! [W: int,Y: int,X: int,Z2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W @ Y ) @ ( times_times_int @ X @ Z2 ) )
        = ( plus_plus_int @ ( times_times_int @ W @ Z2 ) @ ( times_times_int @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_3391_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_3392_crossproduct__noteq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
       != ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_3393_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_3394_crossproduct__noteq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
       != ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_3395_odd__power__less__zero,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).

% odd_power_less_zero
thf(fact_3396_odd__power__less__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).

% odd_power_less_zero
thf(fact_3397_odd__power__less__zero,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).

% odd_power_less_zero
thf(fact_3398_sum__squares__bound,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_3399_sum__squares__bound,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y ) @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_3400_zero__less__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_3401_zero__less__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_3402_zero__less__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_3403_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3404_odd__0__le__power__imp__0__le,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3405_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3406_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_3407_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_3408_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_3409_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_3410_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_3411_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_3412_linear__plus__1__le__power,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).

% linear_plus_1_le_power
thf(fact_3413_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_3414_enat__ord__number_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(2)
thf(fact_3415_mult__le__cancel__iff1,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_3416_mult__le__cancel__iff1,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z2 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ Y @ Z2 ) )
        = ( ord_less_eq_rat @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_3417_mult__le__cancel__iff1,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
        = ( ord_less_eq_int @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_3418_mult__le__cancel__iff2,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ ( times_times_real @ Z2 @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_3419_mult__le__cancel__iff2,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z2 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ X ) @ ( times_times_rat @ Z2 @ Y ) )
        = ( ord_less_eq_rat @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_3420_mult__le__cancel__iff2,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z2 @ X ) @ ( times_times_int @ Z2 @ Y ) )
        = ( ord_less_eq_int @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_3421_lemma__termdiff3,axiom,
    ! [H: real,Z2: real,K5: real,N: nat] :
      ( ( H != zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z2 ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z2 @ H ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z2 @ H ) @ N ) @ ( power_power_real @ Z2 @ N ) ) @ H ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z2 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_3422_lemma__termdiff3,axiom,
    ! [H: complex,Z2: complex,K5: real,N: nat] :
      ( ( H != zero_zero_complex )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z2 ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z2 @ H ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z2 @ H ) @ N ) @ ( power_power_complex @ Z2 @ N ) ) @ H ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z2 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_3423_even__succ__mod__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3424_even__succ__mod__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3425_even__succ__mod__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3426_even__succ__mod__exp,axiom,
    ! [A: code_natural,N: nat] :
      ( ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ one_one_Code_natural @ A ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) )
          = ( plus_p4538020629002901425atural @ one_one_Code_natural @ ( modulo8411746178871703098atural @ A @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_3427_mod__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = M ) ) ).

% mod_less
thf(fact_3428_mod__mod__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_3429_mod__mod__trivial,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_3430_mod__mod__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_3431_mod__mod__trivial,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( modulo8411746178871703098atural @ A @ B ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_3432_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_3433_bits__mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_3434_bits__mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_0
thf(fact_3435_bits__mod__0,axiom,
    ! [A: code_natural] :
      ( ( modulo8411746178871703098atural @ zero_z2226904508553997617atural @ A )
      = zero_z2226904508553997617atural ) ).

% bits_mod_0
thf(fact_3436_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_3437_mod__self,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ A )
      = zero_zero_int ) ).

% mod_self
thf(fact_3438_mod__self,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_self
thf(fact_3439_mod__self,axiom,
    ! [A: code_natural] :
      ( ( modulo8411746178871703098atural @ A @ A )
      = zero_z2226904508553997617atural ) ).

% mod_self
thf(fact_3440_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_3441_mod__by__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ zero_zero_int )
      = A ) ).

% mod_by_0
thf(fact_3442_mod__by__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
      = A ) ).

% mod_by_0
thf(fact_3443_mod__by__0,axiom,
    ! [A: code_natural] :
      ( ( modulo8411746178871703098atural @ A @ zero_z2226904508553997617atural )
      = A ) ).

% mod_by_0
thf(fact_3444_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_3445_mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mod_0
thf(fact_3446_mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_0
thf(fact_3447_mod__0,axiom,
    ! [A: code_natural] :
      ( ( modulo8411746178871703098atural @ zero_z2226904508553997617atural @ A )
      = zero_z2226904508553997617atural ) ).

% mod_0
thf(fact_3448_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_3449_mod__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self1
thf(fact_3450_mod__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self1
thf(fact_3451_mod__add__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self1
thf(fact_3452_mod__add__self1,axiom,
    ! [B: code_natural,A: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ B @ A ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_add_self1
thf(fact_3453_mod__add__self2,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self2
thf(fact_3454_mod__add__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self2
thf(fact_3455_mod__add__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self2
thf(fact_3456_mod__add__self2,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ B ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_add_self2
thf(fact_3457_minus__mod__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mod_self2
thf(fact_3458_minus__mod__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mod_self2
thf(fact_3459_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_3460_mod__mult__self1__is__0,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
      = zero_zero_int ) ).

% mod_mult_self1_is_0
thf(fact_3461_mod__mult__self1__is__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self1_is_0
thf(fact_3462_mod__mult__self1__is__0,axiom,
    ! [B: code_natural,A: code_natural] :
      ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ B @ A ) @ B )
      = zero_z2226904508553997617atural ) ).

% mod_mult_self1_is_0
thf(fact_3463_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_3464_mod__mult__self2__is__0,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_mult_self2_is_0
thf(fact_3465_mod__mult__self2__is__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self2_is_0
thf(fact_3466_mod__mult__self2__is__0,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ B ) @ B )
      = zero_z2226904508553997617atural ) ).

% mod_mult_self2_is_0
thf(fact_3467_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_3468_bits__mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_3469_bits__mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_by_1
thf(fact_3470_bits__mod__by__1,axiom,
    ! [A: code_natural] :
      ( ( modulo8411746178871703098atural @ A @ one_one_Code_natural )
      = zero_z2226904508553997617atural ) ).

% bits_mod_by_1
thf(fact_3471_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_3472_mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_3473_mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% mod_by_1
thf(fact_3474_mod__by__1,axiom,
    ! [A: code_natural] :
      ( ( modulo8411746178871703098atural @ A @ one_one_Code_natural )
      = zero_z2226904508553997617atural ) ).

% mod_by_1
thf(fact_3475_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_3476_bits__mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_3477_bits__mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_div_trivial
thf(fact_3478_bits__mod__div__trivial,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( divide5121882707175180666atural @ ( modulo8411746178871703098atural @ A @ B ) @ B )
      = zero_z2226904508553997617atural ) ).

% bits_mod_div_trivial
thf(fact_3479_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_3480_mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_3481_mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_div_trivial
thf(fact_3482_mod__div__trivial,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( divide5121882707175180666atural @ ( modulo8411746178871703098atural @ A @ B ) @ B )
      = zero_z2226904508553997617atural ) ).

% mod_div_trivial
thf(fact_3483_mod__mult__self1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self1
thf(fact_3484_mod__mult__self1,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self1
thf(fact_3485_mod__mult__self1,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self1
thf(fact_3486_mod__mult__self1,axiom,
    ! [A: code_natural,C: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ ( times_2397367101498566445atural @ C @ B ) ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_mult_self1
thf(fact_3487_mod__mult__self2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self2
thf(fact_3488_mod__mult__self2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self2
thf(fact_3489_mod__mult__self2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self2
thf(fact_3490_mod__mult__self2,axiom,
    ! [A: code_natural,B: code_natural,C: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ ( times_2397367101498566445atural @ B @ C ) ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_mult_self2
thf(fact_3491_mod__mult__self3,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self3
thf(fact_3492_mod__mult__self3,axiom,
    ! [C: int,B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self3
thf(fact_3493_mod__mult__self3,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self3
thf(fact_3494_mod__mult__self3,axiom,
    ! [C: code_natural,B: code_natural,A: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ C @ B ) @ A ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_mult_self3
thf(fact_3495_mod__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self4
thf(fact_3496_mod__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self4
thf(fact_3497_mod__mult__self4,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self4
thf(fact_3498_mod__mult__self4,axiom,
    ! [B: code_natural,C: code_natural,A: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ B @ C ) @ A ) @ B )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% mod_mult_self4
thf(fact_3499_dvd__imp__mod__0,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( modulo_modulo_nat @ B @ A )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_3500_dvd__imp__mod__0,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( modulo_modulo_int @ B @ A )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_3501_dvd__imp__mod__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( modulo364778990260209775nteger @ B @ A )
        = zero_z3403309356797280102nteger ) ) ).

% dvd_imp_mod_0
thf(fact_3502_dvd__imp__mod__0,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( dvd_dvd_Code_natural @ A @ B )
     => ( ( modulo8411746178871703098atural @ B @ A )
        = zero_z2226904508553997617atural ) ) ).

% dvd_imp_mod_0
thf(fact_3503_Suc__mod__mult__self1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self1
thf(fact_3504_Suc__mod__mult__self2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self2
thf(fact_3505_Suc__mod__mult__self3,axiom,
    ! [K: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self3
thf(fact_3506_Suc__mod__mult__self4,axiom,
    ! [N: nat,K: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self4
thf(fact_3507_mod__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( modulo_modulo_int @ K @ L )
          = K ) ) ) ).

% mod_pos_pos_trivial
thf(fact_3508_mod__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( modulo_modulo_int @ K @ L )
          = K ) ) ) ).

% mod_neg_neg_trivial
thf(fact_3509_Suc__0__mod__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( zero_n2687167440665602831ol_nat
        @ ( N
         != ( suc @ zero_zero_nat ) ) ) ) ).

% Suc_0_mod_eq
thf(fact_3510_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_3511_zmod__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).

% zmod_numeral_Bit0
thf(fact_3512_Suc__times__numeral__mod__eq,axiom,
    ! [K: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K )
       != one_one_nat )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N ) ) @ ( numeral_numeral_nat @ K ) )
        = one_one_nat ) ) ).

% Suc_times_numeral_mod_eq
thf(fact_3513_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_3514_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_3515_bits__one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_one_mod_two_eq_one
thf(fact_3516_bits__one__mod__two__eq__one,axiom,
    ( ( modulo8411746178871703098atural @ one_one_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
    = one_one_Code_natural ) ).

% bits_one_mod_two_eq_one
thf(fact_3517_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_3518_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_3519_one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% one_mod_two_eq_one
thf(fact_3520_one__mod__two__eq__one,axiom,
    ( ( modulo8411746178871703098atural @ one_one_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
    = one_one_Code_natural ) ).

% one_mod_two_eq_one
thf(fact_3521_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_3522_even__mod__2__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3523_even__mod__2__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3524_even__mod__2__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3525_even__mod__2__iff,axiom,
    ! [A: code_natural] :
      ( ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_3526_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_3527_not__mod__2__eq__0__eq__1,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3528_not__mod__2__eq__0__eq__1,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3529_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3530_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
       != zero_z2226904508553997617atural )
      = ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
        = one_one_Code_natural ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3531_not__mod__2__eq__1__eq__0,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3532_not__mod__2__eq__1__eq__0,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3533_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != one_one_Code_integer )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3534_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
       != one_one_Code_natural )
      = ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
        = zero_z2226904508553997617atural ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3535_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_3536_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo8411746178871703098atural @ one_one_Code_natural @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n8403883297036319079atural @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_3537_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_3538_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_3539_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_3540_add__diff__assoc__enat,axiom,
    ! [Z2: extended_enat,Y: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z2 @ Y )
     => ( ( plus_p3455044024723400733d_enat @ X @ ( minus_3235023915231533773d_enat @ Y @ Z2 ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ Z2 ) ) ) ).

% add_diff_assoc_enat
thf(fact_3541_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_3542_unset__bit__less__eq,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).

% unset_bit_less_eq
thf(fact_3543_set__bit__greater__eq,axiom,
    ! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).

% set_bit_greater_eq
thf(fact_3544_enat__0__less__mult__iff,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
      = ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
        & ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).

% enat_0_less_mult_iff
thf(fact_3545_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) ) ).

% of_nat_mod
thf(fact_3546_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri3763490453095760265atural @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo8411746178871703098atural @ ( semiri3763490453095760265atural @ M ) @ ( semiri3763490453095760265atural @ N ) ) ) ).

% of_nat_mod
thf(fact_3547_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mod
thf(fact_3548_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mod
thf(fact_3549_zmod__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zmod_int
thf(fact_3550_mod__mult__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_3551_mod__mult__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_3552_mod__mult__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_3553_mod__mult__eq,axiom,
    ! [A: code_natural,C: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ A @ C ) @ ( modulo8411746178871703098atural @ B @ C ) ) @ C )
      = ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_3554_mod__mult__cong,axiom,
    ! [A: nat,C: nat,A5: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A5 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( times_times_nat @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_3555_mod__mult__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( times_times_int @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_3556_mod__mult__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_3557_mod__mult__cong,axiom,
    ! [A: code_natural,C: code_natural,A5: code_natural,B: code_natural,B6: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ C )
        = ( modulo8411746178871703098atural @ A5 @ C ) )
     => ( ( ( modulo8411746178871703098atural @ B @ C )
          = ( modulo8411746178871703098atural @ B6 @ C ) )
       => ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ B ) @ C )
          = ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_3558_mod__mult__mult2,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
      = ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_3559_mod__mult__mult2,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_3560_mod__mult__mult2,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_3561_mod__mult__mult2,axiom,
    ! [A: code_natural,C: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ C ) @ ( times_2397367101498566445atural @ B @ C ) )
      = ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_3562_mult__mod__right,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_3563_mult__mod__right,axiom,
    ! [C: int,A: int,B: int] :
      ( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
      = ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_3564_mult__mod__right,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_3565_mult__mod__right,axiom,
    ! [C: code_natural,A: code_natural,B: code_natural] :
      ( ( times_2397367101498566445atural @ C @ ( modulo8411746178871703098atural @ A @ B ) )
      = ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ C @ A ) @ ( times_2397367101498566445atural @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_3566_mod__mult__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_3567_mod__mult__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_3568_mod__mult__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_3569_mod__mult__left__eq,axiom,
    ! [A: code_natural,C: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ A @ C ) @ B ) @ C )
      = ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_3570_mod__mult__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_3571_mod__mult__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_3572_mod__mult__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_3573_mod__mult__right__eq,axiom,
    ! [A: code_natural,B: code_natural,C: code_natural] :
      ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ ( modulo8411746178871703098atural @ B @ C ) ) @ C )
      = ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_3574_mod__add__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_3575_mod__add__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_3576_mod__add__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_3577_mod__add__eq,axiom,
    ! [A: code_natural,C: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ C ) @ ( modulo8411746178871703098atural @ B @ C ) ) @ C )
      = ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_3578_mod__add__cong,axiom,
    ! [A: nat,C: nat,A5: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A5 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_3579_mod__add__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( plus_plus_int @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_3580_mod__add__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_3581_mod__add__cong,axiom,
    ! [A: code_natural,C: code_natural,A5: code_natural,B: code_natural,B6: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ C )
        = ( modulo8411746178871703098atural @ A5 @ C ) )
     => ( ( ( modulo8411746178871703098atural @ B @ C )
          = ( modulo8411746178871703098atural @ B6 @ C ) )
       => ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ B ) @ C )
          = ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_3582_mod__add__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_3583_mod__add__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_3584_mod__add__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_3585_mod__add__left__eq,axiom,
    ! [A: code_natural,C: code_natural,B: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ C ) @ B ) @ C )
      = ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_3586_mod__add__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_3587_mod__add__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_3588_mod__add__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_3589_mod__add__right__eq,axiom,
    ! [A: code_natural,B: code_natural,C: code_natural] :
      ( ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ ( modulo8411746178871703098atural @ B @ C ) ) @ C )
      = ( modulo8411746178871703098atural @ ( plus_p4538020629002901425atural @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_3590_mod__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_3591_mod__diff__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_3592_mod__diff__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( minus_minus_int @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_3593_mod__diff__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_3594_mod__diff__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_3595_mod__diff__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_3596_mod__diff__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_3597_mod__diff__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_3598_power__mod,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_3599_power__mod,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_3600_power__mod,axiom,
    ! [A: code_integer,B: code_integer,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
      = ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_3601_power__mod,axiom,
    ! [A: code_natural,B: code_natural,N: nat] :
      ( ( modulo8411746178871703098atural @ ( power_7079662738309270450atural @ ( modulo8411746178871703098atural @ A @ B ) @ N ) @ B )
      = ( modulo8411746178871703098atural @ ( power_7079662738309270450atural @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_3602_dvd__mod__imp__dvd,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3603_dvd__mod__imp__dvd,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
     => ( ( dvd_dvd_int @ C @ B )
       => ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3604_dvd__mod__imp__dvd,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3605_dvd__mod__imp__dvd,axiom,
    ! [C: code_natural,A: code_natural,B: code_natural] :
      ( ( dvd_dvd_Code_natural @ C @ ( modulo8411746178871703098atural @ A @ B ) )
     => ( ( dvd_dvd_Code_natural @ C @ B )
       => ( dvd_dvd_Code_natural @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_3606_dvd__mod__iff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
        = ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3607_dvd__mod__iff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
        = ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3608_dvd__mod__iff,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
        = ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3609_dvd__mod__iff,axiom,
    ! [C: code_natural,B: code_natural,A: code_natural] :
      ( ( dvd_dvd_Code_natural @ C @ B )
     => ( ( dvd_dvd_Code_natural @ C @ ( modulo8411746178871703098atural @ A @ B ) )
        = ( dvd_dvd_Code_natural @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_3610_mod__mod__cancel,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
        = ( modulo_modulo_nat @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3611_mod__mod__cancel,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
        = ( modulo_modulo_int @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3612_mod__mod__cancel,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
        = ( modulo364778990260209775nteger @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3613_mod__mod__cancel,axiom,
    ! [C: code_natural,B: code_natural,A: code_natural] :
      ( ( dvd_dvd_Code_natural @ C @ B )
     => ( ( modulo8411746178871703098atural @ ( modulo8411746178871703098atural @ A @ B ) @ C )
        = ( modulo8411746178871703098atural @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_3614_dvd__mod,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3615_dvd__mod,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ K @ M )
     => ( ( dvd_dvd_int @ K @ N )
       => ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3616_dvd__mod,axiom,
    ! [K: code_integer,M: code_integer,N: code_integer] :
      ( ( dvd_dvd_Code_integer @ K @ M )
     => ( ( dvd_dvd_Code_integer @ K @ N )
       => ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3617_dvd__mod,axiom,
    ! [K: code_natural,M: code_natural,N: code_natural] :
      ( ( dvd_dvd_Code_natural @ K @ M )
     => ( ( dvd_dvd_Code_natural @ K @ N )
       => ( dvd_dvd_Code_natural @ K @ ( modulo8411746178871703098atural @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_3618_mod__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% mod_Suc_eq
thf(fact_3619_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).

% mod_Suc_Suc_eq
thf(fact_3620_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_3621_neg__mod__bound,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).

% neg_mod_bound
thf(fact_3622_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_3623_neg__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
        & ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% neg_mod_conj
thf(fact_3624_pos__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
        & ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).

% pos_mod_conj
thf(fact_3625_zmod__trivial__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( modulo_modulo_int @ I @ K )
        = I )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zmod_trivial_iff
thf(fact_3626_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_3627_neg__mod__sign,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_3628_mod__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).

% mod_less_eq_dividend
thf(fact_3629_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3630_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3631_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3632_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3633_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3634_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3635_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3636_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = A )
      = ( ( divide_divide_int @ A @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3637_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = A )
      = ( ( divide6298287555418463151nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3638_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ B )
        = A )
      = ( ( divide5121882707175180666atural @ A @ B )
        = zero_z2226904508553997617atural ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3639_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_3640_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_3641_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_3642_mod__eqE,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
     => ~ ! [D2: int] :
            ( B
           != ( plus_plus_int @ A @ ( times_times_int @ C @ D2 ) ) ) ) ).

% mod_eqE
thf(fact_3643_mod__eqE,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
     => ~ ! [D2: code_integer] :
            ( B
           != ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D2 ) ) ) ) ).

% mod_eqE
thf(fact_3644_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_3645_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_3646_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
      = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_3647_mod__0__imp__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3648_mod__0__imp__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3649_mod__0__imp__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3650_mod__0__imp__dvd,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ B )
        = zero_z2226904508553997617atural )
     => ( dvd_dvd_Code_natural @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_3651_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( modulo_modulo_nat @ B2 @ A2 )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3652_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A2: int,B2: int] :
          ( ( modulo_modulo_int @ B2 @ A2 )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3653_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [A2: code_integer,B2: code_integer] :
          ( ( modulo364778990260209775nteger @ B2 @ A2 )
          = zero_z3403309356797280102nteger ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3654_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_natural
    = ( ^ [A2: code_natural,B2: code_natural] :
          ( ( modulo8411746178871703098atural @ B2 @ A2 )
          = zero_z2226904508553997617atural ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_3655_mod__eq__0__iff__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3656_mod__eq__0__iff__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3657_mod__eq__0__iff__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3658_mod__eq__0__iff__dvd,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( ( modulo8411746178871703098atural @ A @ B )
        = zero_z2226904508553997617atural )
      = ( dvd_dvd_Code_natural @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_3659_div__add1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3660_div__add1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3661_div__add1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3662_div__add1__eq,axiom,
    ! [A: code_natural,B: code_natural,C: code_natural] :
      ( ( divide5121882707175180666atural @ ( plus_p4538020629002901425atural @ A @ B ) @ C )
      = ( plus_p4538020629002901425atural @ ( plus_p4538020629002901425atural @ ( divide5121882707175180666atural @ A @ C ) @ ( divide5121882707175180666atural @ B @ C ) ) @ ( divide5121882707175180666atural @ ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ C ) @ ( modulo8411746178871703098atural @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3663_dvd__minus__mod,axiom,
    ! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_3664_dvd__minus__mod,axiom,
    ! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_3665_dvd__minus__mod,axiom,
    ! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_3666_dvd__minus__mod,axiom,
    ! [B: code_natural,A: code_natural] : ( dvd_dvd_Code_natural @ B @ ( minus_7197305767214868737atural @ A @ ( modulo8411746178871703098atural @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_3667_mod__eq__dvd__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
      = ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_3668_mod__eq__dvd__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
      = ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_3669_mod__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
          = N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
         != N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).

% mod_Suc
thf(fact_3670_mod__induct,axiom,
    ! [P: nat > $o,N: nat,P2: nat,M: nat] :
      ( ( P @ N )
     => ( ( ord_less_nat @ N @ P2 )
       => ( ( ord_less_nat @ M @ P2 )
         => ( ! [N2: nat] :
                ( ( ord_less_nat @ N2 @ P2 )
               => ( ( P @ N2 )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N2 ) @ P2 ) ) ) )
           => ( P @ M ) ) ) ) ) ).

% mod_induct
thf(fact_3671_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [M2: nat] : ( P @ M2 @ zero_zero_nat )
     => ( ! [M2: nat,N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ( P @ N2 @ ( modulo_modulo_nat @ M2 @ N2 ) )
             => ( P @ M2 @ N2 ) ) )
       => ( P @ M @ N ) ) ) ).

% gcd_nat_induct
thf(fact_3672_mod__less__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_less_divisor
thf(fact_3673_mod__Suc__le__divisor,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).

% mod_Suc_le_divisor
thf(fact_3674_mod__eq__0D,axiom,
    ! [M: nat,D: nat] :
      ( ( ( modulo_modulo_nat @ M @ D )
        = zero_zero_nat )
     => ? [Q6: nat] :
          ( M
          = ( times_times_nat @ D @ Q6 ) ) ) ).

% mod_eq_0D
thf(fact_3675_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( ord_less_nat @ M3 @ N3 ) @ M3 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ).

% mod_if
thf(fact_3676_mod__geq,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% mod_geq
thf(fact_3677_le__mod__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% le_mod_geq
thf(fact_3678_zmod__eq__0__iff,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
      = ( ? [Q5: int] :
            ( M
            = ( times_times_int @ D @ Q5 ) ) ) ) ).

% zmod_eq_0_iff
thf(fact_3679_zmod__eq__0D,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
     => ? [Q6: int] :
          ( M
          = ( times_times_int @ D @ Q6 ) ) ) ).

% zmod_eq_0D
thf(fact_3680_nat__mod__eq__iff,axiom,
    ! [X: nat,N: nat,Y: nat] :
      ( ( ( modulo_modulo_nat @ X @ N )
        = ( modulo_modulo_nat @ Y @ N ) )
      = ( ? [Q1: nat,Q22: nat] :
            ( ( plus_plus_nat @ X @ ( times_times_nat @ N @ Q1 ) )
            = ( plus_plus_nat @ Y @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).

% nat_mod_eq_iff
thf(fact_3681_mod__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K @ L )
          = ( plus_plus_int @ K @ L ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_3682_mod__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( modulo_modulo_int @ K @ L )
          = ( modulo_modulo_int @ ( minus_minus_int @ K @ L ) @ L ) ) ) ) ).

% mod_pos_geq
thf(fact_3683_zdiv__mono__strict,axiom,
    ! [A3: int,B5: int,N: int] :
      ( ( ord_less_int @ A3 @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ( ( modulo_modulo_int @ A3 @ N )
            = zero_zero_int )
         => ( ( ( modulo_modulo_int @ B5 @ N )
              = zero_zero_int )
           => ( ord_less_int @ ( divide_divide_int @ A3 @ N ) @ ( divide_divide_int @ B5 @ N ) ) ) ) ) ) ).

% zdiv_mono_strict
thf(fact_3684_mod__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( ( L = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K ) )
        | ( ord_less_int @ zero_zero_int @ L ) ) ) ).

% mod_int_pos_iff
thf(fact_3685_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ A @ B )
       => ( ( modulo364778990260209775nteger @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3686_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( modulo_modulo_nat @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3687_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( modulo_modulo_int @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_3688_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3689_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3690_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_3691_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_3692_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_3693_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(2)
thf(fact_3694_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_3695_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_3696_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
      = zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(1)
thf(fact_3697_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_3698_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_3699_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_3700_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_3701_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_3702_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_3703_cancel__div__mod__rules_I2_J,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3704_cancel__div__mod__rules_I2_J,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3705_cancel__div__mod__rules_I2_J,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3706_cancel__div__mod__rules_I2_J,axiom,
    ! [B: code_natural,A: code_natural,C: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ B @ ( divide5121882707175180666atural @ A @ B ) ) @ ( modulo8411746178871703098atural @ A @ B ) ) @ C )
      = ( plus_p4538020629002901425atural @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3707_cancel__div__mod__rules_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3708_cancel__div__mod__rules_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3709_cancel__div__mod__rules_I1_J,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3710_cancel__div__mod__rules_I1_J,axiom,
    ! [A: code_natural,B: code_natural,C: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ A @ B ) @ B ) @ ( modulo8411746178871703098atural @ A @ B ) ) @ C )
      = ( plus_p4538020629002901425atural @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3711_mod__div__decomp,axiom,
    ! [A: nat,B: nat] :
      ( A
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3712_mod__div__decomp,axiom,
    ! [A: int,B: int] :
      ( A
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3713_mod__div__decomp,axiom,
    ! [A: code_integer,B: code_integer] :
      ( A
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3714_mod__div__decomp,axiom,
    ! [A: code_natural,B: code_natural] :
      ( A
      = ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ A @ B ) @ B ) @ ( modulo8411746178871703098atural @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3715_div__mult__mod__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3716_div__mult__mod__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3717_div__mult__mod__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3718_div__mult__mod__eq,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ A @ B ) @ B ) @ ( modulo8411746178871703098atural @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3719_mod__div__mult__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3720_mod__div__mult__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3721_mod__div__mult__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3722_mod__div__mult__eq,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ B ) @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3723_mod__mult__div__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3724_mod__mult__div__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3725_mod__mult__div__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3726_mod__mult__div__eq,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ B ) @ ( times_2397367101498566445atural @ B @ ( divide5121882707175180666atural @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3727_mult__div__mod__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3728_mult__div__mod__eq,axiom,
    ! [B: int,A: int] :
      ( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3729_mult__div__mod__eq,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3730_mult__div__mod__eq,axiom,
    ! [B: code_natural,A: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ B @ ( divide5121882707175180666atural @ A @ B ) ) @ ( modulo8411746178871703098atural @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3731_div__mult1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3732_div__mult1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3733_div__mult1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3734_div__mult1__eq,axiom,
    ! [A: code_natural,B: code_natural,C: code_natural] :
      ( ( divide5121882707175180666atural @ ( times_2397367101498566445atural @ A @ B ) @ C )
      = ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ A @ ( divide5121882707175180666atural @ B @ C ) ) @ ( divide5121882707175180666atural @ ( times_2397367101498566445atural @ A @ ( modulo8411746178871703098atural @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3735_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_3736_unit__imp__mod__eq__0,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_3737_unit__imp__mod__eq__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% unit_imp_mod_eq_0
thf(fact_3738_unit__imp__mod__eq__0,axiom,
    ! [B: code_natural,A: code_natural] :
      ( ( dvd_dvd_Code_natural @ B @ one_one_Code_natural )
     => ( ( modulo8411746178871703098atural @ A @ B )
        = zero_z2226904508553997617atural ) ) ).

% unit_imp_mod_eq_0
thf(fact_3739_minus__mult__div__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3740_minus__mult__div__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3741_minus__mult__div__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3742_minus__mult__div__eq__mod,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( minus_7197305767214868737atural @ A @ ( times_2397367101498566445atural @ B @ ( divide5121882707175180666atural @ A @ B ) ) )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3743_minus__mod__eq__mult__div,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3744_minus__mod__eq__mult__div,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3745_minus__mod__eq__mult__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3746_minus__mod__eq__mult__div,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( minus_7197305767214868737atural @ A @ ( modulo8411746178871703098atural @ A @ B ) )
      = ( times_2397367101498566445atural @ B @ ( divide5121882707175180666atural @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3747_minus__mod__eq__div__mult,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3748_minus__mod__eq__div__mult,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3749_minus__mod__eq__div__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3750_minus__mod__eq__div__mult,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( minus_7197305767214868737atural @ A @ ( modulo8411746178871703098atural @ A @ B ) )
      = ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3751_minus__div__mult__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3752_minus__div__mult__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3753_minus__div__mult__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3754_minus__div__mult__eq__mod,axiom,
    ! [A: code_natural,B: code_natural] :
      ( ( minus_7197305767214868737atural @ A @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ A @ B ) @ B ) )
      = ( modulo8411746178871703098atural @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3755_mod__le__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_le_divisor
thf(fact_3756_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_3757_div__less__mono,axiom,
    ! [A3: nat,B5: nat,N: nat] :
      ( ( ord_less_nat @ A3 @ B5 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( modulo_modulo_nat @ A3 @ N )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B5 @ N )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A3 @ N ) @ ( divide_divide_nat @ B5 @ N ) ) ) ) ) ) ).

% div_less_mono
thf(fact_3758_nat__mod__eq__lemma,axiom,
    ! [X: nat,N: nat,Y: nat] :
      ( ( ( modulo_modulo_nat @ X @ N )
        = ( modulo_modulo_nat @ Y @ N ) )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ? [Q6: nat] :
            ( X
            = ( plus_plus_nat @ Y @ ( times_times_nat @ N @ Q6 ) ) ) ) ) ).

% nat_mod_eq_lemma
thf(fact_3759_mod__eq__nat2E,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N @ Q2 ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ~ ! [S3: nat] :
              ( N
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_3760_mod__eq__nat1E,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N @ Q2 ) )
     => ( ( ord_less_eq_nat @ N @ M )
       => ~ ! [S3: nat] :
              ( M
             != ( plus_plus_nat @ N @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_3761_mod__eq__dvd__iff__nat,axiom,
    ! [N: nat,M: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( ( modulo_modulo_nat @ M @ Q2 )
          = ( modulo_modulo_nat @ N @ Q2 ) )
        = ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% mod_eq_dvd_iff_nat
thf(fact_3762_split__zmod,axiom,
    ! [P: int > $o,N: int,K: int] :
      ( ( P @ ( modulo_modulo_int @ N @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ N ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) ) ) ) ).

% split_zmod
thf(fact_3763_int__mod__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ R @ zero_zero_int )
       => ( ( ord_less_int @ B @ R )
         => ( ( modulo_modulo_int @ A @ B )
            = R ) ) ) ) ).

% int_mod_neg_eq
thf(fact_3764_int__mod__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R )
       => ( ( ord_less_int @ R @ B )
         => ( ( modulo_modulo_int @ A @ B )
            = R ) ) ) ) ).

% int_mod_pos_eq
thf(fact_3765_div__mod__decomp,axiom,
    ! [A3: nat,N: nat] :
      ( A3
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A3 @ N ) @ N ) @ ( modulo_modulo_nat @ A3 @ N ) ) ) ).

% div_mod_decomp
thf(fact_3766_mod__mult2__eq,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).

% mod_mult2_eq
thf(fact_3767_modulo__nat__def,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N3: nat] : ( minus_minus_nat @ M3 @ ( times_times_nat @ ( divide_divide_nat @ M3 @ N3 ) @ N3 ) ) ) ) ).

% modulo_nat_def
thf(fact_3768_div__mod__decomp__int,axiom,
    ! [A3: int,N: int] :
      ( A3
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A3 @ N ) @ N ) @ ( modulo_modulo_int @ A3 @ N ) ) ) ).

% div_mod_decomp_int
thf(fact_3769_mod__mult2__eq_H,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_3770_mod__mult2__eq_H,axiom,
    ! [A: code_natural,M: nat,N: nat] :
      ( ( modulo8411746178871703098atural @ A @ ( times_2397367101498566445atural @ ( semiri3763490453095760265atural @ M ) @ ( semiri3763490453095760265atural @ N ) ) )
      = ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ ( semiri3763490453095760265atural @ M ) @ ( modulo8411746178871703098atural @ ( divide5121882707175180666atural @ A @ ( semiri3763490453095760265atural @ M ) ) @ ( semiri3763490453095760265atural @ N ) ) ) @ ( modulo8411746178871703098atural @ A @ ( semiri3763490453095760265atural @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_3771_mod__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_3772_mod__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_3773_even__even__mod__4__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_3774_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_3775_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_3776_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_3777_split__mod,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( modulo_modulo_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ M ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) )
               => ( P @ J3 ) ) ) ) ) ) ).

% split_mod
thf(fact_3778_mod__nat__eqI,axiom,
    ! [R: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ R @ N )
     => ( ( ord_less_eq_nat @ R @ M )
       => ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R ) )
         => ( ( modulo_modulo_nat @ M @ N )
            = R ) ) ) ) ).

% mod_nat_eqI
thf(fact_3779_verit__le__mono__div__int,axiom,
    ! [A3: int,B5: int,N: int] :
      ( ( ord_less_int @ A3 @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A3 @ N )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B5 @ N )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B5 @ N ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_3780_zmod__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% zmod_zmult2_eq
thf(fact_3781_split__neg__lemma,axiom,
    ! [K: int,P: int > int > $o,N: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_neg_lemma
thf(fact_3782_split__pos__lemma,axiom,
    ! [K: int,P: int > int > $o,N: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_pos_lemma
thf(fact_3783_real__of__nat__div__aux,axiom,
    ! [X: nat,D: nat] :
      ( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ D ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X @ D ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X @ D ) ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div_aux
thf(fact_3784_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
     => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3785_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3786_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3787_even__iff__mod__2__eq__zero,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3788_even__iff__mod__2__eq__zero,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3789_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3790_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_natural] :
      ( ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A )
      = ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
        = zero_z2226904508553997617atural ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_3791_odd__iff__mod__2__eq__one,axiom,
    ! [A: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3792_odd__iff__mod__2__eq__one,axiom,
    ! [A: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3793_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3794_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_natural] :
      ( ( ~ ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
        = one_one_Code_natural ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_3795_of__bool__odd__eq__mod__2,axiom,
    ! [A: code_natural] :
      ( ( zero_n8403883297036319079atural
        @ ~ ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A ) )
      = ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_3796_of__bool__odd__eq__mod__2,axiom,
    ! [A: nat] :
      ( ( zero_n2687167440665602831ol_nat
        @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_3797_of__bool__odd__eq__mod__2,axiom,
    ! [A: int] :
      ( ( zero_n2684676970156552555ol_int
        @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_3798_of__bool__odd__eq__mod__2,axiom,
    ! [A: code_integer] :
      ( ( zero_n356916108424825756nteger
        @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_3799_Suc__times__mod__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_3800_divmod__digit__0_I2_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3801_divmod__digit__0_I2_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_int @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3802_divmod__digit__0_I2_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
          = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3803_bits__stable__imp__add__self,axiom,
    ! [A: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_3804_bits__stable__imp__add__self,axiom,
    ! [A: int] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_3805_bits__stable__imp__add__self,axiom,
    ! [A: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% bits_stable_imp_add_self
thf(fact_3806_bits__stable__imp__add__self,axiom,
    ! [A: code_natural] :
      ( ( ( divide5121882707175180666atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p4538020629002901425atural @ A @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) )
        = zero_z2226904508553997617atural ) ) ).

% bits_stable_imp_add_self
thf(fact_3807_mod2__eq__if,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_3808_mod2__eq__if,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_3809_mod2__eq__if,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = zero_z3403309356797280102nteger ) )
      & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = one_one_Code_integer ) ) ) ).

% mod2_eq_if
thf(fact_3810_mod2__eq__if,axiom,
    ! [A: code_natural] :
      ( ( ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A )
       => ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
          = zero_z2226904508553997617atural ) )
      & ( ~ ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A )
       => ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
          = one_one_Code_natural ) ) ) ).

% mod2_eq_if
thf(fact_3811_parity__cases,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_3812_parity__cases,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_3813_parity__cases,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
         != zero_z3403309356797280102nteger ) )
     => ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
           != one_one_Code_integer ) ) ) ).

% parity_cases
thf(fact_3814_parity__cases,axiom,
    ! [A: code_natural] :
      ( ( ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A )
       => ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
         != zero_z2226904508553997617atural ) )
     => ~ ( ~ ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A )
         => ( ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) )
           != one_one_Code_natural ) ) ) ).

% parity_cases
thf(fact_3815_div__exp__mod__exp__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3816_div__exp__mod__exp__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3817_div__exp__mod__exp__eq,axiom,
    ! [A: code_integer,N: nat,M: nat] :
      ( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
      = ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3818_div__exp__mod__exp__eq,axiom,
    ! [A: code_natural,N: nat,M: nat] :
      ( ( modulo8411746178871703098atural @ ( divide5121882707175180666atural @ A @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ M ) )
      = ( divide5121882707175180666atural @ ( modulo8411746178871703098atural @ A @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3819_verit__le__mono__div,axiom,
    ! [A3: nat,B5: nat,N: nat] :
      ( ( ord_less_nat @ A3 @ B5 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A3 @ N )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B5 @ N )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B5 @ N ) ) ) ) ).

% verit_le_mono_div
thf(fact_3820_divmod__digit__0_I1_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3821_divmod__digit__0_I1_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3822_divmod__digit__0_I1_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3823_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3824_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3825_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
        = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3826_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: code_natural] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo8411746178871703098atural @ ( times_2397367101498566445atural @ A @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ M ) ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) )
        = ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ A @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3827_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo8411746178871703098atural @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ M ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N ) )
      = ( times_2397367101498566445atural @ ( zero_n8403883297036319079atural @ ( ord_less_nat @ M @ N ) ) @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_3828_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_3829_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_3830_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_3831_pos__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).

% pos_zmod_mult_2
thf(fact_3832_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A4: real,B4: real,C3: real] :
            ( ( P @ A4 @ B4 )
           => ( ( P @ B4 @ C3 )
             => ( ( ord_less_eq_real @ A4 @ B4 )
               => ( ( ord_less_eq_real @ B4 @ C3 )
                 => ( P @ A4 @ C3 ) ) ) ) )
       => ( ! [X4: real] :
              ( ( ord_less_eq_real @ A @ X4 )
             => ( ( ord_less_eq_real @ X4 @ B )
               => ? [D5: real] :
                    ( ( ord_less_real @ zero_zero_real @ D5 )
                    & ! [A4: real,B4: real] :
                        ( ( ( ord_less_eq_real @ A4 @ X4 )
                          & ( ord_less_eq_real @ X4 @ B4 )
                          & ( ord_less_real @ ( minus_minus_real @ B4 @ A4 ) @ D5 ) )
                       => ( P @ A4 @ B4 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_3833_mod__double__modulus,axiom,
    ! [M: code_integer,X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
       => ( ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( modulo364778990260209775nteger @ X @ M ) )
          | ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3834_mod__double__modulus,axiom,
    ! [M: nat,X: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_nat @ X @ M ) )
          | ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_nat @ ( modulo_modulo_nat @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3835_mod__double__modulus,axiom,
    ! [M: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_int @ X @ M ) )
          | ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_int @ ( modulo_modulo_int @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3836_divmod__digit__1_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3837_divmod__digit__1_I2_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3838_divmod__digit__1_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3839_unset__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_3840_unset__bit__Suc,axiom,
    ! [N: nat,A: code_natural] :
      ( ( bit_se7083795435491715335atural @ ( suc @ N ) @ A )
      = ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) @ ( times_2397367101498566445atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( bit_se7083795435491715335atural @ N @ ( divide5121882707175180666atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_3841_unset__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_3842_unset__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_3843_set__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_3844_set__bit__Suc,axiom,
    ! [N: nat,A: code_natural] :
      ( ( bit_se1617098188084679374atural @ ( suc @ N ) @ A )
      = ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) @ ( times_2397367101498566445atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( bit_se1617098188084679374atural @ N @ ( divide5121882707175180666atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_3845_set__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_3846_set__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_3847_flip__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_3848_flip__bit__Suc,axiom,
    ! [N: nat,A: code_natural] :
      ( ( bit_se168947363167071951atural @ ( suc @ N ) @ A )
      = ( plus_p4538020629002901425atural @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) @ ( times_2397367101498566445atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ ( bit_se168947363167071951atural @ N @ ( divide5121882707175180666atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_3849_flip__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_3850_flip__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_3851_even__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( suc @ zero_zero_nat ) )
     => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_mod_4_div_2
thf(fact_3852_neg__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).

% neg_zmod_mult_2
thf(fact_3853_divmod__digit__1_I1_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
            = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3854_divmod__digit__1_I1_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
            = ( divide_divide_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3855_divmod__digit__1_I1_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
            = ( divide_divide_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3856_mult__less__iff1,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_3857_mult__less__iff1,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z2 )
     => ( ( ord_less_rat @ ( times_times_rat @ X @ Z2 ) @ ( times_times_rat @ Y @ Z2 ) )
        = ( ord_less_rat @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_3858_mult__less__iff1,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
        = ( ord_less_int @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_3859_norm__divide__numeral,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_3860_norm__divide__numeral,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_3861_norm__mult__numeral2,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_3862_norm__mult__numeral2,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_3863_norm__mult__numeral1,axiom,
    ! [W: num,A: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_3864_norm__mult__numeral1,axiom,
    ! [W: num,A: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_3865_norm__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% norm_le_zero_iff
thf(fact_3866_norm__le__zero__iff,axiom,
    ! [X: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ zero_zero_real )
      = ( X = zero_zero_complex ) ) ).

% norm_le_zero_iff
thf(fact_3867_zero__less__norm__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X ) )
      = ( X != zero_zero_real ) ) ).

% zero_less_norm_iff
thf(fact_3868_zero__less__norm__iff,axiom,
    ! [X: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X ) )
      = ( X != zero_zero_complex ) ) ).

% zero_less_norm_iff
thf(fact_3869_norm__of__nat,axiom,
    ! [N: nat] :
      ( ( real_V7735802525324610683m_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% norm_of_nat
thf(fact_3870_norm__of__nat,axiom,
    ! [N: nat] :
      ( ( real_V1022390504157884413omplex @ ( semiri8010041392384452111omplex @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% norm_of_nat
thf(fact_3871_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_3872_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_3873_norm__one,axiom,
    ( ( real_V7735802525324610683m_real @ one_one_real )
    = one_one_real ) ).

% norm_one
thf(fact_3874_norm__one,axiom,
    ( ( real_V1022390504157884413omplex @ one_one_complex )
    = one_one_real ) ).

% norm_one
thf(fact_3875_idiff__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_3876_idiff__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
      = N ) ).

% idiff_0_right
thf(fact_3877_norm__zero,axiom,
    ( ( real_V7735802525324610683m_real @ zero_zero_real )
    = zero_zero_real ) ).

% norm_zero
thf(fact_3878_norm__zero,axiom,
    ( ( real_V1022390504157884413omplex @ zero_zero_complex )
    = zero_zero_real ) ).

% norm_zero
thf(fact_3879_norm__eq__zero,axiom,
    ! [X: real] :
      ( ( ( real_V7735802525324610683m_real @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% norm_eq_zero
thf(fact_3880_norm__eq__zero,axiom,
    ! [X: complex] :
      ( ( ( real_V1022390504157884413omplex @ X )
        = zero_zero_real )
      = ( X = zero_zero_complex ) ) ).

% norm_eq_zero
thf(fact_3881_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_3882_imult__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_3883_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_3884_norm__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) )
      = ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_3885_norm__minus__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) )
      = ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_3886_norm__mult,axiom,
    ! [X: real,Y: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult
thf(fact_3887_norm__mult,axiom,
    ! [X: complex,Y: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_mult
thf(fact_3888_norm__divide,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_divide
thf(fact_3889_norm__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_divide
thf(fact_3890_norm__power,axiom,
    ! [X: real,N: nat] :
      ( ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) )
      = ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).

% norm_power
thf(fact_3891_norm__power,axiom,
    ! [X: complex,N: nat] :
      ( ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).

% norm_power
thf(fact_3892_nonzero__norm__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_3893_nonzero__norm__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_3894_power__eq__imp__eq__norm,axiom,
    ! [W: real,N: nat,Z2: real] :
      ( ( ( power_power_real @ W @ N )
        = ( power_power_real @ Z2 @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( real_V7735802525324610683m_real @ W )
          = ( real_V7735802525324610683m_real @ Z2 ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_3895_power__eq__imp__eq__norm,axiom,
    ! [W: complex,N: nat,Z2: complex] :
      ( ( ( power_power_complex @ W @ N )
        = ( power_power_complex @ Z2 @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( real_V1022390504157884413omplex @ W )
          = ( real_V1022390504157884413omplex @ Z2 ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_3896_norm__mult__less,axiom,
    ! [X: real,R: real,Y: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) ) @ ( times_times_real @ R @ S ) ) ) ) ).

% norm_mult_less
thf(fact_3897_norm__mult__less,axiom,
    ! [X: complex,R: real,Y: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y ) ) @ ( times_times_real @ R @ S ) ) ) ) ).

% norm_mult_less
thf(fact_3898_norm__mult__ineq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_3899_norm__mult__ineq,axiom,
    ! [X: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_3900_norm__triangle__lt,axiom,
    ! [X: real,Y: real,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_3901_norm__triangle__lt,axiom,
    ! [X: complex,Y: complex,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_3902_norm__add__less,axiom,
    ! [X: real,R: real,Y: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_add_less
thf(fact_3903_norm__add__less,axiom,
    ! [X: complex,R: real,Y: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_add_less
thf(fact_3904_norm__triangle__mono,axiom,
    ! [A: real,R: real,B: real,S: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_3905_norm__triangle__mono,axiom,
    ! [A: complex,R: real,B: complex,S: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_3906_norm__triangle__ineq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_triangle_ineq
thf(fact_3907_norm__triangle__ineq,axiom,
    ! [X: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_triangle_ineq
thf(fact_3908_norm__triangle__le,axiom,
    ! [X: real,Y: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_3909_norm__triangle__le,axiom,
    ! [X: complex,Y: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_3910_norm__add__leD,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_3911_norm__add__leD,axiom,
    ! [A: complex,B: complex,C: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_3912_norm__diff__triangle__less,axiom,
    ! [X: real,Y: real,E1: real,Z2: real,E22: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z2 ) ) @ E22 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z2 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_3913_norm__diff__triangle__less,axiom,
    ! [X: complex,Y: complex,E1: real,Z2: complex,E22: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z2 ) ) @ E22 )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z2 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_3914_norm__power__ineq,axiom,
    ! [X: real,N: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).

% norm_power_ineq
thf(fact_3915_norm__power__ineq,axiom,
    ! [X: complex,N: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).

% norm_power_ineq
thf(fact_3916_norm__triangle__le__diff,axiom,
    ! [X: real,Y: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_3917_norm__triangle__le__diff,axiom,
    ! [X: complex,Y: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_3918_norm__diff__triangle__le,axiom,
    ! [X: real,Y: real,E1: real,Z2: real,E22: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z2 ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z2 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_3919_norm__diff__triangle__le,axiom,
    ! [X: complex,Y: complex,E1: real,Z2: complex,E22: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z2 ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z2 ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_3920_norm__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_3921_norm__triangle__ineq4,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_3922_norm__triangle__sub,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) ) ) ).

% norm_triangle_sub
thf(fact_3923_norm__triangle__sub,axiom,
    ! [X: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) ) ) ).

% norm_triangle_sub
thf(fact_3924_norm__diff__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_3925_norm__diff__ineq,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_3926_norm__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_3927_norm__triangle__ineq2,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_3928_power__eq__1__iff,axiom,
    ! [W: real,N: nat] :
      ( ( ( power_power_real @ W @ N )
        = one_one_real )
     => ( ( ( real_V7735802525324610683m_real @ W )
          = one_one_real )
        | ( N = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_3929_power__eq__1__iff,axiom,
    ! [W: complex,N: nat] :
      ( ( ( power_power_complex @ W @ N )
        = one_one_complex )
     => ( ( ( real_V1022390504157884413omplex @ W )
          = one_one_real )
        | ( N = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_3930_norm__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_3931_norm__diff__triangle__ineq,axiom,
    ! [A: complex,B: complex,C: complex,D: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_3932_square__norm__one,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
     => ( ( real_V7735802525324610683m_real @ X )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_3933_square__norm__one,axiom,
    ! [X: complex] :
      ( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
     => ( ( real_V1022390504157884413omplex @ X )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_3934_norm__power__diff,axiom,
    ! [Z2: real,W: real,M: nat] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z2 @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z2 @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_3935_norm__power__diff,axiom,
    ! [Z2: complex,W: complex,M: nat] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z2 @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z2 @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_3936_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_3937_low__def,axiom,
    ( vEBT_VEBT_low
    = ( ^ [X3: nat,N3: nat] : ( modulo_modulo_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% low_def
thf(fact_3938_arsinh__0,axiom,
    ( ( arsinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% arsinh_0
thf(fact_3939_artanh__0,axiom,
    ( ( artanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% artanh_0
thf(fact_3940_pochhammer__double,axiom,
    ! [Z2: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s2602460028002588243omplex @ Z2 @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z2 @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_3941_pochhammer__double,axiom,
    ! [Z2: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s7457072308508201937r_real @ Z2 @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_3942_pochhammer__double,axiom,
    ! [Z2: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s4028243227959126397er_rat @ Z2 @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_3943_central__binomial__lower__bound,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).

% central_binomial_lower_bound
thf(fact_3944_pochhammer__0,axiom,
    ! [A: complex] :
      ( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% pochhammer_0
thf(fact_3945_pochhammer__0,axiom,
    ! [A: real] :
      ( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% pochhammer_0
thf(fact_3946_pochhammer__0,axiom,
    ! [A: rat] :
      ( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% pochhammer_0
thf(fact_3947_pochhammer__0,axiom,
    ! [A: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% pochhammer_0
thf(fact_3948_pochhammer__0,axiom,
    ! [A: int] :
      ( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% pochhammer_0
thf(fact_3949_pochhammer__of__nat,axiom,
    ! [X: nat,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( semiri8010041392384452111omplex @ X ) @ N )
      = ( semiri8010041392384452111omplex @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_3950_pochhammer__of__nat,axiom,
    ! [X: nat,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( semiri5074537144036343181t_real @ X ) @ N )
      = ( semiri5074537144036343181t_real @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_3951_pochhammer__of__nat,axiom,
    ! [X: nat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( semiri681578069525770553at_rat @ X ) @ N )
      = ( semiri681578069525770553at_rat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_3952_pochhammer__of__nat,axiom,
    ! [X: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ ( semiri1316708129612266289at_nat @ X ) @ N )
      = ( semiri1316708129612266289at_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_3953_pochhammer__of__nat,axiom,
    ! [X: nat,N: nat] :
      ( ( comm_s4660882817536571857er_int @ ( semiri1314217659103216013at_int @ X ) @ N )
      = ( semiri1314217659103216013at_int @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_3954_pochhammer__pos,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_3955_pochhammer__pos,axiom,
    ! [X: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_3956_pochhammer__pos,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X )
     => ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_3957_pochhammer__pos,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).

% pochhammer_pos
thf(fact_3958_pochhammer__eq__0__mono,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N )
        = zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ M )
          = zero_zero_real ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_3959_pochhammer__eq__0__mono,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N )
        = zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ M )
          = zero_zero_rat ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_3960_pochhammer__neq__0__mono,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ M )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ N )
         != zero_zero_real ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_3961_pochhammer__neq__0__mono,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ M )
       != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ N )
         != zero_zero_rat ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_3962_pochhammer__nonneg,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_3963_pochhammer__nonneg,axiom,
    ! [X: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_3964_pochhammer__nonneg,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_3965_pochhammer__nonneg,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_3966_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% pochhammer_0_left
thf(fact_3967_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% pochhammer_0_left
thf(fact_3968_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% pochhammer_0_left
thf(fact_3969_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% pochhammer_0_left
thf(fact_3970_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% pochhammer_0_left
thf(fact_3971_pochhammer__rec,axiom,
    ! [A: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
      = ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_3972_pochhammer__rec,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_3973_pochhammer__rec,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_3974_pochhammer__rec,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_3975_pochhammer__rec,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N ) ) ) ).

% pochhammer_rec
thf(fact_3976_pochhammer__rec_H,axiom,
    ! [Z2: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ Z2 @ ( suc @ N ) )
      = ( times_times_complex @ ( plus_plus_complex @ Z2 @ ( semiri8010041392384452111omplex @ N ) ) @ ( comm_s2602460028002588243omplex @ Z2 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_3977_pochhammer__rec_H,axiom,
    ! [Z2: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ Z2 @ ( suc @ N ) )
      = ( times_times_real @ ( plus_plus_real @ Z2 @ ( semiri5074537144036343181t_real @ N ) ) @ ( comm_s7457072308508201937r_real @ Z2 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_3978_pochhammer__rec_H,axiom,
    ! [Z2: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z2 @ ( suc @ N ) )
      = ( times_times_rat @ ( plus_plus_rat @ Z2 @ ( semiri681578069525770553at_rat @ N ) ) @ ( comm_s4028243227959126397er_rat @ Z2 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_3979_pochhammer__rec_H,axiom,
    ! [Z2: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z2 @ ( suc @ N ) )
      = ( times_times_nat @ ( plus_plus_nat @ Z2 @ ( semiri1316708129612266289at_nat @ N ) ) @ ( comm_s4663373288045622133er_nat @ Z2 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_3980_pochhammer__rec_H,axiom,
    ! [Z2: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ Z2 @ ( suc @ N ) )
      = ( times_times_int @ ( plus_plus_int @ Z2 @ ( semiri1314217659103216013at_int @ N ) ) @ ( comm_s4660882817536571857er_int @ Z2 @ N ) ) ) ).

% pochhammer_rec'
thf(fact_3981_pochhammer__Suc,axiom,
    ! [A: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
      = ( times_times_complex @ ( comm_s2602460028002588243omplex @ A @ N ) @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_3982_pochhammer__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_3983_pochhammer__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_3984_pochhammer__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_3985_pochhammer__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_3986_pochhammer__product_H,axiom,
    ! [Z2: complex,N: nat,M: nat] :
      ( ( comm_s2602460028002588243omplex @ Z2 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z2 @ N ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z2 @ ( semiri8010041392384452111omplex @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_3987_pochhammer__product_H,axiom,
    ! [Z2: real,N: nat,M: nat] :
      ( ( comm_s7457072308508201937r_real @ Z2 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z2 @ N ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( semiri5074537144036343181t_real @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_3988_pochhammer__product_H,axiom,
    ! [Z2: rat,N: nat,M: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z2 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z2 @ N ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( semiri681578069525770553at_rat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_3989_pochhammer__product_H,axiom,
    ! [Z2: nat,N: nat,M: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z2 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z2 @ N ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z2 @ ( semiri1316708129612266289at_nat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_3990_pochhammer__product_H,axiom,
    ! [Z2: int,N: nat,M: nat] :
      ( ( comm_s4660882817536571857er_int @ Z2 @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z2 @ N ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z2 @ ( semiri1314217659103216013at_int @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_3991_binomial__mono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_mono
thf(fact_3992_binomial__maximum_H,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% binomial_maximum'
thf(fact_3993_binomial__maximum,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% binomial_maximum
thf(fact_3994_binomial__antimono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_eq_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).

% binomial_antimono
thf(fact_3995_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z2: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s2602460028002588243omplex @ Z2 @ N )
        = ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z2 @ M ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z2 @ ( semiri8010041392384452111omplex @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_3996_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z2: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s7457072308508201937r_real @ Z2 @ N )
        = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z2 @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z2 @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_3997_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z2: rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4028243227959126397er_rat @ Z2 @ N )
        = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z2 @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z2 @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_3998_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4663373288045622133er_nat @ Z2 @ N )
        = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z2 @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z2 @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_3999_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z2: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4660882817536571857er_int @ Z2 @ N )
        = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z2 @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z2 @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_4000_binomial__strict__mono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_strict_mono
thf(fact_4001_binomial__strict__antimono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).

% binomial_strict_antimono
thf(fact_4002_binomial__less__binomial__Suc,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_nat @ K @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).

% binomial_less_binomial_Suc
thf(fact_4003_central__binomial__odd,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% central_binomial_odd
thf(fact_4004_zero__less__binomial__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) )
      = ( ord_less_eq_nat @ K @ N ) ) ).

% zero_less_binomial_iff
thf(fact_4005_choose__two,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% choose_two
thf(fact_4006_binomial__n__0,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ zero_zero_nat )
      = one_one_nat ) ).

% binomial_n_0
thf(fact_4007_binomial__Suc__Suc,axiom,
    ! [N: nat,K: nat] :
      ( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
      = ( plus_plus_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).

% binomial_Suc_Suc
thf(fact_4008_binomial__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( binomial @ N @ K )
        = zero_zero_nat )
      = ( ord_less_nat @ N @ K ) ) ).

% binomial_eq_0_iff
thf(fact_4009_binomial__0__Suc,axiom,
    ! [K: nat] :
      ( ( binomial @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% binomial_0_Suc
thf(fact_4010_binomial__1,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( suc @ zero_zero_nat ) )
      = N ) ).

% binomial_1
thf(fact_4011_binomial__addition__formula,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( binomial @ N @ ( suc @ K ) )
        = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ).

% binomial_addition_formula
thf(fact_4012_binomial__Suc__n,axiom,
    ! [N: nat] :
      ( ( binomial @ ( suc @ N ) @ N )
      = ( suc @ N ) ) ).

% binomial_Suc_n
thf(fact_4013_binomial__n__n,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ N )
      = one_one_nat ) ).

% binomial_n_n
thf(fact_4014_choose__one,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ one_one_nat )
      = N ) ).

% choose_one
thf(fact_4015_binomial__eq__0,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( binomial @ N @ K )
        = zero_zero_nat ) ) ).

% binomial_eq_0
thf(fact_4016_Suc__times__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
      = ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).

% Suc_times_binomial
thf(fact_4017_Suc__times__binomial__eq,axiom,
    ! [N: nat,K: nat] :
      ( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
      = ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).

% Suc_times_binomial_eq
thf(fact_4018_binomial__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% binomial_symmetric
thf(fact_4019_choose__mult__lemma,axiom,
    ! [M: nat,R: nat,K: nat] :
      ( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
      = ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R ) @ M ) ) ) ).

% choose_mult_lemma
thf(fact_4020_binomial__le__pow,axiom,
    ! [R: nat,N: nat] :
      ( ( ord_less_eq_nat @ R @ N )
     => ( ord_less_eq_nat @ ( binomial @ N @ R ) @ ( power_power_nat @ N @ R ) ) ) ).

% binomial_le_pow
thf(fact_4021_zero__less__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) ) ) ).

% zero_less_binomial
thf(fact_4022_Suc__times__binomial__add,axiom,
    ! [A: nat,B: nat] :
      ( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
      = ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).

% Suc_times_binomial_add
thf(fact_4023_choose__mult,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
          = ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).

% choose_mult
thf(fact_4024_binomial__Suc__Suc__eq__times,axiom,
    ! [N: nat,K: nat] :
      ( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) @ ( suc @ K ) ) ) ).

% binomial_Suc_Suc_eq_times
thf(fact_4025_binomial__absorb__comp,axiom,
    ! [N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ N @ K ) @ ( binomial @ N @ K ) )
      = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).

% binomial_absorb_comp
thf(fact_4026_binomial__absorption,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N @ ( suc @ K ) ) )
      = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).

% binomial_absorption
thf(fact_4027_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_4028_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_4029_binomial__le__pow2,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% binomial_le_pow2
thf(fact_4030_choose__reduce__nat,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( binomial @ N @ K )
          = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ) ).

% choose_reduce_nat
thf(fact_4031_times__binomial__minus1__eq,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( times_times_nat @ K @ ( binomial @ N @ K ) )
        = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% times_binomial_minus1_eq
thf(fact_4032_artanh__def,axiom,
    ( artanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% artanh_def
thf(fact_4033_concat__bit__Suc,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_concat_bit @ ( suc @ N ) @ K @ L )
      = ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L ) ) ) ) ).

% concat_bit_Suc
thf(fact_4034_signed__take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_4035_signed__take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_4036_fact__double,axiom,
    ! [N: nat] :
      ( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).

% fact_double
thf(fact_4037_fact__double,axiom,
    ! [N: nat] :
      ( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% fact_double
thf(fact_4038_fact__double,axiom,
    ! [N: nat] :
      ( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% fact_double
thf(fact_4039_modulo__int__unfold,axiom,
    ! [L: int,K: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L )
                @ ( minus_minus_int
                  @ ( semiri1314217659103216013at_int
                    @ ( times_times_nat @ N
                      @ ( zero_n2687167440665602831ol_nat
                        @ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
                  @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).

% modulo_int_unfold
thf(fact_4040_take__bit__rec,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N3: nat,A2: code_integer] : ( if_Code_integer @ ( N3 = zero_zero_nat ) @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4041_take__bit__rec,axiom,
    ( bit_se569199155075624693atural
    = ( ^ [N3: nat,A2: code_natural] : ( if_Code_natural @ ( N3 = zero_zero_nat ) @ zero_z2226904508553997617atural @ ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ ( bit_se569199155075624693atural @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide5121882707175180666atural @ A2 @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) @ ( modulo8411746178871703098atural @ A2 @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4042_take__bit__rec,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,A2: int] : ( if_int @ ( N3 = zero_zero_nat ) @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4043_take__bit__rec,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,A2: nat] : ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_4044_log2__of__power__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_le
thf(fact_4045_sgn__sgn,axiom,
    ! [A: int] :
      ( ( sgn_sgn_int @ ( sgn_sgn_int @ A ) )
      = ( sgn_sgn_int @ A ) ) ).

% sgn_sgn
thf(fact_4046_sgn__sgn,axiom,
    ! [A: real] :
      ( ( sgn_sgn_real @ ( sgn_sgn_real @ A ) )
      = ( sgn_sgn_real @ A ) ) ).

% sgn_sgn
thf(fact_4047_sgn__sgn,axiom,
    ! [A: complex] :
      ( ( sgn_sgn_complex @ ( sgn_sgn_complex @ A ) )
      = ( sgn_sgn_complex @ A ) ) ).

% sgn_sgn
thf(fact_4048_sgn__sgn,axiom,
    ! [A: rat] :
      ( ( sgn_sgn_rat @ ( sgn_sgn_rat @ A ) )
      = ( sgn_sgn_rat @ A ) ) ).

% sgn_sgn
thf(fact_4049_sgn__sgn,axiom,
    ! [A: code_integer] :
      ( ( sgn_sgn_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
      = ( sgn_sgn_Code_integer @ A ) ) ).

% sgn_sgn
thf(fact_4050_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% take_bit_of_0
thf(fact_4051_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% take_bit_of_0
thf(fact_4052_sgn__0,axiom,
    ( ( sgn_sgn_complex @ zero_zero_complex )
    = zero_zero_complex ) ).

% sgn_0
thf(fact_4053_sgn__0,axiom,
    ( ( sgn_sgn_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% sgn_0
thf(fact_4054_sgn__0,axiom,
    ( ( sgn_sgn_real @ zero_zero_real )
    = zero_zero_real ) ).

% sgn_0
thf(fact_4055_sgn__0,axiom,
    ( ( sgn_sgn_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% sgn_0
thf(fact_4056_sgn__0,axiom,
    ( ( sgn_sgn_int @ zero_zero_int )
    = zero_zero_int ) ).

% sgn_0
thf(fact_4057_sgn__zero,axiom,
    ( ( sgn_sgn_complex @ zero_zero_complex )
    = zero_zero_complex ) ).

% sgn_zero
thf(fact_4058_sgn__zero,axiom,
    ( ( sgn_sgn_real @ zero_zero_real )
    = zero_zero_real ) ).

% sgn_zero
thf(fact_4059_sgn__1,axiom,
    ( ( sgn_sgn_int @ one_one_int )
    = one_one_int ) ).

% sgn_1
thf(fact_4060_sgn__1,axiom,
    ( ( sgn_sgn_real @ one_one_real )
    = one_one_real ) ).

% sgn_1
thf(fact_4061_sgn__1,axiom,
    ( ( sgn_sgn_complex @ one_one_complex )
    = one_one_complex ) ).

% sgn_1
thf(fact_4062_sgn__1,axiom,
    ( ( sgn_sgn_rat @ one_one_rat )
    = one_one_rat ) ).

% sgn_1
thf(fact_4063_sgn__1,axiom,
    ( ( sgn_sgn_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% sgn_1
thf(fact_4064_sgn__one,axiom,
    ( ( sgn_sgn_real @ one_one_real )
    = one_one_real ) ).

% sgn_one
thf(fact_4065_sgn__one,axiom,
    ( ( sgn_sgn_complex @ one_one_complex )
    = one_one_complex ) ).

% sgn_one
thf(fact_4066_sgn__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( sgn_sgn_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).

% sgn_divide
thf(fact_4067_sgn__divide,axiom,
    ! [A: real,B: real] :
      ( ( sgn_sgn_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).

% sgn_divide
thf(fact_4068_sgn__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( sgn_sgn_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).

% sgn_divide
thf(fact_4069_power__sgn,axiom,
    ! [A: rat,N: nat] :
      ( ( sgn_sgn_rat @ ( power_power_rat @ A @ N ) )
      = ( power_power_rat @ ( sgn_sgn_rat @ A ) @ N ) ) ).

% power_sgn
thf(fact_4070_power__sgn,axiom,
    ! [A: code_integer,N: nat] :
      ( ( sgn_sgn_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( power_8256067586552552935nteger @ ( sgn_sgn_Code_integer @ A ) @ N ) ) ).

% power_sgn
thf(fact_4071_power__sgn,axiom,
    ! [A: real,N: nat] :
      ( ( sgn_sgn_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( sgn_sgn_real @ A ) @ N ) ) ).

% power_sgn
thf(fact_4072_power__sgn,axiom,
    ! [A: int,N: nat] :
      ( ( sgn_sgn_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( sgn_sgn_int @ A ) @ N ) ) ).

% power_sgn
thf(fact_4073_of__nat__fact,axiom,
    ! [N: nat] :
      ( ( semiri8010041392384452111omplex @ ( semiri1408675320244567234ct_nat @ N ) )
      = ( semiri5044797733671781792omplex @ N ) ) ).

% of_nat_fact
thf(fact_4074_of__nat__fact,axiom,
    ! [N: nat] :
      ( ( semiri681578069525770553at_rat @ ( semiri1408675320244567234ct_nat @ N ) )
      = ( semiri773545260158071498ct_rat @ N ) ) ).

% of_nat_fact
thf(fact_4075_of__nat__fact,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( semiri1408675320244567234ct_nat @ N ) )
      = ( semiri1406184849735516958ct_int @ N ) ) ).

% of_nat_fact
thf(fact_4076_of__nat__fact,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( semiri1408675320244567234ct_nat @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% of_nat_fact
thf(fact_4077_of__nat__fact,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( semiri1408675320244567234ct_nat @ N ) )
      = ( semiri2265585572941072030t_real @ N ) ) ).

% of_nat_fact
thf(fact_4078_signed__take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_4079_concat__bit__0,axiom,
    ! [K: int,L: int] :
      ( ( bit_concat_bit @ zero_zero_nat @ K @ L )
      = L ) ).

% concat_bit_0
thf(fact_4080_concat__bit__of__zero__2,axiom,
    ! [N: nat,K: int] :
      ( ( bit_concat_bit @ N @ K @ zero_zero_int )
      = ( bit_se2923211474154528505it_int @ N @ K ) ) ).

% concat_bit_of_zero_2
thf(fact_4081_sgn__greater,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( sgn_sgn_Code_integer @ A ) )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% sgn_greater
thf(fact_4082_sgn__greater,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sgn_sgn_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% sgn_greater
thf(fact_4083_sgn__greater,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( sgn_sgn_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% sgn_greater
thf(fact_4084_sgn__greater,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( sgn_sgn_int @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% sgn_greater
thf(fact_4085_sgn__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( sgn_sgn_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% sgn_less
thf(fact_4086_sgn__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( sgn_sgn_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% sgn_less
thf(fact_4087_sgn__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( sgn_sgn_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% sgn_less
thf(fact_4088_sgn__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( sgn_sgn_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% sgn_less
thf(fact_4089_take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ zero_zero_nat @ A )
      = zero_zero_int ) ).

% take_bit_0
thf(fact_4090_take__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% take_bit_0
thf(fact_4091_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_4092_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_4093_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_4094_divide__sgn,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ A @ ( sgn_sgn_real @ B ) )
      = ( times_times_real @ A @ ( sgn_sgn_real @ B ) ) ) ).

% divide_sgn
thf(fact_4095_divide__sgn,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ A @ ( sgn_sgn_rat @ B ) )
      = ( times_times_rat @ A @ ( sgn_sgn_rat @ B ) ) ) ).

% divide_sgn
thf(fact_4096_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% take_bit_Suc_1
thf(fact_4097_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_Suc_1
thf(fact_4098_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ one_one_int )
      = one_one_int ) ).

% take_bit_numeral_1
thf(fact_4099_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_numeral_1
thf(fact_4100_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_4101_fact__0,axiom,
    ( ( semiri5044797733671781792omplex @ zero_zero_nat )
    = one_one_complex ) ).

% fact_0
thf(fact_4102_fact__0,axiom,
    ( ( semiri773545260158071498ct_rat @ zero_zero_nat )
    = one_one_rat ) ).

% fact_0
thf(fact_4103_fact__0,axiom,
    ( ( semiri1406184849735516958ct_int @ zero_zero_nat )
    = one_one_int ) ).

% fact_0
thf(fact_4104_fact__0,axiom,
    ( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
    = one_one_nat ) ).

% fact_0
thf(fact_4105_fact__0,axiom,
    ( ( semiri2265585572941072030t_real @ zero_zero_nat )
    = one_one_real ) ).

% fact_0
thf(fact_4106_fact__1,axiom,
    ( ( semiri5044797733671781792omplex @ one_one_nat )
    = one_one_complex ) ).

% fact_1
thf(fact_4107_fact__1,axiom,
    ( ( semiri773545260158071498ct_rat @ one_one_nat )
    = one_one_rat ) ).

% fact_1
thf(fact_4108_fact__1,axiom,
    ( ( semiri1406184849735516958ct_int @ one_one_nat )
    = one_one_int ) ).

% fact_1
thf(fact_4109_fact__1,axiom,
    ( ( semiri1408675320244567234ct_nat @ one_one_nat )
    = one_one_nat ) ).

% fact_1
thf(fact_4110_fact__1,axiom,
    ( ( semiri2265585572941072030t_real @ one_one_nat )
    = one_one_real ) ).

% fact_1
thf(fact_4111_signed__take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_4112_signed__take__bit__numeral__of__1,axiom,
    ! [K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_4113_log__one,axiom,
    ! [A: real] :
      ( ( log2 @ A @ one_one_real )
      = zero_zero_real ) ).

% log_one
thf(fact_4114_concat__bit__nonnegative__iff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K @ L ) )
      = ( ord_less_eq_int @ zero_zero_int @ L ) ) ).

% concat_bit_nonnegative_iff
thf(fact_4115_concat__bit__negative__iff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( ord_less_int @ ( bit_concat_bit @ N @ K @ L ) @ zero_zero_int )
      = ( ord_less_int @ L @ zero_zero_int ) ) ).

% concat_bit_negative_iff
thf(fact_4116_concat__bit__of__zero__1,axiom,
    ! [N: nat,L: int] :
      ( ( bit_concat_bit @ N @ zero_zero_int @ L )
      = ( bit_se545348938243370406it_int @ N @ L ) ) ).

% concat_bit_of_zero_1
thf(fact_4117_sgn__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( sgn_sgn_Code_integer @ A )
        = one_one_Code_integer ) ) ).

% sgn_pos
thf(fact_4118_sgn__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( sgn_sgn_real @ A )
        = one_one_real ) ) ).

% sgn_pos
thf(fact_4119_sgn__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( sgn_sgn_rat @ A )
        = one_one_rat ) ) ).

% sgn_pos
thf(fact_4120_sgn__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( sgn_sgn_int @ A )
        = one_one_int ) ) ).

% sgn_pos
thf(fact_4121_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_4122_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_4123_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_4124_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_4125_fact__Suc__0,axiom,
    ( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
    = one_one_complex ) ).

% fact_Suc_0
thf(fact_4126_fact__Suc__0,axiom,
    ( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
    = one_one_rat ) ).

% fact_Suc_0
thf(fact_4127_fact__Suc__0,axiom,
    ( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% fact_Suc_0
thf(fact_4128_fact__Suc__0,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% fact_Suc_0
thf(fact_4129_fact__Suc__0,axiom,
    ( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
    = one_one_real ) ).

% fact_Suc_0
thf(fact_4130_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri5044797733671781792omplex @ ( suc @ N ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).

% fact_Suc
thf(fact_4131_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri773545260158071498ct_rat @ ( suc @ N ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% fact_Suc
thf(fact_4132_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1406184849735516958ct_int @ ( suc @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% fact_Suc
thf(fact_4133_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1408675320244567234ct_nat @ ( suc @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_Suc
thf(fact_4134_fact__Suc,axiom,
    ! [N: nat] :
      ( ( semiri2265585572941072030t_real @ ( suc @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% fact_Suc
thf(fact_4135_sgn__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ A ) )
      = ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).

% sgn_mult_self_eq
thf(fact_4136_sgn__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ A ) )
      = ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).

% sgn_mult_self_eq
thf(fact_4137_sgn__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ A ) )
      = ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).

% sgn_mult_self_eq
thf(fact_4138_sgn__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
      = ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).

% sgn_mult_self_eq
thf(fact_4139_zero__less__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ ( log2 @ A @ X ) )
          = ( ord_less_real @ one_one_real @ X ) ) ) ) ).

% zero_less_log_cancel_iff
thf(fact_4140_log__less__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log2 @ A @ X ) @ zero_zero_real )
          = ( ord_less_real @ X @ one_one_real ) ) ) ) ).

% log_less_zero_cancel_iff
thf(fact_4141_one__less__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ one_one_real @ ( log2 @ A @ X ) )
          = ( ord_less_real @ A @ X ) ) ) ) ).

% one_less_log_cancel_iff
thf(fact_4142_log__less__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log2 @ A @ X ) @ one_one_real )
          = ( ord_less_real @ X @ A ) ) ) ) ).

% log_less_one_cancel_iff
thf(fact_4143_log__less__cancel__iff,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y )
         => ( ( ord_less_real @ ( log2 @ A @ X ) @ ( log2 @ A @ Y ) )
            = ( ord_less_real @ X @ Y ) ) ) ) ) ).

% log_less_cancel_iff
thf(fact_4144_log__eq__one,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log2 @ A @ A )
          = one_one_real ) ) ) ).

% log_eq_one
thf(fact_4145_take__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_Suc_0
thf(fact_4146_sgn__mult__dvd__iff,axiom,
    ! [R: int,L: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R ) @ L ) @ K )
      = ( ( dvd_dvd_int @ L @ K )
        & ( ( R = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% sgn_mult_dvd_iff
thf(fact_4147_mult__sgn__dvd__iff,axiom,
    ! [L: int,R: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R ) ) @ K )
      = ( ( dvd_dvd_int @ L @ K )
        & ( ( R = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% mult_sgn_dvd_iff
thf(fact_4148_dvd__sgn__mult__iff,axiom,
    ! [L: int,R: int,K: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R ) @ K ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( R = zero_zero_int ) ) ) ).

% dvd_sgn_mult_iff
thf(fact_4149_dvd__mult__sgn__iff,axiom,
    ! [L: int,K: int,R: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ K @ ( sgn_sgn_int @ R ) ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( R = zero_zero_int ) ) ) ).

% dvd_mult_sgn_iff
thf(fact_4150_fact__2,axiom,
    ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_4151_fact__2,axiom,
    ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_4152_fact__2,axiom,
    ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_4153_fact__2,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_4154_fact__2,axiom,
    ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_4155_signed__take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_bit0
thf(fact_4156_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ one_one_Code_integer )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_4157_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_4158_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_4159_zero__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log2 @ A @ X ) )
          = ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_4160_log__le__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log2 @ A @ X ) @ zero_zero_real )
          = ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_4161_one__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ one_one_real @ ( log2 @ A @ X ) )
          = ( ord_less_eq_real @ A @ X ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_4162_log__le__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log2 @ A @ X ) @ one_one_real )
          = ( ord_less_eq_real @ X @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_4163_log__le__cancel__iff,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ ( log2 @ A @ X ) @ ( log2 @ A @ Y ) )
            = ( ord_less_eq_real @ X @ Y ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_4164_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( zero_n3304061248610475627l_real @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_4165_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( zero_n2052037380579107095ol_rat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_4166_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_4167_sgn__of__nat,axiom,
    ! [N: nat] :
      ( ( sgn_sgn_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% sgn_of_nat
thf(fact_4168_even__take__bit__eq,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1745604003318907178nteger @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_4169_even__take__bit__eq,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_4170_even__take__bit__eq,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_4171_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log2 @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_4172_take__bit__Suc__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4173_take__bit__Suc__0,axiom,
    ! [A: code_natural] :
      ( ( bit_se569199155075624693atural @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4174_take__bit__Suc__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4175_take__bit__Suc__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_4176_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1745604003318907178nteger @ M @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ N @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_4177_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se2923211474154528505it_int @ M @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ N @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_4178_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se2925701944663578781it_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ N @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_4179_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_4180_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_4181_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_4182_take__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
      = ( semiri1314217659103216013at_int @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).

% take_bit_of_nat
thf(fact_4183_take__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
      = ( semiri1316708129612266289at_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).

% take_bit_of_nat
thf(fact_4184_concat__bit__eq__iff,axiom,
    ! [N: nat,K: int,L: int,R: int,S: int] :
      ( ( ( bit_concat_bit @ N @ K @ L )
        = ( bit_concat_bit @ N @ R @ S ) )
      = ( ( ( bit_se2923211474154528505it_int @ N @ K )
          = ( bit_se2923211474154528505it_int @ N @ R ) )
        & ( L = S ) ) ) ).

% concat_bit_eq_iff
thf(fact_4185_concat__bit__take__bit__eq,axiom,
    ! [N: nat,B: int] :
      ( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
      = ( bit_concat_bit @ N @ B ) ) ).

% concat_bit_take_bit_eq
thf(fact_4186_signed__take__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( if_int_int @ ( ord_less_eq_nat @ N @ M ) @ ( bit_se2923211474154528505it_int @ N ) @ ( bit_ri631733984087533419it_int @ M ) @ A ) ) ).

% signed_take_bit_take_bit
thf(fact_4187_signed__take__bit__eq__iff__take__bit__eq,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_ri631733984087533419it_int @ N @ B ) )
      = ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
        = ( bit_se2923211474154528505it_int @ ( suc @ N ) @ B ) ) ) ).

% signed_take_bit_eq_iff_take_bit_eq
thf(fact_4188_log__def,axiom,
    ( log2
    = ( ^ [A2: real,X3: real] : ( divide_divide_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ A2 ) ) ) ) ).

% log_def
thf(fact_4189_take__bit__add,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ A @ B ) ) ) ).

% take_bit_add
thf(fact_4190_take__bit__add,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) )
      = ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ A @ B ) ) ) ).

% take_bit_add
thf(fact_4191_take__bit__tightened,axiom,
    ! [N: nat,A: int,B: int,M: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2923211474154528505it_int @ M @ A )
          = ( bit_se2923211474154528505it_int @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_4192_take__bit__tightened,axiom,
    ! [N: nat,A: nat,B: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = ( bit_se2925701944663578781it_nat @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2925701944663578781it_nat @ M @ A )
          = ( bit_se2925701944663578781it_nat @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_4193_take__bit__signed__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri631733984087533419it_int @ N @ A ) )
        = ( bit_se2923211474154528505it_int @ M @ A ) ) ) ).

% take_bit_signed_take_bit
thf(fact_4194_take__bit__nat__less__eq__self,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).

% take_bit_nat_less_eq_self
thf(fact_4195_take__bit__tightened__less__eq__nat,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N @ Q2 ) ) ) ).

% take_bit_tightened_less_eq_nat
thf(fact_4196_sgn__eq__0__iff,axiom,
    ! [A: complex] :
      ( ( ( sgn_sgn_complex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% sgn_eq_0_iff
thf(fact_4197_sgn__eq__0__iff,axiom,
    ! [A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% sgn_eq_0_iff
thf(fact_4198_sgn__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( sgn_sgn_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% sgn_eq_0_iff
thf(fact_4199_sgn__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( sgn_sgn_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% sgn_eq_0_iff
thf(fact_4200_sgn__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( sgn_sgn_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% sgn_eq_0_iff
thf(fact_4201_sgn__0__0,axiom,
    ! [A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% sgn_0_0
thf(fact_4202_sgn__0__0,axiom,
    ! [A: real] :
      ( ( ( sgn_sgn_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% sgn_0_0
thf(fact_4203_sgn__0__0,axiom,
    ! [A: rat] :
      ( ( ( sgn_sgn_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% sgn_0_0
thf(fact_4204_sgn__0__0,axiom,
    ! [A: int] :
      ( ( ( sgn_sgn_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% sgn_0_0
thf(fact_4205_sgn__zero__iff,axiom,
    ! [X: complex] :
      ( ( ( sgn_sgn_complex @ X )
        = zero_zero_complex )
      = ( X = zero_zero_complex ) ) ).

% sgn_zero_iff
thf(fact_4206_sgn__zero__iff,axiom,
    ! [X: real] :
      ( ( ( sgn_sgn_real @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% sgn_zero_iff
thf(fact_4207_sgn__mult,axiom,
    ! [A: complex,B: complex] :
      ( ( sgn_sgn_complex @ ( times_times_complex @ A @ B ) )
      = ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).

% sgn_mult
thf(fact_4208_sgn__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( sgn_sgn_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ B ) ) ) ).

% sgn_mult
thf(fact_4209_sgn__mult,axiom,
    ! [A: real,B: real] :
      ( ( sgn_sgn_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).

% sgn_mult
thf(fact_4210_sgn__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( sgn_sgn_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).

% sgn_mult
thf(fact_4211_sgn__mult,axiom,
    ! [A: int,B: int] :
      ( ( sgn_sgn_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ).

% sgn_mult
thf(fact_4212_Real__Vector__Spaces_Osgn__mult,axiom,
    ! [X: complex,Y: complex] :
      ( ( sgn_sgn_complex @ ( times_times_complex @ X @ Y ) )
      = ( times_times_complex @ ( sgn_sgn_complex @ X ) @ ( sgn_sgn_complex @ Y ) ) ) ).

% Real_Vector_Spaces.sgn_mult
thf(fact_4213_Real__Vector__Spaces_Osgn__mult,axiom,
    ! [X: real,Y: real] :
      ( ( sgn_sgn_real @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( sgn_sgn_real @ X ) @ ( sgn_sgn_real @ Y ) ) ) ).

% Real_Vector_Spaces.sgn_mult
thf(fact_4214_same__sgn__sgn__add,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ B )
        = ( sgn_sgn_Code_integer @ A ) )
     => ( ( sgn_sgn_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
        = ( sgn_sgn_Code_integer @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_4215_same__sgn__sgn__add,axiom,
    ! [B: real,A: real] :
      ( ( ( sgn_sgn_real @ B )
        = ( sgn_sgn_real @ A ) )
     => ( ( sgn_sgn_real @ ( plus_plus_real @ A @ B ) )
        = ( sgn_sgn_real @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_4216_same__sgn__sgn__add,axiom,
    ! [B: rat,A: rat] :
      ( ( ( sgn_sgn_rat @ B )
        = ( sgn_sgn_rat @ A ) )
     => ( ( sgn_sgn_rat @ ( plus_plus_rat @ A @ B ) )
        = ( sgn_sgn_rat @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_4217_same__sgn__sgn__add,axiom,
    ! [B: int,A: int] :
      ( ( ( sgn_sgn_int @ B )
        = ( sgn_sgn_int @ A ) )
     => ( ( sgn_sgn_int @ ( plus_plus_int @ A @ B ) )
        = ( sgn_sgn_int @ A ) ) ) ).

% same_sgn_sgn_add
thf(fact_4218_fact__nonzero,axiom,
    ! [N: nat] :
      ( ( semiri773545260158071498ct_rat @ N )
     != zero_zero_rat ) ).

% fact_nonzero
thf(fact_4219_fact__nonzero,axiom,
    ! [N: nat] :
      ( ( semiri1406184849735516958ct_int @ N )
     != zero_zero_int ) ).

% fact_nonzero
thf(fact_4220_fact__nonzero,axiom,
    ! [N: nat] :
      ( ( semiri1408675320244567234ct_nat @ N )
     != zero_zero_nat ) ).

% fact_nonzero
thf(fact_4221_fact__nonzero,axiom,
    ! [N: nat] :
      ( ( semiri2265585572941072030t_real @ N )
     != zero_zero_real ) ).

% fact_nonzero
thf(fact_4222_take__bit__mult,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K @ L ) ) ) ).

% take_bit_mult
thf(fact_4223_take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% take_bit_diff
thf(fact_4224_signed__take__bit__mult,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K @ L ) ) ) ).

% signed_take_bit_mult
thf(fact_4225_signed__take__bit__add,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).

% signed_take_bit_add
thf(fact_4226_signed__take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% signed_take_bit_diff
thf(fact_4227_concat__bit__eq,axiom,
    ( bit_concat_bit
    = ( ^ [N3: nat,K2: int,L2: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N3 @ K2 ) @ ( bit_se545348938243370406it_int @ N3 @ L2 ) ) ) ) ).

% concat_bit_eq
thf(fact_4228_concat__bit__assoc,axiom,
    ! [N: nat,K: int,M: nat,L: int,R: int] :
      ( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L @ R ) )
      = ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L ) @ R ) ) ).

% concat_bit_assoc
thf(fact_4229_fact__less__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono_nat
thf(fact_4230_take__bit__tightened__less__eq__int,axiom,
    ! [M: nat,N: nat,K: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_tightened_less_eq_int
thf(fact_4231_take__bit__nonnegative,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ).

% take_bit_nonnegative
thf(fact_4232_take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% take_bit_int_less_eq_self_iff
thf(fact_4233_not__take__bit__negative,axiom,
    ! [N: nat,K: int] :
      ~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ zero_zero_int ) ).

% not_take_bit_negative
thf(fact_4234_take__bit__int__greater__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% take_bit_int_greater_self_iff
thf(fact_4235_push__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( bit_se7788150548672797655nteger @ M @ ( bit_se1745604003318907178nteger @ N @ A ) )
      = ( bit_se1745604003318907178nteger @ ( plus_plus_nat @ M @ N ) @ ( bit_se7788150548672797655nteger @ M @ A ) ) ) ).

% push_bit_take_bit
thf(fact_4236_push__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: code_natural] :
      ( ( bit_se6611745700429515170atural @ M @ ( bit_se569199155075624693atural @ N @ A ) )
      = ( bit_se569199155075624693atural @ ( plus_plus_nat @ M @ N ) @ ( bit_se6611745700429515170atural @ M @ A ) ) ) ).

% push_bit_take_bit
thf(fact_4237_push__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_se545348938243370406it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( bit_se2923211474154528505it_int @ ( plus_plus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ M @ A ) ) ) ).

% push_bit_take_bit
thf(fact_4238_push__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( bit_se547839408752420682it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = ( bit_se2925701944663578781it_nat @ ( plus_plus_nat @ M @ N ) @ ( bit_se547839408752420682it_nat @ M @ A ) ) ) ).

% push_bit_take_bit
thf(fact_4239_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).

% fact_ge_zero
thf(fact_4240_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).

% fact_ge_zero
thf(fact_4241_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_zero
thf(fact_4242_fact__ge__zero,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).

% fact_ge_zero
thf(fact_4243_take__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ M @ ( bit_se7788150548672797655nteger @ N @ A ) )
      = ( bit_se7788150548672797655nteger @ N @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ M @ N ) @ A ) ) ) ).

% take_bit_push_bit
thf(fact_4244_take__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: code_natural] :
      ( ( bit_se569199155075624693atural @ M @ ( bit_se6611745700429515170atural @ N @ A ) )
      = ( bit_se6611745700429515170atural @ N @ ( bit_se569199155075624693atural @ ( minus_minus_nat @ M @ N ) @ A ) ) ) ).

% take_bit_push_bit
thf(fact_4245_take__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ M @ ( bit_se545348938243370406it_int @ N @ A ) )
      = ( bit_se545348938243370406it_int @ N @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N ) @ A ) ) ) ).

% take_bit_push_bit
thf(fact_4246_take__bit__push__bit,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( bit_se2925701944663578781it_nat @ M @ ( bit_se547839408752420682it_nat @ N @ A ) )
      = ( bit_se547839408752420682it_nat @ N @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ M @ N ) @ A ) ) ) ).

% take_bit_push_bit
thf(fact_4247_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).

% fact_gt_zero
thf(fact_4248_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).

% fact_gt_zero
thf(fact_4249_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_gt_zero
thf(fact_4250_fact__gt__zero,axiom,
    ! [N: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).

% fact_gt_zero
thf(fact_4251_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N ) @ zero_zero_rat ) ).

% fact_not_neg
thf(fact_4252_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N ) @ zero_zero_int ) ).

% fact_not_neg
thf(fact_4253_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N ) @ zero_zero_nat ) ).

% fact_not_neg
thf(fact_4254_fact__not__neg,axiom,
    ! [N: nat] :
      ~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N ) @ zero_zero_real ) ).

% fact_not_neg
thf(fact_4255_int__sgnE,axiom,
    ! [K: int] :
      ~ ! [N2: nat,L3: int] :
          ( K
         != ( times_times_int @ ( sgn_sgn_int @ L3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_sgnE
thf(fact_4256_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).

% fact_ge_1
thf(fact_4257_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N ) ) ).

% fact_ge_1
thf(fact_4258_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_1
thf(fact_4259_fact__ge__1,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N ) ) ).

% fact_ge_1
thf(fact_4260_take__bit__unset__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
          = ( bit_se4203085406695923979it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_unset_bit_eq
thf(fact_4261_take__bit__unset__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
          = ( bit_se4205575877204974255it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_unset_bit_eq
thf(fact_4262_take__bit__set__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
          = ( bit_se7879613467334960850it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_set_bit_eq
thf(fact_4263_take__bit__set__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
          = ( bit_se7882103937844011126it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_set_bit_eq
thf(fact_4264_take__bit__flip__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
          = ( bit_se2159334234014336723it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_flip_bit_eq
thf(fact_4265_take__bit__flip__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
          = ( bit_se2161824704523386999it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_flip_bit_eq
thf(fact_4266_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).

% fact_dvd
thf(fact_4267_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_Code_integer @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) ) ) ).

% fact_dvd
thf(fact_4268_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).

% fact_dvd
thf(fact_4269_fact__dvd,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).

% fact_dvd
thf(fact_4270_pochhammer__fact,axiom,
    ( semiri5044797733671781792omplex
    = ( comm_s2602460028002588243omplex @ one_one_complex ) ) ).

% pochhammer_fact
thf(fact_4271_pochhammer__fact,axiom,
    ( semiri773545260158071498ct_rat
    = ( comm_s4028243227959126397er_rat @ one_one_rat ) ) ).

% pochhammer_fact
thf(fact_4272_pochhammer__fact,axiom,
    ( semiri1406184849735516958ct_int
    = ( comm_s4660882817536571857er_int @ one_one_int ) ) ).

% pochhammer_fact
thf(fact_4273_pochhammer__fact,axiom,
    ( semiri1408675320244567234ct_nat
    = ( comm_s4663373288045622133er_nat @ one_one_nat ) ) ).

% pochhammer_fact
thf(fact_4274_pochhammer__fact,axiom,
    ( semiri2265585572941072030t_real
    = ( comm_s7457072308508201937r_real @ one_one_real ) ) ).

% pochhammer_fact
thf(fact_4275_log__eq__div__ln__mult__log,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( B != one_one_real )
           => ( ( ord_less_real @ zero_zero_real @ X )
             => ( ( log2 @ A @ X )
                = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log2 @ B @ X ) ) ) ) ) ) ) ) ).

% log_eq_div_ln_mult_log
thf(fact_4276_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_4277_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_4278_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_4279_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_4280_fact__ge__Suc__0__nat,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_Suc_0_nat
thf(fact_4281_sgn__1__pos,axiom,
    ! [A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ A )
        = one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% sgn_1_pos
thf(fact_4282_sgn__1__pos,axiom,
    ! [A: real] :
      ( ( ( sgn_sgn_real @ A )
        = one_one_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% sgn_1_pos
thf(fact_4283_sgn__1__pos,axiom,
    ! [A: rat] :
      ( ( ( sgn_sgn_rat @ A )
        = one_one_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% sgn_1_pos
thf(fact_4284_sgn__1__pos,axiom,
    ! [A: int] :
      ( ( ( sgn_sgn_int @ A )
        = one_one_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% sgn_1_pos
thf(fact_4285_dvd__fact,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% dvd_fact
thf(fact_4286_take__bit__decr__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
       != zero_zero_int )
     => ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ one_one_int ) )
        = ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ one_one_int ) ) ) ).

% take_bit_decr_eq
thf(fact_4287_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ) ).

% fact_less_mono
thf(fact_4288_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ) ).

% fact_less_mono
thf(fact_4289_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono
thf(fact_4290_fact__less__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ).

% fact_less_mono
thf(fact_4291_sgn__mod,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ~ ( dvd_dvd_int @ L @ K )
       => ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L ) )
          = ( sgn_sgn_int @ L ) ) ) ) ).

% sgn_mod
thf(fact_4292_fact__fact__dvd__fact,axiom,
    ! [K: nat,N: nat] : ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ N ) ) @ ( semiri3624122377584611663nteger @ ( plus_plus_nat @ K @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_4293_fact__fact__dvd__fact,axiom,
    ! [K: nat,N: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ N ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_4294_fact__fact__dvd__fact,axiom,
    ! [K: nat,N: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ N ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_4295_fact__fact__dvd__fact,axiom,
    ! [K: nat,N: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ N ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_4296_fact__fact__dvd__fact,axiom,
    ! [K: nat,N: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K @ N ) ) ) ).

% fact_fact_dvd_fact
thf(fact_4297_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) )
        = zero_zero_int ) ) ).

% fact_mod
thf(fact_4298_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) )
        = zero_z3403309356797280102nteger ) ) ).

% fact_mod
thf(fact_4299_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo8411746178871703098atural @ ( semiri2447717529341329178atural @ N ) @ ( semiri2447717529341329178atural @ M ) )
        = zero_z2226904508553997617atural ) ) ).

% fact_mod
thf(fact_4300_fact__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) )
        = zero_zero_nat ) ) ).

% fact_mod
thf(fact_4301_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_4302_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_4303_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_4304_fact__le__power,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N @ N ) ) ) ).

% fact_le_power
thf(fact_4305_signed__take__bit__eq__take__bit__shift,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% signed_take_bit_eq_take_bit_shift
thf(fact_4306_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_4307_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_4308_ln__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( times_times_real @ X @ Y ) )
          = ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_mult
thf(fact_4309_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_4310_ln__div,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( divide_divide_real @ X @ Y ) )
          = ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_div
thf(fact_4311_log__base__change,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log2 @ B @ X )
          = ( divide_divide_real @ ( log2 @ A @ X ) @ ( log2 @ A @ B ) ) ) ) ) ).

% log_base_change
thf(fact_4312_less__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log2 @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_4313_log__of__power__eq,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N )
          = ( log2 @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_4314_fact__div__fact__le__pow,axiom,
    ! [R: nat,N: nat] :
      ( ( ord_less_eq_nat @ R @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R ) ) ) @ ( power_power_nat @ N @ R ) ) ) ).

% fact_div_fact_le_pow
thf(fact_4315_binomial__fact__lemma,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
        = ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% binomial_fact_lemma
thf(fact_4316_norm__sgn,axiom,
    ! [X: real] :
      ( ( ( X = zero_zero_real )
       => ( ( real_V7735802525324610683m_real @ ( sgn_sgn_real @ X ) )
          = zero_zero_real ) )
      & ( ( X != zero_zero_real )
       => ( ( real_V7735802525324610683m_real @ ( sgn_sgn_real @ X ) )
          = one_one_real ) ) ) ).

% norm_sgn
thf(fact_4317_norm__sgn,axiom,
    ! [X: complex] :
      ( ( ( X = zero_zero_complex )
       => ( ( real_V1022390504157884413omplex @ ( sgn_sgn_complex @ X ) )
          = zero_zero_real ) )
      & ( ( X != zero_zero_complex )
       => ( ( real_V1022390504157884413omplex @ ( sgn_sgn_complex @ X ) )
          = one_one_real ) ) ) ).

% norm_sgn
thf(fact_4318_choose__dvd,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).

% choose_dvd
thf(fact_4319_choose__dvd,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% choose_dvd
thf(fact_4320_choose__dvd,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% choose_dvd
thf(fact_4321_choose__dvd,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% choose_dvd
thf(fact_4322_choose__dvd,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% choose_dvd
thf(fact_4323_take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_bit0
thf(fact_4324_take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_bit0
thf(fact_4325_take__bit__eq__mod,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N3: nat,A2: code_integer] : ( modulo364778990260209775nteger @ A2 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_4326_take__bit__eq__mod,axiom,
    ( bit_se569199155075624693atural
    = ( ^ [N3: nat,A2: code_natural] : ( modulo8411746178871703098atural @ A2 @ ( power_7079662738309270450atural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_4327_take__bit__eq__mod,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,A2: int] : ( modulo_modulo_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_4328_take__bit__eq__mod,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,A2: nat] : ( modulo_modulo_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_4329_take__bit__nat__eq__self,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M ) ) ).

% take_bit_nat_eq_self
thf(fact_4330_take__bit__nat__less__exp,axiom,
    ! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_nat_less_exp
thf(fact_4331_take__bit__nat__eq__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M )
      = ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_nat_eq_self_iff
thf(fact_4332_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_4333_ln__diff__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) @ ( divide_divide_real @ ( minus_minus_real @ X @ Y ) @ Y ) ) ) ) ).

% ln_diff_le
thf(fact_4334_ln__realpow,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( power_power_real @ X @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X ) ) ) ) ).

% ln_realpow
thf(fact_4335_take__bit__nat__def,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,M3: nat] : ( modulo_modulo_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_nat_def
thf(fact_4336_log__mult,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ zero_zero_real @ Y )
           => ( ( log2 @ A @ ( times_times_real @ X @ Y ) )
              = ( plus_plus_real @ ( log2 @ A @ X ) @ ( log2 @ A @ Y ) ) ) ) ) ) ) ).

% log_mult
thf(fact_4337_log__divide,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ zero_zero_real @ Y )
           => ( ( log2 @ A @ ( divide_divide_real @ X @ Y ) )
              = ( minus_minus_real @ ( log2 @ A @ X ) @ ( log2 @ A @ Y ) ) ) ) ) ) ) ).

% log_divide
thf(fact_4338_le__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log2 @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_4339_log__base__pow,axiom,
    ! [A: real,N: nat,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( log2 @ ( power_power_real @ A @ N ) @ X )
        = ( divide_divide_real @ ( log2 @ A @ X ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log_base_pow
thf(fact_4340_log__nat__power,axiom,
    ! [X: real,B: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log2 @ B @ ( power_power_real @ X @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log2 @ B @ X ) ) ) ) ).

% log_nat_power
thf(fact_4341_take__bit__int__less__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_int_less_exp
thf(fact_4342_binomial__altdef__nat,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).

% binomial_altdef_nat
thf(fact_4343_take__bit__int__def,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,K2: int] : ( modulo_modulo_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_int_def
thf(fact_4344_signed__take__bit__int__less__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% signed_take_bit_int_less_exp
thf(fact_4345_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_4346_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_4347_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( bit_se1745604003318907178nteger @ N @ A )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_4348_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = zero_zero_int )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_4349_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_4350_take__bit__nat__less__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).

% take_bit_nat_less_self_iff
thf(fact_4351_square__fact__le__2__fact,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% square_fact_le_2_fact
thf(fact_4352_log__of__power__less,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log2 @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_less
thf(fact_4353_log2__of__power__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( semiri5074537144036343181t_real @ N )
        = ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_4354_take__bit__int__less__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).

% take_bit_int_less_self_iff
thf(fact_4355_take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_int_greater_eq_self_iff
thf(fact_4356_fact__num__eq__if,axiom,
    ( semiri5044797733671781792omplex
    = ( ^ [M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M3 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_4357_fact__num__eq__if,axiom,
    ( semiri773545260158071498ct_rat
    = ( ^ [M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M3 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_4358_fact__num__eq__if,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_4359_fact__num__eq__if,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M3 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_4360_fact__num__eq__if,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M3 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_4361_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri5044797733671781792omplex @ N )
        = ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_4362_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri773545260158071498ct_rat @ N )
        = ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_4363_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri1406184849735516958ct_int @ N )
        = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_4364_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri1408675320244567234ct_nat @ N )
        = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_4365_fact__reduce,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( semiri2265585572941072030t_real @ N )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_4366_signed__take__bit__int__less__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_4367_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_4368_fact__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_4369_fact__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_4370_fact__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_4371_binomial__fact,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_4372_binomial__fact,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_4373_binomial__fact,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_4374_log__of__power__le,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log2 @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_le
thf(fact_4375_take__bit__int__eq__self,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ K )
          = K ) ) ) ).

% take_bit_int_eq_self
thf(fact_4376_take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = K )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% take_bit_int_eq_self_iff
thf(fact_4377_take__bit__incr__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
       != ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
     => ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
        = ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).

% take_bit_incr_eq
thf(fact_4378_signed__take__bit__int__less__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
     => ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).

% signed_take_bit_int_less_eq
thf(fact_4379_take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_4380_take__bit__Suc,axiom,
    ! [N: nat,A: code_natural] :
      ( ( bit_se569199155075624693atural @ ( suc @ N ) @ A )
      = ( plus_p4538020629002901425atural @ ( times_2397367101498566445atural @ ( bit_se569199155075624693atural @ N @ ( divide5121882707175180666atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_4381_take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_4382_take__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_4383_less__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_4384_le__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_4385_take__bit__int__less__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% take_bit_int_less_eq
thf(fact_4386_take__bit__int__greater__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_int_greater_eq
thf(fact_4387_stable__imp__take__bit__eq,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se1745604003318907178nteger @ N @ A )
            = zero_z3403309356797280102nteger ) )
        & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se1745604003318907178nteger @ N @ A )
            = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_4388_stable__imp__take__bit__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2923211474154528505it_int @ N @ A )
            = zero_zero_int ) )
        & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2923211474154528505it_int @ N @ A )
            = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_4389_stable__imp__take__bit__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2925701944663578781it_nat @ N @ A )
            = zero_zero_nat ) )
        & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2925701944663578781it_nat @ N @ A )
            = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_4390_ln__one__plus__pos__lower__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( minus_minus_real @ X @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) ) ) ) ).

% ln_one_plus_pos_lower_bound
thf(fact_4391_log2__of__power__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_less
thf(fact_4392_ln__2__less__1,axiom,
    ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).

% ln_2_less_1
thf(fact_4393_binomial__code,axiom,
    ( binomial
    = ( ^ [N3: nat,K2: nat] : ( if_nat @ ( ord_less_nat @ N3 @ K2 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) ) @ ( binomial @ N3 @ ( minus_minus_nat @ N3 @ K2 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N3 @ K2 ) @ one_one_nat ) @ N3 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K2 ) ) ) ) ) ) ).

% binomial_code
thf(fact_4394_fact__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ ( suc @ M ) )
     => ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
        = ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).

% fact_diff_Suc
thf(fact_4395_ceiling__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim7802044766580827645g_real @ ( log2 @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
          = ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% ceiling_log_nat_eq_powr_iff
thf(fact_4396_ceiling__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim7802044766580827645g_real @ ( log2 @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).

% ceiling_log_nat_eq_if
thf(fact_4397_ceiling__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim7802044766580827645g_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).

% ceiling_log2_div2
thf(fact_4398_tanh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( tanh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% tanh_ln_real
thf(fact_4399_ln__one__minus__pos__lower__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% ln_one_minus_pos_lower_bound
thf(fact_4400_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4401_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4402_verit__minus__simplify_I4_J,axiom,
    ! [B: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4403_verit__minus__simplify_I4_J,axiom,
    ! [B: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4404_verit__minus__simplify_I4_J,axiom,
    ! [B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4405_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4406_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4407_neg__equal__iff__equal,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = ( uminus1482373934393186551omplex @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4408_neg__equal__iff__equal,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4409_neg__equal__iff__equal,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4410_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4411_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4412_add_Oinverse__inverse,axiom,
    ! [A: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4413_add_Oinverse__inverse,axiom,
    ! [A: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4414_add_Oinverse__inverse,axiom,
    ! [A: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4415_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4416_neg__le__iff__le,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4417_neg__le__iff__le,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4418_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4419_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_4420_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_4421_add_Oinverse__neutral,axiom,
    ( ( uminus1482373934393186551omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% add.inverse_neutral
thf(fact_4422_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% add.inverse_neutral
thf(fact_4423_add_Oinverse__neutral,axiom,
    ( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% add.inverse_neutral
thf(fact_4424_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4425_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4426_neg__0__equal__iff__equal,axiom,
    ! [A: complex] :
      ( ( zero_zero_complex
        = ( uminus1482373934393186551omplex @ A ) )
      = ( zero_zero_complex = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4427_neg__0__equal__iff__equal,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( uminus_uminus_rat @ A ) )
      = ( zero_zero_rat = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4428_neg__0__equal__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( uminus1351360451143612070nteger @ A ) )
      = ( zero_z3403309356797280102nteger = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4429_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_4430_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_4431_neg__equal__0__iff__equal,axiom,
    ! [A: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% neg_equal_0_iff_equal
thf(fact_4432_neg__equal__0__iff__equal,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_0_iff_equal
thf(fact_4433_neg__equal__0__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_0_iff_equal
thf(fact_4434_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_4435_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_4436_equal__neg__zero,axiom,
    ! [A: rat] :
      ( ( A
        = ( uminus_uminus_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% equal_neg_zero
thf(fact_4437_equal__neg__zero,axiom,
    ! [A: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% equal_neg_zero
thf(fact_4438_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_4439_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_4440_neg__equal__zero,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = A )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_zero
thf(fact_4441_neg__equal__zero,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_zero
thf(fact_4442_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4443_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4444_neg__less__iff__less,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4445_neg__less__iff__less,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4446_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4447_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4448_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4449_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4450_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4451_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4452_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4453_mult__minus__right,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4454_mult__minus__right,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4455_mult__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_4456_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4457_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4458_minus__mult__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( times_times_complex @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4459_minus__mult__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( times_times_rat @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4460_minus__mult__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( times_3573771949741848930nteger @ A @ B ) ) ).

% minus_mult_minus
thf(fact_4461_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4462_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4463_mult__minus__left,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4464_mult__minus__left,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4465_mult__minus__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_4466_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_4467_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_4468_minus__add__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_add_distrib
thf(fact_4469_minus__add__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_add_distrib
thf(fact_4470_minus__add__distrib,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_add_distrib
thf(fact_4471_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4472_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4473_minus__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4474_minus__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4475_minus__add__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4476_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4477_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4478_add__minus__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4479_add__minus__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4480_add__minus__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4481_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4482_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4483_minus__diff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
      = ( minus_minus_complex @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4484_minus__diff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
      = ( minus_minus_rat @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4485_minus__diff__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4486_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_4487_div__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ A @ B ) ) ).

% div_minus_minus
thf(fact_4488_dvd__minus__iff,axiom,
    ! [X: real,Y: real] :
      ( ( dvd_dvd_real @ X @ ( uminus_uminus_real @ Y ) )
      = ( dvd_dvd_real @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_4489_dvd__minus__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ ( uminus_uminus_int @ Y ) )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_4490_dvd__minus__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( dvd_dvd_complex @ X @ ( uminus1482373934393186551omplex @ Y ) )
      = ( dvd_dvd_complex @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_4491_dvd__minus__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( dvd_dvd_rat @ X @ ( uminus_uminus_rat @ Y ) )
      = ( dvd_dvd_rat @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_4492_dvd__minus__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( dvd_dvd_Code_integer @ X @ ( uminus1351360451143612070nteger @ Y ) )
      = ( dvd_dvd_Code_integer @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_4493_minus__dvd__iff,axiom,
    ! [X: real,Y: real] :
      ( ( dvd_dvd_real @ ( uminus_uminus_real @ X ) @ Y )
      = ( dvd_dvd_real @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_4494_minus__dvd__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ ( uminus_uminus_int @ X ) @ Y )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_4495_minus__dvd__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X ) @ Y )
      = ( dvd_dvd_complex @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_4496_minus__dvd__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X ) @ Y )
      = ( dvd_dvd_rat @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_4497_minus__dvd__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X ) @ Y )
      = ( dvd_dvd_Code_integer @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_4498_mod__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_4499_mod__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_4500_idom__abs__sgn__class_Osgn__minus,axiom,
    ! [A: real] :
      ( ( sgn_sgn_real @ ( uminus_uminus_real @ A ) )
      = ( uminus_uminus_real @ ( sgn_sgn_real @ A ) ) ) ).

% idom_abs_sgn_class.sgn_minus
thf(fact_4501_idom__abs__sgn__class_Osgn__minus,axiom,
    ! [A: int] :
      ( ( sgn_sgn_int @ ( uminus_uminus_int @ A ) )
      = ( uminus_uminus_int @ ( sgn_sgn_int @ A ) ) ) ).

% idom_abs_sgn_class.sgn_minus
thf(fact_4502_idom__abs__sgn__class_Osgn__minus,axiom,
    ! [A: complex] :
      ( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ A ) )
      = ( uminus1482373934393186551omplex @ ( sgn_sgn_complex @ A ) ) ) ).

% idom_abs_sgn_class.sgn_minus
thf(fact_4503_idom__abs__sgn__class_Osgn__minus,axiom,
    ! [A: rat] :
      ( ( sgn_sgn_rat @ ( uminus_uminus_rat @ A ) )
      = ( uminus_uminus_rat @ ( sgn_sgn_rat @ A ) ) ) ).

% idom_abs_sgn_class.sgn_minus
thf(fact_4504_idom__abs__sgn__class_Osgn__minus,axiom,
    ! [A: code_integer] :
      ( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( uminus1351360451143612070nteger @ ( sgn_sgn_Code_integer @ A ) ) ) ).

% idom_abs_sgn_class.sgn_minus
thf(fact_4505_tanh__0,axiom,
    ( ( tanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% tanh_0
thf(fact_4506_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4507_neg__less__eq__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4508_neg__less__eq__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4509_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4510_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_4511_less__eq__neg__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_eq_neg_nonpos
thf(fact_4512_less__eq__neg__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% less_eq_neg_nonpos
thf(fact_4513_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_4514_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4515_neg__le__0__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4516_neg__le__0__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4517_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4518_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_4519_neg__0__le__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_le_iff_le
thf(fact_4520_neg__0__le__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% neg_0_le_iff_le
thf(fact_4521_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_4522_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4523_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4524_neg__less__0__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4525_neg__less__0__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4526_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_4527_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_4528_neg__0__less__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% neg_0_less_iff_less
thf(fact_4529_neg__0__less__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_less_iff_less
thf(fact_4530_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_4531_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_4532_neg__less__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_pos
thf(fact_4533_neg__less__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_pos
thf(fact_4534_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_4535_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_4536_less__neg__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% less_neg_neg
thf(fact_4537_less__neg__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_neg_neg
thf(fact_4538_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_4539_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_4540_ab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_left_minus
thf(fact_4541_ab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_left_minus
thf(fact_4542_ab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_left_minus
thf(fact_4543_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_4544_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_4545_add_Oright__inverse,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
      = zero_zero_complex ) ).

% add.right_inverse
thf(fact_4546_add_Oright__inverse,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
      = zero_zero_rat ) ).

% add.right_inverse
thf(fact_4547_add_Oright__inverse,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = zero_z3403309356797280102nteger ) ).

% add.right_inverse
thf(fact_4548_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_4549_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_4550_diff__0,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ A )
      = ( uminus1482373934393186551omplex @ A ) ) ).

% diff_0
thf(fact_4551_diff__0,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ A )
      = ( uminus_uminus_rat @ A ) ) ).

% diff_0
thf(fact_4552_diff__0,axiom,
    ! [A: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% diff_0
thf(fact_4553_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4554_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4555_verit__minus__simplify_I3_J,axiom,
    ! [B: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4556_verit__minus__simplify_I3_J,axiom,
    ! [B: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4557_verit__minus__simplify_I3_J,axiom,
    ! [B: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4558_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4559_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4560_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4561_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4562_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4563_mult__minus1__right,axiom,
    ! [Z2: real] :
      ( ( times_times_real @ Z2 @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z2 ) ) ).

% mult_minus1_right
thf(fact_4564_mult__minus1__right,axiom,
    ! [Z2: int] :
      ( ( times_times_int @ Z2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z2 ) ) ).

% mult_minus1_right
thf(fact_4565_mult__minus1__right,axiom,
    ! [Z2: complex] :
      ( ( times_times_complex @ Z2 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ Z2 ) ) ).

% mult_minus1_right
thf(fact_4566_mult__minus1__right,axiom,
    ! [Z2: rat] :
      ( ( times_times_rat @ Z2 @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ Z2 ) ) ).

% mult_minus1_right
thf(fact_4567_mult__minus1__right,axiom,
    ! [Z2: code_integer] :
      ( ( times_3573771949741848930nteger @ Z2 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ Z2 ) ) ).

% mult_minus1_right
thf(fact_4568_mult__minus1,axiom,
    ! [Z2: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z2 )
      = ( uminus_uminus_real @ Z2 ) ) ).

% mult_minus1
thf(fact_4569_mult__minus1,axiom,
    ! [Z2: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z2 )
      = ( uminus_uminus_int @ Z2 ) ) ).

% mult_minus1
thf(fact_4570_mult__minus1,axiom,
    ! [Z2: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z2 )
      = ( uminus1482373934393186551omplex @ Z2 ) ) ).

% mult_minus1
thf(fact_4571_mult__minus1,axiom,
    ! [Z2: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z2 )
      = ( uminus_uminus_rat @ Z2 ) ) ).

% mult_minus1
thf(fact_4572_mult__minus1,axiom,
    ! [Z2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z2 )
      = ( uminus1351360451143612070nteger @ Z2 ) ) ).

% mult_minus1
thf(fact_4573_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4574_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4575_diff__minus__eq__add,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( plus_plus_complex @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4576_diff__minus__eq__add,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( plus_plus_rat @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4577_diff__minus__eq__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( plus_p5714425477246183910nteger @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4578_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4579_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4580_uminus__add__conv__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( minus_minus_complex @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4581_uminus__add__conv__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( minus_minus_rat @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4582_uminus__add__conv__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4583_divide__minus1,axiom,
    ! [X: real] :
      ( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X ) ) ).

% divide_minus1
thf(fact_4584_divide__minus1,axiom,
    ! [X: complex] :
      ( ( divide1717551699836669952omplex @ X @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% divide_minus1
thf(fact_4585_divide__minus1,axiom,
    ! [X: rat] :
      ( ( divide_divide_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ X ) ) ).

% divide_minus1
thf(fact_4586_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_4587_div__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% div_minus1_right
thf(fact_4588_minus__mod__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_4589_minus__mod__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_4590_ceiling__zero,axiom,
    ( ( archim2889992004027027881ng_rat @ zero_zero_rat )
    = zero_zero_int ) ).

% ceiling_zero
thf(fact_4591_ceiling__zero,axiom,
    ( ( archim7802044766580827645g_real @ zero_zero_real )
    = zero_zero_int ) ).

% ceiling_zero
thf(fact_4592_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% signed_take_bit_of_minus_1
thf(fact_4593_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_4594_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_4595_ceiling__numeral,axiom,
    ! [V: num] :
      ( ( archim7802044766580827645g_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% ceiling_numeral
thf(fact_4596_ceiling__numeral,axiom,
    ! [V: num] :
      ( ( archim2889992004027027881ng_rat @ ( numeral_numeral_rat @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% ceiling_numeral
thf(fact_4597_ceiling__one,axiom,
    ( ( archim2889992004027027881ng_rat @ one_one_rat )
    = one_one_int ) ).

% ceiling_one
thf(fact_4598_ceiling__one,axiom,
    ( ( archim7802044766580827645g_real @ one_one_real )
    = one_one_int ) ).

% ceiling_one
thf(fact_4599_ceiling__of__nat,axiom,
    ! [N: nat] :
      ( ( archim7802044766580827645g_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% ceiling_of_nat
thf(fact_4600_ceiling__of__nat,axiom,
    ! [N: nat] :
      ( ( archim2889992004027027881ng_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% ceiling_of_nat
thf(fact_4601_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4602_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4603_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4604_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4605_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4606_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_4607_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_4608_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% add_neg_numeral_special(7)
thf(fact_4609_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% add_neg_numeral_special(7)
thf(fact_4610_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(7)
thf(fact_4611_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_4612_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_4613_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = zero_zero_complex ) ).

% add_neg_numeral_special(8)
thf(fact_4614_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = zero_zero_rat ) ).

% add_neg_numeral_special(8)
thf(fact_4615_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(8)
thf(fact_4616_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_4617_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_4618_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% diff_numeral_special(12)
thf(fact_4619_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% diff_numeral_special(12)
thf(fact_4620_diff__numeral__special_I12_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% diff_numeral_special(12)
thf(fact_4621_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4622_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4623_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4624_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4625_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4626_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4627_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4628_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ one_one_complex )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4629_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ one_one_rat )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4630_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4631_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_4632_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_4633_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
      = one_one_complex ) ).

% minus_one_mult_self
thf(fact_4634_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
      = one_one_rat ) ).

% minus_one_mult_self
thf(fact_4635_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
      = one_one_Code_integer ) ).

% minus_one_mult_self
thf(fact_4636_left__minus__one__mult__self,axiom,
    ! [N: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4637_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4638_left__minus__one__mult__self,axiom,
    ! [N: nat,A: complex] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4639_left__minus__one__mult__self,axiom,
    ! [N: nat,A: rat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4640_left__minus__one__mult__self,axiom,
    ! [N: nat,A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4641_mod__minus1__right,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_4642_mod__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = zero_z3403309356797280102nteger ) ).

% mod_minus1_right
thf(fact_4643_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_4644_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_4645_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4646_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4647_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4648_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4649_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_4650_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4651_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4652_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4653_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4654_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4655_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4656_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4657_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4658_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4659_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4660_ceiling__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_neg_numeral
thf(fact_4661_ceiling__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_neg_numeral
thf(fact_4662_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4663_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4664_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4665_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4666_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_4667_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4668_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4669_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4670_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4671_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_4672_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4673_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4674_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4675_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4676_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_4677_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4678_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4679_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4680_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4681_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4682_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4683_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4684_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4685_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4686_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4687_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4688_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4689_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4690_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4691_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4692_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4693_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4694_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4695_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4696_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4697_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4698_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4699_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4700_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4701_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4702_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4703_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4704_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4705_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4706_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4707_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4708_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4709_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
            = B ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4710_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4711_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4712_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
        = A )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4713_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4714_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4715_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4716_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4717_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4718_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4719_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4720_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4721_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4722_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4723_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4724_power2__minus,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4725_power2__minus,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4726_power2__minus,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4727_sgn__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( sgn_sgn_real @ A )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% sgn_neg
thf(fact_4728_sgn__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( sgn_sgn_int @ A )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% sgn_neg
thf(fact_4729_sgn__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( sgn_sgn_rat @ A )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% sgn_neg
thf(fact_4730_sgn__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( sgn_sgn_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% sgn_neg
thf(fact_4731_push__bit__Suc__minus__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se545348938243370406it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ) ).

% push_bit_Suc_minus_numeral
thf(fact_4732_push__bit__Suc__minus__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se7788150548672797655nteger @ ( suc @ N ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( bit_se7788150548672797655nteger @ N @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ) ) ).

% push_bit_Suc_minus_numeral
thf(fact_4733_ceiling__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% ceiling_le_zero
thf(fact_4734_ceiling__le__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ zero_zero_int )
      = ( ord_less_eq_rat @ X @ zero_zero_rat ) ) ).

% ceiling_le_zero
thf(fact_4735_zero__less__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ zero_zero_rat @ X ) ) ).

% zero_less_ceiling
thf(fact_4736_zero__less__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% zero_less_ceiling
thf(fact_4737_ceiling__le__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_real @ X @ ( numeral_numeral_real @ V ) ) ) ).

% ceiling_le_numeral
thf(fact_4738_ceiling__le__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_rat @ X @ ( numeral_numeral_rat @ V ) ) ) ).

% ceiling_le_numeral
thf(fact_4739_ceiling__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% ceiling_less_one
thf(fact_4740_ceiling__less__one,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int )
      = ( ord_less_eq_rat @ X @ zero_zero_rat ) ) ).

% ceiling_less_one
thf(fact_4741_one__le__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ zero_zero_rat @ X ) ) ).

% one_le_ceiling
thf(fact_4742_one__le__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% one_le_ceiling
thf(fact_4743_numeral__less__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( numeral_numeral_real @ V ) @ X ) ) ).

% numeral_less_ceiling
thf(fact_4744_numeral__less__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( numeral_numeral_rat @ V ) @ X ) ) ).

% numeral_less_ceiling
thf(fact_4745_ceiling__le__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
      = ( ord_less_eq_real @ X @ one_one_real ) ) ).

% ceiling_le_one
thf(fact_4746_ceiling__le__one,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int )
      = ( ord_less_eq_rat @ X @ one_one_rat ) ) ).

% ceiling_le_one
thf(fact_4747_one__less__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ one_one_rat @ X ) ) ).

% one_less_ceiling
thf(fact_4748_one__less__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ one_one_real @ X ) ) ).

% one_less_ceiling
thf(fact_4749_ceiling__add__numeral,axiom,
    ! [X: real,V: num] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ V ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_add_numeral
thf(fact_4750_ceiling__add__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_add_numeral
thf(fact_4751_ceiling__add__one,axiom,
    ! [X: rat] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ one_one_rat ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_4752_ceiling__add__one,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ one_one_real ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_4753_ceiling__diff__numeral,axiom,
    ! [X: real,V: num] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ ( numeral_numeral_real @ V ) ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_diff_numeral
thf(fact_4754_ceiling__diff__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_diff_numeral
thf(fact_4755_ceiling__diff__one,axiom,
    ! [X: rat] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ one_one_rat ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int ) ) ).

% ceiling_diff_one
thf(fact_4756_ceiling__diff__one,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ one_one_real ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int ) ) ).

% ceiling_diff_one
thf(fact_4757_ceiling__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim7802044766580827645g_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% ceiling_numeral_power
thf(fact_4758_ceiling__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim2889992004027027881ng_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% ceiling_numeral_power
thf(fact_4759_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4760_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4761_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4762_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4763_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4764_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4765_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4766_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4767_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4768_diff__numeral__special_I10_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4769_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4770_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4771_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4772_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4773_diff__numeral__special_I11_J,axiom,
    ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4774_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_4775_minus__1__div__2__eq,axiom,
    ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% minus_1_div_2_eq
thf(fact_4776_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_4777_minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% minus_1_mod_2_eq
thf(fact_4778_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_4779_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_minus_1_mod_2_eq
thf(fact_4780_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4781_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4782_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4783_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4784_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4785_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4786_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4787_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: complex] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( power_power_complex @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4788_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4789_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4790_power__minus__odd,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4791_power__minus__odd,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4792_power__minus__odd,axiom,
    ! [N: nat,A: complex] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4793_power__minus__odd,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4794_power__minus__odd,axiom,
    ! [N: nat,A: code_integer] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4795_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4796_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4797_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4798_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4799_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4800_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4801_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4802_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4803_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4804_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4805_ceiling__le__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% ceiling_le_neg_numeral
thf(fact_4806_ceiling__le__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).

% ceiling_le_neg_numeral
thf(fact_4807_ceiling__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
      = ( ord_less_eq_real @ X @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% ceiling_less_zero
thf(fact_4808_ceiling__less__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ zero_zero_int )
      = ( ord_less_eq_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% ceiling_less_zero
thf(fact_4809_zero__le__ceiling,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X ) ) ).

% zero_le_ceiling
thf(fact_4810_zero__le__ceiling,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X ) ) ).

% zero_le_ceiling
thf(fact_4811_neg__numeral__less__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).

% neg_numeral_less_ceiling
thf(fact_4812_neg__numeral__less__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X ) ) ).

% neg_numeral_less_ceiling
thf(fact_4813_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4814_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4815_dbl__simps_I4_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4816_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4817_dbl__simps_I4_J,axiom,
    ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4818_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_4819_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_4820_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_complex ) ).

% power_minus1_even
thf(fact_4821_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_rat ) ).

% power_minus1_even
thf(fact_4822_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_Code_integer ) ).

% power_minus1_even
thf(fact_4823_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = one_one_real ) ) ).

% neg_one_even_power
thf(fact_4824_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_4825_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = one_one_complex ) ) ).

% neg_one_even_power
thf(fact_4826_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = one_one_rat ) ) ).

% neg_one_even_power
thf(fact_4827_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = one_one_Code_integer ) ) ).

% neg_one_even_power
thf(fact_4828_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% neg_one_odd_power
thf(fact_4829_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_4830_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% neg_one_odd_power
thf(fact_4831_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% neg_one_odd_power
thf(fact_4832_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% neg_one_odd_power
thf(fact_4833_ceiling__less__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_real @ X @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% ceiling_less_numeral
thf(fact_4834_ceiling__less__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).

% ceiling_less_numeral
thf(fact_4835_numeral__le__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).

% numeral_le_ceiling
thf(fact_4836_numeral__le__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X ) ) ).

% numeral_le_ceiling
thf(fact_4837_signed__take__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_4838_signed__take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_4839_push__bit__numeral__minus__1,axiom,
    ! [N: num] :
      ( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ N ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ N ) ) ) ) ).

% push_bit_numeral_minus_1
thf(fact_4840_push__bit__numeral__minus__1,axiom,
    ! [N: num] :
      ( ( bit_se7788150548672797655nteger @ ( numeral_numeral_nat @ N ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ N ) ) ) ) ).

% push_bit_numeral_minus_1
thf(fact_4841_ceiling__less__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_real @ X @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% ceiling_less_neg_numeral
thf(fact_4842_ceiling__less__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).

% ceiling_less_neg_numeral
thf(fact_4843_neg__numeral__le__ceiling,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).

% neg_numeral_le_ceiling
thf(fact_4844_neg__numeral__le__ceiling,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X ) ) ).

% neg_numeral_le_ceiling
thf(fact_4845_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4846_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4847_verit__negate__coefficient_I3_J,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
     => ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4848_verit__negate__coefficient_I3_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A = B )
     => ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4849_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4850_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4851_minus__equation__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( uminus1482373934393186551omplex @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4852_minus__equation__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( uminus_uminus_rat @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4853_minus__equation__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( uminus1351360451143612070nteger @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4854_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_4855_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_4856_equation__minus__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% equation_minus_iff
thf(fact_4857_equation__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% equation_minus_iff
thf(fact_4858_equation__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% equation_minus_iff
thf(fact_4859_tanh__real__gt__neg1,axiom,
    ! [X: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X ) ) ).

% tanh_real_gt_neg1
thf(fact_4860_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4861_le__imp__neg__le,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4862_le__imp__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4863_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4864_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4865_minus__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4866_minus__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4867_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4868_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_4869_le__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_minus_iff
thf(fact_4870_le__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% le_minus_iff
thf(fact_4871_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_4872_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4873_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4874_verit__negate__coefficient_I2_J,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4875_verit__negate__coefficient_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4876_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4877_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4878_minus__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4879_minus__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4880_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_4881_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_4882_less__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% less_minus_iff
thf(fact_4883_less__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% less_minus_iff
thf(fact_4884_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4885_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4886_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6690914467698888265omplex @ M )
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4887_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_rat @ M )
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4888_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6620942414471956472nteger @ M )
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4889_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4890_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4891_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
     != ( numera6690914467698888265omplex @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4892_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
     != ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4893_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
     != ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4894_minus__mult__commute,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_mult_commute
thf(fact_4895_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_4896_minus__mult__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_mult_commute
thf(fact_4897_minus__mult__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_mult_commute
thf(fact_4898_minus__mult__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_mult_commute
thf(fact_4899_square__eq__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ A )
        = ( times_times_real @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4900_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4901_square__eq__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ A )
        = ( times_times_complex @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4902_square__eq__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ A )
        = ( times_times_rat @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4903_square__eq__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( times_3573771949741848930nteger @ A @ A )
        = ( times_3573771949741848930nteger @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1351360451143612070nteger @ B ) ) ) ) ).

% square_eq_iff
thf(fact_4904_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_4905_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_4906_one__neq__neg__one,axiom,
    ( one_one_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% one_neq_neg_one
thf(fact_4907_one__neq__neg__one,axiom,
    ( one_one_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% one_neq_neg_one
thf(fact_4908_one__neq__neg__one,axiom,
    ( one_one_Code_integer
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% one_neq_neg_one
thf(fact_4909_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4910_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4911_is__num__normalize_I8_J,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4912_is__num__normalize_I8_J,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4913_is__num__normalize_I8_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4914_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4915_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4916_add_Oinverse__distrib__swap,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4917_add_Oinverse__distrib__swap,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4918_add_Oinverse__distrib__swap,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4919_group__cancel_Oneg1,axiom,
    ! [A3: real,K: real,A: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4920_group__cancel_Oneg1,axiom,
    ! [A3: int,K: int,A: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4921_group__cancel_Oneg1,axiom,
    ! [A3: complex,K: complex,A: complex] :
      ( ( A3
        = ( plus_plus_complex @ K @ A ) )
     => ( ( uminus1482373934393186551omplex @ A3 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4922_group__cancel_Oneg1,axiom,
    ! [A3: rat,K: rat,A: rat] :
      ( ( A3
        = ( plus_plus_rat @ K @ A ) )
     => ( ( uminus_uminus_rat @ A3 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4923_group__cancel_Oneg1,axiom,
    ! [A3: code_integer,K: code_integer,A: code_integer] :
      ( ( A3
        = ( plus_p5714425477246183910nteger @ K @ A ) )
     => ( ( uminus1351360451143612070nteger @ A3 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4924_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4925_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4926_minus__diff__commute,axiom,
    ! [B: complex,A: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
      = ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4927_minus__diff__commute,axiom,
    ! [B: rat,A: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
      = ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4928_minus__diff__commute,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
      = ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4929_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4930_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4931_minus__diff__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4932_minus__diff__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4933_minus__diff__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4934_minus__divide__left,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_4935_minus__divide__left,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_4936_minus__divide__left,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_4937_minus__divide__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( divide_divide_real @ A @ B ) ) ).

% minus_divide_divide
thf(fact_4938_minus__divide__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( divide1717551699836669952omplex @ A @ B ) ) ).

% minus_divide_divide
thf(fact_4939_minus__divide__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( divide_divide_rat @ A @ B ) ) ).

% minus_divide_divide
thf(fact_4940_minus__divide__right,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_divide_right
thf(fact_4941_minus__divide__right,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_divide_right
thf(fact_4942_minus__divide__right,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_divide_right
thf(fact_4943_div__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% div_minus_right
thf(fact_4944_div__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% div_minus_right
thf(fact_4945_mod__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_4946_mod__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_4947_mod__minus__cong,axiom,
    ! [A: int,B: int,A5: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = ( modulo_modulo_int @ A5 @ B ) )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
        = ( modulo_modulo_int @ ( uminus_uminus_int @ A5 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_4948_mod__minus__cong,axiom,
    ! [A: code_integer,B: code_integer,A5: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = ( modulo364778990260209775nteger @ A5 @ B ) )
     => ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A5 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_4949_mod__minus__eq,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_4950_mod__minus__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_4951_push__bit__minus,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ A ) )
      = ( uminus_uminus_int @ ( bit_se545348938243370406it_int @ N @ A ) ) ) ).

% push_bit_minus
thf(fact_4952_push__bit__minus,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( uminus1351360451143612070nteger @ A ) )
      = ( uminus1351360451143612070nteger @ ( bit_se7788150548672797655nteger @ N @ A ) ) ) ).

% push_bit_minus
thf(fact_4953_sgn__real__def,axiom,
    ( sgn_sgn_real
    = ( ^ [A2: real] : ( if_real @ ( A2 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A2 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_real_def
thf(fact_4954_ceiling__mono,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y ) @ ( archim7802044766580827645g_real @ X ) ) ) ).

% ceiling_mono
thf(fact_4955_ceiling__mono,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y @ X )
     => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ Y ) @ ( archim2889992004027027881ng_rat @ X ) ) ) ).

% ceiling_mono
thf(fact_4956_ceiling__less__cancel,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim2889992004027027881ng_rat @ Y ) )
     => ( ord_less_rat @ X @ Y ) ) ).

% ceiling_less_cancel
thf(fact_4957_ceiling__less__cancel,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y ) )
     => ( ord_less_real @ X @ Y ) ) ).

% ceiling_less_cancel
thf(fact_4958_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_4959_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_4960_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_4961_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_4962_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_4963_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_4964_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_4965_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_4966_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_4967_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_4968_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_4969_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_4970_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_z3403309356797280102nteger
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_4971_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_4972_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_4973_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_4974_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_4975_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_4976_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_4977_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_4978_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_4979_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_4980_le__minus__one__simps_I2_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% le_minus_one_simps(2)
thf(fact_4981_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% le_minus_one_simps(2)
thf(fact_4982_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_4983_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_4984_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(4)
thf(fact_4985_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(4)
thf(fact_4986_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_4987_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_4988_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_4989_zero__neq__neg__one,axiom,
    ( zero_zero_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% zero_neq_neg_one
thf(fact_4990_zero__neq__neg__one,axiom,
    ( zero_zero_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% zero_neq_neg_one
thf(fact_4991_zero__neq__neg__one,axiom,
    ( zero_z3403309356797280102nteger
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% zero_neq_neg_one
thf(fact_4992_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_4993_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_4994_neg__eq__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_4995_neg__eq__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_4996_neg__eq__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_4997_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_4998_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_4999_eq__neg__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5000_eq__neg__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5001_eq__neg__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5002_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5003_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5004_add_Oinverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5005_add_Oinverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
     => ( ( uminus_uminus_rat @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5006_add_Oinverse__unique,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( ( uminus1351360451143612070nteger @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5007_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5008_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5009_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5010_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5011_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5012_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5013_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5014_add__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5015_add__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5016_add__eq__0__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5017_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_5018_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_5019_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(4)
thf(fact_5020_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(4)
thf(fact_5021_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_5022_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_5023_less__minus__one__simps_I2_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% less_minus_one_simps(2)
thf(fact_5024_less__minus__one__simps_I2_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% less_minus_one_simps(2)
thf(fact_5025_numeral__times__minus__swap,axiom,
    ! [W: num,X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X ) )
      = ( times_times_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5026_numeral__times__minus__swap,axiom,
    ! [W: num,X: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
      = ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5027_numeral__times__minus__swap,axiom,
    ! [W: num,X: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X ) )
      = ( times_times_complex @ X @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5028_numeral__times__minus__swap,axiom,
    ! [W: num,X: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X ) )
      = ( times_times_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5029_numeral__times__minus__swap,axiom,
    ! [W: num,X: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X ) )
      = ( times_3573771949741848930nteger @ X @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5030_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5031_nonzero__minus__divide__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5032_nonzero__minus__divide__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5033_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5034_nonzero__minus__divide__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5035_nonzero__minus__divide__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5036_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ N )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_5037_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_5038_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ N )
     != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% numeral_neq_neg_one
thf(fact_5039_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ N )
     != ( uminus_uminus_rat @ one_one_rat ) ) ).

% numeral_neq_neg_one
thf(fact_5040_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6620942414471956472nteger @ N )
     != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% numeral_neq_neg_one
thf(fact_5041_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5042_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5043_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5044_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5045_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_Code_integer
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5046_square__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( times_times_real @ X @ X )
        = one_one_real )
      = ( ( X = one_one_real )
        | ( X
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% square_eq_1_iff
thf(fact_5047_square__eq__1__iff,axiom,
    ! [X: int] :
      ( ( ( times_times_int @ X @ X )
        = one_one_int )
      = ( ( X = one_one_int )
        | ( X
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_5048_square__eq__1__iff,axiom,
    ! [X: complex] :
      ( ( ( times_times_complex @ X @ X )
        = one_one_complex )
      = ( ( X = one_one_complex )
        | ( X
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% square_eq_1_iff
thf(fact_5049_square__eq__1__iff,axiom,
    ! [X: rat] :
      ( ( ( times_times_rat @ X @ X )
        = one_one_rat )
      = ( ( X = one_one_rat )
        | ( X
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% square_eq_1_iff
thf(fact_5050_square__eq__1__iff,axiom,
    ! [X: code_integer] :
      ( ( ( times_3573771949741848930nteger @ X @ X )
        = one_one_Code_integer )
      = ( ( X = one_one_Code_integer )
        | ( X
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% square_eq_1_iff
thf(fact_5051_group__cancel_Osub2,axiom,
    ! [B5: real,K: real,B: real,A: real] :
      ( ( B5
        = ( plus_plus_real @ K @ B ) )
     => ( ( minus_minus_real @ A @ B5 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5052_group__cancel_Osub2,axiom,
    ! [B5: int,K: int,B: int,A: int] :
      ( ( B5
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B5 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5053_group__cancel_Osub2,axiom,
    ! [B5: complex,K: complex,B: complex,A: complex] :
      ( ( B5
        = ( plus_plus_complex @ K @ B ) )
     => ( ( minus_minus_complex @ A @ B5 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5054_group__cancel_Osub2,axiom,
    ! [B5: rat,K: rat,B: rat,A: rat] :
      ( ( B5
        = ( plus_plus_rat @ K @ B ) )
     => ( ( minus_minus_rat @ A @ B5 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5055_group__cancel_Osub2,axiom,
    ! [B5: code_integer,K: code_integer,B: code_integer,A: code_integer] :
      ( ( B5
        = ( plus_p5714425477246183910nteger @ K @ B ) )
     => ( ( minus_8373710615458151222nteger @ A @ B5 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5056_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A2: real,B2: real] : ( plus_plus_real @ A2 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5057_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A2: int,B2: int] : ( plus_plus_int @ A2 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5058_diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A2: complex,B2: complex] : ( plus_plus_complex @ A2 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5059_diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A2: rat,B2: rat] : ( plus_plus_rat @ A2 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5060_diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A2: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A2 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5061_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A2: real,B2: real] : ( plus_plus_real @ A2 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5062_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A2: int,B2: int] : ( plus_plus_int @ A2 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5063_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A2: complex,B2: complex] : ( plus_plus_complex @ A2 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5064_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A2: rat,B2: rat] : ( plus_plus_rat @ A2 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5065_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A2: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A2 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5066_dvd__neg__div,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5067_dvd__neg__div,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5068_dvd__neg__div,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5069_dvd__neg__div,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5070_dvd__neg__div,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5071_dvd__div__neg,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5072_dvd__div__neg,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5073_dvd__div__neg,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5074_dvd__div__neg,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5075_dvd__div__neg,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5076_sgn__not__eq__imp,axiom,
    ! [B: real,A: real] :
      ( ( ( sgn_sgn_real @ B )
       != ( sgn_sgn_real @ A ) )
     => ( ( ( sgn_sgn_real @ A )
         != zero_zero_real )
       => ( ( ( sgn_sgn_real @ B )
           != zero_zero_real )
         => ( ( sgn_sgn_real @ A )
            = ( uminus_uminus_real @ ( sgn_sgn_real @ B ) ) ) ) ) ) ).

% sgn_not_eq_imp
thf(fact_5077_sgn__not__eq__imp,axiom,
    ! [B: int,A: int] :
      ( ( ( sgn_sgn_int @ B )
       != ( sgn_sgn_int @ A ) )
     => ( ( ( sgn_sgn_int @ A )
         != zero_zero_int )
       => ( ( ( sgn_sgn_int @ B )
           != zero_zero_int )
         => ( ( sgn_sgn_int @ A )
            = ( uminus_uminus_int @ ( sgn_sgn_int @ B ) ) ) ) ) ) ).

% sgn_not_eq_imp
thf(fact_5078_sgn__not__eq__imp,axiom,
    ! [B: rat,A: rat] :
      ( ( ( sgn_sgn_rat @ B )
       != ( sgn_sgn_rat @ A ) )
     => ( ( ( sgn_sgn_rat @ A )
         != zero_zero_rat )
       => ( ( ( sgn_sgn_rat @ B )
           != zero_zero_rat )
         => ( ( sgn_sgn_rat @ A )
            = ( uminus_uminus_rat @ ( sgn_sgn_rat @ B ) ) ) ) ) ) ).

% sgn_not_eq_imp
thf(fact_5079_sgn__not__eq__imp,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ B )
       != ( sgn_sgn_Code_integer @ A ) )
     => ( ( ( sgn_sgn_Code_integer @ A )
         != zero_z3403309356797280102nteger )
       => ( ( ( sgn_sgn_Code_integer @ B )
           != zero_z3403309356797280102nteger )
         => ( ( sgn_sgn_Code_integer @ A )
            = ( uminus1351360451143612070nteger @ ( sgn_sgn_Code_integer @ B ) ) ) ) ) ) ).

% sgn_not_eq_imp
thf(fact_5080_sgn__minus__1,axiom,
    ( ( sgn_sgn_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sgn_minus_1
thf(fact_5081_sgn__minus__1,axiom,
    ( ( sgn_sgn_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% sgn_minus_1
thf(fact_5082_sgn__minus__1,axiom,
    ( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% sgn_minus_1
thf(fact_5083_sgn__minus__1,axiom,
    ( ( sgn_sgn_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% sgn_minus_1
thf(fact_5084_sgn__minus__1,axiom,
    ( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% sgn_minus_1
thf(fact_5085_real__minus__mult__self__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_5086_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X3: real,Y6: real] : ( plus_plus_real @ X3 @ ( uminus_uminus_real @ Y6 ) ) ) ) ).

% minus_real_def
thf(fact_5087_tanh__real__lt__1,axiom,
    ! [X: real] : ( ord_less_real @ ( tanh_real @ X ) @ one_one_real ) ).

% tanh_real_lt_1
thf(fact_5088_ceiling__add__le,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ Y ) ) @ ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim2889992004027027881ng_rat @ Y ) ) ) ).

% ceiling_add_le
thf(fact_5089_ceiling__add__le,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y ) ) ) ).

% ceiling_add_le
thf(fact_5090_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5091_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5092_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5093_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5094_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_5095_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_le_zero
thf(fact_5096_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_le_zero
thf(fact_5097_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_5098_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5099_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5100_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5101_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5102_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_5103_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_5104_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_less_zero
thf(fact_5105_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_less_zero
thf(fact_5106_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_5107_le__minus__one__simps_I1_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% le_minus_one_simps(1)
thf(fact_5108_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% le_minus_one_simps(1)
thf(fact_5109_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_5110_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_5111_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(3)
thf(fact_5112_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(3)
thf(fact_5113_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_5114_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_5115_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_5116_less__minus__one__simps_I1_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% less_minus_one_simps(1)
thf(fact_5117_less__minus__one__simps_I1_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% less_minus_one_simps(1)
thf(fact_5118_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_5119_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_5120_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(3)
thf(fact_5121_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(3)
thf(fact_5122_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_5123_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_le_one
thf(fact_5124_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_le_one
thf(fact_5125_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_5126_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_5127_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_le_numeral
thf(fact_5128_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_le_numeral
thf(fact_5129_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_5130_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_5131_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% neg_numeral_le_neg_one
thf(fact_5132_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% neg_numeral_le_neg_one
thf(fact_5133_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_5134_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_5135_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_le_neg_one
thf(fact_5136_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_le_neg_one
thf(fact_5137_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_5138_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5139_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5140_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5141_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5142_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_5143_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_5144_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_less_one
thf(fact_5145_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_less_one
thf(fact_5146_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_5147_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_5148_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_less_numeral
thf(fact_5149_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_less_numeral
thf(fact_5150_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_5151_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_5152_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_less_neg_one
thf(fact_5153_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_less_neg_one
thf(fact_5154_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5155_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5156_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5157_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5158_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5159_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5160_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5161_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5162_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5163_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( C
          = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ( times_times_complex @ C @ B )
          = ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5164_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( C
          = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
        = ( ( times_times_rat @ C @ B )
          = ( uminus_uminus_rat @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5165_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5166_nonzero__neg__divide__eq__eq,axiom,
    ! [B: complex,A: complex,C: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
          = C )
        = ( ( uminus1482373934393186551omplex @ A )
          = ( times_times_complex @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5167_nonzero__neg__divide__eq__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
          = C )
        = ( ( uminus_uminus_rat @ A )
          = ( times_times_rat @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5168_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5169_minus__divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ B )
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5170_minus__divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( ( uminus_uminus_rat @ B )
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5171_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5172_eq__minus__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = ( uminus1482373934393186551omplex @ B ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5173_eq__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = ( uminus_uminus_rat @ B ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5174_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5175_divide__eq__minus__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( B != zero_zero_complex )
        & ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5176_divide__eq__minus__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ( B != zero_zero_rat )
        & ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5177_mult__1s__ring__1_I1_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5178_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5179_mult__1s__ring__1_I1_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5180_mult__1s__ring__1_I1_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5181_mult__1s__ring__1_I1_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5182_mult__1s__ring__1_I2_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5183_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5184_mult__1s__ring__1_I2_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5185_mult__1s__ring__1_I2_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5186_mult__1s__ring__1_I2_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5187_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_5188_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_5189_uminus__numeral__One,axiom,
    ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% uminus_numeral_One
thf(fact_5190_uminus__numeral__One,axiom,
    ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% uminus_numeral_One
thf(fact_5191_uminus__numeral__One,axiom,
    ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% uminus_numeral_One
thf(fact_5192_power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).

% power_minus
thf(fact_5193_power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).

% power_minus
thf(fact_5194_power__minus,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_minus
thf(fact_5195_power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_minus
thf(fact_5196_power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_minus
thf(fact_5197_power__minus__Bit0,axiom,
    ! [X: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5198_power__minus__Bit0,axiom,
    ! [X: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5199_power__minus__Bit0,axiom,
    ! [X: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5200_power__minus__Bit0,axiom,
    ! [X: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5201_power__minus__Bit0,axiom,
    ! [X: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5202_norm__uminus__minus,axiom,
    ! [X: real,Y: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ Y ) )
      = ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) ) ).

% norm_uminus_minus
thf(fact_5203_norm__uminus__minus,axiom,
    ! [X: complex,Y: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ Y ) )
      = ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) ) ).

% norm_uminus_minus
thf(fact_5204_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_5205_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_5206_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_5207_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_5208_pos__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5209_pos__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5210_pos__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5211_pos__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5212_neg__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5213_neg__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5214_neg__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5215_neg__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5216_minus__divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5217_minus__divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5218_less__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5219_less__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5220_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5221_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5222_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5223_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5224_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5225_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5226_minus__divide__add__eq__iff,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( Z2 != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z2 ) ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5227_minus__divide__add__eq__iff,axiom,
    ! [Z2: complex,X: complex,Y: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z2 ) ) @ Y )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5228_minus__divide__add__eq__iff,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( Z2 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z2 ) ) @ Y )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5229_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z2: real,A: real,B: real] :
      ( ( ( Z2 = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
          = B ) )
      & ( ( Z2 != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5230_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z2: complex,A: complex,B: complex] :
      ( ( ( Z2 = zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
          = B ) )
      & ( ( Z2 != zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5231_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z2: rat,A: rat,B: rat] :
      ( ( ( Z2 = zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
          = B ) )
      & ( ( Z2 != zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5232_minus__divide__diff__eq__iff,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( Z2 != zero_zero_real )
     => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z2 ) ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5233_minus__divide__diff__eq__iff,axiom,
    ! [Z2: complex,X: complex,Y: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z2 ) ) @ Y )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5234_minus__divide__diff__eq__iff,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( Z2 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z2 ) ) @ Y )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y @ Z2 ) ) @ Z2 ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5235_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z2: real,A: real,B: real] :
      ( ( ( Z2 = zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z2 != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z2 ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5236_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z2: complex,A: complex,B: complex] :
      ( ( ( Z2 = zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z2 != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z2 ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5237_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z2: rat,A: rat,B: rat] :
      ( ( ( Z2 = zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z2 != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z2 ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5238_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z2: real,A: real,B: real] :
      ( ( ( Z2 = zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z2 != zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z2 ) ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5239_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z2: complex,A: complex,B: complex] :
      ( ( ( Z2 = zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z2 != zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z2 ) ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5240_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z2: rat,A: rat,B: rat] :
      ( ( ( Z2 = zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z2 != zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z2 ) ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z2 ) ) @ Z2 ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5241_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5242_even__minus,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5243_power2__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5244_power2__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5245_power2__eq__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus1482373934393186551omplex @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5246_power2__eq__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_rat @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5247_power2__eq__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus1351360451143612070nteger @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_5248_sgn__if,axiom,
    ( sgn_sgn_real
    = ( ^ [X3: real] : ( if_real @ ( X3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ X3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_if
thf(fact_5249_sgn__if,axiom,
    ( sgn_sgn_int
    = ( ^ [X3: int] : ( if_int @ ( X3 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ X3 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% sgn_if
thf(fact_5250_sgn__if,axiom,
    ( sgn_sgn_rat
    = ( ^ [X3: rat] : ( if_rat @ ( X3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ X3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_if
thf(fact_5251_sgn__if,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [X3: code_integer] : ( if_Code_integer @ ( X3 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ X3 ) @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ) ).

% sgn_if
thf(fact_5252_sgn__1__neg,axiom,
    ! [A: real] :
      ( ( ( sgn_sgn_real @ A )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% sgn_1_neg
thf(fact_5253_sgn__1__neg,axiom,
    ! [A: int] :
      ( ( ( sgn_sgn_int @ A )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% sgn_1_neg
thf(fact_5254_sgn__1__neg,axiom,
    ! [A: rat] :
      ( ( ( sgn_sgn_rat @ A )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% sgn_1_neg
thf(fact_5255_sgn__1__neg,axiom,
    ! [A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% sgn_1_neg
thf(fact_5256_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
        = zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5257_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
        = zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5258_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
        = zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5259_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
        = zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5260_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
        = zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5261_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
        = zero_z3403309356797280102nteger )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5262_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
        = zero_zero_complex )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5263_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
        = zero_zero_real )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5264_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
        = zero_zero_rat )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5265_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
        = zero_zero_int )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5266_pochhammer__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N )
        = zero_zero_complex )
      = ( ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ( A
              = ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K2 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_5267_pochhammer__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N )
        = zero_zero_real )
      = ( ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ( A
              = ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K2 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_5268_pochhammer__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N )
        = zero_zero_rat )
      = ( ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ( A
              = ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K2 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_5269_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
       != zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5270_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
       != zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5271_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
       != zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5272_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
       != zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5273_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
       != zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5274_ln__add__one__self__le__self2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self2
thf(fact_5275_mult__ceiling__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ).

% mult_ceiling_le
thf(fact_5276_mult__ceiling__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ).

% mult_ceiling_le
thf(fact_5277_fold__atLeastAtMost__nat_Oelims,axiom,
    ! [X: nat > nat > nat,Xa: nat,Xb: nat,Xc: nat,Y: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X @ Xa @ Xb @ Xc )
        = Y )
     => ( ( ( ord_less_nat @ Xb @ Xa )
         => ( Y = Xc ) )
        & ( ~ ( ord_less_nat @ Xb @ Xa )
         => ( Y
            = ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa @ one_one_nat ) @ Xb @ ( X @ Xa @ Xc ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.elims
thf(fact_5278_fold__atLeastAtMost__nat_Osimps,axiom,
    ( set_fo2584398358068434914at_nat
    = ( ^ [F2: nat > nat > nat,A2: nat,B2: nat,Acc: nat] : ( if_nat @ ( ord_less_nat @ B2 @ A2 ) @ Acc @ ( set_fo2584398358068434914at_nat @ F2 @ ( plus_plus_nat @ A2 @ one_one_nat ) @ B2 @ ( F2 @ A2 @ Acc ) ) ) ) ) ).

% fold_atLeastAtMost_nat.simps
thf(fact_5279_pos__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5280_pos__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5281_pos__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5282_pos__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5283_neg__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5284_neg__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5285_neg__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5286_neg__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5287_minus__divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5288_minus__divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5289_le__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5290_le__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5291_divide__less__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5292_divide__less__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5293_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5294_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5295_power2__eq__1__iff,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( A = one_one_real )
        | ( A
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5296_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5297_power2__eq__1__iff,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
      = ( ( A = one_one_complex )
        | ( A
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5298_power2__eq__1__iff,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( A = one_one_rat )
        | ( A
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5299_power2__eq__1__iff,axiom,
    ! [A: code_integer] :
      ( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( A = one_one_Code_integer )
        | ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5300_uminus__power__if,axiom,
    ! [N: nat,A: real] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( power_power_real @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5301_uminus__power__if,axiom,
    ! [N: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( power_power_int @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5302_uminus__power__if,axiom,
    ! [N: nat,A: complex] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( power_power_complex @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5303_uminus__power__if,axiom,
    ! [N: nat,A: rat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( power_power_rat @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5304_uminus__power__if,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( power_8256067586552552935nteger @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5305_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5306_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5307_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5308_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5309_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5310_realpow__square__minus__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_5311_ln__one__minus__pos__upper__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_5312_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5313_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5314_divide__le__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5315_divide__le__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5316_square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).

% square_le_1
thf(fact_5317_square__le__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
     => ( ( ord_le3102999989581377725nteger @ X @ one_one_Code_integer )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% square_le_1
thf(fact_5318_square__le__1,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X )
     => ( ( ord_less_eq_rat @ X @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).

% square_le_1
thf(fact_5319_square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X )
     => ( ( ord_less_eq_int @ X @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% square_le_1
thf(fact_5320_minus__power__mult__self,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5321_minus__power__mult__self,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5322_minus__power__mult__self,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5323_minus__power__mult__self,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5324_minus__power__mult__self,axiom,
    ! [A: code_integer,N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5325_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% minus_one_power_iff
thf(fact_5326_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_5327_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = one_one_complex ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% minus_one_power_iff
thf(fact_5328_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = one_one_rat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% minus_one_power_iff
thf(fact_5329_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = one_one_Code_integer ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% minus_one_power_iff
thf(fact_5330_pochhammer__absorb__comp,axiom,
    ! [R: code_integer,K: nat] :
      ( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R ) @ K ) )
      = ( times_3573771949741848930nteger @ R @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5331_pochhammer__absorb__comp,axiom,
    ! [R: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ R @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R ) @ K ) )
      = ( times_times_complex @ R @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5332_pochhammer__absorb__comp,axiom,
    ! [R: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ R @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R ) @ K ) )
      = ( times_times_real @ R @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5333_pochhammer__absorb__comp,axiom,
    ! [R: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ R @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R ) @ K ) )
      = ( times_times_rat @ R @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5334_pochhammer__absorb__comp,axiom,
    ! [R: int,K: nat] :
      ( ( times_times_int @ ( minus_minus_int @ R @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R ) @ K ) )
      = ( times_times_int @ R @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5335_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ N )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).

% pochhammer_same
thf(fact_5336_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ N )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).

% pochhammer_same
thf(fact_5337_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ N )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).

% pochhammer_same
thf(fact_5338_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).

% pochhammer_same
thf(fact_5339_pochhammer__same,axiom,
    ! [N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ N )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).

% pochhammer_same
thf(fact_5340_Bernoulli__inequality,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).

% Bernoulli_inequality
thf(fact_5341_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_real @ one_one_real ) ) ).

% power_minus1_odd
thf(fact_5342_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% power_minus1_odd
thf(fact_5343_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power_minus1_odd
thf(fact_5344_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_rat @ one_one_rat ) ) ).

% power_minus1_odd
thf(fact_5345_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% power_minus1_odd
thf(fact_5346_pochhammer__minus,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5347_pochhammer__minus,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5348_pochhammer__minus,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5349_pochhammer__minus,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5350_pochhammer__minus,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5351_pochhammer__minus_H,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5352_pochhammer__minus_H,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5353_pochhammer__minus_H,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5354_pochhammer__minus_H,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5355_pochhammer__minus_H,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5356_eq__diff__eq_H,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( X
        = ( minus_minus_real @ Y @ Z2 ) )
      = ( Y
        = ( plus_plus_real @ X @ Z2 ) ) ) ).

% eq_diff_eq'
thf(fact_5357_take__bit__Suc__minus__1__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_Code_integer ) ) ).

% take_bit_Suc_minus_1_eq
thf(fact_5358_take__bit__Suc__minus__1__eq,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_1_eq
thf(fact_5359_take__bit__numeral__minus__1__eq,axiom,
    ! [K: num] :
      ( ( bit_se1745604003318907178nteger @ ( numeral_numeral_nat @ K ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K ) ) @ one_one_Code_integer ) ) ).

% take_bit_numeral_minus_1_eq
thf(fact_5360_take__bit__numeral__minus__1__eq,axiom,
    ! [K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ K ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_1_eq
thf(fact_5361_fact__code,axiom,
    ( semiri5044797733671781792omplex
    = ( ^ [N3: nat] : ( semiri8010041392384452111omplex @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_5362_fact__code,axiom,
    ( semiri773545260158071498ct_rat
    = ( ^ [N3: nat] : ( semiri681578069525770553at_rat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_5363_fact__code,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [N3: nat] : ( semiri1314217659103216013at_int @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_5364_fact__code,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [N3: nat] : ( semiri1316708129612266289at_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_5365_fact__code,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [N3: nat] : ( semiri5074537144036343181t_real @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_5366_signed__take__bit__rec,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N3: nat,A2: code_integer] : ( if_Code_integer @ ( N3 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_5367_signed__take__bit__rec,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,A2: int] : ( if_int @ ( N3 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_5368_sin__coeff__def,axiom,
    ( sin_coeff
    = ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) ) ) ) ).

% sin_coeff_def
thf(fact_5369_cos__coeff__def,axiom,
    ( cos_coeff
    = ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) @ zero_zero_real ) ) ) ).

% cos_coeff_def
thf(fact_5370_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ zero_zero_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_5371_abs__ln__one__plus__x__minus__x__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound
thf(fact_5372_ceiling__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim7802044766580827645g_real @ ( log2 @ B @ X ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
          = ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X )
            & ( ord_less_eq_real @ X @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).

% ceiling_log_eq_powr_iff
thf(fact_5373_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim6058952711729229775r_real @ ( log2 @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_5374_divide__int__unfold,axiom,
    ! [L: int,K: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = zero_zero_int ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( uminus_uminus_int
                @ ( semiri1314217659103216013at_int
                  @ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
                    @ ( zero_n2687167440665602831ol_nat
                      @ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).

% divide_int_unfold
thf(fact_5375_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_5376_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_5377_abs__idempotent,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_idempotent
thf(fact_5378_abs__idempotent,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_idempotent
thf(fact_5379_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_5380_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_5381_abs__abs,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_abs
thf(fact_5382_abs__abs,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_abs
thf(fact_5383_abs__0,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_0
thf(fact_5384_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_5385_abs__0,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_0
thf(fact_5386_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_5387_abs__zero,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_zero
thf(fact_5388_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_5389_abs__zero,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_zero
thf(fact_5390_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_5391_abs__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0
thf(fact_5392_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_5393_abs__eq__0,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0
thf(fact_5394_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_5395_abs__0__eq,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( abs_abs_Code_integer @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_0_eq
thf(fact_5396_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_5397_abs__0__eq,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( abs_abs_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% abs_0_eq
thf(fact_5398_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_5399_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_numeral
thf(fact_5400_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_numeral
thf(fact_5401_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_numeral
thf(fact_5402_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_numeral
thf(fact_5403_abs__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = ( times_3573771949741848930nteger @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5404_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5405_abs__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
      = ( times_times_rat @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5406_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_5407_abs__1,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_1
thf(fact_5408_abs__1,axiom,
    ( ( abs_abs_complex @ one_one_complex )
    = one_one_complex ) ).

% abs_1
thf(fact_5409_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_5410_abs__1,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_1
thf(fact_5411_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_5412_abs__add__abs,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
      = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_add_abs
thf(fact_5413_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_5414_abs__add__abs,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
      = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_add_abs
thf(fact_5415_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_5416_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_5417_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_5418_abs__minus__cancel,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus_cancel
thf(fact_5419_abs__minus__cancel,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus_cancel
thf(fact_5420_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_5421_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_5422_abs__minus,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
      = ( abs_abs_complex @ A ) ) ).

% abs_minus
thf(fact_5423_abs__minus,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus
thf(fact_5424_abs__minus,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus
thf(fact_5425_abs__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).

% abs_divide
thf(fact_5426_abs__divide,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_divide
thf(fact_5427_abs__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_divide
thf(fact_5428_dvd__abs__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
      = ( dvd_dvd_real @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5429_dvd__abs__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
      = ( dvd_dvd_int @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5430_dvd__abs__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5431_dvd__abs__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_5432_abs__dvd__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
      = ( dvd_dvd_real @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5433_abs__dvd__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
      = ( dvd_dvd_int @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5434_abs__dvd__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5435_abs__dvd__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_5436_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( semiri4939895301339042750nteger @ N ) ) ).

% abs_of_nat
thf(fact_5437_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% abs_of_nat
thf(fact_5438_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri681578069525770553at_rat @ N ) ) ).

% abs_of_nat
thf(fact_5439_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_5440_powr__eq__0__iff,axiom,
    ! [W: real,Z2: real] :
      ( ( ( powr_real @ W @ Z2 )
        = zero_zero_real )
      = ( W = zero_zero_real ) ) ).

% powr_eq_0_iff
thf(fact_5441_powr__0,axiom,
    ! [Z2: real] :
      ( ( powr_real @ zero_zero_real @ Z2 )
      = zero_zero_real ) ).

% powr_0
thf(fact_5442_powr__one__eq__one,axiom,
    ! [A: real] :
      ( ( powr_real @ one_one_real @ A )
      = one_one_real ) ).

% powr_one_eq_one
thf(fact_5443_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% abs_bool_eq
thf(fact_5444_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = ( zero_n2052037380579107095ol_rat @ P ) ) ).

% abs_bool_eq
thf(fact_5445_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% abs_bool_eq
thf(fact_5446_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% abs_bool_eq
thf(fact_5447_abs__of__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5448_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5449_abs__of__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5450_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_5451_abs__le__self__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% abs_le_self_iff
thf(fact_5452_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_5453_abs__le__self__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% abs_le_self_iff
thf(fact_5454_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_5455_abs__le__zero__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_le_zero_iff
thf(fact_5456_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_5457_abs__le__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_le_zero_iff
thf(fact_5458_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_5459_zero__less__abs__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
      = ( A != zero_z3403309356797280102nteger ) ) ).

% zero_less_abs_iff
thf(fact_5460_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_5461_zero__less__abs__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_abs_iff
thf(fact_5462_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_5463_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_neg_numeral
thf(fact_5464_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_neg_numeral
thf(fact_5465_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_neg_numeral
thf(fact_5466_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_neg_numeral
thf(fact_5467_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_5468_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_5469_abs__neg__one,axiom,
    ( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = one_one_rat ) ).

% abs_neg_one
thf(fact_5470_abs__neg__one,axiom,
    ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = one_one_Code_integer ) ).

% abs_neg_one
thf(fact_5471_abs__power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_5472_abs__power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_5473_abs__power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( abs_abs_rat @ ( power_power_rat @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_5474_abs__power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_5475_powr__zero__eq__one,axiom,
    ! [X: real] :
      ( ( ( X = zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = zero_zero_real ) )
      & ( ( X != zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = one_one_real ) ) ) ).

% powr_zero_eq_one
thf(fact_5476_floor__zero,axiom,
    ( ( archim6058952711729229775r_real @ zero_zero_real )
    = zero_zero_int ) ).

% floor_zero
thf(fact_5477_floor__zero,axiom,
    ( ( archim3151403230148437115or_rat @ zero_zero_rat )
    = zero_zero_int ) ).

% floor_zero
thf(fact_5478_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_5479_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim3151403230148437115or_rat @ ( numeral_numeral_rat @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_5480_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_5481_floor__one,axiom,
    ( ( archim6058952711729229775r_real @ one_one_real )
    = one_one_int ) ).

% floor_one
thf(fact_5482_floor__one,axiom,
    ( ( archim3151403230148437115or_rat @ one_one_rat )
    = one_one_int ) ).

% floor_one
thf(fact_5483_powr__less__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_5484_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_5485_floor__of__nat,axiom,
    ! [N: nat] :
      ( ( archim6058952711729229775r_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% floor_of_nat
thf(fact_5486_floor__of__nat,axiom,
    ! [N: nat] :
      ( ( archim3151403230148437115or_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% floor_of_nat
thf(fact_5487_sin__coeff__0,axiom,
    ( ( sin_coeff @ zero_zero_nat )
    = zero_zero_real ) ).

% sin_coeff_0
thf(fact_5488_cos__coeff__0,axiom,
    ( ( cos_coeff @ zero_zero_nat )
    = one_one_real ) ).

% cos_coeff_0
thf(fact_5489_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5490_abs__of__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5491_abs__of__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5492_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_5493_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_5494_divide__le__0__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
      = ( ( ord_less_eq_rat @ A @ zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_le_0_abs_iff
thf(fact_5495_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_5496_zero__le__divide__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        | ( B = zero_zero_rat ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_5497_abs__sgn__eq__1,axiom,
    ! [A: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
        = one_one_Code_integer ) ) ).

% abs_sgn_eq_1
thf(fact_5498_abs__sgn__eq__1,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
        = one_one_real ) ) ).

% abs_sgn_eq_1
thf(fact_5499_abs__sgn__eq__1,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
        = one_one_rat ) ) ).

% abs_sgn_eq_1
thf(fact_5500_abs__sgn__eq__1,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
        = one_one_int ) ) ).

% abs_sgn_eq_1
thf(fact_5501_powr__eq__one__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X )
          = one_one_real )
        = ( X = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_5502_powr__one__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ( powr_real @ X @ one_one_real )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% powr_one_gt_zero_iff
thf(fact_5503_powr__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ one_one_real )
        = X ) ) ).

% powr_one
thf(fact_5504_powr__le__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_5505_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_5506_artanh__minus__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X ) )
        = ( uminus_uminus_real @ ( artanh_real @ X ) ) ) ) ).

% artanh_minus_real
thf(fact_5507_idom__abs__sgn__class_Oabs__sgn,axiom,
    ! [A: complex] :
      ( ( sgn_sgn_complex @ ( abs_abs_complex @ A ) )
      = ( zero_n1201886186963655149omplex @ ( A != zero_zero_complex ) ) ) ).

% idom_abs_sgn_class.abs_sgn
thf(fact_5508_idom__abs__sgn__class_Oabs__sgn,axiom,
    ! [A: real] :
      ( ( sgn_sgn_real @ ( abs_abs_real @ A ) )
      = ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).

% idom_abs_sgn_class.abs_sgn
thf(fact_5509_idom__abs__sgn__class_Oabs__sgn,axiom,
    ! [A: rat] :
      ( ( sgn_sgn_rat @ ( abs_abs_rat @ A ) )
      = ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).

% idom_abs_sgn_class.abs_sgn
thf(fact_5510_idom__abs__sgn__class_Oabs__sgn,axiom,
    ! [A: int] :
      ( ( sgn_sgn_int @ ( abs_abs_int @ A ) )
      = ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).

% idom_abs_sgn_class.abs_sgn
thf(fact_5511_idom__abs__sgn__class_Oabs__sgn,axiom,
    ! [A: code_integer] :
      ( ( sgn_sgn_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).

% idom_abs_sgn_class.abs_sgn
thf(fact_5512_sgn__abs,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( sgn_sgn_complex @ A ) )
      = ( zero_n1201886186963655149omplex @ ( A != zero_zero_complex ) ) ) ).

% sgn_abs
thf(fact_5513_sgn__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
      = ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).

% sgn_abs
thf(fact_5514_sgn__abs,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
      = ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).

% sgn_abs
thf(fact_5515_sgn__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
      = ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).

% sgn_abs
thf(fact_5516_sgn__abs,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
      = ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).

% sgn_abs
thf(fact_5517_numeral__powr__numeral__real,axiom,
    ! [M: num,N: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_powr_numeral_real
thf(fact_5518_zero__less__power__abs__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
      = ( ( A != zero_z3403309356797280102nteger )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5519_zero__less__power__abs__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
      = ( ( A != zero_zero_real )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5520_zero__less__power__abs__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
      = ( ( A != zero_zero_rat )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5521_zero__less__power__abs__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
      = ( ( A != zero_zero_int )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_5522_abs__power2,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5523_abs__power2,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5524_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5525_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_5526_power2__abs,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5527_power2__abs,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5528_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5529_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_5530_zero__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_floor
thf(fact_5531_zero__le__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ X ) ) ).

% zero_le_floor
thf(fact_5532_floor__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% floor_less_zero
thf(fact_5533_floor__less__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ zero_zero_int )
      = ( ord_less_rat @ X @ zero_zero_rat ) ) ).

% floor_less_zero
thf(fact_5534_numeral__le__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X ) ) ).

% numeral_le_floor
thf(fact_5535_numeral__le__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( numeral_numeral_rat @ V ) @ X ) ) ).

% numeral_le_floor
thf(fact_5536_zero__less__floor,axiom,
    ! [X: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% zero_less_floor
thf(fact_5537_zero__less__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ one_one_rat @ X ) ) ).

% zero_less_floor
thf(fact_5538_floor__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_le_zero
thf(fact_5539_floor__le__zero,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ zero_zero_int )
      = ( ord_less_rat @ X @ one_one_rat ) ) ).

% floor_le_zero
thf(fact_5540_floor__less__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X @ ( numeral_numeral_real @ V ) ) ) ).

% floor_less_numeral
thf(fact_5541_floor__less__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_rat @ X @ ( numeral_numeral_rat @ V ) ) ) ).

% floor_less_numeral
thf(fact_5542_one__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% one_le_floor
thf(fact_5543_one__le__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ one_one_rat @ X ) ) ).

% one_le_floor
thf(fact_5544_floor__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_less_one
thf(fact_5545_floor__less__one,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
      = ( ord_less_rat @ X @ one_one_rat ) ) ).

% floor_less_one
thf(fact_5546_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_5547_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_5548_floor__diff__numeral,axiom,
    ! [X: real,V: num] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ ( numeral_numeral_real @ V ) ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% floor_diff_numeral
thf(fact_5549_floor__diff__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).

% floor_diff_numeral
thf(fact_5550_floor__diff__one,axiom,
    ! [X: real] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ one_one_real ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ).

% floor_diff_one
thf(fact_5551_floor__diff__one,axiom,
    ! [X: rat] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ one_one_rat ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ).

% floor_diff_one
thf(fact_5552_floor__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim6058952711729229775r_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% floor_numeral_power
thf(fact_5553_floor__numeral__power,axiom,
    ! [X: num,N: nat] :
      ( ( archim3151403230148437115or_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).

% floor_numeral_power
thf(fact_5554_log__powr__cancel,axiom,
    ! [A: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log2 @ A @ ( powr_real @ A @ Y ) )
          = Y ) ) ) ).

% log_powr_cancel
thf(fact_5555_powr__log__cancel,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( powr_real @ A @ ( log2 @ A @ X ) )
            = X ) ) ) ) ).

% powr_log_cancel
thf(fact_5556_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_5557_power__even__abs__numeral,axiom,
    ! [W: num,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5558_power__even__abs__numeral,axiom,
    ! [W: num,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5559_power__even__abs__numeral,axiom,
    ! [W: num,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5560_power__even__abs__numeral,axiom,
    ! [W: num,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_5561_powr__numeral,axiom,
    ! [X: real,N: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( numeral_numeral_real @ N ) )
        = ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ).

% powr_numeral
thf(fact_5562_ceiling__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_divide_eq_div_numeral
thf(fact_5563_numeral__less__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).

% numeral_less_floor
thf(fact_5564_numeral__less__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X ) ) ).

% numeral_less_floor
thf(fact_5565_floor__le__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% floor_le_numeral
thf(fact_5566_floor__le__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_rat @ X @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).

% floor_le_numeral
thf(fact_5567_one__less__floor,axiom,
    ! [X: real] :
      ( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ).

% one_less_floor
thf(fact_5568_one__less__floor,axiom,
    ! [X: rat] :
      ( ( ord_less_int @ one_one_int @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) ) ).

% one_less_floor
thf(fact_5569_floor__le__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_5570_floor__le__one,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
      = ( ord_less_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_5571_neg__numeral__le__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).

% neg_numeral_le_floor
thf(fact_5572_neg__numeral__le__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X ) ) ).

% neg_numeral_le_floor
thf(fact_5573_floor__less__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_5574_floor__less__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_5575_signed__take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_minus_bit0
thf(fact_5576_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_5577_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_5578_ceiling__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_minus_divide_eq_div_numeral
thf(fact_5579_neg__numeral__less__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).

% neg_numeral_less_floor
thf(fact_5580_neg__numeral__less__floor,axiom,
    ! [V: num,X: rat] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X ) ) ).

% neg_numeral_less_floor
thf(fact_5581_floor__le__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% floor_le_neg_numeral
thf(fact_5582_floor__le__neg__numeral,axiom,
    ! [X: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_rat @ X @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).

% floor_le_neg_numeral
thf(fact_5583_square__powr__half,axiom,
    ! [X: real] :
      ( ( powr_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% square_powr_half
thf(fact_5584_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_5585_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_5586_abs__le__D1,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% abs_le_D1
thf(fact_5587_abs__le__D1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% abs_le_D1
thf(fact_5588_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_5589_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_5590_abs__ge__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_self
thf(fact_5591_abs__ge__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).

% abs_ge_self
thf(fact_5592_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_5593_abs__eq__0__iff,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0_iff
thf(fact_5594_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_5595_abs__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0_iff
thf(fact_5596_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_5597_abs__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_mult
thf(fact_5598_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_5599_abs__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_mult
thf(fact_5600_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_5601_abs__one,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_one
thf(fact_5602_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_5603_abs__one,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_one
thf(fact_5604_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_5605_abs__minus__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5606_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5607_abs__minus__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
      = ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5608_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_5609_abs__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( abs_abs_real @ X )
        = ( abs_abs_real @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5610_abs__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( abs_abs_int @ X )
        = ( abs_abs_int @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5611_abs__eq__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( abs_abs_rat @ X )
        = ( abs_abs_rat @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_rat @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5612_abs__eq__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ( abs_abs_Code_integer @ X )
        = ( abs_abs_Code_integer @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus1351360451143612070nteger @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_5613_power__abs,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% power_abs
thf(fact_5614_power__abs,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ N ) )
      = ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% power_abs
thf(fact_5615_power__abs,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% power_abs
thf(fact_5616_power__abs,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% power_abs
thf(fact_5617_dvd__if__abs__eq,axiom,
    ! [L: real,K: real] :
      ( ( ( abs_abs_real @ L )
        = ( abs_abs_real @ K ) )
     => ( dvd_dvd_real @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5618_dvd__if__abs__eq,axiom,
    ! [L: int,K: int] :
      ( ( ( abs_abs_int @ L )
        = ( abs_abs_int @ K ) )
     => ( dvd_dvd_int @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5619_dvd__if__abs__eq,axiom,
    ! [L: code_integer,K: code_integer] :
      ( ( ( abs_abs_Code_integer @ L )
        = ( abs_abs_Code_integer @ K ) )
     => ( dvd_dvd_Code_integer @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5620_dvd__if__abs__eq,axiom,
    ! [L: rat,K: rat] :
      ( ( ( abs_abs_rat @ L )
        = ( abs_abs_rat @ K ) )
     => ( dvd_dvd_rat @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_5621_powr__powr,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X @ A ) @ B )
      = ( powr_real @ X @ ( times_times_real @ A @ B ) ) ) ).

% powr_powr
thf(fact_5622_real__sgn__eq,axiom,
    ( sgn_sgn_real
    = ( ^ [X3: real] : ( divide_divide_real @ X3 @ ( abs_abs_real @ X3 ) ) ) ) ).

% real_sgn_eq
thf(fact_5623_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_5624_int__cases2,axiom,
    ! [Z2: int] :
      ( ! [N2: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% int_cases2
thf(fact_5625_uminus__dvd__conv_I1_J,axiom,
    ( dvd_dvd_int
    = ( ^ [D4: int] : ( dvd_dvd_int @ ( uminus_uminus_int @ D4 ) ) ) ) ).

% uminus_dvd_conv(1)
thf(fact_5626_uminus__dvd__conv_I2_J,axiom,
    ( dvd_dvd_int
    = ( ^ [D4: int,T2: int] : ( dvd_dvd_int @ D4 @ ( uminus_uminus_int @ T2 ) ) ) ) ).

% uminus_dvd_conv(2)
thf(fact_5627_take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% take_bit_minus
thf(fact_5628_signed__take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% signed_take_bit_minus
thf(fact_5629_abs__ge__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_zero
thf(fact_5630_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_5631_abs__ge__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).

% abs_ge_zero
thf(fact_5632_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_5633_floor__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) ) ).

% floor_mono
thf(fact_5634_floor__mono,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y ) ) ) ).

% floor_mono
thf(fact_5635_abs__not__less__zero,axiom,
    ! [A: code_integer] :
      ~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).

% abs_not_less_zero
thf(fact_5636_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_5637_abs__not__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).

% abs_not_less_zero
thf(fact_5638_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_5639_abs__of__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5640_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5641_abs__of__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5642_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_5643_floor__less__cancel,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) )
     => ( ord_less_real @ X @ Y ) ) ).

% floor_less_cancel
thf(fact_5644_floor__less__cancel,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y ) )
     => ( ord_less_rat @ X @ Y ) ) ).

% floor_less_cancel
thf(fact_5645_abs__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5646_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5647_abs__triangle__ineq,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5648_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_5649_abs__mult__less,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
       => ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_5650_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_5651_abs__mult__less,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
     => ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
       => ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_5652_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_5653_abs__triangle__ineq2,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5654_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5655_abs__triangle__ineq2,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5656_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_5657_abs__triangle__ineq3,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5658_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5659_abs__triangle__ineq3,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5660_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_5661_abs__triangle__ineq2__sym,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5662_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5663_abs__triangle__ineq2__sym,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5664_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_5665_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5666_abs__leI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
       => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5667_abs__leI,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
       => ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5668_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_5669_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5670_abs__le__D2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5671_abs__le__D2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5672_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_5673_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5674_abs__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le3102999989581377725nteger @ A @ B )
        & ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5675_abs__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_eq_rat @ A @ B )
        & ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5676_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_5677_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_5678_abs__ge__minus__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_minus_self
thf(fact_5679_abs__ge__minus__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).

% abs_ge_minus_self
thf(fact_5680_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_5681_nonzero__abs__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_5682_nonzero__abs__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_5683_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5684_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5685_abs__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_rat @ A @ B )
        & ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5686_abs__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le6747313008572928689nteger @ A @ B )
        & ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_5687_powr__less__cancel,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_5688_powr__less__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_less_mono
thf(fact_5689_powr__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X )
       => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_mono
thf(fact_5690_ceiling__def,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X3: real] : ( uminus_uminus_int @ ( archim6058952711729229775r_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ).

% ceiling_def
thf(fact_5691_ceiling__def,axiom,
    ( archim2889992004027027881ng_rat
    = ( ^ [X3: rat] : ( uminus_uminus_int @ ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ X3 ) ) ) ) ) ).

% ceiling_def
thf(fact_5692_floor__minus,axiom,
    ! [X: real] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_int @ ( archim7802044766580827645g_real @ X ) ) ) ).

% floor_minus
thf(fact_5693_floor__minus,axiom,
    ! [X: rat] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ X ) )
      = ( uminus_uminus_int @ ( archim2889992004027027881ng_rat @ X ) ) ) ).

% floor_minus
thf(fact_5694_ceiling__minus,axiom,
    ! [X: real] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_int @ ( archim6058952711729229775r_real @ X ) ) ) ).

% ceiling_minus
thf(fact_5695_ceiling__minus,axiom,
    ! [X: rat] :
      ( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ X ) )
      = ( uminus_uminus_int @ ( archim3151403230148437115or_rat @ X ) ) ) ).

% ceiling_minus
thf(fact_5696_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_Code_integer
    = ( ^ [K2: code_integer] : ( times_3573771949741848930nteger @ K2 @ ( sgn_sgn_Code_integer @ K2 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_5697_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_real
    = ( ^ [K2: real] : ( times_times_real @ K2 @ ( sgn_sgn_real @ K2 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_5698_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_rat
    = ( ^ [K2: rat] : ( times_times_rat @ K2 @ ( sgn_sgn_rat @ K2 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_5699_linordered__idom__class_Oabs__sgn,axiom,
    ( abs_abs_int
    = ( ^ [K2: int] : ( times_times_int @ K2 @ ( sgn_sgn_int @ K2 ) ) ) ) ).

% linordered_idom_class.abs_sgn
thf(fact_5700_abs__mult__sgn,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( abs_abs_complex @ A ) @ ( sgn_sgn_complex @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_5701_abs__mult__sgn,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_5702_abs__mult__sgn,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( sgn_sgn_real @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_5703_abs__mult__sgn,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( sgn_sgn_rat @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_5704_abs__mult__sgn,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( sgn_sgn_int @ A ) )
      = A ) ).

% abs_mult_sgn
thf(fact_5705_sgn__mult__abs,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( abs_abs_complex @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_5706_sgn__mult__abs,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_5707_sgn__mult__abs,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( abs_abs_real @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_5708_sgn__mult__abs,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( abs_abs_rat @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_5709_sgn__mult__abs,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( abs_abs_int @ A ) )
      = A ) ).

% sgn_mult_abs
thf(fact_5710_mult__sgn__abs,axiom,
    ! [X: code_integer] :
      ( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ X ) @ ( abs_abs_Code_integer @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_5711_mult__sgn__abs,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( sgn_sgn_real @ X ) @ ( abs_abs_real @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_5712_mult__sgn__abs,axiom,
    ! [X: rat] :
      ( ( times_times_rat @ ( sgn_sgn_rat @ X ) @ ( abs_abs_rat @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_5713_mult__sgn__abs,axiom,
    ! [X: int] :
      ( ( times_times_int @ ( sgn_sgn_int @ X ) @ ( abs_abs_int @ X ) )
      = X ) ).

% mult_sgn_abs
thf(fact_5714_same__sgn__abs__add,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ( sgn_sgn_Code_integer @ B )
        = ( sgn_sgn_Code_integer @ A ) )
     => ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
        = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_5715_same__sgn__abs__add,axiom,
    ! [B: real,A: real] :
      ( ( ( sgn_sgn_real @ B )
        = ( sgn_sgn_real @ A ) )
     => ( ( abs_abs_real @ ( plus_plus_real @ A @ B ) )
        = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_5716_same__sgn__abs__add,axiom,
    ! [B: rat,A: rat] :
      ( ( ( sgn_sgn_rat @ B )
        = ( sgn_sgn_rat @ A ) )
     => ( ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) )
        = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_5717_same__sgn__abs__add,axiom,
    ! [B: int,A: int] :
      ( ( ( sgn_sgn_int @ B )
        = ( sgn_sgn_int @ A ) )
     => ( ( abs_abs_int @ ( plus_plus_int @ A @ B ) )
        = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% same_sgn_abs_add
thf(fact_5718_floor__le__ceiling,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).

% floor_le_ceiling
thf(fact_5719_floor__le__ceiling,axiom,
    ! [X: rat] : ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim2889992004027027881ng_rat @ X ) ) ).

% floor_le_ceiling
thf(fact_5720_int__of__nat__induct,axiom,
    ! [P: int > $o,Z2: int] :
      ( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
       => ( P @ Z2 ) ) ) ).

% int_of_nat_induct
thf(fact_5721_int__cases,axiom,
    ! [Z2: int] :
      ( ! [N2: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% int_cases
thf(fact_5722_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_5723_zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_5724_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_5725_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_5726_zmod__zminus1__not__zero,axiom,
    ! [K: int,L: int] :
      ( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L )
       != zero_zero_int ) ) ).

% zmod_zminus1_not_zero
thf(fact_5727_zmod__zminus2__not__zero,axiom,
    ! [K: int,L: int] :
      ( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L ) )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L )
       != zero_zero_int ) ) ).

% zmod_zminus2_not_zero
thf(fact_5728_sin__coeff__Suc,axiom,
    ! [N: nat] :
      ( ( sin_coeff @ ( suc @ N ) )
      = ( divide_divide_real @ ( cos_coeff @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).

% sin_coeff_Suc
thf(fact_5729_dense__eq0__I,axiom,
    ! [X: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E2 ) )
     => ( X = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_5730_dense__eq0__I,axiom,
    ! [X: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ E2 ) )
     => ( X = zero_zero_rat ) ) ).

% dense_eq0_I
thf(fact_5731_abs__eq__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
          | ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
        & ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
          | ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
     => ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
        = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5732_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5733_abs__eq__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          | ( ord_less_eq_rat @ A @ zero_zero_rat ) )
        & ( ( ord_less_eq_rat @ zero_zero_rat @ B )
          | ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
        = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5734_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5735_abs__mult__pos,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
     => ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y ) @ X )
        = ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_5736_abs__mult__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ ( abs_abs_real @ Y ) @ X )
        = ( abs_abs_real @ ( times_times_real @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_5737_abs__mult__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( times_times_rat @ ( abs_abs_rat @ Y ) @ X )
        = ( abs_abs_rat @ ( times_times_rat @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_5738_abs__mult__pos,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( times_times_int @ ( abs_abs_int @ Y ) @ X )
        = ( abs_abs_int @ ( times_times_int @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_5739_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5740_abs__eq__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = B )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
        & ( ( A = B )
          | ( A
            = ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5741_abs__eq__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ( abs_abs_rat @ A )
        = B )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_rat @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5742_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_5743_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5744_eq__abs__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( abs_abs_Code_integer @ B ) )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
        & ( ( B = A )
          | ( B
            = ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5745_eq__abs__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( abs_abs_rat @ B ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_rat @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5746_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_5747_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_5748_abs__minus__le__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).

% abs_minus_le_zero
thf(fact_5749_abs__minus__le__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).

% abs_minus_le_zero
thf(fact_5750_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_5751_zero__le__power__abs,axiom,
    ! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5752_zero__le__power__abs,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5753_zero__le__power__abs,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5754_zero__le__power__abs,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5755_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A2: real] : ( if_real @ ( ord_less_real @ A2 @ zero_zero_real ) @ ( uminus_uminus_real @ A2 ) @ A2 ) ) ) ).

% abs_if
thf(fact_5756_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A2: int] : ( if_int @ ( ord_less_int @ A2 @ zero_zero_int ) @ ( uminus_uminus_int @ A2 ) @ A2 ) ) ) ).

% abs_if
thf(fact_5757_abs__if,axiom,
    ( abs_abs_rat
    = ( ^ [A2: rat] : ( if_rat @ ( ord_less_rat @ A2 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A2 ) @ A2 ) ) ) ).

% abs_if
thf(fact_5758_abs__if,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A2: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A2 ) @ A2 ) ) ) ).

% abs_if
thf(fact_5759_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_5760_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_5761_abs__of__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_neg
thf(fact_5762_abs__of__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_neg
thf(fact_5763_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A2: real] : ( if_real @ ( ord_less_real @ A2 @ zero_zero_real ) @ ( uminus_uminus_real @ A2 ) @ A2 ) ) ) ).

% abs_if_raw
thf(fact_5764_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A2: int] : ( if_int @ ( ord_less_int @ A2 @ zero_zero_int ) @ ( uminus_uminus_int @ A2 ) @ A2 ) ) ) ).

% abs_if_raw
thf(fact_5765_abs__if__raw,axiom,
    ( abs_abs_rat
    = ( ^ [A2: rat] : ( if_rat @ ( ord_less_rat @ A2 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A2 ) @ A2 ) ) ) ).

% abs_if_raw
thf(fact_5766_abs__if__raw,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A2: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A2 ) @ A2 ) ) ) ).

% abs_if_raw
thf(fact_5767_abs__div__pos,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( divide_divide_real @ ( abs_abs_real @ X ) @ Y )
        = ( abs_abs_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% abs_div_pos
thf(fact_5768_abs__div__pos,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( divide_divide_rat @ ( abs_abs_rat @ X ) @ Y )
        = ( abs_abs_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% abs_div_pos
thf(fact_5769_abs__diff__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5770_abs__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5771_abs__diff__triangle__ineq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5772_abs__diff__triangle__ineq,axiom,
    ! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5773_abs__triangle__ineq4,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5774_abs__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5775_abs__triangle__ineq4,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5776_abs__triangle__ineq4,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5777_abs__diff__le__iff,axiom,
    ! [X: code_integer,A: code_integer,R: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R )
      = ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R ) @ X )
        & ( ord_le3102999989581377725nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5778_abs__diff__le__iff,axiom,
    ! [X: real,A: real,R: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R )
      = ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R ) @ X )
        & ( ord_less_eq_real @ X @ ( plus_plus_real @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5779_abs__diff__le__iff,axiom,
    ! [X: rat,A: rat,R: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R )
      = ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R ) @ X )
        & ( ord_less_eq_rat @ X @ ( plus_plus_rat @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5780_abs__diff__le__iff,axiom,
    ! [X: int,A: int,R: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R ) @ X )
        & ( ord_less_eq_int @ X @ ( plus_plus_int @ A @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5781_abs__diff__less__iff,axiom,
    ! [X: code_integer,A: code_integer,R: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R )
      = ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R ) @ X )
        & ( ord_le6747313008572928689nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5782_abs__diff__less__iff,axiom,
    ! [X: real,A: real,R: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R )
      = ( ( ord_less_real @ ( minus_minus_real @ A @ R ) @ X )
        & ( ord_less_real @ X @ ( plus_plus_real @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5783_abs__diff__less__iff,axiom,
    ! [X: rat,A: rat,R: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R )
      = ( ( ord_less_rat @ ( minus_minus_rat @ A @ R ) @ X )
        & ( ord_less_rat @ X @ ( plus_plus_rat @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5784_abs__diff__less__iff,axiom,
    ! [X: int,A: int,R: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R )
      = ( ( ord_less_int @ ( minus_minus_int @ A @ R ) @ X )
        & ( ord_less_int @ X @ ( plus_plus_int @ A @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5785_le__floor__add,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y ) ) ) ).

% le_floor_add
thf(fact_5786_le__floor__add,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y ) ) @ ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y ) ) ) ).

% le_floor_add
thf(fact_5787_gr__one__powr,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y ) ) ) ) ).

% gr_one_powr
thf(fact_5788_powr__inj,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X )
            = ( powr_real @ A @ Y ) )
          = ( X = Y ) ) ) ) ).

% powr_inj
thf(fact_5789_ge__one__powr__ge__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_5790_powr__mono__both,axiom,
    ! [A: real,B: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ( ord_less_eq_real @ X @ Y )
           => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_5791_powr__le1,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_5792_powr__divide,axiom,
    ! [X: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( powr_real @ ( divide_divide_real @ X @ Y ) @ A )
          = ( divide_divide_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_divide
thf(fact_5793_powr__mult,axiom,
    ! [X: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( powr_real @ ( times_times_real @ X @ Y ) @ A )
          = ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mult
thf(fact_5794_abs__sgn__eq,axiom,
    ! [A: code_integer] :
      ( ( ( A = zero_z3403309356797280102nteger )
       => ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
          = zero_z3403309356797280102nteger ) )
      & ( ( A != zero_z3403309356797280102nteger )
       => ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
          = one_one_Code_integer ) ) ) ).

% abs_sgn_eq
thf(fact_5795_abs__sgn__eq,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
          = one_one_real ) ) ) ).

% abs_sgn_eq
thf(fact_5796_abs__sgn__eq,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
          = one_one_rat ) ) ) ).

% abs_sgn_eq
thf(fact_5797_abs__sgn__eq,axiom,
    ! [A: int] :
      ( ( ( A = zero_zero_int )
       => ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
          = zero_zero_int ) )
      & ( ( A != zero_zero_int )
       => ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
          = one_one_int ) ) ) ).

% abs_sgn_eq
thf(fact_5798_divide__powr__uminus,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
      = ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).

% divide_powr_uminus
thf(fact_5799_log__base__powr,axiom,
    ! [A: real,B: real,X: real] :
      ( ( A != zero_zero_real )
     => ( ( log2 @ ( powr_real @ A @ B ) @ X )
        = ( divide_divide_real @ ( log2 @ A @ X ) @ B ) ) ) ).

% log_base_powr
thf(fact_5800_ln__powr,axiom,
    ! [X: real,Y: real] :
      ( ( X != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X @ Y ) )
        = ( times_times_real @ Y @ ( ln_ln_real @ X ) ) ) ) ).

% ln_powr
thf(fact_5801_log__powr,axiom,
    ! [X: real,B: real,Y: real] :
      ( ( X != zero_zero_real )
     => ( ( log2 @ B @ ( powr_real @ X @ Y ) )
        = ( times_times_real @ Y @ ( log2 @ B @ X ) ) ) ) ).

% log_powr
thf(fact_5802_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A2: real] : ( if_real @ ( ord_less_real @ A2 @ zero_zero_real ) @ ( uminus_uminus_real @ A2 ) @ A2 ) ) ) ).

% abs_real_def
thf(fact_5803_lemma__interval__lt,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [Y5: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D2 )
               => ( ( ord_less_real @ A @ Y5 )
                  & ( ord_less_real @ Y5 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_5804_powr__add,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ X @ ( plus_plus_real @ A @ B ) )
      = ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ).

% powr_add
thf(fact_5805_powr__diff,axiom,
    ! [W: real,Z1: real,Z22: real] :
      ( ( powr_real @ W @ ( minus_minus_real @ Z1 @ Z22 ) )
      = ( divide_divide_real @ ( powr_real @ W @ Z1 ) @ ( powr_real @ W @ Z22 ) ) ) ).

% powr_diff
thf(fact_5806_sin__bound__lemma,axiom,
    ! [X: real,Y: real,U: real,V: real] :
      ( ( X = Y )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X @ U ) @ Y ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_5807_cos__coeff__Suc,axiom,
    ! [N: nat] :
      ( ( cos_coeff @ ( suc @ N ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).

% cos_coeff_Suc
thf(fact_5808_int__cases4,axiom,
    ! [M: int] :
      ( ! [N2: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% int_cases4
thf(fact_5809_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_5810_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_5811_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% nonpos_int_cases
thf(fact_5812_zmod__zminus2__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).

% zmod_zminus2_eq_if
thf(fact_5813_zmod__zminus1__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% zmod_zminus1_eq_if
thf(fact_5814_abs__add__one__gt__zero,axiom,
    ! [X: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5815_abs__add__one__gt__zero,axiom,
    ! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5816_abs__add__one__gt__zero,axiom,
    ! [X: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5817_abs__add__one__gt__zero,axiom,
    ! [X: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5818_one__add__floor,axiom,
    ! [X: real] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% one_add_floor
thf(fact_5819_one__add__floor,axiom,
    ! [X: rat] :
      ( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ one_one_rat ) ) ) ).

% one_add_floor
thf(fact_5820_floor__divide__of__nat__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).

% floor_divide_of_nat_eq
thf(fact_5821_floor__divide__of__nat__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).

% floor_divide_of_nat_eq
thf(fact_5822_powr__realpow,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( semiri5074537144036343181t_real @ N ) )
        = ( power_power_real @ X @ N ) ) ) ).

% powr_realpow
thf(fact_5823_less__log__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ Y @ ( log2 @ B @ X ) )
          = ( ord_less_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ).

% less_log_iff
thf(fact_5824_log__less__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log2 @ B @ X ) @ Y )
          = ( ord_less_real @ X @ ( powr_real @ B @ Y ) ) ) ) ) ).

% log_less_iff
thf(fact_5825_less__powr__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ ( powr_real @ B @ Y ) )
          = ( ord_less_real @ ( log2 @ B @ X ) @ Y ) ) ) ) ).

% less_powr_iff
thf(fact_5826_powr__less__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( powr_real @ B @ Y ) @ X )
          = ( ord_less_real @ Y @ ( log2 @ B @ X ) ) ) ) ) ).

% powr_less_iff
thf(fact_5827_ceiling__diff__floor__le__1,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim6058952711729229775r_real @ X ) ) @ one_one_int ) ).

% ceiling_diff_floor_le_1
thf(fact_5828_ceiling__diff__floor__le__1,axiom,
    ! [X: rat] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim3151403230148437115or_rat @ X ) ) @ one_one_int ) ).

% ceiling_diff_floor_le_1
thf(fact_5829_sgn__power__injE,axiom,
    ! [A: real,N: nat,X: real,B: real] :
      ( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
        = X )
     => ( ( X
          = ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( A = B ) ) ) ) ).

% sgn_power_injE
thf(fact_5830_lemma__interval,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [Y5: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D2 )
               => ( ( ord_less_eq_real @ A @ Y5 )
                  & ( ord_less_eq_real @ Y5 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_5831_norm__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_5832_norm__triangle__ineq3,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_5833_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
       => ~ ! [N2: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% int_cases3
thf(fact_5834_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_5835_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N2: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% negD
thf(fact_5836_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_5837_verit__less__mono__div__int2,axiom,
    ! [A3: int,B5: int,N: int] :
      ( ( ord_less_eq_int @ A3 @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B5 @ N ) @ ( divide_divide_int @ A3 @ N ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_5838_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_5839_zsgn__def,axiom,
    ( sgn_sgn_int
    = ( ^ [I4: int] : ( if_int @ ( I4 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I4 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zsgn_def
thf(fact_5840_powr__minus__divide,axiom,
    ! [X: real,A: real] :
      ( ( powr_real @ X @ ( uminus_uminus_real @ A ) )
      = ( divide_divide_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ).

% powr_minus_divide
thf(fact_5841_le__mult__floor,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ).

% le_mult_floor
thf(fact_5842_le__mult__floor,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ).

% le_mult_floor
thf(fact_5843_abs__le__square__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ ( abs_abs_Code_integer @ Y ) )
      = ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5844_abs__le__square__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y ) )
      = ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5845_abs__le__square__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ ( abs_abs_rat @ Y ) )
      = ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5846_abs__le__square__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y ) )
      = ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5847_abs__square__eq__1,axiom,
    ! [X: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( abs_abs_Code_integer @ X )
        = one_one_Code_integer ) ) ).

% abs_square_eq_1
thf(fact_5848_abs__square__eq__1,axiom,
    ! [X: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( abs_abs_rat @ X )
        = one_one_rat ) ) ).

% abs_square_eq_1
thf(fact_5849_abs__square__eq__1,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_5850_abs__square__eq__1,axiom,
    ! [X: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_5851_power__even__abs,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5852_power__even__abs,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5853_power__even__abs,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5854_power__even__abs,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5855_powr__neg__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X ) ) ) ).

% powr_neg_one
thf(fact_5856_powr__mult__base,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ X @ ( powr_real @ X @ Y ) )
        = ( powr_real @ X @ ( plus_plus_real @ one_one_real @ Y ) ) ) ) ).

% powr_mult_base
thf(fact_5857_powr__le__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X )
          = ( ord_less_eq_real @ Y @ ( log2 @ B @ X ) ) ) ) ) ).

% powr_le_iff
thf(fact_5858_le__powr__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ ( powr_real @ B @ Y ) )
          = ( ord_less_eq_real @ ( log2 @ B @ X ) @ Y ) ) ) ) ).

% le_powr_iff
thf(fact_5859_log__le__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log2 @ B @ X ) @ Y )
          = ( ord_less_eq_real @ X @ ( powr_real @ B @ Y ) ) ) ) ) ).

% log_le_iff
thf(fact_5860_le__log__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ Y @ ( log2 @ B @ X ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ).

% le_log_iff
thf(fact_5861_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% neg_int_cases
thf(fact_5862_minus__mod__int__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
        = ( minus_minus_int @ ( minus_minus_int @ L @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L ) ) ) ) ).

% minus_mod_int_eq
thf(fact_5863_zmod__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( minus_minus_int @ B @ one_one_int ) ) ) ).

% zmod_minus1
thf(fact_5864_zdiv__zminus1__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus1_eq_if
thf(fact_5865_zdiv__zminus2__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus2_eq_if
thf(fact_5866_power2__le__iff__abs__le,axiom,
    ! [Y: code_integer,X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y )
     => ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5867_power2__le__iff__abs__le,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5868_power2__le__iff__abs__le,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5869_power2__le__iff__abs__le,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5870_abs__square__le__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).

% abs_square_le_1
thf(fact_5871_abs__square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_5872_abs__square__le__1,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).

% abs_square_le_1
thf(fact_5873_abs__square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_5874_abs__square__less__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).

% abs_square_less_1
thf(fact_5875_abs__square__less__1,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_less_1
thf(fact_5876_abs__square__less__1,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).

% abs_square_less_1
thf(fact_5877_abs__square__less__1,axiom,
    ! [X: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_less_1
thf(fact_5878_power__mono__even,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5879_power__mono__even,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5880_power__mono__even,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5881_power__mono__even,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5882_ln__powr__bound,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( divide_divide_real @ ( powr_real @ X @ A ) @ A ) ) ) ) ).

% ln_powr_bound
thf(fact_5883_ln__powr__bound2,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X ) ) ) ) ).

% ln_powr_bound2
thf(fact_5884_add__log__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( plus_plus_real @ Y @ ( log2 @ B @ X ) )
            = ( log2 @ B @ ( times_times_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ) ) ).

% add_log_eq_powr
thf(fact_5885_log__add__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( plus_plus_real @ ( log2 @ B @ X ) @ Y )
            = ( log2 @ B @ ( times_times_real @ X @ ( powr_real @ B @ Y ) ) ) ) ) ) ) ).

% log_add_eq_powr
thf(fact_5886_minus__log__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( minus_minus_real @ Y @ ( log2 @ B @ X ) )
            = ( log2 @ B @ ( divide_divide_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ) ) ).

% minus_log_eq_powr
thf(fact_5887_take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_minus_bit0
thf(fact_5888_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_5889_div__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_5890_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_5891_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_5892_signed__take__bit__int__greater__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_5893_push__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% push_bit_minus_one
thf(fact_5894_log__minus__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( minus_minus_real @ ( log2 @ B @ X ) @ Y )
            = ( log2 @ B @ ( times_times_real @ X @ ( powr_real @ B @ ( uminus_uminus_real @ Y ) ) ) ) ) ) ) ) ).

% log_minus_eq_powr
thf(fact_5895_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K3: int] :
              ( ( P @ K3 )
             => ( ( K3 != zero_zero_int )
               => ( P @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K3: int] :
                ( ( P @ K3 )
               => ( ( K3
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_5896_signed__take__bit__int__eq__self,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_ri631733984087533419it_int @ N @ K )
          = K ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_5897_signed__take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ K )
        = K )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_5898_powr__neg__numeral,axiom,
    ! [X: real,N: num] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_5899_floor__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim6058952711729229775r_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_5900_signed__take__bit__int__greater__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_5901_take__bit__minus__small__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) )
          = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).

% take_bit_minus_small_eq
thf(fact_5902_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_5903_floor__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log2 @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_5904_abs__sqrt__wlog,axiom,
    ! [P: code_integer > code_integer > $o,X: code_integer] :
      ( ! [X4: code_integer] :
          ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X4 )
         => ( P @ X4 @ ( power_8256067586552552935nteger @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_Code_integer @ X ) @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5905_abs__sqrt__wlog,axiom,
    ! [P: real > real > $o,X: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
         => ( P @ X4 @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5906_abs__sqrt__wlog,axiom,
    ! [P: rat > rat > $o,X: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_eq_rat @ zero_zero_rat @ X4 )
         => ( P @ X4 @ ( power_power_rat @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_rat @ X ) @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5907_abs__sqrt__wlog,axiom,
    ! [P: int > int > $o,X: int] :
      ( ! [X4: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X4 )
         => ( P @ X4 @ ( power_power_int @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_int @ X ) @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5908_signed__take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_minus_bit1
thf(fact_5909_arcosh__def,axiom,
    ( arcosh_real
    = ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( powr_real @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% arcosh_def
thf(fact_5910_arctan__double,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X ) )
        = ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% arctan_double
thf(fact_5911_arsinh__def,axiom,
    ( arsinh_real
    = ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( powr_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% arsinh_def
thf(fact_5912_signed__take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_bit1
thf(fact_5913_verit__eq__simplify_I9_J,axiom,
    ! [X32: num,Y32: num] :
      ( ( ( bit1 @ X32 )
        = ( bit1 @ Y32 ) )
      = ( X32 = Y32 ) ) ).

% verit_eq_simplify(9)
thf(fact_5914_semiring__norm_I90_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(90)
thf(fact_5915_semiring__norm_I88_J,axiom,
    ! [M: num,N: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N ) ) ).

% semiring_norm(88)
thf(fact_5916_semiring__norm_I89_J,axiom,
    ! [M: num,N: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N ) ) ).

% semiring_norm(89)
thf(fact_5917_semiring__norm_I84_J,axiom,
    ! [N: num] :
      ( one
     != ( bit1 @ N ) ) ).

% semiring_norm(84)
thf(fact_5918_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_5919_zdvd1__eq,axiom,
    ! [X: int] :
      ( ( dvd_dvd_int @ X @ one_one_int )
      = ( ( abs_abs_int @ X )
        = one_one_int ) ) ).

% zdvd1_eq
thf(fact_5920_semiring__norm_I80_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(80)
thf(fact_5921_semiring__norm_I73_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(73)
thf(fact_5922_of__real__0,axiom,
    ( ( real_V1803761363581548252l_real @ zero_zero_real )
    = zero_zero_real ) ).

% of_real_0
thf(fact_5923_of__real__0,axiom,
    ( ( real_V4546457046886955230omplex @ zero_zero_real )
    = zero_zero_complex ) ).

% of_real_0
thf(fact_5924_of__real__eq__0__iff,axiom,
    ! [X: real] :
      ( ( ( real_V1803761363581548252l_real @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% of_real_eq_0_iff
thf(fact_5925_of__real__eq__0__iff,axiom,
    ! [X: real] :
      ( ( ( real_V4546457046886955230omplex @ X )
        = zero_zero_complex )
      = ( X = zero_zero_real ) ) ).

% of_real_eq_0_iff
thf(fact_5926_of__real__1,axiom,
    ( ( real_V1803761363581548252l_real @ one_one_real )
    = one_one_real ) ).

% of_real_1
thf(fact_5927_of__real__1,axiom,
    ( ( real_V4546457046886955230omplex @ one_one_real )
    = one_one_complex ) ).

% of_real_1
thf(fact_5928_of__real__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( real_V1803761363581548252l_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% of_real_eq_1_iff
thf(fact_5929_of__real__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( real_V4546457046886955230omplex @ X )
        = one_one_complex )
      = ( X = one_one_real ) ) ).

% of_real_eq_1_iff
thf(fact_5930_of__real__mult,axiom,
    ! [X: real,Y: real] :
      ( ( real_V1803761363581548252l_real @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y ) ) ) ).

% of_real_mult
thf(fact_5931_of__real__mult,axiom,
    ! [X: real,Y: real] :
      ( ( real_V4546457046886955230omplex @ ( times_times_real @ X @ Y ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y ) ) ) ).

% of_real_mult
thf(fact_5932_of__real__numeral,axiom,
    ! [W: num] :
      ( ( real_V1803761363581548252l_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% of_real_numeral
thf(fact_5933_of__real__numeral,axiom,
    ! [W: num] :
      ( ( real_V4546457046886955230omplex @ ( numeral_numeral_real @ W ) )
      = ( numera6690914467698888265omplex @ W ) ) ).

% of_real_numeral
thf(fact_5934_zabs__less__one__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z2 ) @ one_one_int )
      = ( Z2 = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_5935_of__real__divide,axiom,
    ! [X: real,Y: real] :
      ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X @ Y ) )
      = ( divide_divide_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y ) ) ) ).

% of_real_divide
thf(fact_5936_of__real__divide,axiom,
    ! [X: real,Y: real] :
      ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X @ Y ) )
      = ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y ) ) ) ).

% of_real_divide
thf(fact_5937_of__real__add,axiom,
    ! [X: real,Y: real] :
      ( ( real_V1803761363581548252l_real @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y ) ) ) ).

% of_real_add
thf(fact_5938_of__real__add,axiom,
    ! [X: real,Y: real] :
      ( ( real_V4546457046886955230omplex @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y ) ) ) ).

% of_real_add
thf(fact_5939_of__real__power,axiom,
    ! [X: real,N: nat] :
      ( ( real_V1803761363581548252l_real @ ( power_power_real @ X @ N ) )
      = ( power_power_real @ ( real_V1803761363581548252l_real @ X ) @ N ) ) ).

% of_real_power
thf(fact_5940_of__real__power,axiom,
    ! [X: real,N: nat] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ X @ N ) )
      = ( power_power_complex @ ( real_V4546457046886955230omplex @ X ) @ N ) ) ).

% of_real_power
thf(fact_5941_of__real__diff,axiom,
    ! [X: real,Y: real] :
      ( ( real_V1803761363581548252l_real @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y ) ) ) ).

% of_real_diff
thf(fact_5942_of__real__diff,axiom,
    ! [X: real,Y: real] :
      ( ( real_V4546457046886955230omplex @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y ) ) ) ).

% of_real_diff
thf(fact_5943_semiring__norm_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(9)
thf(fact_5944_semiring__norm_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(7)
thf(fact_5945_of__real__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( real_V4546457046886955230omplex @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri8010041392384452111omplex @ N ) ) ).

% of_real_of_nat_eq
thf(fact_5946_of__real__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( real_V1803761363581548252l_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% of_real_of_nat_eq
thf(fact_5947_semiring__norm_I15_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).

% semiring_norm(15)
thf(fact_5948_semiring__norm_I14_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).

% semiring_norm(14)
thf(fact_5949_semiring__norm_I81_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(81)
thf(fact_5950_semiring__norm_I72_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(72)
thf(fact_5951_semiring__norm_I77_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).

% semiring_norm(77)
thf(fact_5952_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_5953_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_5954_semiring__norm_I3_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% semiring_norm(3)
thf(fact_5955_semiring__norm_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).

% semiring_norm(4)
thf(fact_5956_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_5957_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_5958_semiring__norm_I10_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_5959_semiring__norm_I16_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_5960_semiring__norm_I74_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(74)
thf(fact_5961_semiring__norm_I79_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(79)
thf(fact_5962_of__real__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1803761363581548252l_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ).

% of_real_neg_numeral
thf(fact_5963_of__real__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V4546457046886955230omplex @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% of_real_neg_numeral
thf(fact_5964_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_5965_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_5966_Suc__mod__eq__add3__mod__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_mod_eq_add3_mod_numeral
thf(fact_5967_mod__Suc__eq__mod__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% mod_Suc_eq_mod_add3
thf(fact_5968_norm__of__real__add1,axiom,
    ! [X: real] :
      ( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ one_one_real ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% norm_of_real_add1
thf(fact_5969_norm__of__real__add1,axiom,
    ! [X: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ one_one_complex ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% norm_of_real_add1
thf(fact_5970_norm__of__real__addn,axiom,
    ! [X: real,B: num] :
      ( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ ( numeral_numeral_real @ B ) ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ B ) ) ) ) ).

% norm_of_real_addn
thf(fact_5971_norm__of__real__addn,axiom,
    ! [X: real,B: num] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( numera6690914467698888265omplex @ B ) ) )
      = ( abs_abs_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ B ) ) ) ) ).

% norm_of_real_addn
thf(fact_5972_zmod__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).

% zmod_numeral_Bit1
thf(fact_5973_verit__eq__simplify_I14_J,axiom,
    ! [X2: num,X32: num] :
      ( ( bit0 @ X2 )
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(14)
thf(fact_5974_verit__eq__simplify_I12_J,axiom,
    ! [X32: num] :
      ( one
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(12)
thf(fact_5975_zdvd__antisym__abs,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( abs_abs_int @ A )
          = ( abs_abs_int @ B ) ) ) ) ).

% zdvd_antisym_abs
thf(fact_5976_num_Oexhaust,axiom,
    ! [Y: num] :
      ( ( Y != one )
     => ( ! [X22: num] :
            ( Y
           != ( bit0 @ X22 ) )
       => ~ ! [X33: num] :
              ( Y
             != ( bit1 @ X33 ) ) ) ) ).

% num.exhaust
thf(fact_5977_abs__zmult__eq__1,axiom,
    ! [M: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_5978_abs__div,axiom,
    ! [Y: int,X: int] :
      ( ( dvd_dvd_int @ Y @ X )
     => ( ( abs_abs_int @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y ) ) ) ) ).

% abs_div
thf(fact_5979_div__eq__sgn__abs,axiom,
    ! [K: int,L: int] :
      ( ( ( sgn_sgn_int @ K )
        = ( sgn_sgn_int @ L ) )
     => ( ( divide_divide_int @ K @ L )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).

% div_eq_sgn_abs
thf(fact_5980_nonzero__of__real__divide,axiom,
    ! [Y: real,X: real] :
      ( ( Y != zero_zero_real )
     => ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X @ Y ) )
        = ( divide_divide_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y ) ) ) ) ).

% nonzero_of_real_divide
thf(fact_5981_nonzero__of__real__divide,axiom,
    ! [Y: real,X: real] :
      ( ( Y != zero_zero_real )
     => ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X @ Y ) )
        = ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y ) ) ) ) ).

% nonzero_of_real_divide
thf(fact_5982_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_Bit1
thf(fact_5983_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_Bit1
thf(fact_5984_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_Bit1
thf(fact_5985_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_Bit1
thf(fact_5986_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_Bit1
thf(fact_5987_eval__nat__numeral_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_5988_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5989_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5990_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_5991_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5992_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5993_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_5994_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5995_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5996_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_5997_power__minus__Bit1,axiom,
    ! [X: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5998_power__minus__Bit1,axiom,
    ! [X: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_5999_power__minus__Bit1,axiom,
    ! [X: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6000_power__minus__Bit1,axiom,
    ! [X: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6001_power__minus__Bit1,axiom,
    ! [X: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6002_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).

% zabs_def
thf(fact_6003_dvd__imp__le__int,axiom,
    ! [I: int,D: int] :
      ( ( I != zero_zero_int )
     => ( ( dvd_dvd_int @ D @ I )
       => ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I ) ) ) ) ).

% dvd_imp_le_int
thf(fact_6004_abs__mod__less,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L ) ) @ ( abs_abs_int @ L ) ) ) ).

% abs_mod_less
thf(fact_6005_norm__less__p1,axiom,
    ! [X: real] : ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ ( real_V7735802525324610683m_real @ X ) ) @ one_one_real ) ) ) ).

% norm_less_p1
thf(fact_6006_norm__less__p1,axiom,
    ! [X: complex] : ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( real_V1022390504157884413omplex @ X ) ) @ one_one_complex ) ) ) ).

% norm_less_p1
thf(fact_6007_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_6008_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_6009_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6010_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6011_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6012_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != zero_zero_nat ) ).

% cong_exp_iff_simps(3)
thf(fact_6013_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != zero_zero_int ) ).

% cong_exp_iff_simps(3)
thf(fact_6014_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(3)
thf(fact_6015_power3__eq__cube,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6016_power3__eq__cube,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6017_power3__eq__cube,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6018_power3__eq__cube,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6019_power3__eq__cube,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6020_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_6021_Suc3__eq__add__3,axiom,
    ! [N: nat] :
      ( ( suc @ ( suc @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).

% Suc3_eq_add_3
thf(fact_6022_zdvd__mult__cancel1,axiom,
    ! [M: int,N: int] :
      ( ( M != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
        = ( ( abs_abs_int @ N )
          = one_one_int ) ) ) ).

% zdvd_mult_cancel1
thf(fact_6023_div__sgn__abs__cancel,axiom,
    ! [V: int,K: int,L: int] :
      ( ( V != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L ) ) )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).

% div_sgn_abs_cancel
thf(fact_6024_div__dvd__sgn__abs,axiom,
    ! [L: int,K: int] :
      ( ( dvd_dvd_int @ L @ K )
     => ( ( divide_divide_int @ K @ L )
        = ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_dvd_sgn_abs
thf(fact_6025_num_Osize__gen_I3_J,axiom,
    ! [X32: num] :
      ( ( size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(3)
thf(fact_6026_norm__of__real__diff,axiom,
    ! [B: real,A: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( real_V1803761363581548252l_real @ B ) @ ( real_V1803761363581548252l_real @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_of_real_diff
thf(fact_6027_norm__of__real__diff,axiom,
    ! [B: real,A: real] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( real_V4546457046886955230omplex @ B ) @ ( real_V4546457046886955230omplex @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_of_real_diff
thf(fact_6028_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(7)
thf(fact_6029_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(7)
thf(fact_6030_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(7)
thf(fact_6031_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(11)
thf(fact_6032_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(11)
thf(fact_6033_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(11)
thf(fact_6034_even__abs__add__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_abs_add_iff
thf(fact_6035_even__add__abs__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_add_abs_iff
thf(fact_6036_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_div_eq_add3_div
thf(fact_6037_Suc__mod__eq__add3__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_mod_eq_add3_mod
thf(fact_6038_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ( ord_less_eq_nat @ M @ I2 )
            & ( ord_less_nat @ I2 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N ) )
           => ? [I2: nat] :
                ( ( ord_less_eq_nat @ M @ I2 )
                & ( ord_less_eq_nat @ I2 @ N )
                & ( ( F @ I2 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_6039_incr__lemma,axiom,
    ! [D: int,Z2: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z2 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_6040_decr__lemma,axiom,
    ! [D: int,X: int,Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) @ Z2 ) ) ).

% decr_lemma
thf(fact_6041_mod__exhaust__less__4,axiom,
    ! [M: nat] :
      ( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = zero_zero_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = one_one_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).

% mod_exhaust_less_4
thf(fact_6042_div__noneq__sgn__abs,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ( ( sgn_sgn_int @ K )
         != ( sgn_sgn_int @ L ) )
       => ( ( divide_divide_int @ K @ L )
          = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) )
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( dvd_dvd_int @ L @ K ) ) ) ) ) ) ).

% div_noneq_sgn_abs
thf(fact_6043_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
              & ( ( F @ I2 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_6044_complex__mod__triangle__ineq2,axiom,
    ! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).

% complex_mod_triangle_ineq2
thf(fact_6045_take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_bit1
thf(fact_6046_take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).

% take_bit_Suc_bit1
thf(fact_6047_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
              & ( ( F @ I2 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_6048_arctan__add,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( plus_plus_real @ ( arctan @ X ) @ ( arctan @ Y ) )
          = ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X @ Y ) ) ) ) ) ) ) ).

% arctan_add
thf(fact_6049_odd__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) )
     => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% odd_mod_4_div_2
thf(fact_6050_signed__take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_minus_bit1
thf(fact_6051_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6052_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6053_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6054_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6055_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6056_take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_bit1
thf(fact_6057_signed__take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_bit1
thf(fact_6058_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_6059_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_6060_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_6061_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_6062_arctan__inverse,axiom,
    ! [X: real] :
      ( ( X != zero_zero_real )
     => ( ( arctan @ ( divide_divide_real @ one_one_real @ X ) )
        = ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X ) ) ) ) ).

% arctan_inverse
thf(fact_6063_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ one_one_complex )
    = one_one_complex ) ).

% dbl_dec_simps(3)
thf(fact_6064_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_6065_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
    = one_one_rat ) ).

% dbl_dec_simps(3)
thf(fact_6066_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_6067_pred__numeral__simps_I1_J,axiom,
    ( ( pred_numeral @ one )
    = zero_zero_nat ) ).

% pred_numeral_simps(1)
thf(fact_6068_Suc__eq__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ( suc @ N )
        = ( numeral_numeral_nat @ K ) )
      = ( N
        = ( pred_numeral @ K ) ) ) ).

% Suc_eq_numeral
thf(fact_6069_eq__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K )
        = ( suc @ N ) )
      = ( ( pred_numeral @ K )
        = N ) ) ).

% eq_numeral_Suc
thf(fact_6070_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
    = one_one_complex ) ).

% dbl_inc_simps(2)
thf(fact_6071_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_6072_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
    = one_one_rat ) ).

% dbl_inc_simps(2)
thf(fact_6073_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_6074_pred__numeral__inc,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( inc @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% pred_numeral_inc
thf(fact_6075_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_6076_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_6077_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_inc_simps(4)
thf(fact_6078_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_inc_simps(4)
thf(fact_6079_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_inc_simps(4)
thf(fact_6080_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_6081_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_6082_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_6083_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_6084_pred__numeral__simps_I3_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit1 @ K ) )
      = ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).

% pred_numeral_simps(3)
thf(fact_6085_less__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_nat @ N @ ( pred_numeral @ K ) ) ) ).

% less_Suc_numeral
thf(fact_6086_less__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( ord_less_nat @ ( pred_numeral @ K ) @ N ) ) ).

% less_numeral_Suc
thf(fact_6087_le__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_eq_nat @ N @ ( pred_numeral @ K ) ) ) ).

% le_Suc_numeral
thf(fact_6088_le__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N ) ) ).

% le_numeral_Suc
thf(fact_6089_diff__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( minus_minus_nat @ N @ ( pred_numeral @ K ) ) ) ).

% diff_Suc_numeral
thf(fact_6090_diff__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( minus_minus_nat @ ( pred_numeral @ K ) @ N ) ) ).

% diff_numeral_Suc
thf(fact_6091_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_6092_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_6093_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_dec_simps(2)
thf(fact_6094_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_dec_simps(2)
thf(fact_6095_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_dec_simps(2)
thf(fact_6096_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_6097_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_6098_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_6099_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_6100_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_6101_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_6102_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_6103_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_6104_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_6105_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_6106_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_6107_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_6108_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_6109_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_6110_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_6111_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_6112_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_6113_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_6114_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_6115_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_6116_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_6117_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_6118_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_6119_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_6120_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_6121_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( numeral_numeral_real @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_6122_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_6123_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_6124_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( numeral_numeral_rat @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_6125_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_6126_push__bit__numeral,axiom,
    ! [L: num,K: num] :
      ( ( bit_se547839408752420682it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ K ) )
      = ( bit_se547839408752420682it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% push_bit_numeral
thf(fact_6127_push__bit__numeral,axiom,
    ! [L: num,K: num] :
      ( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ K ) )
      = ( bit_se545348938243370406it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ).

% push_bit_numeral
thf(fact_6128_push__bit__numeral,axiom,
    ! [L: num,K: num] :
      ( ( bit_se7788150548672797655nteger @ ( numeral_numeral_nat @ L ) @ ( numera6620942414471956472nteger @ K ) )
      = ( bit_se7788150548672797655nteger @ ( pred_numeral @ L ) @ ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ) ).

% push_bit_numeral
thf(fact_6129_push__bit__numeral,axiom,
    ! [L: num,K: num] :
      ( ( bit_se6611745700429515170atural @ ( numeral_numeral_nat @ L ) @ ( numera5444537566228673987atural @ K ) )
      = ( bit_se6611745700429515170atural @ ( pred_numeral @ L ) @ ( numera5444537566228673987atural @ ( bit0 @ K ) ) ) ) ).

% push_bit_numeral
thf(fact_6130_push__bit__minus__numeral,axiom,
    ! [L: num,K: num] :
      ( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( bit_se545348938243370406it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ) ).

% push_bit_minus_numeral
thf(fact_6131_push__bit__minus__numeral,axiom,
    ! [L: num,K: num] :
      ( ( bit_se7788150548672797655nteger @ ( numeral_numeral_nat @ L ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( bit_se7788150548672797655nteger @ ( pred_numeral @ L ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ) ) ).

% push_bit_minus_numeral
thf(fact_6132_signed__take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_bit0
thf(fact_6133_signed__take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_minus_bit0
thf(fact_6134_num__induct,axiom,
    ! [P: num > $o,X: num] :
      ( ( P @ one )
     => ( ! [X4: num] :
            ( ( P @ X4 )
           => ( P @ ( inc @ X4 ) ) )
       => ( P @ X ) ) ) ).

% num_induct
thf(fact_6135_add__inc,axiom,
    ! [X: num,Y: num] :
      ( ( plus_plus_num @ X @ ( inc @ Y ) )
      = ( inc @ ( plus_plus_num @ X @ Y ) ) ) ).

% add_inc
thf(fact_6136_numeral__eq__Suc,axiom,
    ( numeral_numeral_nat
    = ( ^ [K2: num] : ( suc @ ( pred_numeral @ K2 ) ) ) ) ).

% numeral_eq_Suc
thf(fact_6137_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_6138_inc_Osimps_I3_J,axiom,
    ! [X: num] :
      ( ( inc @ ( bit1 @ X ) )
      = ( bit0 @ ( inc @ X ) ) ) ).

% inc.simps(3)
thf(fact_6139_inc_Osimps_I2_J,axiom,
    ! [X: num] :
      ( ( inc @ ( bit0 @ X ) )
      = ( bit1 @ X ) ) ).

% inc.simps(2)
thf(fact_6140_add__One,axiom,
    ! [X: num] :
      ( ( plus_plus_num @ X @ one )
      = ( inc @ X ) ) ).

% add_One
thf(fact_6141_mult__inc,axiom,
    ! [X: num,Y: num] :
      ( ( times_times_num @ X @ ( inc @ Y ) )
      = ( plus_plus_num @ ( times_times_num @ X @ Y ) @ X ) ) ).

% mult_inc
thf(fact_6142_pred__numeral__def,axiom,
    ( pred_numeral
    = ( ^ [K2: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K2 ) @ one_one_nat ) ) ) ).

% pred_numeral_def
thf(fact_6143_numeral__inc,axiom,
    ! [X: num] :
      ( ( numera6690914467698888265omplex @ ( inc @ X ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).

% numeral_inc
thf(fact_6144_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_real @ ( inc @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% numeral_inc
thf(fact_6145_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_rat @ ( inc @ X ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).

% numeral_inc
thf(fact_6146_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_nat @ ( inc @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% numeral_inc
thf(fact_6147_numeral__inc,axiom,
    ! [X: num] :
      ( ( numeral_numeral_int @ ( inc @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% numeral_inc
thf(fact_6148_pi__less__4,axiom,
    ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).

% pi_less_4
thf(fact_6149_pi__ge__two,axiom,
    ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).

% pi_ge_two
thf(fact_6150_pi__half__neq__two,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_neq_two
thf(fact_6151_dbl__inc__def,axiom,
    ( neg_nu8557863876264182079omplex
    = ( ^ [X3: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X3 @ X3 ) @ one_one_complex ) ) ) ).

% dbl_inc_def
thf(fact_6152_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X3: real] : ( plus_plus_real @ ( plus_plus_real @ X3 @ X3 ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_6153_dbl__inc__def,axiom,
    ( neg_nu5219082963157363817nc_rat
    = ( ^ [X3: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X3 @ X3 ) @ one_one_rat ) ) ) ).

% dbl_inc_def
thf(fact_6154_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X3: int] : ( plus_plus_int @ ( plus_plus_int @ X3 @ X3 ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_6155_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ K ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_6156_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_6157_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K ) )
      = ( times_times_int @ ( numeral_numeral_int @ K ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_6158_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_6159_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K ) )
      = ( times_times_real @ ( numeral_numeral_real @ K ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_6160_pi__half__neq__zero,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% pi_half_neq_zero
thf(fact_6161_pi__half__less__two,axiom,
    ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_less_two
thf(fact_6162_pi__half__le__two,axiom,
    ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_le_two
thf(fact_6163_take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_bit1
thf(fact_6164_dbl__dec__def,axiom,
    ( neg_nu6511756317524482435omplex
    = ( ^ [X3: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X3 @ X3 ) @ one_one_complex ) ) ) ).

% dbl_dec_def
thf(fact_6165_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X3: real] : ( minus_minus_real @ ( plus_plus_real @ X3 @ X3 ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_6166_dbl__dec__def,axiom,
    ( neg_nu3179335615603231917ec_rat
    = ( ^ [X3: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X3 @ X3 ) @ one_one_rat ) ) ) ).

% dbl_dec_def
thf(fact_6167_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X3: int] : ( minus_minus_int @ ( plus_plus_int @ X3 @ X3 ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_6168_pi__half__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_gt_zero
thf(fact_6169_pi__half__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_ge_zero
thf(fact_6170_m2pi__less__pi,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).

% m2pi_less_pi
thf(fact_6171_arctan__ubound,axiom,
    ! [Y: real] : ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arctan_ubound
thf(fact_6172_arctan__one,axiom,
    ( ( arctan @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% arctan_one
thf(fact_6173_take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_bit0
thf(fact_6174_take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_bit0
thf(fact_6175_minus__pi__half__less__zero,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).

% minus_pi_half_less_zero
thf(fact_6176_arctan__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
      & ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arctan_bounded
thf(fact_6177_arctan__lbound,axiom,
    ! [Y: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) ) ).

% arctan_lbound
thf(fact_6178_take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_minus_bit0
thf(fact_6179_machin__Euler,axiom,
    ( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% machin_Euler
thf(fact_6180_machin,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% machin
thf(fact_6181_take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_bit1
thf(fact_6182_take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).

% take_bit_numeral_bit1
thf(fact_6183_sin__cos__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% sin_cos_npi
thf(fact_6184_cos__pi__eq__zero,axiom,
    ! [M: nat] :
      ( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = zero_zero_real ) ).

% cos_pi_eq_zero
thf(fact_6185_cos__zero__iff,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = zero_zero_real )
      = ( ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% cos_zero_iff
thf(fact_6186_cot__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( cot_real @ X ) @ zero_zero_real ) ) ) ).

% cot_less_zero
thf(fact_6187_cos__zero__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( cos_real @ X )
          = zero_zero_real )
       => ? [N2: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_lemma
thf(fact_6188_sin__zero__iff,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% sin_zero_iff
thf(fact_6189_sin__zero,axiom,
    ( ( sin_real @ zero_zero_real )
    = zero_zero_real ) ).

% sin_zero
thf(fact_6190_cot__zero,axiom,
    ( ( cot_real @ zero_zero_real )
    = zero_zero_real ) ).

% cot_zero
thf(fact_6191_cos__zero,axiom,
    ( ( cos_complex @ zero_zero_complex )
    = one_one_complex ) ).

% cos_zero
thf(fact_6192_cos__zero,axiom,
    ( ( cos_real @ zero_zero_real )
    = one_one_real ) ).

% cos_zero
thf(fact_6193_sin__pi__minus,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ pi @ X ) )
      = ( sin_real @ X ) ) ).

% sin_pi_minus
thf(fact_6194_sin__of__real__pi,axiom,
    ( ( sin_real @ ( real_V1803761363581548252l_real @ pi ) )
    = zero_zero_real ) ).

% sin_of_real_pi
thf(fact_6195_sin__of__real__pi,axiom,
    ( ( sin_complex @ ( real_V4546457046886955230omplex @ pi ) )
    = zero_zero_complex ) ).

% sin_of_real_pi
thf(fact_6196_cos__pi,axiom,
    ( ( cos_real @ pi )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% cos_pi
thf(fact_6197_cos__periodic__pi,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_periodic_pi
thf(fact_6198_cos__periodic__pi2,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ pi @ X ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_periodic_pi2
thf(fact_6199_sin__periodic__pi,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_periodic_pi
thf(fact_6200_sin__periodic__pi2,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ pi @ X ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_periodic_pi2
thf(fact_6201_cos__minus__pi,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_minus_pi
thf(fact_6202_cos__pi__minus,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ pi @ X ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_pi_minus
thf(fact_6203_sin__minus__pi,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_minus_pi
thf(fact_6204_sin__cos__squared__add3,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ X ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ X ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add3
thf(fact_6205_sin__cos__squared__add3,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ X ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ X ) ) )
      = one_one_real ) ).

% sin_cos_squared_add3
thf(fact_6206_cos__of__real__pi,axiom,
    ( ( cos_real @ ( real_V1803761363581548252l_real @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% cos_of_real_pi
thf(fact_6207_cos__of__real__pi,axiom,
    ( ( cos_complex @ ( real_V4546457046886955230omplex @ pi ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% cos_of_real_pi
thf(fact_6208_sin__npi2,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi2
thf(fact_6209_sin__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% sin_npi
thf(fact_6210_cot__npi,axiom,
    ! [N: nat] :
      ( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% cot_npi
thf(fact_6211_cos__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_pi_half
thf(fact_6212_sin__two__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = zero_zero_real ) ).

% sin_two_pi
thf(fact_6213_sin__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_pi_half
thf(fact_6214_cos__two__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_real ) ).

% cos_two_pi
thf(fact_6215_cos__periodic,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cos_real @ X ) ) ).

% cos_periodic
thf(fact_6216_sin__periodic,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( sin_real @ X ) ) ).

% sin_periodic
thf(fact_6217_cos__2pi__minus,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
      = ( cos_real @ X ) ) ).

% cos_2pi_minus
thf(fact_6218_cos__npi2,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi2
thf(fact_6219_cos__npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi
thf(fact_6220_cot__periodic,axiom,
    ! [X: real] :
      ( ( cot_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cot_real @ X ) ) ).

% cot_periodic
thf(fact_6221_sin__cos__squared__add,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add
thf(fact_6222_sin__cos__squared__add,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add
thf(fact_6223_sin__cos__squared__add2,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add2
thf(fact_6224_sin__cos__squared__add2,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add2
thf(fact_6225_cos__of__real__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_of_real_pi_half
thf(fact_6226_cos__of__real__pi__half,axiom,
    ( ( cos_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
    = zero_zero_complex ) ).

% cos_of_real_pi_half
thf(fact_6227_sin__of__real__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_of_real_pi_half
thf(fact_6228_sin__of__real__pi__half,axiom,
    ( ( sin_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
    = one_one_complex ) ).

% sin_of_real_pi_half
thf(fact_6229_sin__2npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = zero_zero_real ) ).

% sin_2npi
thf(fact_6230_cos__2npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = one_one_real ) ).

% cos_2npi
thf(fact_6231_sin__2pi__minus,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_2pi_minus
thf(fact_6232_cos__3over2__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = zero_zero_real ) ).

% cos_3over2_pi
thf(fact_6233_sin__3over2__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sin_3over2_pi
thf(fact_6234_sin__add,axiom,
    ! [X: real,Y: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% sin_add
thf(fact_6235_cos__one__sin__zero,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
        = one_one_complex )
     => ( ( sin_complex @ X )
        = zero_zero_complex ) ) ).

% cos_one_sin_zero
thf(fact_6236_cos__one__sin__zero,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
     => ( ( sin_real @ X )
        = zero_zero_real ) ) ).

% cos_one_sin_zero
thf(fact_6237_cot__def,axiom,
    ( cot_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( cos_complex @ X3 ) @ ( sin_complex @ X3 ) ) ) ) ).

% cot_def
thf(fact_6238_cot__def,axiom,
    ( cot_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( cos_real @ X3 ) @ ( sin_real @ X3 ) ) ) ) ).

% cot_def
thf(fact_6239_polar__Ex,axiom,
    ! [X: real,Y: real] :
    ? [R2: real,A4: real] :
      ( ( X
        = ( times_times_real @ R2 @ ( cos_real @ A4 ) ) )
      & ( Y
        = ( times_times_real @ R2 @ ( sin_real @ A4 ) ) ) ) ).

% polar_Ex
thf(fact_6240_sin__diff,axiom,
    ! [X: real,Y: real] :
      ( ( sin_real @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% sin_diff
thf(fact_6241_cos__add,axiom,
    ! [X: real,Y: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% cos_add
thf(fact_6242_cos__diff,axiom,
    ! [X: real,Y: real] :
      ( ( cos_real @ ( minus_minus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% cos_diff
thf(fact_6243_sin__zero__norm__cos__one,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( cos_real @ X ) )
        = one_one_real ) ) ).

% sin_zero_norm_cos_one
thf(fact_6244_sin__zero__norm__cos__one,axiom,
    ! [X: complex] :
      ( ( ( sin_complex @ X )
        = zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( cos_complex @ X ) )
        = one_one_real ) ) ).

% sin_zero_norm_cos_one
thf(fact_6245_sin__zero__abs__cos__one,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
     => ( ( abs_abs_real @ ( cos_real @ X ) )
        = one_one_real ) ) ).

% sin_zero_abs_cos_one
thf(fact_6246_sin__double,axiom,
    ! [X: complex] :
      ( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X ) ) @ ( cos_complex @ X ) ) ) ).

% sin_double
thf(fact_6247_sin__double,axiom,
    ! [X: real] :
      ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X ) ) @ ( cos_real @ X ) ) ) ).

% sin_double
thf(fact_6248_sin__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( sin_real @ X ) @ one_one_real ) ).

% sin_le_one
thf(fact_6249_cos__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( cos_real @ X ) @ one_one_real ) ).

% cos_le_one
thf(fact_6250_sin__cos__le1,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) @ one_one_real ) ).

% sin_cos_le1
thf(fact_6251_cos__squared__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_6252_cos__squared__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_6253_sin__squared__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_6254_sin__squared__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_6255_sin__ge__minus__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X ) ) ).

% sin_ge_minus_one
thf(fact_6256_cos__ge__minus__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X ) ) ).

% cos_ge_minus_one
thf(fact_6257_abs__sin__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ one_one_real ) ).

% abs_sin_le_one
thf(fact_6258_abs__cos__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X ) ) @ one_one_real ) ).

% abs_cos_le_one
thf(fact_6259_sin__times__sin,axiom,
    ! [W: complex,Z2: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z2 ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z2 ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z2 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_6260_sin__times__sin,axiom,
    ! [W: real,Z2: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z2 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z2 ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_6261_sin__times__cos,axiom,
    ! [W: complex,Z2: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z2 ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z2 ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z2 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_6262_sin__times__cos,axiom,
    ! [W: real,Z2: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z2 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z2 ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_6263_cos__times__sin,axiom,
    ! [W: complex,Z2: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z2 ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z2 ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z2 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_6264_cos__times__sin,axiom,
    ! [W: real,Z2: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z2 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z2 ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_6265_sin__plus__sin,axiom,
    ! [W: complex,Z2: complex] :
      ( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_6266_sin__plus__sin,axiom,
    ! [W: real,Z2: real] :
      ( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z2 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_6267_sin__diff__sin,axiom,
    ! [W: complex,Z2: complex] :
      ( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_6268_sin__diff__sin,axiom,
    ! [W: real,Z2: real] :
      ( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z2 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_6269_cos__diff__cos,axiom,
    ! [W: complex,Z2: complex] :
      ( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z2 @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_6270_cos__diff__cos,axiom,
    ! [W: real,Z2: real] :
      ( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z2 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z2 @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_6271_cos__double,axiom,
    ! [X: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_6272_cos__double,axiom,
    ! [X: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( minus_minus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_6273_sin__cos__eq,axiom,
    ( sin_real
    = ( ^ [X3: real] : ( cos_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).

% sin_cos_eq
thf(fact_6274_sin__cos__eq,axiom,
    ( sin_complex
    = ( ^ [X3: complex] : ( cos_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).

% sin_cos_eq
thf(fact_6275_cos__sin__eq,axiom,
    ( cos_real
    = ( ^ [X3: real] : ( sin_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).

% cos_sin_eq
thf(fact_6276_cos__sin__eq,axiom,
    ( cos_complex
    = ( ^ [X3: complex] : ( sin_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).

% cos_sin_eq
thf(fact_6277_cos__double__sin,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_6278_cos__double__sin,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_6279_minus__sin__cos__eq,axiom,
    ! [X: real] :
      ( ( uminus_uminus_real @ ( sin_real @ X ) )
      = ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% minus_sin_cos_eq
thf(fact_6280_minus__sin__cos__eq,axiom,
    ! [X: complex] :
      ( ( uminus1482373934393186551omplex @ ( sin_complex @ X ) )
      = ( cos_complex @ ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% minus_sin_cos_eq
thf(fact_6281_cos__two__neq__zero,axiom,
    ( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% cos_two_neq_zero
thf(fact_6282_sincos__total__pi,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = one_one_real )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
            & ( ord_less_eq_real @ T3 @ pi )
            & ( X
              = ( cos_real @ T3 ) )
            & ( Y
              = ( sin_real @ T3 ) ) ) ) ) ).

% sincos_total_pi
thf(fact_6283_sin__expansion__lemma,axiom,
    ! [X: real,M: nat] :
      ( ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_expansion_lemma
thf(fact_6284_cos__expansion__lemma,axiom,
    ! [X: real,M: nat] :
      ( ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_expansion_lemma
thf(fact_6285_sin__gt__zero__02,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_gt_zero_02
thf(fact_6286_cos__two__less__zero,axiom,
    ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_less_zero
thf(fact_6287_cos__is__zero,axiom,
    ? [X4: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X4 )
      & ( ord_less_eq_real @ X4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      & ( ( cos_real @ X4 )
        = zero_zero_real )
      & ! [Y5: real] :
          ( ( ( ord_less_eq_real @ zero_zero_real @ Y5 )
            & ( ord_less_eq_real @ Y5 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ Y5 )
              = zero_zero_real ) )
         => ( Y5 = X4 ) ) ) ).

% cos_is_zero
thf(fact_6288_cos__two__le__zero,axiom,
    ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_le_zero
thf(fact_6289_cos__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ? [X4: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X4 )
            & ( ord_less_eq_real @ X4 @ pi )
            & ( ( cos_real @ X4 )
              = Y )
            & ! [Y5: real] :
                ( ( ( ord_less_eq_real @ zero_zero_real @ Y5 )
                  & ( ord_less_eq_real @ Y5 @ pi )
                  & ( ( cos_real @ Y5 )
                    = Y ) )
               => ( Y5 = X4 ) ) ) ) ) ).

% cos_total
thf(fact_6290_sincos__total__pi__half,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
            = one_one_real )
         => ? [T3: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ T3 )
              & ( ord_less_eq_real @ T3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( X
                = ( cos_real @ T3 ) )
              & ( Y
                = ( sin_real @ T3 ) ) ) ) ) ) ).

% sincos_total_pi_half
thf(fact_6291_sincos__total__2pi__le,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ? [T3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ T3 )
          & ( ord_less_eq_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
          & ( X
            = ( cos_real @ T3 ) )
          & ( Y
            = ( sin_real @ T3 ) ) ) ) ).

% sincos_total_2pi_le
thf(fact_6292_sincos__total__2pi,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ~ ! [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
           => ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( ( X
                  = ( cos_real @ T3 ) )
               => ( Y
                 != ( sin_real @ T3 ) ) ) ) ) ) ).

% sincos_total_2pi
thf(fact_6293_sin__pi__divide__n__ge__0,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_ge_0
thf(fact_6294_cos__times__cos,axiom,
    ! [W: complex,Z2: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z2 ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z2 ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z2 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_6295_cos__times__cos,axiom,
    ! [W: real,Z2: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z2 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z2 ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_6296_cos__plus__cos,axiom,
    ! [W: complex,Z2: complex] :
      ( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_6297_cos__plus__cos,axiom,
    ! [W: real,Z2: real] :
      ( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z2 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_6298_sin__gt__zero2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_gt_zero2
thf(fact_6299_sin__lt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ pi @ X )
     => ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_lt_zero
thf(fact_6300_cos__double__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ).

% cos_double_less_one
thf(fact_6301_sin__30,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_30
thf(fact_6302_cos__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_gt_zero
thf(fact_6303_sin__inj__pi,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ( sin_real @ X )
                = ( sin_real @ Y ) )
             => ( X = Y ) ) ) ) ) ) ).

% sin_inj_pi
thf(fact_6304_sin__mono__le__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( sin_real @ X ) @ ( sin_real @ Y ) )
              = ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ).

% sin_mono_le_eq
thf(fact_6305_sin__monotone__2pi__le,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sin_real @ Y ) @ ( sin_real @ X ) ) ) ) ) ).

% sin_monotone_2pi_le
thf(fact_6306_cos__60,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_60
thf(fact_6307_cos__double__cos,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).

% cos_double_cos
thf(fact_6308_cos__double__cos,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).

% cos_double_cos
thf(fact_6309_cos__treble__cos,axiom,
    ! [X: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X ) ) ) ) ).

% cos_treble_cos
thf(fact_6310_cos__treble__cos,axiom,
    ! [X: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X ) ) ) ) ).

% cos_treble_cos
thf(fact_6311_sin__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ pi @ X )
     => ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_eq_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_le_zero
thf(fact_6312_sin__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_less_zero
thf(fact_6313_sin__monotone__2pi,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sin_real @ Y ) @ ( sin_real @ X ) ) ) ) ) ).

% sin_monotone_2pi
thf(fact_6314_sin__mono__less__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( sin_real @ X ) @ ( sin_real @ Y ) )
              = ( ord_less_real @ X @ Y ) ) ) ) ) ) ).

% sin_mono_less_eq
thf(fact_6315_sin__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ? [X4: real] :
            ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
            & ( ord_less_eq_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( sin_real @ X4 )
              = Y )
            & ! [Y5: real] :
                ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y5 )
                  & ( ord_less_eq_real @ Y5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
                  & ( ( sin_real @ Y5 )
                    = Y ) )
               => ( Y5 = X4 ) ) ) ) ) ).

% sin_total
thf(fact_6316_cos__gt__zero__pi,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_gt_zero_pi
thf(fact_6317_cos__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_ge_zero
thf(fact_6318_cos__one__2pi,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
      = ( ? [X3: nat] :
            ( X
            = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
        | ? [X3: nat] :
            ( X
            = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).

% cos_one_2pi
thf(fact_6319_sin__pi__divide__n__gt__0,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_gt_0
thf(fact_6320_cot__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cot_real @ X ) ) ) ) ).

% cot_gt_zero
thf(fact_6321_sin__zero__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( sin_real @ X )
          = zero_zero_real )
       => ? [N2: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_lemma
thf(fact_6322_tan__double,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
         != zero_zero_complex )
       => ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_6323_tan__double,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
         != zero_zero_real )
       => ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
          = ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_6324_complex__unimodular__polar,axiom,
    ! [Z2: complex] :
      ( ( ( real_V1022390504157884413omplex @ Z2 )
        = one_one_real )
     => ~ ! [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
           => ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( Z2
               != ( complex2 @ ( cos_real @ T3 ) @ ( sin_real @ T3 ) ) ) ) ) ) ).

% complex_unimodular_polar
thf(fact_6325_cos__npi__int,axiom,
    ! [N: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% cos_npi_int
thf(fact_6326_le__arcsin__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ Y @ ( arcsin @ X ) )
              = ( ord_less_eq_real @ ( sin_real @ Y ) @ X ) ) ) ) ) ) ).

% le_arcsin_iff
thf(fact_6327_arcsin__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( arcsin @ X ) @ Y )
              = ( ord_less_eq_real @ X @ ( sin_real @ Y ) ) ) ) ) ) ) ).

% arcsin_le_iff
thf(fact_6328_arcsin__pi,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ pi )
          & ( ( sin_real @ ( arcsin @ Y ) )
            = Y ) ) ) ) ).

% arcsin_pi
thf(fact_6329_of__int__eq__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ring_1_of_int_real @ W )
        = ( ring_1_of_int_real @ Z2 ) )
      = ( W = Z2 ) ) ).

% of_int_eq_iff
thf(fact_6330_of__int__eq__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ring_1_of_int_rat @ W )
        = ( ring_1_of_int_rat @ Z2 ) )
      = ( W = Z2 ) ) ).

% of_int_eq_iff
thf(fact_6331_tan__zero,axiom,
    ( ( tan_real @ zero_zero_real )
    = zero_zero_real ) ).

% tan_zero
thf(fact_6332_tan__periodic__pi,axiom,
    ! [X: real] :
      ( ( tan_real @ ( plus_plus_real @ X @ pi ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_pi
thf(fact_6333_of__int__floor__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) )
        = X )
      = ( ? [N3: int] :
            ( X
            = ( ring_1_of_int_real @ N3 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_6334_of__int__floor__cancel,axiom,
    ! [X: rat] :
      ( ( ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) )
        = X )
      = ( ? [N3: int] :
            ( X
            = ( ring_1_of_int_rat @ N3 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_6335_floor__of__int,axiom,
    ! [Z2: int] :
      ( ( archim6058952711729229775r_real @ ( ring_1_of_int_real @ Z2 ) )
      = Z2 ) ).

% floor_of_int
thf(fact_6336_floor__of__int,axiom,
    ! [Z2: int] :
      ( ( archim3151403230148437115or_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = Z2 ) ).

% floor_of_int
thf(fact_6337_of__int__ceiling__cancel,axiom,
    ! [X: rat] :
      ( ( ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) )
        = X )
      = ( ? [N3: int] :
            ( X
            = ( ring_1_of_int_rat @ N3 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_6338_of__int__ceiling__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) )
        = X )
      = ( ? [N3: int] :
            ( X
            = ( ring_1_of_int_real @ N3 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_6339_ceiling__of__int,axiom,
    ! [Z2: int] :
      ( ( archim2889992004027027881ng_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = Z2 ) ).

% ceiling_of_int
thf(fact_6340_ceiling__of__int,axiom,
    ! [Z2: int] :
      ( ( archim7802044766580827645g_real @ ( ring_1_of_int_real @ Z2 ) )
      = Z2 ) ).

% ceiling_of_int
thf(fact_6341_of__int__eq__0__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_int @ Z2 )
        = zero_zero_int )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_6342_of__int__eq__0__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_real @ Z2 )
        = zero_zero_real )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_6343_of__int__eq__0__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_rat @ Z2 )
        = zero_zero_rat )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_6344_of__int__0__eq__iff,axiom,
    ! [Z2: int] :
      ( ( zero_zero_int
        = ( ring_1_of_int_int @ Z2 ) )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_6345_of__int__0__eq__iff,axiom,
    ! [Z2: int] :
      ( ( zero_zero_real
        = ( ring_1_of_int_real @ Z2 ) )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_6346_of__int__0__eq__iff,axiom,
    ! [Z2: int] :
      ( ( zero_zero_rat
        = ( ring_1_of_int_rat @ Z2 ) )
      = ( Z2 = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_6347_of__int__0,axiom,
    ( ( ring_1_of_int_int @ zero_zero_int )
    = zero_zero_int ) ).

% of_int_0
thf(fact_6348_of__int__0,axiom,
    ( ( ring_1_of_int_real @ zero_zero_int )
    = zero_zero_real ) ).

% of_int_0
thf(fact_6349_of__int__0,axiom,
    ( ( ring_1_of_int_rat @ zero_zero_int )
    = zero_zero_rat ) ).

% of_int_0
thf(fact_6350_of__int__le__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% of_int_le_iff
thf(fact_6351_of__int__le__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% of_int_le_iff
thf(fact_6352_of__int__le__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% of_int_le_iff
thf(fact_6353_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K ) )
      = ( numera6690914467698888265omplex @ K ) ) ).

% of_int_numeral
thf(fact_6354_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_real @ K ) ) ).

% of_int_numeral
thf(fact_6355_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_rat @ K ) ) ).

% of_int_numeral
thf(fact_6356_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% of_int_numeral
thf(fact_6357_of__int__eq__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ( ring_17405671764205052669omplex @ Z2 )
        = ( numera6690914467698888265omplex @ N ) )
      = ( Z2
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_6358_of__int__eq__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ( ring_1_of_int_real @ Z2 )
        = ( numeral_numeral_real @ N ) )
      = ( Z2
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_6359_of__int__eq__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ( ring_1_of_int_rat @ Z2 )
        = ( numeral_numeral_rat @ N ) )
      = ( Z2
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_6360_of__int__eq__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ( ring_1_of_int_int @ Z2 )
        = ( numeral_numeral_int @ N ) )
      = ( Z2
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_6361_of__int__less__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% of_int_less_iff
thf(fact_6362_of__int__less__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% of_int_less_iff
thf(fact_6363_of__int__less__iff,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% of_int_less_iff
thf(fact_6364_of__int__1,axiom,
    ( ( ring_17405671764205052669omplex @ one_one_int )
    = one_one_complex ) ).

% of_int_1
thf(fact_6365_of__int__1,axiom,
    ( ( ring_1_of_int_int @ one_one_int )
    = one_one_int ) ).

% of_int_1
thf(fact_6366_of__int__1,axiom,
    ( ( ring_1_of_int_real @ one_one_int )
    = one_one_real ) ).

% of_int_1
thf(fact_6367_of__int__1,axiom,
    ( ( ring_1_of_int_rat @ one_one_int )
    = one_one_rat ) ).

% of_int_1
thf(fact_6368_of__int__eq__1__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_17405671764205052669omplex @ Z2 )
        = one_one_complex )
      = ( Z2 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_6369_of__int__eq__1__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_int @ Z2 )
        = one_one_int )
      = ( Z2 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_6370_of__int__eq__1__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_real @ Z2 )
        = one_one_real )
      = ( Z2 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_6371_of__int__eq__1__iff,axiom,
    ! [Z2: int] :
      ( ( ( ring_1_of_int_rat @ Z2 )
        = one_one_rat )
      = ( Z2 = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_6372_of__int__mult,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_real @ ( times_times_int @ W @ Z2 ) )
      = ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_mult
thf(fact_6373_of__int__mult,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z2 ) )
      = ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_int_mult
thf(fact_6374_of__int__mult,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_int @ ( times_times_int @ W @ Z2 ) )
      = ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_mult
thf(fact_6375_of__int__add,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z2 ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_add
thf(fact_6376_of__int__add,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z2 ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_add
thf(fact_6377_of__int__add,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z2 ) )
      = ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_int_add
thf(fact_6378_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus_uminus_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_minus
thf(fact_6379_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus_uminus_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_minus
thf(fact_6380_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ Z2 ) ) ) ).

% of_int_minus
thf(fact_6381_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus_uminus_rat @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_int_minus
thf(fact_6382_of__int__minus,axiom,
    ! [Z2: int] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ Z2 ) )
      = ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ Z2 ) ) ) ).

% of_int_minus
thf(fact_6383_of__int__diff,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_real @ ( minus_minus_int @ W @ Z2 ) )
      = ( minus_minus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_diff
thf(fact_6384_of__int__diff,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_rat @ ( minus_minus_int @ W @ Z2 ) )
      = ( minus_minus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_int_diff
thf(fact_6385_of__int__diff,axiom,
    ! [W: int,Z2: int] :
      ( ( ring_1_of_int_int @ ( minus_minus_int @ W @ Z2 ) )
      = ( minus_minus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_diff
thf(fact_6386_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_17405671764205052669omplex @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri8010041392384452111omplex @ N ) ) ).

% of_int_of_nat_eq
thf(fact_6387_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% of_int_of_nat_eq
thf(fact_6388_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_rat @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri681578069525770553at_rat @ N ) ) ).

% of_int_of_nat_eq
thf(fact_6389_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% of_int_of_nat_eq
thf(fact_6390_of__int__abs,axiom,
    ! [X: int] :
      ( ( ring_1_of_int_int @ ( abs_abs_int @ X ) )
      = ( abs_abs_int @ ( ring_1_of_int_int @ X ) ) ) ).

% of_int_abs
thf(fact_6391_of__int__abs,axiom,
    ! [X: int] :
      ( ( ring_18347121197199848620nteger @ ( abs_abs_int @ X ) )
      = ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ X ) ) ) ).

% of_int_abs
thf(fact_6392_of__int__abs,axiom,
    ! [X: int] :
      ( ( ring_1_of_int_real @ ( abs_abs_int @ X ) )
      = ( abs_abs_real @ ( ring_1_of_int_real @ X ) ) ) ).

% of_int_abs
thf(fact_6393_of__int__abs,axiom,
    ! [X: int] :
      ( ( ring_1_of_int_rat @ ( abs_abs_int @ X ) )
      = ( abs_abs_rat @ ( ring_1_of_int_rat @ X ) ) ) ).

% of_int_abs
thf(fact_6394_of__int__power,axiom,
    ! [Z2: int,N: nat] :
      ( ( ring_1_of_int_rat @ ( power_power_int @ Z2 @ N ) )
      = ( power_power_rat @ ( ring_1_of_int_rat @ Z2 ) @ N ) ) ).

% of_int_power
thf(fact_6395_of__int__power,axiom,
    ! [Z2: int,N: nat] :
      ( ( ring_1_of_int_real @ ( power_power_int @ Z2 @ N ) )
      = ( power_power_real @ ( ring_1_of_int_real @ Z2 ) @ N ) ) ).

% of_int_power
thf(fact_6396_of__int__power,axiom,
    ! [Z2: int,N: nat] :
      ( ( ring_1_of_int_int @ ( power_power_int @ Z2 @ N ) )
      = ( power_power_int @ ( ring_1_of_int_int @ Z2 ) @ N ) ) ).

% of_int_power
thf(fact_6397_of__int__power,axiom,
    ! [Z2: int,N: nat] :
      ( ( ring_17405671764205052669omplex @ ( power_power_int @ Z2 @ N ) )
      = ( power_power_complex @ ( ring_17405671764205052669omplex @ Z2 ) @ N ) ) ).

% of_int_power
thf(fact_6398_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
        = ( ring_1_of_int_rat @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_6399_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
        = ( ring_1_of_int_real @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_6400_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
        = ( ring_1_of_int_int @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_6401_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
        = ( ring_17405671764205052669omplex @ X ) )
      = ( ( power_power_int @ B @ W )
        = X ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_6402_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_rat @ X )
        = ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6403_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_real @ X )
        = ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6404_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_int @ X )
        = ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6405_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ( ring_17405671764205052669omplex @ X )
        = ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
      = ( X
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_6406_of__int__of__bool,axiom,
    ! [P: $o] :
      ( ( ring_1_of_int_real @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% of_int_of_bool
thf(fact_6407_of__int__of__bool,axiom,
    ! [P: $o] :
      ( ( ring_1_of_int_rat @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2052037380579107095ol_rat @ P ) ) ).

% of_int_of_bool
thf(fact_6408_of__int__of__bool,axiom,
    ! [P: $o] :
      ( ( ring_1_of_int_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% of_int_of_bool
thf(fact_6409_of__int__of__bool,axiom,
    ! [P: $o] :
      ( ( ring_18347121197199848620nteger @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% of_int_of_bool
thf(fact_6410_tan__npi,axiom,
    ! [N: nat] :
      ( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% tan_npi
thf(fact_6411_floor__uminus__of__int,axiom,
    ! [Z2: int] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( ring_1_of_int_real @ Z2 ) ) )
      = ( uminus_uminus_int @ Z2 ) ) ).

% floor_uminus_of_int
thf(fact_6412_floor__uminus__of__int,axiom,
    ! [Z2: int] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ Z2 ) ) )
      = ( uminus_uminus_int @ Z2 ) ) ).

% floor_uminus_of_int
thf(fact_6413_tan__periodic__n,axiom,
    ! [X: real,N: num] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_n
thf(fact_6414_ceiling__add__of__int,axiom,
    ! [X: rat,Z2: int] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ Z2 ) ) ).

% ceiling_add_of_int
thf(fact_6415_ceiling__add__of__int,axiom,
    ! [X: real,Z2: int] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z2 ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ Z2 ) ) ).

% ceiling_add_of_int
thf(fact_6416_floor__diff__of__int,axiom,
    ! [X: real,Z2: int] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ Z2 ) ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ Z2 ) ) ).

% floor_diff_of_int
thf(fact_6417_floor__diff__of__int,axiom,
    ! [X: rat,Z2: int] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ Z2 ) ) ).

% floor_diff_of_int
thf(fact_6418_ceiling__diff__of__int,axiom,
    ! [X: rat,Z2: int] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ Z2 ) ) ).

% ceiling_diff_of_int
thf(fact_6419_ceiling__diff__of__int,axiom,
    ! [X: real,Z2: int] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ Z2 ) ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ Z2 ) ) ).

% ceiling_diff_of_int
thf(fact_6420_tan__periodic__nat,axiom,
    ! [X: real,N: nat] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_nat
thf(fact_6421_tan__periodic__int,axiom,
    ! [X: real,I: int] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( ring_1_of_int_real @ I ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_int
thf(fact_6422_of__int__le__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
      = ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_6423_of__int__le__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ zero_zero_rat )
      = ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_6424_of__int__le__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_6425_of__int__0__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_le_iff
thf(fact_6426_of__int__0__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_le_iff
thf(fact_6427_of__int__0__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_le_iff
thf(fact_6428_of__int__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_6429_of__int__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ zero_zero_rat )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_6430_of__int__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_6431_of__int__0__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_less_iff
thf(fact_6432_of__int__0__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_less_iff
thf(fact_6433_of__int__0__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% of_int_0_less_iff
thf(fact_6434_of__int__le__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_6435_of__int__le__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_6436_of__int__le__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_int @ Z2 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_6437_of__int__numeral__le__iff,axiom,
    ! [N: num,Z2: int] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z2 ) ) ).

% of_int_numeral_le_iff
thf(fact_6438_of__int__numeral__le__iff,axiom,
    ! [N: num,Z2: int] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z2 ) ) ).

% of_int_numeral_le_iff
thf(fact_6439_of__int__numeral__le__iff,axiom,
    ! [N: num,Z2: int] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z2 ) ) ).

% of_int_numeral_le_iff
thf(fact_6440_of__int__less__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_6441_of__int__less__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_6442_of__int__less__numeral__iff,axiom,
    ! [Z2: int,N: num] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_int @ Z2 @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_6443_of__int__numeral__less__iff,axiom,
    ! [N: num,Z2: int] :
      ( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z2 ) ) ).

% of_int_numeral_less_iff
thf(fact_6444_of__int__numeral__less__iff,axiom,
    ! [N: num,Z2: int] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z2 ) ) ).

% of_int_numeral_less_iff
thf(fact_6445_of__int__numeral__less__iff,axiom,
    ! [N: num,Z2: int] :
      ( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z2 ) ) ).

% of_int_numeral_less_iff
thf(fact_6446_of__int__le__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
      = ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_6447_of__int__le__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat )
      = ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_6448_of__int__le__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
      = ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_6449_of__int__1__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).

% of_int_1_le_iff
thf(fact_6450_of__int__1__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).

% of_int_1_le_iff
thf(fact_6451_of__int__1__le__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).

% of_int_1_le_iff
thf(fact_6452_of__int__less__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
      = ( ord_less_int @ Z2 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_6453_of__int__less__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat )
      = ( ord_less_int @ Z2 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_6454_of__int__less__1__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
      = ( ord_less_int @ Z2 @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_6455_of__int__1__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% of_int_1_less_iff
thf(fact_6456_of__int__1__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% of_int_1_less_iff
thf(fact_6457_of__int__1__less__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% of_int_1_less_iff
thf(fact_6458_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_6459_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_6460_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ X ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_6461_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_6462_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_6463_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_6464_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
        = ( ring_17405671764205052669omplex @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6465_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
        = ( ring_1_of_int_real @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6466_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
        = ( ring_1_of_int_rat @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6467_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = ( ring_1_of_int_int @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_6468_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6469_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y )
        = ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6470_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y )
        = ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6471_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_6472_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ X ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_6473_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ X ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_6474_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X: int,B: int,W: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ X ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_6475_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_6476_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_6477_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X: int] :
      ( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_6478_sin__npi__int,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi_int
thf(fact_6479_sin__arcsin,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( sin_real @ ( arcsin @ Y ) )
          = Y ) ) ) ).

% sin_arcsin
thf(fact_6480_norm__cos__sin,axiom,
    ! [T: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ ( cos_real @ T ) @ ( sin_real @ T ) ) )
      = one_one_real ) ).

% norm_cos_sin
thf(fact_6481_tan__periodic,axiom,
    ! [X: real] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic
thf(fact_6482_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_6483_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_6484_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_6485_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_6486_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_6487_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_6488_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_6489_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_6490_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_6491_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_6492_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_6493_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_6494_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N )
        = ( ring_1_of_int_real @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6495_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = ( ring_1_of_int_int @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6496_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X ) ) @ N )
        = ( ring_17405671764205052669omplex @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6497_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N )
        = ( ring_1_of_int_rat @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6498_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N )
        = ( ring_18347121197199848620nteger @ Y ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
        = Y ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_6499_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y )
        = ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6500_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y )
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6501_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X ) ) @ N ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6502_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y )
        = ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6503_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( ring_18347121197199848620nteger @ Y )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
      = ( Y
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_6504_arcsin__1,axiom,
    ( ( arcsin @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arcsin_1
thf(fact_6505_sin__int__2pin,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_int_2pin
thf(fact_6506_cos__int__2pin,axiom,
    ! [N: int] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = one_one_real ) ).

% cos_int_2pin
thf(fact_6507_arcsin__minus__1,axiom,
    ( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arcsin_minus_1
thf(fact_6508_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6509_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6510_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6511_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_6512_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6513_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6514_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6515_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_6516_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6517_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6518_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6519_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_6520_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6521_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6522_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6523_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_6524_ex__le__of__int,axiom,
    ! [X: real] :
    ? [Z4: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z4 ) ) ).

% ex_le_of_int
thf(fact_6525_ex__le__of__int,axiom,
    ! [X: rat] :
    ? [Z4: int] : ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z4 ) ) ).

% ex_le_of_int
thf(fact_6526_ex__less__of__int,axiom,
    ! [X: real] :
    ? [Z4: int] : ( ord_less_real @ X @ ( ring_1_of_int_real @ Z4 ) ) ).

% ex_less_of_int
thf(fact_6527_ex__less__of__int,axiom,
    ! [X: rat] :
    ? [Z4: int] : ( ord_less_rat @ X @ ( ring_1_of_int_rat @ Z4 ) ) ).

% ex_less_of_int
thf(fact_6528_ex__of__int__less,axiom,
    ! [X: real] :
    ? [Z4: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z4 ) @ X ) ).

% ex_of_int_less
thf(fact_6529_ex__of__int__less,axiom,
    ! [X: rat] :
    ? [Z4: int] : ( ord_less_rat @ ( ring_1_of_int_rat @ Z4 ) @ X ) ).

% ex_of_int_less
thf(fact_6530_mult__of__int__commute,axiom,
    ! [X: int,Y: real] :
      ( ( times_times_real @ ( ring_1_of_int_real @ X ) @ Y )
      = ( times_times_real @ Y @ ( ring_1_of_int_real @ X ) ) ) ).

% mult_of_int_commute
thf(fact_6531_mult__of__int__commute,axiom,
    ! [X: int,Y: rat] :
      ( ( times_times_rat @ ( ring_1_of_int_rat @ X ) @ Y )
      = ( times_times_rat @ Y @ ( ring_1_of_int_rat @ X ) ) ) ).

% mult_of_int_commute
thf(fact_6532_mult__of__int__commute,axiom,
    ! [X: int,Y: int] :
      ( ( times_times_int @ ( ring_1_of_int_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( ring_1_of_int_int @ X ) ) ) ).

% mult_of_int_commute
thf(fact_6533_Complex__mult__complex__of__real,axiom,
    ! [X: real,Y: real,R: real] :
      ( ( times_times_complex @ ( complex2 @ X @ Y ) @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ ( times_times_real @ X @ R ) @ ( times_times_real @ Y @ R ) ) ) ).

% Complex_mult_complex_of_real
thf(fact_6534_complex__of__real__mult__Complex,axiom,
    ! [R: real,X: real,Y: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ ( complex2 @ X @ Y ) )
      = ( complex2 @ ( times_times_real @ R @ X ) @ ( times_times_real @ R @ Y ) ) ) ).

% complex_of_real_mult_Complex
thf(fact_6535_complex__diff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( minus_minus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ).

% complex_diff
thf(fact_6536_of__int__floor__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X ) ).

% of_int_floor_le
thf(fact_6537_of__int__floor__le,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) @ X ) ).

% of_int_floor_le
thf(fact_6538_Complex__eq__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = one_one_complex )
      = ( ( A = one_one_real )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_1
thf(fact_6539_one__complex_Ocode,axiom,
    ( one_one_complex
    = ( complex2 @ one_one_real @ zero_zero_real ) ) ).

% one_complex.code
thf(fact_6540_le__of__int__ceiling,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ).

% le_of_int_ceiling
thf(fact_6541_le__of__int__ceiling,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) ) ).

% le_of_int_ceiling
thf(fact_6542_take__bit__of__int,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( ring_1_of_int_int @ K ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_of_int
thf(fact_6543_push__bit__of__int,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( ring_1_of_int_int @ K ) )
      = ( ring_1_of_int_int @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).

% push_bit_of_int
thf(fact_6544_push__bit__of__int,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se7788150548672797655nteger @ N @ ( ring_18347121197199848620nteger @ K ) )
      = ( ring_18347121197199848620nteger @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).

% push_bit_of_int
thf(fact_6545_complex__add,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( plus_plus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ).

% complex_add
thf(fact_6546_Complex__add__complex__of__real,axiom,
    ! [X: real,Y: real,R: real] :
      ( ( plus_plus_complex @ ( complex2 @ X @ Y ) @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ ( plus_plus_real @ X @ R ) @ Y ) ) ).

% Complex_add_complex_of_real
thf(fact_6547_complex__of__real__add__Complex,axiom,
    ! [R: real,X: real,Y: real] :
      ( ( plus_plus_complex @ ( real_V4546457046886955230omplex @ R ) @ ( complex2 @ X @ Y ) )
      = ( complex2 @ ( plus_plus_real @ R @ X ) @ Y ) ) ).

% complex_of_real_add_Complex
thf(fact_6548_cos__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X ) ) )
      = ( real_V1803761363581548252l_real @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% cos_int_times_real
thf(fact_6549_cos__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( cos_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X ) ) )
      = ( real_V4546457046886955230omplex @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% cos_int_times_real
thf(fact_6550_sin__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X ) ) )
      = ( real_V1803761363581548252l_real @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% sin_int_times_real
thf(fact_6551_sin__int__times__real,axiom,
    ! [M: int,X: real] :
      ( ( sin_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X ) ) )
      = ( real_V4546457046886955230omplex @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).

% sin_int_times_real
thf(fact_6552_le__floor__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_eq_int @ Z2 @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X ) ) ).

% le_floor_iff
thf(fact_6553_le__floor__iff,axiom,
    ! [Z2: int,X: rat] :
      ( ( ord_less_eq_int @ Z2 @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X ) ) ).

% le_floor_iff
thf(fact_6554_floor__less__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ Z2 )
      = ( ord_less_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% floor_less_iff
thf(fact_6555_floor__less__iff,axiom,
    ! [X: rat,Z2: int] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ Z2 )
      = ( ord_less_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% floor_less_iff
thf(fact_6556_ceiling__le__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ Z2 )
      = ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% ceiling_le_iff
thf(fact_6557_ceiling__le__iff,axiom,
    ! [X: rat,Z2: int] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ Z2 )
      = ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% ceiling_le_iff
thf(fact_6558_ceiling__le,axiom,
    ! [X: real,A: int] :
      ( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ A ) ) ).

% ceiling_le
thf(fact_6559_ceiling__le,axiom,
    ! [X: rat,A: int] :
      ( ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ A ) )
     => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ A ) ) ).

% ceiling_le
thf(fact_6560_less__ceiling__iff,axiom,
    ! [Z2: int,X: rat] :
      ( ( ord_less_int @ Z2 @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( ring_1_of_int_rat @ Z2 ) @ X ) ) ).

% less_ceiling_iff
thf(fact_6561_less__ceiling__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_int @ Z2 @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ X ) ) ).

% less_ceiling_iff
thf(fact_6562_int__add__floor,axiom,
    ! [Z2: int,X: real] :
      ( ( plus_plus_int @ Z2 @ ( archim6058952711729229775r_real @ X ) )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ X ) ) ) ).

% int_add_floor
thf(fact_6563_int__add__floor,axiom,
    ! [Z2: int,X: rat] :
      ( ( plus_plus_int @ Z2 @ ( archim3151403230148437115or_rat @ X ) )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z2 ) @ X ) ) ) ).

% int_add_floor
thf(fact_6564_floor__add__int,axiom,
    ! [X: real,Z2: int] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ Z2 )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ) ).

% floor_add_int
thf(fact_6565_floor__add__int,axiom,
    ! [X: rat,Z2: int] :
      ( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ Z2 )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) ) ) ).

% floor_add_int
thf(fact_6566_Complex__eq__neg__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( A
          = ( uminus_uminus_real @ one_one_real ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_1
thf(fact_6567_real__of__int__div4,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).

% real_of_int_div4
thf(fact_6568_floor__divide__of__int__eq,axiom,
    ! [K: int,L: int] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( ring_1_of_int_real @ K ) @ ( ring_1_of_int_real @ L ) ) )
      = ( divide_divide_int @ K @ L ) ) ).

% floor_divide_of_int_eq
thf(fact_6569_floor__divide__of__int__eq,axiom,
    ! [K: int,L: int] :
      ( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ K ) @ ( ring_1_of_int_rat @ L ) ) )
      = ( divide_divide_int @ K @ L ) ) ).

% floor_divide_of_int_eq
thf(fact_6570_floor__power,axiom,
    ! [X: real,N: nat] :
      ( ( X
        = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) )
     => ( ( archim6058952711729229775r_real @ ( power_power_real @ X @ N ) )
        = ( power_power_int @ ( archim6058952711729229775r_real @ X ) @ N ) ) ) ).

% floor_power
thf(fact_6571_floor__power,axiom,
    ! [X: rat,N: nat] :
      ( ( X
        = ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) )
     => ( ( archim3151403230148437115or_rat @ ( power_power_rat @ X @ N ) )
        = ( power_power_int @ ( archim3151403230148437115or_rat @ X ) @ N ) ) ) ).

% floor_power
thf(fact_6572_complex__mult,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% complex_mult
thf(fact_6573_real__of__int__div,axiom,
    ! [D: int,N: int] :
      ( ( dvd_dvd_int @ D @ N )
     => ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D ) )
        = ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div
thf(fact_6574_arcsin__le__arcsin,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y ) ) ) ) ) ).

% arcsin_le_arcsin
thf(fact_6575_arcsin__minus,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( arcsin @ ( uminus_uminus_real @ X ) )
          = ( uminus_uminus_real @ ( arcsin @ X ) ) ) ) ) ).

% arcsin_minus
thf(fact_6576_arcsin__le__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% arcsin_le_mono
thf(fact_6577_arcsin__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ( arcsin @ X )
            = ( arcsin @ Y ) )
          = ( X = Y ) ) ) ) ).

% arcsin_eq_iff
thf(fact_6578_tan__def,axiom,
    ( tan_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X3 ) @ ( cos_complex @ X3 ) ) ) ) ).

% tan_def
thf(fact_6579_tan__def,axiom,
    ( tan_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( sin_real @ X3 ) @ ( cos_real @ X3 ) ) ) ) ).

% tan_def
thf(fact_6580_of__int__nonneg,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_nonneg
thf(fact_6581_of__int__nonneg,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_int_nonneg
thf(fact_6582_of__int__nonneg,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_nonneg
thf(fact_6583_of__int__leD,axiom,
    ! [N: int,X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X ) ) ) ).

% of_int_leD
thf(fact_6584_of__int__leD,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% of_int_leD
thf(fact_6585_of__int__leD,axiom,
    ! [N: int,X: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_rat @ one_one_rat @ X ) ) ) ).

% of_int_leD
thf(fact_6586_of__int__leD,axiom,
    ! [N: int,X: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_int @ one_one_int @ X ) ) ) ).

% of_int_leD
thf(fact_6587_of__int__pos,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_int_pos
thf(fact_6588_of__int__pos,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_int_pos
thf(fact_6589_of__int__pos,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_int_pos
thf(fact_6590_of__int__lessD,axiom,
    ! [N: int,X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X ) ) ) ).

% of_int_lessD
thf(fact_6591_of__int__lessD,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_real @ one_one_real @ X ) ) ) ).

% of_int_lessD
thf(fact_6592_of__int__lessD,axiom,
    ! [N: int,X: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_rat @ one_one_rat @ X ) ) ) ).

% of_int_lessD
thf(fact_6593_of__int__lessD,axiom,
    ! [N: int,X: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X )
     => ( ( N = zero_zero_int )
        | ( ord_less_int @ one_one_int @ X ) ) ) ).

% of_int_lessD
thf(fact_6594_floor__exists1,axiom,
    ! [X: real] :
    ? [X4: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X4 ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y5: int] :
          ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y5 ) @ X )
            & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Y5 @ one_one_int ) ) ) )
         => ( Y5 = X4 ) ) ) ).

% floor_exists1
thf(fact_6595_floor__exists1,axiom,
    ! [X: rat] :
    ? [X4: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X4 ) @ X )
      & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y5: int] :
          ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y5 ) @ X )
            & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y5 @ one_one_int ) ) ) )
         => ( Y5 = X4 ) ) ) ).

% floor_exists1
thf(fact_6596_floor__exists,axiom,
    ! [X: real] :
    ? [Z4: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z4 ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z4 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_6597_floor__exists,axiom,
    ! [X: rat] :
    ? [Z4: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z4 ) @ X )
      & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z4 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_6598_of__int__ceiling__le__add__one,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R ) ) @ ( plus_plus_real @ R @ one_one_real ) ) ).

% of_int_ceiling_le_add_one
thf(fact_6599_of__int__ceiling__le__add__one,axiom,
    ! [R: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R ) ) @ ( plus_plus_rat @ R @ one_one_rat ) ) ).

% of_int_ceiling_le_add_one
thf(fact_6600_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6601_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6602_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6603_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6604_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_6605_of__int__ceiling__diff__one__le,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R ) ) @ one_one_real ) @ R ) ).

% of_int_ceiling_diff_one_le
thf(fact_6606_of__int__ceiling__diff__one__le,axiom,
    ! [R: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R ) ) @ one_one_rat ) @ R ) ).

% of_int_ceiling_diff_one_le
thf(fact_6607_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_6608_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( ring_1_of_int_rat @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_6609_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X: int] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).

% of_nat_less_of_int_iff
thf(fact_6610_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N3: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N3 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_6611_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N3: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N3 ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).

% int_less_real_le
thf(fact_6612_ceiling__divide__eq__div,axiom,
    ! [A: int,B: int] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% ceiling_divide_eq_div
thf(fact_6613_ceiling__divide__eq__div,axiom,
    ! [A: int,B: int] :
      ( ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% ceiling_divide_eq_div
thf(fact_6614_sin__zero__iff__int2,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( X
            = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ pi ) ) ) ) ).

% sin_zero_iff_int2
thf(fact_6615_ceiling__altdef,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X3: real] :
          ( if_int
          @ ( X3
            = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) ) )
          @ ( archim6058952711729229775r_real @ X3 )
          @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_6616_ceiling__altdef,axiom,
    ( archim2889992004027027881ng_rat
    = ( ^ [X3: rat] :
          ( if_int
          @ ( X3
            = ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) ) )
          @ ( archim3151403230148437115or_rat @ X3 )
          @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_6617_real__of__int__div__aux,axiom,
    ! [X: int,D: int] :
      ( ( divide_divide_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ D ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div_aux
thf(fact_6618_real__of__int__floor__add__one__gt,axiom,
    ! [R: real] : ( ord_less_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_6619_floor__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq
thf(fact_6620_real__of__int__floor__add__one__ge,axiom,
    ! [R: real] : ( ord_less_eq_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_6621_real__of__int__floor__gt__diff__one,axiom,
    ! [R: real] : ( ord_less_real @ ( minus_minus_real @ R @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_6622_real__of__int__floor__ge__diff__one,axiom,
    ! [R: real] : ( ord_less_eq_real @ ( minus_minus_real @ R @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_6623_arcsin__less__arcsin,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y ) ) ) ) ) ).

% arcsin_less_arcsin
thf(fact_6624_arcsin__less__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% arcsin_less_mono
thf(fact_6625_floor__split,axiom,
    ! [P: int > $o,T: real] :
      ( ( P @ ( archim6058952711729229775r_real @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ I4 ) @ T )
              & ( ord_less_real @ T @ ( plus_plus_real @ ( ring_1_of_int_real @ I4 ) @ one_one_real ) ) )
           => ( P @ I4 ) ) ) ) ).

% floor_split
thf(fact_6626_floor__split,axiom,
    ! [P: int > $o,T: rat] :
      ( ( P @ ( archim3151403230148437115or_rat @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ I4 ) @ T )
              & ( ord_less_rat @ T @ ( plus_plus_rat @ ( ring_1_of_int_rat @ I4 ) @ one_one_rat ) ) )
           => ( P @ I4 ) ) ) ) ).

% floor_split
thf(fact_6627_floor__eq__iff,axiom,
    ! [X: real,A: int] :
      ( ( ( archim6058952711729229775r_real @ X )
        = A )
      = ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ X )
        & ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) ) ) ) ).

% floor_eq_iff
thf(fact_6628_floor__eq__iff,axiom,
    ! [X: rat,A: int] :
      ( ( ( archim3151403230148437115or_rat @ X )
        = A )
      = ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ X )
        & ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) ) ) ) ).

% floor_eq_iff
thf(fact_6629_floor__unique,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = Z2 ) ) ) ).

% floor_unique
thf(fact_6630_floor__unique,axiom,
    ! [Z2: int,X: rat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X )
     => ( ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat ) )
       => ( ( archim3151403230148437115or_rat @ X )
          = Z2 ) ) ) ).

% floor_unique
thf(fact_6631_ceiling__correct,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) @ one_one_real ) @ X )
      & ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% ceiling_correct
thf(fact_6632_ceiling__correct,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) @ one_one_rat ) @ X )
      & ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) ) ) ).

% ceiling_correct
thf(fact_6633_ceiling__unique,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z2 ) )
       => ( ( archim7802044766580827645g_real @ X )
          = Z2 ) ) ) ).

% ceiling_unique
thf(fact_6634_ceiling__unique,axiom,
    ! [Z2: int,X: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat ) @ X )
     => ( ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z2 ) )
       => ( ( archim2889992004027027881ng_rat @ X )
          = Z2 ) ) ) ).

% ceiling_unique
thf(fact_6635_ceiling__eq__iff,axiom,
    ! [X: real,A: int] :
      ( ( ( archim7802044766580827645g_real @ X )
        = A )
      = ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) @ X )
        & ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) ) ) ) ).

% ceiling_eq_iff
thf(fact_6636_ceiling__eq__iff,axiom,
    ! [X: rat,A: int] :
      ( ( ( archim2889992004027027881ng_rat @ X )
        = A )
      = ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) @ X )
        & ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ A ) ) ) ) ).

% ceiling_eq_iff
thf(fact_6637_ceiling__split,axiom,
    ! [P: int > $o,T: real] :
      ( ( P @ ( archim7802044766580827645g_real @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ I4 ) @ one_one_real ) @ T )
              & ( ord_less_eq_real @ T @ ( ring_1_of_int_real @ I4 ) ) )
           => ( P @ I4 ) ) ) ) ).

% ceiling_split
thf(fact_6638_ceiling__split,axiom,
    ! [P: int > $o,T: rat] :
      ( ( P @ ( archim2889992004027027881ng_rat @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ I4 ) @ one_one_rat ) @ T )
              & ( ord_less_eq_rat @ T @ ( ring_1_of_int_rat @ I4 ) ) )
           => ( P @ I4 ) ) ) ) ).

% ceiling_split
thf(fact_6639_less__floor__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_int @ Z2 @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) @ X ) ) ).

% less_floor_iff
thf(fact_6640_less__floor__iff,axiom,
    ! [Z2: int,X: rat] :
      ( ( ord_less_int @ Z2 @ ( archim3151403230148437115or_rat @ X ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat ) @ X ) ) ).

% less_floor_iff
thf(fact_6641_floor__le__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ Z2 )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) ) ) ).

% floor_le_iff
thf(fact_6642_floor__le__iff,axiom,
    ! [X: rat,Z2: int] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ Z2 )
      = ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat ) ) ) ).

% floor_le_iff
thf(fact_6643_ceiling__less__iff,axiom,
    ! [X: real,Z2: int] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ Z2 )
      = ( ord_less_eq_real @ X @ ( minus_minus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) ) ) ).

% ceiling_less_iff
thf(fact_6644_ceiling__less__iff,axiom,
    ! [X: rat,Z2: int] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ Z2 )
      = ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat ) ) ) ).

% ceiling_less_iff
thf(fact_6645_le__ceiling__iff,axiom,
    ! [Z2: int,X: rat] :
      ( ( ord_less_eq_int @ Z2 @ ( archim2889992004027027881ng_rat @ X ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z2 ) @ one_one_rat ) @ X ) ) ).

% le_ceiling_iff
thf(fact_6646_le__ceiling__iff,axiom,
    ! [Z2: int,X: real] :
      ( ( ord_less_eq_int @ Z2 @ ( archim7802044766580827645g_real @ X ) )
      = ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) @ X ) ) ).

% le_ceiling_iff
thf(fact_6647_floor__correct,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X )
      & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_6648_floor__correct,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) @ X )
      & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_6649_real__of__int__div2,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) ) ).

% real_of_int_div2
thf(fact_6650_real__of__int__div3,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) @ one_one_real ) ).

% real_of_int_div3
thf(fact_6651_floor__eq2,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq2
thf(fact_6652_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_6653_floor__divide__lower,axiom,
    ! [Q2: real,P2: real] :
      ( ( ord_less_real @ zero_zero_real @ Q2 )
     => ( ord_less_eq_real @ ( times_times_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ Q2 ) @ P2 ) ) ).

% floor_divide_lower
thf(fact_6654_floor__divide__lower,axiom,
    ! [Q2: rat,P2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q2 )
     => ( ord_less_eq_rat @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ Q2 ) @ P2 ) ) ).

% floor_divide_lower
thf(fact_6655_ceiling__divide__upper,axiom,
    ! [Q2: real,P2: real] :
      ( ( ord_less_real @ zero_zero_real @ Q2 )
     => ( ord_less_eq_real @ P2 @ ( times_times_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ Q2 ) ) ) ).

% ceiling_divide_upper
thf(fact_6656_ceiling__divide__upper,axiom,
    ! [Q2: rat,P2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q2 )
     => ( ord_less_eq_rat @ P2 @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ Q2 ) ) ) ).

% ceiling_divide_upper
thf(fact_6657_tan__45,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = one_one_real ) ).

% tan_45
thf(fact_6658_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_6659_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_6660_cos__arcsin__nonzero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X ) )
         != zero_zero_real ) ) ) ).

% cos_arcsin_nonzero
thf(fact_6661_lemma__tan__total,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ? [X4: real] :
          ( ( ord_less_real @ zero_zero_real @ X4 )
          & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ord_less_real @ Y @ ( tan_real @ X4 ) ) ) ) ).

% lemma_tan_total
thf(fact_6662_tan__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).

% tan_gt_zero
thf(fact_6663_floor__divide__upper,axiom,
    ! [Q2: real,P2: real] :
      ( ( ord_less_real @ zero_zero_real @ Q2 )
     => ( ord_less_real @ P2 @ ( times_times_real @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ one_one_real ) @ Q2 ) ) ) ).

% floor_divide_upper
thf(fact_6664_floor__divide__upper,axiom,
    ! [Q2: rat,P2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q2 )
     => ( ord_less_rat @ P2 @ ( times_times_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ one_one_rat ) @ Q2 ) ) ) ).

% floor_divide_upper
thf(fact_6665_ceiling__divide__lower,axiom,
    ! [Q2: real,P2: real] :
      ( ( ord_less_real @ zero_zero_real @ Q2 )
     => ( ord_less_real @ ( times_times_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ one_one_real ) @ Q2 ) @ P2 ) ) ).

% ceiling_divide_lower
thf(fact_6666_ceiling__divide__lower,axiom,
    ! [Q2: rat,P2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q2 )
     => ( ord_less_rat @ ( times_times_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ one_one_rat ) @ Q2 ) @ P2 ) ) ).

% ceiling_divide_lower
thf(fact_6667_lemma__tan__total1,axiom,
    ! [Y: real] :
    ? [X4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
      & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X4 )
        = Y ) ) ).

% lemma_tan_total1
thf(fact_6668_tan__mono__lt__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( tan_real @ X ) @ ( tan_real @ Y ) )
              = ( ord_less_real @ X @ Y ) ) ) ) ) ) ).

% tan_mono_lt_eq
thf(fact_6669_tan__monotone_H,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
         => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ Y @ X )
              = ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X ) ) ) ) ) ) ) ).

% tan_monotone'
thf(fact_6670_tan__monotone,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ X )
       => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X ) ) ) ) ) ).

% tan_monotone
thf(fact_6671_tan__total,axiom,
    ! [Y: real] :
    ? [X4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
      & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X4 )
        = Y )
      & ! [Y5: real] :
          ( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y5 )
            & ( ord_less_real @ Y5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( tan_real @ Y5 )
              = Y ) )
         => ( Y5 = X4 ) ) ) ).

% tan_total
thf(fact_6672_tan__minus__45,axiom,
    ( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% tan_minus_45
thf(fact_6673_tan__inverse,axiom,
    ! [Y: real] :
      ( ( divide_divide_real @ one_one_real @ ( tan_real @ Y ) )
      = ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y ) ) ) ).

% tan_inverse
thf(fact_6674_ceiling__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_eq_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim7802044766580827645g_real @ X )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_6675_ceiling__eq,axiom,
    ! [N: int,X: rat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ N ) @ X )
     => ( ( ord_less_eq_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ N ) @ one_one_rat ) )
       => ( ( archim2889992004027027881ng_rat @ X )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_6676_cos__one__2pi__int,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
      = ( ? [X3: int] :
            ( X
            = ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).

% cos_one_2pi_int
thf(fact_6677_add__tan__eq,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) )
          = ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X @ Y ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_6678_add__tan__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y ) )
          = ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_6679_tan__cot_H,axiom,
    ! [X: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
      = ( cot_real @ X ) ) ).

% tan_cot'
thf(fact_6680_tan__pos__pi2__le,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).

% tan_pos_pi2_le
thf(fact_6681_tan__total__pos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ? [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( tan_real @ X4 )
            = Y ) ) ) ).

% tan_total_pos
thf(fact_6682_tan__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( tan_real @ X ) @ zero_zero_real ) ) ) ).

% tan_less_zero
thf(fact_6683_tan__mono__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) ) ) ) ).

% tan_mono_le
thf(fact_6684_tan__mono__le__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y ) )
              = ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ).

% tan_mono_le_eq
thf(fact_6685_tan__bound__pi2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
     => ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X ) ) @ one_one_real ) ) ).

% tan_bound_pi2
thf(fact_6686_arctan,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
      & ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ ( arctan @ Y ) )
        = Y ) ) ).

% arctan
thf(fact_6687_arctan__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arctan @ ( tan_real @ X ) )
          = X ) ) ) ).

% arctan_tan
thf(fact_6688_arctan__unique,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ( tan_real @ X )
            = Y )
         => ( ( arctan @ Y )
            = X ) ) ) ) ).

% arctan_unique
thf(fact_6689_tan__add,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( plus_plus_complex @ X @ Y ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( plus_plus_complex @ X @ Y ) )
            = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_6690_tan__add,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( ( cos_real @ ( plus_plus_real @ X @ Y ) )
           != zero_zero_real )
         => ( ( tan_real @ ( plus_plus_real @ X @ Y ) )
            = ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_6691_tan__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( minus_minus_complex @ X @ Y ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( minus_minus_complex @ X @ Y ) )
            = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_6692_tan__diff,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( ( cos_real @ ( minus_minus_real @ X @ Y ) )
           != zero_zero_real )
         => ( ( tan_real @ ( minus_minus_real @ X @ Y ) )
            = ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_6693_lemma__tan__add1,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) )
          = ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X @ Y ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_6694_lemma__tan__add1,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) )
          = ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_6695_tan__total__pi4,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ? [Z4: real] :
          ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z4 )
          & ( ord_less_real @ Z4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
          & ( ( tan_real @ Z4 )
            = X ) ) ) ).

% tan_total_pi4
thf(fact_6696_floor__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log2 @ B @ X ) )
            = K )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X )
            & ( ord_less_real @ X @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_6697_arcsin__lt__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_real @ Y @ one_one_real )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_lt_bounded
thf(fact_6698_arcsin__lbound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) ) ) ) ).

% arcsin_lbound
thf(fact_6699_arcsin__ubound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arcsin_ubound
thf(fact_6700_arcsin__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_bounded
thf(fact_6701_arcsin__sin,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arcsin @ ( sin_real @ X ) )
          = X ) ) ) ).

% arcsin_sin
thf(fact_6702_cos__zero__iff__int,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_iff_int
thf(fact_6703_sin__zero__iff__int,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_iff_int
thf(fact_6704_tan__half,axiom,
    ( tan_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_complex ) ) ) ) ).

% tan_half
thf(fact_6705_tan__half,axiom,
    ( tan_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_real ) ) ) ) ).

% tan_half
thf(fact_6706_arcsin,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( sin_real @ ( arcsin @ Y ) )
            = Y ) ) ) ) ).

% arcsin
thf(fact_6707_round__unique,axiom,
    ! [X: real,Y: int] :
      ( ( ord_less_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y ) )
     => ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y ) @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( archim8280529875227126926d_real @ X )
          = Y ) ) ) ).

% round_unique
thf(fact_6708_round__unique,axiom,
    ! [X: rat,Y: int] :
      ( ( ord_less_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y ) )
     => ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y ) @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
       => ( ( archim7778729529865785530nd_rat @ X )
          = Y ) ) ) ).

% round_unique
thf(fact_6709_round__unique_H,axiom,
    ! [X: real,N: int] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ N ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( archim8280529875227126926d_real @ X )
        = N ) ) ).

% round_unique'
thf(fact_6710_round__unique_H,axiom,
    ! [X: rat,N: int] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ N ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
     => ( ( archim7778729529865785530nd_rat @ X )
        = N ) ) ).

% round_unique'
thf(fact_6711_of__int__round__abs__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) @ X ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_6712_of__int__round__abs__le,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) @ X ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_6713_sin__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( sin_real @ X )
        = ( divide_divide_real @ ( tan_real @ X ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_tan
thf(fact_6714_cos__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( cos_real @ X )
        = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_tan
thf(fact_6715_of__int__round__gt,axiom,
    ! [X: real] : ( ord_less_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) ) ).

% of_int_round_gt
thf(fact_6716_of__int__round__gt,axiom,
    ! [X: rat] : ( ord_less_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) ) ).

% of_int_round_gt
thf(fact_6717_real__sqrt__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( sqrt @ X )
        = ( sqrt @ Y ) )
      = ( X = Y ) ) ).

% real_sqrt_eq_iff
thf(fact_6718_real__sqrt__zero,axiom,
    ( ( sqrt @ zero_zero_real )
    = zero_zero_real ) ).

% real_sqrt_zero
thf(fact_6719_real__sqrt__eq__zero__cancel__iff,axiom,
    ! [X: real] :
      ( ( ( sqrt @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% real_sqrt_eq_zero_cancel_iff
thf(fact_6720_real__sqrt__less__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y ) )
      = ( ord_less_real @ X @ Y ) ) ).

% real_sqrt_less_iff
thf(fact_6721_real__sqrt__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% real_sqrt_le_iff
thf(fact_6722_real__sqrt__one,axiom,
    ( ( sqrt @ one_one_real )
    = one_one_real ) ).

% real_sqrt_one
thf(fact_6723_real__sqrt__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( sqrt @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% real_sqrt_eq_1_iff
thf(fact_6724_round__of__int,axiom,
    ! [N: int] :
      ( ( archim8280529875227126926d_real @ ( ring_1_of_int_real @ N ) )
      = N ) ).

% round_of_int
thf(fact_6725_round__of__int,axiom,
    ! [N: int] :
      ( ( archim7778729529865785530nd_rat @ ( ring_1_of_int_rat @ N ) )
      = N ) ).

% round_of_int
thf(fact_6726_real__sqrt__lt__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ zero_zero_real )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% real_sqrt_lt_0_iff
thf(fact_6727_real__sqrt__gt__0__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y ) )
      = ( ord_less_real @ zero_zero_real @ Y ) ) ).

% real_sqrt_gt_0_iff
thf(fact_6728_real__sqrt__ge__0__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ).

% real_sqrt_ge_0_iff
thf(fact_6729_real__sqrt__le__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% real_sqrt_le_0_iff
thf(fact_6730_real__sqrt__gt__1__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ one_one_real @ ( sqrt @ Y ) )
      = ( ord_less_real @ one_one_real @ Y ) ) ).

% real_sqrt_gt_1_iff
thf(fact_6731_real__sqrt__lt__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ one_one_real )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% real_sqrt_lt_1_iff
thf(fact_6732_real__sqrt__ge__1__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ one_one_real @ Y ) ) ).

% real_sqrt_ge_1_iff
thf(fact_6733_real__sqrt__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ one_one_real )
      = ( ord_less_eq_real @ X @ one_one_real ) ) ).

% real_sqrt_le_1_iff
thf(fact_6734_real__sqrt__mult__self,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
      = ( abs_abs_real @ A ) ) ).

% real_sqrt_mult_self
thf(fact_6735_real__sqrt__abs2,axiom,
    ! [X: real] :
      ( ( sqrt @ ( times_times_real @ X @ X ) )
      = ( abs_abs_real @ X ) ) ).

% real_sqrt_abs2
thf(fact_6736_round__0,axiom,
    ( ( archim8280529875227126926d_real @ zero_zero_real )
    = zero_zero_int ) ).

% round_0
thf(fact_6737_round__0,axiom,
    ( ( archim7778729529865785530nd_rat @ zero_zero_rat )
    = zero_zero_int ) ).

% round_0
thf(fact_6738_round__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_6739_round__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_6740_round__1,axiom,
    ( ( archim8280529875227126926d_real @ one_one_real )
    = one_one_int ) ).

% round_1
thf(fact_6741_round__1,axiom,
    ( ( archim7778729529865785530nd_rat @ one_one_rat )
    = one_one_int ) ).

% round_1
thf(fact_6742_round__of__nat,axiom,
    ! [N: nat] :
      ( ( archim8280529875227126926d_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% round_of_nat
thf(fact_6743_round__of__nat,axiom,
    ! [N: nat] :
      ( ( archim7778729529865785530nd_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% round_of_nat
thf(fact_6744_real__sqrt__four,axiom,
    ( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% real_sqrt_four
thf(fact_6745_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_6746_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_6747_real__sqrt__abs,axiom,
    ! [X: real] :
      ( ( sqrt @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% real_sqrt_abs
thf(fact_6748_real__sqrt__pow2__iff,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% real_sqrt_pow2_iff
thf(fact_6749_real__sqrt__pow2,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X ) ) ).

% real_sqrt_pow2
thf(fact_6750_real__sqrt__sum__squares__mult__squared__eq,axiom,
    ! [X: real,Y: real,Xa: real,Ya: real] :
      ( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_squared_eq
thf(fact_6751_real__sqrt__less__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_less_mono
thf(fact_6752_real__sqrt__le__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_le_mono
thf(fact_6753_real__sqrt__divide,axiom,
    ! [X: real,Y: real] :
      ( ( sqrt @ ( divide_divide_real @ X @ Y ) )
      = ( divide_divide_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_divide
thf(fact_6754_real__sqrt__mult,axiom,
    ! [X: real,Y: real] :
      ( ( sqrt @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_mult
thf(fact_6755_real__sqrt__power,axiom,
    ! [X: real,K: nat] :
      ( ( sqrt @ ( power_power_real @ X @ K ) )
      = ( power_power_real @ ( sqrt @ X ) @ K ) ) ).

% real_sqrt_power
thf(fact_6756_real__sqrt__minus,axiom,
    ! [X: real] :
      ( ( sqrt @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_minus
thf(fact_6757_real__sqrt__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_gt_zero
thf(fact_6758_real__sqrt__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_ge_zero
thf(fact_6759_real__sqrt__eq__zero__cancel,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( sqrt @ X )
          = zero_zero_real )
       => ( X = zero_zero_real ) ) ) ).

% real_sqrt_eq_zero_cancel
thf(fact_6760_real__sqrt__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ one_one_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_ge_one
thf(fact_6761_real__div__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( divide_divide_real @ X @ ( sqrt @ X ) )
        = ( sqrt @ X ) ) ) ).

% real_div_sqrt
thf(fact_6762_sqrt__add__le__add__sqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ) ) ).

% sqrt_add_le_add_sqrt
thf(fact_6763_le__real__sqrt__sumsq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ) ).

% le_real_sqrt_sumsq
thf(fact_6764_round__mono,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X ) @ ( archim7778729529865785530nd_rat @ Y ) ) ) ).

% round_mono
thf(fact_6765_floor__le__round,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim8280529875227126926d_real @ X ) ) ).

% floor_le_round
thf(fact_6766_floor__le__round,axiom,
    ! [X: rat] : ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim7778729529865785530nd_rat @ X ) ) ).

% floor_le_round
thf(fact_6767_ceiling__ge__round,axiom,
    ! [X: real] : ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).

% ceiling_ge_round
thf(fact_6768_sqrt2__less__2,axiom,
    ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% sqrt2_less_2
thf(fact_6769_real__less__rsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
     => ( ord_less_real @ X @ ( sqrt @ Y ) ) ) ).

% real_less_rsqrt
thf(fact_6770_real__le__rsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
     => ( ord_less_eq_real @ X @ ( sqrt @ Y ) ) ) ).

% real_le_rsqrt
thf(fact_6771_sqrt__le__D,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ Y )
     => ( ord_less_eq_real @ X @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sqrt_le_D
thf(fact_6772_tan__60,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% tan_60
thf(fact_6773_real__sqrt__unique,axiom,
    ! [Y: real,X: real] :
      ( ( ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( sqrt @ X )
          = Y ) ) ) ).

% real_sqrt_unique
thf(fact_6774_real__le__lsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ X @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sqrt @ X ) @ Y ) ) ) ) ).

% real_le_lsqrt
thf(fact_6775_lemma__real__divide__sqrt__less,axiom,
    ! [U: real] :
      ( ( ord_less_real @ zero_zero_real @ U )
     => ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).

% lemma_real_divide_sqrt_less
thf(fact_6776_real__sqrt__sum__squares__eq__cancel2,axiom,
    ! [X: real,Y: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = Y )
     => ( X = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel2
thf(fact_6777_real__sqrt__sum__squares__eq__cancel,axiom,
    ! [X: real,Y: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = X )
     => ( Y = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel
thf(fact_6778_real__sqrt__sum__squares__triangle__ineq,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_triangle_ineq
thf(fact_6779_real__sqrt__sum__squares__ge2,axiom,
    ! [Y: real,X: real] : ( ord_less_eq_real @ Y @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge2
thf(fact_6780_real__sqrt__sum__squares__ge1,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge1
thf(fact_6781_sqrt__ge__absD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ Y ) )
     => ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y ) ) ).

% sqrt_ge_absD
thf(fact_6782_cos__45,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_45
thf(fact_6783_sin__45,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_45
thf(fact_6784_round__diff__minimal,axiom,
    ! [Z2: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z2 ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ ( ring_1_of_int_real @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_6785_round__diff__minimal,axiom,
    ! [Z2: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z2 @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z2 ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z2 @ ( ring_1_of_int_rat @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_6786_real__less__lsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ X @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sqrt @ X ) @ Y ) ) ) ) ).

% real_less_lsqrt
thf(fact_6787_sqrt__sum__squares__le__sum,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X @ Y ) ) ) ) ).

% sqrt_sum_squares_le_sum
thf(fact_6788_tan__30,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).

% tan_30
thf(fact_6789_ln__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( sqrt @ X ) )
        = ( divide_divide_real @ ( ln_ln_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% ln_sqrt
thf(fact_6790_real__sqrt__ge__abs1,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs1
thf(fact_6791_real__sqrt__ge__abs2,axiom,
    ! [Y: real,X: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs2
thf(fact_6792_sqrt__sum__squares__le__sum__abs,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y ) ) ) ).

% sqrt_sum_squares_le_sum_abs
thf(fact_6793_sqrt__even__pow2,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% sqrt_even_pow2
thf(fact_6794_cos__30,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_30
thf(fact_6795_sin__60,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_60
thf(fact_6796_arsinh__real__def,axiom,
    ( arsinh_real
    = ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arsinh_real_def
thf(fact_6797_complex__norm,axiom,
    ! [X: real,Y: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ X @ Y ) )
      = ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_norm
thf(fact_6798_arsinh__real__aux,axiom,
    ! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% arsinh_real_aux
thf(fact_6799_real__sqrt__sum__squares__mult__ge__zero,axiom,
    ! [X: real,Y: real,Xa: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_ge_zero
thf(fact_6800_real__sqrt__power__even,axiom,
    ! [N: nat,X: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( sqrt @ X ) @ N )
          = ( power_power_real @ X @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_power_even
thf(fact_6801_arith__geo__mean__sqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X @ Y ) ) @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arith_geo_mean_sqrt
thf(fact_6802_powr__half__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        = ( sqrt @ X ) ) ) ).

% powr_half_sqrt
thf(fact_6803_cos__x__y__le__one,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).

% cos_x_y_le_one
thf(fact_6804_real__sqrt__sum__squares__less,axiom,
    ! [X: real,U: real,Y: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
     => ( ( ord_less_real @ ( abs_abs_real @ Y ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).

% real_sqrt_sum_squares_less
thf(fact_6805_arcosh__real__def,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( arcosh_real @ X )
        = ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arcosh_real_def
thf(fact_6806_cos__arctan,axiom,
    ! [X: real] :
      ( ( cos_real @ ( arctan @ X ) )
      = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_arctan
thf(fact_6807_sin__arctan,axiom,
    ! [X: real] :
      ( ( sin_real @ ( arctan @ X ) )
      = ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arctan
thf(fact_6808_sqrt__sum__squares__half__less,axiom,
    ! [X: real,U: real,Y: real] :
      ( ( ord_less_real @ X @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_real @ Y @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ zero_zero_real @ Y )
           => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).

% sqrt_sum_squares_half_less
thf(fact_6809_sin__cos__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) )
     => ( ( sin_real @ X )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_cos_sqrt
thf(fact_6810_arctan__half,axiom,
    ( arctan
    = ( ^ [X3: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X3 @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% arctan_half
thf(fact_6811_cos__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_arcsin
thf(fact_6812_round__def,axiom,
    ( archim8280529875227126926d_real
    = ( ^ [X3: real] : ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% round_def
thf(fact_6813_round__def,axiom,
    ( archim7778729529865785530nd_rat
    = ( ^ [X3: rat] : ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% round_def
thf(fact_6814_of__int__round__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_6815_of__int__round__le,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_6816_of__int__round__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) ) ).

% of_int_round_ge
thf(fact_6817_of__int__round__ge,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) ) ).

% of_int_round_ge
thf(fact_6818_round__altdef,axiom,
    ( archim8280529875227126926d_real
    = ( ^ [X3: real] : ( if_int @ ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( archim2898591450579166408c_real @ X3 ) ) @ ( archim7802044766580827645g_real @ X3 ) @ ( archim6058952711729229775r_real @ X3 ) ) ) ) ).

% round_altdef
thf(fact_6819_round__altdef,axiom,
    ( archim7778729529865785530nd_rat
    = ( ^ [X3: rat] : ( if_int @ ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( archimedean_frac_rat @ X3 ) ) @ ( archim2889992004027027881ng_rat @ X3 ) @ ( archim3151403230148437115or_rat @ X3 ) ) ) ) ).

% round_altdef
thf(fact_6820_sin__arccos__abs,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
     => ( ( sin_real @ ( arccos @ Y ) )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arccos_abs
thf(fact_6821_sin__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( sin_real @ ( arccos @ X ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_arccos
thf(fact_6822_arccos__cos__eq__abs__2pi,axiom,
    ! [Theta: real] :
      ~ ! [K3: int] :
          ( ( arccos @ ( cos_real @ Theta ) )
         != ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K3 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).

% arccos_cos_eq_abs_2pi
thf(fact_6823_log__base__10__eq1,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log2 @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
        = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X ) ) ) ) ).

% log_base_10_eq1
thf(fact_6824_exp__zero,axiom,
    ( ( exp_complex @ zero_zero_complex )
    = one_one_complex ) ).

% exp_zero
thf(fact_6825_exp__zero,axiom,
    ( ( exp_real @ zero_zero_real )
    = one_one_real ) ).

% exp_zero
thf(fact_6826_exp__eq__one__iff,axiom,
    ! [X: real] :
      ( ( ( exp_real @ X )
        = one_one_real )
      = ( X = zero_zero_real ) ) ).

% exp_eq_one_iff
thf(fact_6827_arccos__1,axiom,
    ( ( arccos @ one_one_real )
    = zero_zero_real ) ).

% arccos_1
thf(fact_6828_frac__of__int,axiom,
    ! [Z2: int] :
      ( ( archim2898591450579166408c_real @ ( ring_1_of_int_real @ Z2 ) )
      = zero_zero_real ) ).

% frac_of_int
thf(fact_6829_frac__of__int,axiom,
    ! [Z2: int] :
      ( ( archimedean_frac_rat @ ( ring_1_of_int_rat @ Z2 ) )
      = zero_zero_rat ) ).

% frac_of_int
thf(fact_6830_one__less__exp__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ ( exp_real @ X ) )
      = ( ord_less_real @ zero_zero_real @ X ) ) ).

% one_less_exp_iff
thf(fact_6831_exp__less__one__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( exp_real @ X ) @ one_one_real )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% exp_less_one_iff
thf(fact_6832_one__le__exp__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% one_le_exp_iff
thf(fact_6833_exp__le__one__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X ) @ one_one_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% exp_le_one_iff
thf(fact_6834_arccos__minus__1,axiom,
    ( ( arccos @ ( uminus_uminus_real @ one_one_real ) )
    = pi ) ).

% arccos_minus_1
thf(fact_6835_cos__arccos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( cos_real @ ( arccos @ Y ) )
          = Y ) ) ) ).

% cos_arccos
thf(fact_6836_arccos__0,axiom,
    ( ( arccos @ zero_zero_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arccos_0
thf(fact_6837_exp__not__eq__zero,axiom,
    ! [X: complex] :
      ( ( exp_complex @ X )
     != zero_zero_complex ) ).

% exp_not_eq_zero
thf(fact_6838_exp__not__eq__zero,axiom,
    ! [X: real] :
      ( ( exp_real @ X )
     != zero_zero_real ) ).

% exp_not_eq_zero
thf(fact_6839_exp__times__arg__commute,axiom,
    ! [A3: complex] :
      ( ( times_times_complex @ ( exp_complex @ A3 ) @ A3 )
      = ( times_times_complex @ A3 @ ( exp_complex @ A3 ) ) ) ).

% exp_times_arg_commute
thf(fact_6840_exp__times__arg__commute,axiom,
    ! [A3: real] :
      ( ( times_times_real @ ( exp_real @ A3 ) @ A3 )
      = ( times_times_real @ A3 @ ( exp_real @ A3 ) ) ) ).

% exp_times_arg_commute
thf(fact_6841_mult__exp__exp,axiom,
    ! [X: complex,Y: complex] :
      ( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y ) )
      = ( exp_complex @ ( plus_plus_complex @ X @ Y ) ) ) ).

% mult_exp_exp
thf(fact_6842_mult__exp__exp,axiom,
    ! [X: real,Y: real] :
      ( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y ) )
      = ( exp_real @ ( plus_plus_real @ X @ Y ) ) ) ).

% mult_exp_exp
thf(fact_6843_exp__add__commuting,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( times_times_complex @ X @ Y )
        = ( times_times_complex @ Y @ X ) )
     => ( ( exp_complex @ ( plus_plus_complex @ X @ Y ) )
        = ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y ) ) ) ) ).

% exp_add_commuting
thf(fact_6844_exp__add__commuting,axiom,
    ! [X: real,Y: real] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( exp_real @ ( plus_plus_real @ X @ Y ) )
        = ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y ) ) ) ) ).

% exp_add_commuting
thf(fact_6845_exp__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( exp_complex @ ( minus_minus_complex @ X @ Y ) )
      = ( divide1717551699836669952omplex @ ( exp_complex @ X ) @ ( exp_complex @ Y ) ) ) ).

% exp_diff
thf(fact_6846_exp__diff,axiom,
    ! [X: real,Y: real] :
      ( ( exp_real @ ( minus_minus_real @ X @ Y ) )
      = ( divide_divide_real @ ( exp_real @ X ) @ ( exp_real @ Y ) ) ) ).

% exp_diff
thf(fact_6847_frac__ge__0,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) ) ).

% frac_ge_0
thf(fact_6848_frac__ge__0,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X ) ) ).

% frac_ge_0
thf(fact_6849_frac__lt__1,axiom,
    ! [X: real] : ( ord_less_real @ ( archim2898591450579166408c_real @ X ) @ one_one_real ) ).

% frac_lt_1
thf(fact_6850_frac__lt__1,axiom,
    ! [X: rat] : ( ord_less_rat @ ( archimedean_frac_rat @ X ) @ one_one_rat ) ).

% frac_lt_1
thf(fact_6851_frac__1__eq,axiom,
    ! [X: real] :
      ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ one_one_real ) )
      = ( archim2898591450579166408c_real @ X ) ) ).

% frac_1_eq
thf(fact_6852_frac__1__eq,axiom,
    ! [X: rat] :
      ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ one_one_rat ) )
      = ( archimedean_frac_rat @ X ) ) ).

% frac_1_eq
thf(fact_6853_exp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ one_one_real @ ( exp_real @ X ) ) ) ).

% exp_gt_one
thf(fact_6854_exp__ge__add__one__self,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ).

% exp_ge_add_one_self
thf(fact_6855_exp__minus__inverse,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) )
      = one_one_real ) ).

% exp_minus_inverse
thf(fact_6856_exp__minus__inverse,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) )
      = one_one_complex ) ).

% exp_minus_inverse
thf(fact_6857_exp__of__nat2__mult,axiom,
    ! [X: complex,N: nat] :
      ( ( exp_complex @ ( times_times_complex @ X @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).

% exp_of_nat2_mult
thf(fact_6858_exp__of__nat2__mult,axiom,
    ! [X: real,N: nat] :
      ( ( exp_real @ ( times_times_real @ X @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( power_power_real @ ( exp_real @ X ) @ N ) ) ).

% exp_of_nat2_mult
thf(fact_6859_exp__of__nat__mult,axiom,
    ! [N: nat,X: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ X ) )
      = ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).

% exp_of_nat_mult
thf(fact_6860_exp__of__nat__mult,axiom,
    ! [N: nat,X: real] :
      ( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) )
      = ( power_power_real @ ( exp_real @ X ) @ N ) ) ).

% exp_of_nat_mult
thf(fact_6861_log__ln,axiom,
    ( ln_ln_real
    = ( log2 @ ( exp_real @ one_one_real ) ) ) ).

% log_ln
thf(fact_6862_arccos__le__arccos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( arccos @ Y ) @ ( arccos @ X ) ) ) ) ) ).

% arccos_le_arccos
thf(fact_6863_arccos__le__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arccos @ X ) @ ( arccos @ Y ) )
          = ( ord_less_eq_real @ Y @ X ) ) ) ) ).

% arccos_le_mono
thf(fact_6864_arccos__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
        & ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real ) )
     => ( ( ( arccos @ X )
          = ( arccos @ Y ) )
        = ( X = Y ) ) ) ).

% arccos_eq_iff
thf(fact_6865_exp__ge__add__one__self__aux,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ) ).

% exp_ge_add_one_self_aux
thf(fact_6866_lemma__exp__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ one_one_real @ Y )
     => ? [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_eq_real @ X4 @ ( minus_minus_real @ Y @ one_one_real ) )
          & ( ( exp_real @ X4 )
            = Y ) ) ) ).

% lemma_exp_total
thf(fact_6867_ln__x__over__x__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y ) @ Y ) @ ( divide_divide_real @ ( ln_ln_real @ X ) @ X ) ) ) ) ).

% ln_x_over_x_mono
thf(fact_6868_frac__def,axiom,
    ( archim2898591450579166408c_real
    = ( ^ [X3: real] : ( minus_minus_real @ X3 @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) ) ) ) ) ).

% frac_def
thf(fact_6869_frac__def,axiom,
    ( archimedean_frac_rat
    = ( ^ [X3: rat] : ( minus_minus_rat @ X3 @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) ) ) ) ) ).

% frac_def
thf(fact_6870_powr__def,axiom,
    ( powr_real
    = ( ^ [X3: real,A2: real] : ( if_real @ ( X3 = zero_zero_real ) @ zero_zero_real @ ( exp_real @ ( times_times_real @ A2 @ ( ln_ln_real @ X3 ) ) ) ) ) ) ).

% powr_def
thf(fact_6871_arccos__lbound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) ) ) ) ).

% arccos_lbound
thf(fact_6872_arccos__less__arccos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_real @ ( arccos @ Y ) @ ( arccos @ X ) ) ) ) ) ).

% arccos_less_arccos
thf(fact_6873_arccos__less__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_real @ ( arccos @ X ) @ ( arccos @ Y ) )
          = ( ord_less_real @ Y @ X ) ) ) ) ).

% arccos_less_mono
thf(fact_6874_arccos__ubound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y ) @ pi ) ) ) ).

% arccos_ubound
thf(fact_6875_exp__le,axiom,
    ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).

% exp_le
thf(fact_6876_cos__arccos__abs,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
     => ( ( cos_real @ ( arccos @ Y ) )
        = Y ) ) ).

% cos_arccos_abs
thf(fact_6877_exp__divide__power__eq,axiom,
    ! [N: nat,X: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X @ ( semiri8010041392384452111omplex @ N ) ) ) @ N )
        = ( exp_complex @ X ) ) ) ).

% exp_divide_power_eq
thf(fact_6878_exp__divide__power__eq,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N )
        = ( exp_real @ X ) ) ) ).

% exp_divide_power_eq
thf(fact_6879_frac__eq,axiom,
    ! [X: real] :
      ( ( ( archim2898591450579166408c_real @ X )
        = X )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_real @ X @ one_one_real ) ) ) ).

% frac_eq
thf(fact_6880_frac__eq,axiom,
    ! [X: rat] :
      ( ( ( archimedean_frac_rat @ X )
        = X )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ X )
        & ( ord_less_rat @ X @ one_one_rat ) ) ) ).

% frac_eq
thf(fact_6881_frac__add,axiom,
    ! [X: real,Y: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y ) ) @ one_one_real )
       => ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ Y ) )
          = ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y ) ) @ one_one_real )
       => ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ Y ) )
          = ( minus_minus_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y ) ) @ one_one_real ) ) ) ) ).

% frac_add
thf(fact_6882_frac__add,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y ) ) @ one_one_rat )
       => ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ Y ) )
          = ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y ) ) ) )
      & ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y ) ) @ one_one_rat )
       => ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ Y ) )
          = ( minus_minus_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y ) ) @ one_one_rat ) ) ) ) ).

% frac_add
thf(fact_6883_tanh__altdef,axiom,
    ( tanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) @ ( plus_plus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_6884_tanh__altdef,axiom,
    ( tanh_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_6885_exp__half__le2,axiom,
    ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% exp_half_le2
thf(fact_6886_arccos__lt__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_real @ Y @ one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_real @ ( arccos @ Y ) @ pi ) ) ) ) ).

% arccos_lt_bounded
thf(fact_6887_arccos__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_eq_real @ ( arccos @ Y ) @ pi ) ) ) ) ).

% arccos_bounded
thf(fact_6888_sin__arccos__nonzero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ( sin_real @ ( arccos @ X ) )
         != zero_zero_real ) ) ) ).

% sin_arccos_nonzero
thf(fact_6889_exp__double,axiom,
    ! [Z2: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z2 ) )
      = ( power_power_complex @ ( exp_complex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_6890_exp__double,axiom,
    ! [Z2: real] :
      ( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z2 ) )
      = ( power_power_real @ ( exp_real @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_6891_arccos__minus,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( arccos @ ( uminus_uminus_real @ X ) )
          = ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ) ).

% arccos_minus
thf(fact_6892_arccos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_eq_real @ ( arccos @ Y ) @ pi )
          & ( ( cos_real @ ( arccos @ Y ) )
            = Y ) ) ) ) ).

% arccos
thf(fact_6893_exp__bound__half,axiom,
    ! [Z2: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_6894_exp__bound__half,axiom,
    ! [Z2: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_6895_arccos__minus__abs,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( arccos @ ( uminus_uminus_real @ X ) )
        = ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ).

% arccos_minus_abs
thf(fact_6896_exp__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% exp_bound
thf(fact_6897_floor__add,axiom,
    ! [X: real,Y: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y ) )
          = ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_6898_floor__add,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y ) ) @ one_one_rat )
       => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y ) )
          = ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y ) ) ) )
      & ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y ) ) @ one_one_rat )
       => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_6899_real__exp__bound__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ) ) ) ).

% real_exp_bound_lemma
thf(fact_6900_exp__ge__one__plus__x__over__n__power__n,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X ) ) ) ) ).

% exp_ge_one_plus_x_over_n_power_n
thf(fact_6901_exp__ge__one__minus__x__over__n__power__n,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ).

% exp_ge_one_minus_x_over_n_power_n
thf(fact_6902_arccos__le__pi2,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arccos_le_pi2
thf(fact_6903_exp__bound__lemma,axiom,
    ! [Z2: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z2 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z2 ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_6904_exp__bound__lemma,axiom,
    ! [Z2: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z2 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z2 ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_6905_exp__lower__Taylor__quadratic,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( divide_divide_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X ) ) ) ).

% exp_lower_Taylor_quadratic
thf(fact_6906_log__base__10__eq2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log2 @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
        = ( times_times_real @ ( log2 @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X ) ) ) ) ).

% log_base_10_eq2
thf(fact_6907_tanh__real__altdef,axiom,
    ( tanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ) ) ).

% tanh_real_altdef
thf(fact_6908_modulo__int__def,axiom,
    ( modulo_modulo_int
    = ( ^ [K2: int,L2: int] :
          ( if_int @ ( L2 = zero_zero_int ) @ K2
          @ ( if_int
            @ ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L2 ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L2 )
              @ ( minus_minus_int
                @ ( times_times_int @ ( abs_abs_int @ L2 )
                  @ ( zero_n2684676970156552555ol_int
                    @ ~ ( dvd_dvd_int @ L2 @ K2 ) ) )
                @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ) ) ) ) ) ).

% modulo_int_def
thf(fact_6909_divide__int__def,axiom,
    ( divide_divide_int
    = ( ^ [K2: int,L2: int] :
          ( if_int @ ( L2 = zero_zero_int ) @ zero_zero_int
          @ ( if_int
            @ ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L2 ) )
            @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) )
            @ ( uminus_uminus_int
              @ ( semiri1314217659103216013at_int
                @ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) )
                  @ ( zero_n2687167440665602831ol_nat
                    @ ~ ( dvd_dvd_int @ L2 @ K2 ) ) ) ) ) ) ) ) ) ).

% divide_int_def
thf(fact_6910_signed__take__bit__eq__take__bit__minus,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ K2 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) ) ) ) ) ).

% signed_take_bit_eq_take_bit_minus
thf(fact_6911_mask__numeral,axiom,
    ! [N: num] :
      ( ( bit_se2002935070580805687sk_nat @ ( numeral_numeral_nat @ N ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ ( pred_numeral @ N ) ) ) ) ) ).

% mask_numeral
thf(fact_6912_mask__numeral,axiom,
    ! [N: num] :
      ( ( bit_se2000444600071755411sk_int @ ( numeral_numeral_nat @ N ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ ( pred_numeral @ N ) ) ) ) ) ).

% mask_numeral
thf(fact_6913_powr__int,axiom,
    ! [X: real,I: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ I ) )
            = ( power_power_real @ X @ ( nat2 @ I ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ I ) )
            = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).

% powr_int
thf(fact_6914_mask__nat__positive__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% mask_nat_positive_iff
thf(fact_6915_nat__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
      = N ) ).

% nat_int
thf(fact_6916_nat__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_numeral
thf(fact_6917_mask__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% mask_0
thf(fact_6918_mask__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
    = zero_zero_int ) ).

% mask_0
thf(fact_6919_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2002935070580805687sk_nat @ N )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_6920_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2000444600071755411sk_int @ N )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_6921_nat__of__bool,axiom,
    ! [P: $o] :
      ( ( nat2 @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2687167440665602831ol_nat @ P ) ) ).

% nat_of_bool
thf(fact_6922_bit__numeral__Bit0__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N ) ) ).

% bit_numeral_Bit0_Suc_iff
thf(fact_6923_bit__numeral__Bit0__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_Bit0_Suc_iff
thf(fact_6924_bit__numeral__Bit1__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N ) ) ).

% bit_numeral_Bit1_Suc_iff
thf(fact_6925_bit__numeral__Bit1__Suc__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( suc @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_Bit1_Suc_iff
thf(fact_6926_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_6927_mask__Suc__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% mask_Suc_0
thf(fact_6928_mask__Suc__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% mask_Suc_0
thf(fact_6929_nat__0__iff,axiom,
    ! [I: int] :
      ( ( ( nat2 @ I )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_6930_nat__le__0,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ Z2 @ zero_zero_int )
     => ( ( nat2 @ Z2 )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_6931_zless__nat__conj,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
      = ( ( ord_less_int @ zero_zero_int @ Z2 )
        & ( ord_less_int @ W @ Z2 ) ) ) ).

% zless_nat_conj
thf(fact_6932_nat__neg__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = zero_zero_nat ) ).

% nat_neg_numeral
thf(fact_6933_nat__zminus__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
      = zero_zero_nat ) ).

% nat_zminus_int
thf(fact_6934_int__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = Z2 ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_6935_take__bit__minus__one__eq__mask,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_se2119862282449309892nteger @ N ) ) ).

% take_bit_minus_one_eq_mask
thf(fact_6936_take__bit__minus__one__eq__mask,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% take_bit_minus_one_eq_mask
thf(fact_6937_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri8010041392384452111omplex @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_17405671764205052669omplex @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_6938_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri5074537144036343181t_real @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_1_of_int_real @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_6939_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri681578069525770553at_rat @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_1_of_int_rat @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_6940_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri1314217659103216013at_int @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_6941_signed__take__bit__nonnegative__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% signed_take_bit_nonnegative_iff
thf(fact_6942_signed__take__bit__negative__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ zero_zero_int )
      = ( bit_se1146084159140164899it_int @ K @ N ) ) ).

% signed_take_bit_negative_iff
thf(fact_6943_zero__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% zero_less_nat_eq
thf(fact_6944_of__nat__nat,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri8010041392384452111omplex @ ( nat2 @ Z2 ) )
        = ( ring_17405671764205052669omplex @ Z2 ) ) ) ).

% of_nat_nat
thf(fact_6945_of__nat__nat,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri5074537144036343181t_real @ ( nat2 @ Z2 ) )
        = ( ring_1_of_int_real @ Z2 ) ) ) ).

% of_nat_nat
thf(fact_6946_of__nat__nat,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri681578069525770553at_rat @ ( nat2 @ Z2 ) )
        = ( ring_1_of_int_rat @ Z2 ) ) ) ).

% of_nat_nat
thf(fact_6947_of__nat__nat,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
        = ( ring_1_of_int_int @ Z2 ) ) ) ).

% of_nat_nat
thf(fact_6948_bit__numeral__simps_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(2)
thf(fact_6949_bit__numeral__simps_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit0 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(2)
thf(fact_6950_diff__nat__numeral,axiom,
    ! [V: num,V2: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V2 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V2 ) ) ) ) ).

% diff_nat_numeral
thf(fact_6951_bit__minus__numeral__Bit0__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).

% bit_minus_numeral_Bit0_Suc_iff
thf(fact_6952_bit__numeral__simps_I3_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(3)
thf(fact_6953_bit__numeral__simps_I3_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit1 @ W ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ W ) @ ( pred_numeral @ N ) ) ) ).

% bit_numeral_simps(3)
thf(fact_6954_bit__minus__numeral__Bit1__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).

% bit_minus_numeral_Bit1_Suc_iff
thf(fact_6955_numeral__power__eq__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: int] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = ( nat2 @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_nat_cancel_iff
thf(fact_6956_nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N: nat] :
      ( ( ( nat2 @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% nat_eq_numeral_power_cancel_iff
thf(fact_6957_dvd__nat__abs__iff,axiom,
    ! [N: nat,K: int] :
      ( ( dvd_dvd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).

% dvd_nat_abs_iff
thf(fact_6958_nat__abs__dvd__iff,axiom,
    ! [K: int,N: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( dvd_dvd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_abs_dvd_iff
thf(fact_6959_nat__ceiling__le__eq,axiom,
    ! [X: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
      = ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_6960_bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se9216721137139052372nteger @ A @ zero_zero_nat )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_0
thf(fact_6961_bit__0,axiom,
    ! [A: int] :
      ( ( bit_se1146084159140164899it_int @ A @ zero_zero_nat )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_0
thf(fact_6962_bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se1148574629649215175it_nat @ A @ zero_zero_nat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_0
thf(fact_6963_one__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% one_less_nat_eq
thf(fact_6964_bit__minus__numeral__int_I1_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).

% bit_minus_numeral_int(1)
thf(fact_6965_bit__minus__numeral__int_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).

% bit_minus_numeral_int(2)
thf(fact_6966_bit__mod__2__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( bit_se9216721137139052372nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6967_bit__mod__2__iff,axiom,
    ! [A: code_natural,N: nat] :
      ( ( bit_se8040316288895769887atural @ ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_Code_natural @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6968_bit__mod__2__iff,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6969_bit__mod__2__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
      = ( ( N = zero_zero_nat )
        & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% bit_mod_2_iff
thf(fact_6970_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_6971_numeral__power__less__nat__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_less_nat_cancel_iff
thf(fact_6972_nat__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% nat_less_numeral_power_cancel_iff
thf(fact_6973_numeral__power__le__nat__cancel__iff,axiom,
    ! [X: num,N: nat,A: int] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).

% numeral_power_le_nat_cancel_iff
thf(fact_6974_nat__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).

% nat_le_numeral_power_cancel_iff
thf(fact_6975_bit__numeral__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_iff
thf(fact_6976_bit__numeral__iff,axiom,
    ! [M: num,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% bit_numeral_iff
thf(fact_6977_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% of_nat_mask_eq
thf(fact_6978_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_nat_mask_eq
thf(fact_6979_nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% nat_mask_eq
thf(fact_6980_bit__of__nat__iff__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( semiri1314217659103216013at_int @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ M @ N ) ) ).

% bit_of_nat_iff_bit
thf(fact_6981_bit__of__nat__iff__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( semiri1316708129612266289at_nat @ M ) @ N )
      = ( bit_se1148574629649215175it_nat @ M @ N ) ) ).

% bit_of_nat_iff_bit
thf(fact_6982_bit__disjunctive__add__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( bit_se1146084159140164899it_int @ A @ N2 )
          | ~ ( bit_se1146084159140164899it_int @ B @ N2 ) )
     => ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ A @ B ) @ N )
        = ( ( bit_se1146084159140164899it_int @ A @ N )
          | ( bit_se1146084159140164899it_int @ B @ N ) ) ) ) ).

% bit_disjunctive_add_iff
thf(fact_6983_bit__disjunctive__add__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( bit_se1148574629649215175it_nat @ A @ N2 )
          | ~ ( bit_se1148574629649215175it_nat @ B @ N2 ) )
     => ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ A @ B ) @ N )
        = ( ( bit_se1148574629649215175it_nat @ A @ N )
          | ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ) ).

% bit_disjunctive_add_iff
thf(fact_6984_of__int__mask__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_int @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_int_mask_eq
thf(fact_6985_bit__unset__bit__iff,axiom,
    ! [M: nat,A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se4203085406695923979it_int @ M @ A ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
        & ( M != N ) ) ) ).

% bit_unset_bit_iff
thf(fact_6986_bit__unset__bit__iff,axiom,
    ! [M: nat,A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se4205575877204974255it_nat @ M @ A ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
        & ( M != N ) ) ) ).

% bit_unset_bit_iff
thf(fact_6987_less__eq__mask,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).

% less_eq_mask
thf(fact_6988_not__bit__1__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1146084159140164899it_int @ one_one_int @ ( suc @ N ) ) ).

% not_bit_1_Suc
thf(fact_6989_not__bit__1__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1148574629649215175it_nat @ one_one_nat @ ( suc @ N ) ) ).

% not_bit_1_Suc
thf(fact_6990_bit__1__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1146084159140164899it_int @ one_one_int @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_1_iff
thf(fact_6991_bit__1__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1148574629649215175it_nat @ one_one_nat @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_1_iff
thf(fact_6992_bit__numeral__simps_I1_J,axiom,
    ! [N: num] :
      ~ ( bit_se1146084159140164899it_int @ one_one_int @ ( numeral_numeral_nat @ N ) ) ).

% bit_numeral_simps(1)
thf(fact_6993_bit__numeral__simps_I1_J,axiom,
    ! [N: num] :
      ~ ( bit_se1148574629649215175it_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% bit_numeral_simps(1)
thf(fact_6994_bit__take__bit__iff,axiom,
    ! [M: nat,A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se2923211474154528505it_int @ M @ A ) @ N )
      = ( ( ord_less_nat @ N @ M )
        & ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% bit_take_bit_iff
thf(fact_6995_bit__take__bit__iff,axiom,
    ! [M: nat,A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se2925701944663578781it_nat @ M @ A ) @ N )
      = ( ( ord_less_nat @ N @ M )
        & ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).

% bit_take_bit_iff
thf(fact_6996_bit__of__bool__iff,axiom,
    ! [B: $o,N: nat] :
      ( ( bit_se9216721137139052372nteger @ ( zero_n356916108424825756nteger @ B ) @ N )
      = ( B
        & ( N = zero_zero_nat ) ) ) ).

% bit_of_bool_iff
thf(fact_6997_bit__of__bool__iff,axiom,
    ! [B: $o,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( zero_n2684676970156552555ol_int @ B ) @ N )
      = ( B
        & ( N = zero_zero_nat ) ) ) ).

% bit_of_bool_iff
thf(fact_6998_bit__of__bool__iff,axiom,
    ! [B: $o,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ N )
      = ( B
        & ( N = zero_zero_nat ) ) ) ).

% bit_of_bool_iff
thf(fact_6999_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_7000_nat__numeral__as__int,axiom,
    ( numeral_numeral_nat
    = ( ^ [I4: num] : ( nat2 @ ( numeral_numeral_int @ I4 ) ) ) ) ).

% nat_numeral_as_int
thf(fact_7001_nat__mono,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).

% nat_mono
thf(fact_7002_ex__nat,axiom,
    ( ( ^ [P5: nat > $o] :
        ? [X7: nat] : ( P5 @ X7 ) )
    = ( ^ [P6: nat > $o] :
        ? [X3: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X3 )
          & ( P6 @ ( nat2 @ X3 ) ) ) ) ) ).

% ex_nat
thf(fact_7003_all__nat,axiom,
    ( ( ^ [P5: nat > $o] :
        ! [X7: nat] : ( P5 @ X7 ) )
    = ( ^ [P6: nat > $o] :
        ! [X3: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X3 )
         => ( P6 @ ( nat2 @ X3 ) ) ) ) ) ).

% all_nat
thf(fact_7004_eq__nat__nat__iff,axiom,
    ! [Z2: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( ( nat2 @ Z2 )
            = ( nat2 @ Z6 ) )
          = ( Z2 = Z6 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_7005_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_7006_signed__take__bit__eq__if__positive,axiom,
    ! [A: int,N: nat] :
      ( ~ ( bit_se1146084159140164899it_int @ A @ N )
     => ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ A ) ) ) ).

% signed_take_bit_eq_if_positive
thf(fact_7007_complex__exp__exists,axiom,
    ! [Z2: complex] :
    ? [A4: complex,R2: real] :
      ( Z2
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( exp_complex @ A4 ) ) ) ).

% complex_exp_exists
thf(fact_7008_unset__bit__nat__def,axiom,
    ( bit_se4205575877204974255it_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M3 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% unset_bit_nat_def
thf(fact_7009_mask__nonnegative__int,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).

% mask_nonnegative_int
thf(fact_7010_not__mask__negative__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_7011_push__bit__nat__eq,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).

% push_bit_nat_eq
thf(fact_7012_nat__mono__iff,axiom,
    ! [Z2: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W @ Z2 ) ) ) ).

% nat_mono_iff
thf(fact_7013_of__nat__ceiling,axiom,
    ! [R: real] : ( ord_less_eq_real @ R @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ R ) ) ) ) ).

% of_nat_ceiling
thf(fact_7014_of__nat__ceiling,axiom,
    ! [R: rat] : ( ord_less_eq_rat @ R @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim2889992004027027881ng_rat @ R ) ) ) ) ).

% of_nat_ceiling
thf(fact_7015_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z2: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z2 ) ) ).

% zless_nat_eq_int_zless
thf(fact_7016_nat__le__iff,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_7017_int__eq__iff,axiom,
    ! [M: nat,Z2: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z2 )
      = ( ( M
          = ( nat2 @ Z2 ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ) ).

% int_eq_iff
thf(fact_7018_nat__0__le,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
        = Z2 ) ) ).

% nat_0_le
thf(fact_7019_bit__not__int__iff_H,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_not_int_iff'
thf(fact_7020_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_7021_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_7022_nat__abs__mult__distrib,axiom,
    ! [W: int,Z2: int] :
      ( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z2 ) ) )
      = ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z2 ) ) ) ) ).

% nat_abs_mult_distrib
thf(fact_7023_bit__push__bit__iff__int,axiom,
    ! [M: nat,K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_int
thf(fact_7024_flip__bit__eq__if,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N3: nat,A2: int] : ( if_nat_int_int @ ( bit_se1146084159140164899it_int @ A2 @ N3 ) @ bit_se4203085406695923979it_int @ bit_se7879613467334960850it_int @ N3 @ A2 ) ) ) ).

% flip_bit_eq_if
thf(fact_7025_flip__bit__eq__if,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [N3: nat,A2: nat] : ( if_nat_nat_nat @ ( bit_se1148574629649215175it_nat @ A2 @ N3 ) @ bit_se4205575877204974255it_nat @ bit_se7882103937844011126it_nat @ N3 @ A2 ) ) ) ).

% flip_bit_eq_if
thf(fact_7026_real__nat__ceiling__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_7027_less__mask,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% less_mask
thf(fact_7028_of__nat__floor,axiom,
    ! [R: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim6058952711729229775r_real @ R ) ) ) @ R ) ) ).

% of_nat_floor
thf(fact_7029_of__nat__floor,axiom,
    ! [R: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ R )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim3151403230148437115or_rat @ R ) ) ) @ R ) ) ).

% of_nat_floor
thf(fact_7030_nat__less__eq__zless,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W @ Z2 ) ) ) ).

% nat_less_eq_zless
thf(fact_7031_nat__le__eq__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z2 ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_eq_int @ W @ Z2 ) ) ) ).

% nat_le_eq_zle
thf(fact_7032_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_7033_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_7034_split__nat,axiom,
    ! [P: nat > $o,I: int] :
      ( ( P @ ( nat2 @ I ) )
      = ( ! [N3: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ( P @ N3 ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_7035_le__mult__nat__floor,axiom,
    ! [A: real,B: real] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ B ) ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ).

% le_mult_nat_floor
thf(fact_7036_le__mult__nat__floor,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim3151403230148437115or_rat @ A ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% le_mult_nat_floor
thf(fact_7037_le__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% le_nat_iff
thf(fact_7038_nat__add__distrib,axiom,
    ! [Z2: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( nat2 @ ( plus_plus_int @ Z2 @ Z6 ) )
          = ( plus_plus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_7039_bit__imp__take__bit__positive,axiom,
    ! [N: nat,M: nat,K: int] :
      ( ( ord_less_nat @ N @ M )
     => ( ( bit_se1146084159140164899it_int @ K @ N )
       => ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).

% bit_imp_take_bit_positive
thf(fact_7040_nat__mult__distrib,axiom,
    ! [Z2: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( nat2 @ ( times_times_int @ Z2 @ Z6 ) )
        = ( times_times_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ).

% nat_mult_distrib
thf(fact_7041_Suc__as__int,axiom,
    ( suc
    = ( ^ [A2: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_7042_nat__diff__distrib,axiom,
    ! [Z6: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
     => ( ( ord_less_eq_int @ Z6 @ Z2 )
       => ( ( nat2 @ ( minus_minus_int @ Z2 @ Z6 ) )
          = ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_7043_nat__diff__distrib_H,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( minus_minus_int @ X @ Y ) )
          = ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_7044_nat__abs__triangle__ineq,axiom,
    ! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_7045_nat__div__distrib_H,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib'
thf(fact_7046_nat__div__distrib,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib
thf(fact_7047_bit__concat__bit__iff,axiom,
    ! [M: nat,K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L ) @ N )
      = ( ( ( ord_less_nat @ N @ M )
          & ( bit_se1146084159140164899it_int @ K @ N ) )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( bit_se1146084159140164899it_int @ L @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% bit_concat_bit_iff
thf(fact_7048_nat__floor__neg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_7049_nat__power__eq,axiom,
    ! [Z2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( nat2 @ ( power_power_int @ Z2 @ N ) )
        = ( power_power_nat @ ( nat2 @ Z2 ) @ N ) ) ) ).

% nat_power_eq
thf(fact_7050_nat__mod__distrib,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( modulo_modulo_int @ X @ Y ) )
          = ( modulo_modulo_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_mod_distrib
thf(fact_7051_div__abs__eq__div__nat,axiom,
    ! [K: int,L: int] :
      ( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_abs_eq_div_nat
thf(fact_7052_floor__eq3,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N ) ) ) ).

% floor_eq3
thf(fact_7053_le__nat__floor,axiom,
    ! [X: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ A )
     => ( ord_less_eq_nat @ X @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).

% le_nat_floor
thf(fact_7054_mod__abs__eq__div__nat,axiom,
    ! [K: int,L: int] :
      ( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% mod_abs_eq_div_nat
thf(fact_7055_nat__take__bit__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) )
        = ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) ) ) ) ).

% nat_take_bit_eq
thf(fact_7056_take__bit__nat__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) )
        = ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).

% take_bit_nat_eq
thf(fact_7057_signed__take__bit__eq__concat__bit,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K2: int] : ( bit_concat_bit @ N3 @ K2 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) ) ) ) ) ).

% signed_take_bit_eq_concat_bit
thf(fact_7058_exp__eq__0__imp__not__bit,axiom,
    ! [N: nat,A: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
        = zero_zero_int )
     => ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ).

% exp_eq_0_imp_not_bit
thf(fact_7059_exp__eq__0__imp__not__bit,axiom,
    ! [N: nat,A: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        = zero_zero_nat )
     => ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ).

% exp_eq_0_imp_not_bit
thf(fact_7060_bit__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ A @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ N ) ) ).

% bit_Suc
thf(fact_7061_bit__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ A @ ( suc @ N ) )
      = ( bit_se1148574629649215175it_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N ) ) ).

% bit_Suc
thf(fact_7062_stable__imp__bit__iff__odd,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se9216721137139052372nteger @ A @ N )
        = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% stable_imp_bit_iff_odd
thf(fact_7063_stable__imp__bit__iff__odd,axiom,
    ! [A: int,N: nat] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se1146084159140164899it_int @ A @ N )
        = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% stable_imp_bit_iff_odd
thf(fact_7064_stable__imp__bit__iff__odd,axiom,
    ! [A: nat,N: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se1148574629649215175it_nat @ A @ N )
        = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% stable_imp_bit_iff_odd
thf(fact_7065_bit__iff__idd__imp__stable,axiom,
    ! [A: code_integer] :
      ( ! [N2: nat] :
          ( ( bit_se9216721137139052372nteger @ A @ N2 )
          = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
     => ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A ) ) ).

% bit_iff_idd_imp_stable
thf(fact_7066_bit__iff__idd__imp__stable,axiom,
    ! [A: int] :
      ( ! [N2: nat] :
          ( ( bit_se1146084159140164899it_int @ A @ N2 )
          = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
     => ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A ) ) ).

% bit_iff_idd_imp_stable
thf(fact_7067_bit__iff__idd__imp__stable,axiom,
    ! [A: nat] :
      ( ! [N2: nat] :
          ( ( bit_se1148574629649215175it_nat @ A @ N2 )
          = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
     => ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A ) ) ).

% bit_iff_idd_imp_stable
thf(fact_7068_nat__2,axiom,
    ( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% nat_2
thf(fact_7069_take__bit__eq__mask__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
        = zero_zero_int ) ) ).

% take_bit_eq_mask_iff
thf(fact_7070_int__bit__bound,axiom,
    ! [K: int] :
      ~ ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ N2 @ M4 )
             => ( ( bit_se1146084159140164899it_int @ K @ M4 )
                = ( bit_se1146084159140164899it_int @ K @ N2 ) ) )
         => ~ ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ one_one_nat ) )
                = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ) ) ).

% int_bit_bound
thf(fact_7071_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( suc @ ( nat2 @ Z2 ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_7072_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_7073_nat__mult__distrib__neg,axiom,
    ! [Z2: int,Z6: int] :
      ( ( ord_less_eq_int @ Z2 @ zero_zero_int )
     => ( ( nat2 @ ( times_times_int @ Z2 @ Z6 ) )
        = ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z2 ) ) @ ( nat2 @ ( uminus_uminus_int @ Z6 ) ) ) ) ) ).

% nat_mult_distrib_neg
thf(fact_7074_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_7075_floor__eq4,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N ) ) ) ).

% floor_eq4
thf(fact_7076_bit__iff__odd,axiom,
    ( bit_se9216721137139052372nteger
    = ( ^ [A2: code_integer,N3: nat] :
          ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A2 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_iff_odd
thf(fact_7077_bit__iff__odd,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A2: int,N3: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_iff_odd
thf(fact_7078_bit__iff__odd,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A2: nat,N3: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_iff_odd
thf(fact_7079_Suc__mask__eq__exp,axiom,
    ! [N: nat] :
      ( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_mask_eq_exp
thf(fact_7080_mask__nat__less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% mask_nat_less_exp
thf(fact_7081_of__int__of__nat,axiom,
    ( ring_18347121197199848620nteger
    = ( ^ [K2: int] : ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri4939895301339042750nteger @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_7082_of__int__of__nat,axiom,
    ( ring_17405671764205052669omplex
    = ( ^ [K2: int] : ( if_complex @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri8010041392384452111omplex @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_7083_of__int__of__nat,axiom,
    ( ring_1_of_int_real
    = ( ^ [K2: int] : ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri5074537144036343181t_real @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_7084_of__int__of__nat,axiom,
    ( ring_1_of_int_rat
    = ( ^ [K2: int] : ( if_rat @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri681578069525770553at_rat @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_7085_of__int__of__nat,axiom,
    ( ring_1_of_int_int
    = ( ^ [K2: int] : ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri1314217659103216013at_int @ ( nat2 @ K2 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_7086_bit__int__def,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [K2: int,N3: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_int_def
thf(fact_7087_nat__dvd__iff,axiom,
    ! [Z2: int,M: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ Z2 ) @ M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
         => ( dvd_dvd_int @ Z2 @ ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_dvd_iff
thf(fact_7088_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2119862282449309892nteger @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_7089_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_7090_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_7091_even__bit__succ__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se9216721137139052372nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ N )
        = ( ( bit_se9216721137139052372nteger @ A @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% even_bit_succ_iff
thf(fact_7092_even__bit__succ__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ one_one_int @ A ) @ N )
        = ( ( bit_se1146084159140164899it_int @ A @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% even_bit_succ_iff
thf(fact_7093_even__bit__succ__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ N )
        = ( ( bit_se1148574629649215175it_nat @ A @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% even_bit_succ_iff
thf(fact_7094_odd__bit__iff__bit__pred,axiom,
    ! [A: code_integer,N: nat] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se9216721137139052372nteger @ A @ N )
        = ( ( bit_se9216721137139052372nteger @ ( minus_8373710615458151222nteger @ A @ one_one_Code_integer ) @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% odd_bit_iff_bit_pred
thf(fact_7095_odd__bit__iff__bit__pred,axiom,
    ! [A: int,N: nat] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1146084159140164899it_int @ A @ N )
        = ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ A @ one_one_int ) @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% odd_bit_iff_bit_pred
thf(fact_7096_odd__bit__iff__bit__pred,axiom,
    ! [A: nat,N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( bit_se1148574629649215175it_nat @ A @ N )
        = ( ( bit_se1148574629649215175it_nat @ ( minus_minus_nat @ A @ one_one_nat ) @ N )
          | ( N = zero_zero_nat ) ) ) ) ).

% odd_bit_iff_bit_pred
thf(fact_7097_mask__half__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% mask_half_int
thf(fact_7098_mask__nat__def,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N3: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) ).

% mask_nat_def
thf(fact_7099_mask__int__def,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N3: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) @ one_one_int ) ) ) ).

% mask_int_def
thf(fact_7100_bit__sum__mult__2__cases,axiom,
    ! [A: code_integer,B: code_integer,N: nat] :
      ( ! [J2: nat] :
          ~ ( bit_se9216721137139052372nteger @ A @ ( suc @ J2 ) )
     => ( ( bit_se9216721137139052372nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ N )
        = ( ( ( N = zero_zero_nat )
           => ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
          & ( ( N != zero_zero_nat )
           => ( bit_se9216721137139052372nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).

% bit_sum_mult_2_cases
thf(fact_7101_bit__sum__mult__2__cases,axiom,
    ! [A: int,B: int,N: nat] :
      ( ! [J2: nat] :
          ~ ( bit_se1146084159140164899it_int @ A @ ( suc @ J2 ) )
     => ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ N )
        = ( ( ( N = zero_zero_nat )
           => ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
          & ( ( N != zero_zero_nat )
           => ( bit_se1146084159140164899it_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).

% bit_sum_mult_2_cases
thf(fact_7102_bit__sum__mult__2__cases,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ! [J2: nat] :
          ~ ( bit_se1148574629649215175it_nat @ A @ ( suc @ J2 ) )
     => ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ N )
        = ( ( ( N = zero_zero_nat )
           => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
          & ( ( N != zero_zero_nat )
           => ( bit_se1148574629649215175it_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).

% bit_sum_mult_2_cases
thf(fact_7103_bit__rec,axiom,
    ( bit_se9216721137139052372nteger
    = ( ^ [A2: code_integer,N3: nat] :
          ( ( ( N3 = zero_zero_nat )
           => ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A2 ) )
          & ( ( N3 != zero_zero_nat )
           => ( bit_se9216721137139052372nteger @ ( divide6298287555418463151nteger @ A2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% bit_rec
thf(fact_7104_bit__rec,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A2: int,N3: nat] :
          ( ( ( N3 = zero_zero_nat )
           => ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) )
          & ( ( N3 != zero_zero_nat )
           => ( bit_se1146084159140164899it_int @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% bit_rec
thf(fact_7105_bit__rec,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A2: nat,N3: nat] :
          ( ( ( N3 = zero_zero_nat )
           => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) )
          & ( ( N3 != zero_zero_nat )
           => ( bit_se1148574629649215175it_nat @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% bit_rec
thf(fact_7106_mask__eq__exp__minus__1,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N3: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_7107_mask__eq__exp__minus__1,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N3: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) @ one_one_int ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_7108_even__nat__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_nat_iff
thf(fact_7109_set__bit__eq,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,K2: int] :
          ( plus_plus_int @ K2
          @ ( times_times_int
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( bit_se1146084159140164899it_int @ K2 @ N3 ) )
            @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% set_bit_eq
thf(fact_7110_unset__bit__eq,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,K2: int] : ( minus_minus_int @ K2 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% unset_bit_eq
thf(fact_7111_take__bit__Suc__from__most,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K )
      = ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_Suc_from_most
thf(fact_7112_take__bit__eq__mask__iff__exp__dvd,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).

% take_bit_eq_mask_iff_exp_dvd
thf(fact_7113_and__int__unfold,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( ( K2 = zero_zero_int )
            | ( L2 = zero_zero_int ) )
          @ zero_zero_int
          @ ( if_int
            @ ( K2
              = ( uminus_uminus_int @ one_one_int ) )
            @ L2
            @ ( if_int
              @ ( L2
                = ( uminus_uminus_int @ one_one_int ) )
              @ K2
              @ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% and_int_unfold
thf(fact_7114_powr__real__of__int,axiom,
    ! [X: real,N: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
            = ( power_power_real @ X @ ( nat2 @ N ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
            = ( inverse_inverse_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).

% powr_real_of_int
thf(fact_7115_cis__2pi,axiom,
    ( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_complex ) ).

% cis_2pi
thf(fact_7116_exp__two__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
    = one_one_complex ) ).

% exp_two_pi_i
thf(fact_7117_exp__two__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
    = one_one_complex ) ).

% exp_two_pi_i'
thf(fact_7118_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_7119_inverse__eq__iff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_7120_inverse__eq__iff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_7121_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_7122_inverse__inverse__eq,axiom,
    ! [A: complex] :
      ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_7123_inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_7124_and_Oidem,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ A )
      = A ) ).

% and.idem
thf(fact_7125_and_Oidem,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ A )
      = A ) ).

% and.idem
thf(fact_7126_and_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ A @ B ) ) ).

% and.left_idem
thf(fact_7127_and_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ A @ B ) ) ).

% and.left_idem
thf(fact_7128_and_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ B )
      = ( bit_se725231765392027082nd_int @ A @ B ) ) ).

% and.right_idem
thf(fact_7129_and_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ B )
      = ( bit_se727722235901077358nd_nat @ A @ B ) ) ).

% and.right_idem
thf(fact_7130_inverse__nonzero__iff__nonzero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_7131_inverse__nonzero__iff__nonzero,axiom,
    ! [A: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_7132_inverse__nonzero__iff__nonzero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_7133_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_7134_inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% inverse_zero
thf(fact_7135_inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% inverse_zero
thf(fact_7136_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_7137_inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_7138_inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_7139_inverse__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( inverse_inverse_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_7140_inverse__eq__1__iff,axiom,
    ! [X: complex] :
      ( ( ( invers8013647133539491842omplex @ X )
        = one_one_complex )
      = ( X = one_one_complex ) ) ).

% inverse_eq_1_iff
thf(fact_7141_inverse__eq__1__iff,axiom,
    ! [X: rat] :
      ( ( ( inverse_inverse_rat @ X )
        = one_one_rat )
      = ( X = one_one_rat ) ) ).

% inverse_eq_1_iff
thf(fact_7142_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_7143_inverse__1,axiom,
    ( ( invers8013647133539491842omplex @ one_one_complex )
    = one_one_complex ) ).

% inverse_1
thf(fact_7144_inverse__1,axiom,
    ( ( inverse_inverse_rat @ one_one_rat )
    = one_one_rat ) ).

% inverse_1
thf(fact_7145_bit_Oconj__zero__right,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ X @ zero_zero_int )
      = zero_zero_int ) ).

% bit.conj_zero_right
thf(fact_7146_bit_Oconj__zero__left,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ zero_zero_int @ X )
      = zero_zero_int ) ).

% bit.conj_zero_left
thf(fact_7147_zero__and__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% zero_and_eq
thf(fact_7148_zero__and__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_and_eq
thf(fact_7149_and__zero__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% and_zero_eq
thf(fact_7150_and__zero__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% and_zero_eq
thf(fact_7151_inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
      = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).

% inverse_minus_eq
thf(fact_7152_inverse__minus__eq,axiom,
    ! [A: complex] :
      ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
      = ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ).

% inverse_minus_eq
thf(fact_7153_inverse__minus__eq,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
      = ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% inverse_minus_eq
thf(fact_7154_inverse__divide,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ B @ A ) ) ).

% inverse_divide
thf(fact_7155_inverse__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ B @ A ) ) ).

% inverse_divide
thf(fact_7156_inverse__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ B @ A ) ) ).

% inverse_divide
thf(fact_7157_abs__inverse,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
      = ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ).

% abs_inverse
thf(fact_7158_abs__inverse,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( invers8013647133539491842omplex @ A ) )
      = ( invers8013647133539491842omplex @ ( abs_abs_complex @ A ) ) ) ).

% abs_inverse
thf(fact_7159_abs__inverse,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ).

% abs_inverse
thf(fact_7160_sgn__inverse,axiom,
    ! [A: real] :
      ( ( sgn_sgn_real @ ( inverse_inverse_real @ A ) )
      = ( inverse_inverse_real @ ( sgn_sgn_real @ A ) ) ) ).

% sgn_inverse
thf(fact_7161_sgn__inverse,axiom,
    ! [A: complex] :
      ( ( sgn_sgn_complex @ ( invers8013647133539491842omplex @ A ) )
      = ( invers8013647133539491842omplex @ ( sgn_sgn_complex @ A ) ) ) ).

% sgn_inverse
thf(fact_7162_sgn__inverse,axiom,
    ! [A: rat] :
      ( ( sgn_sgn_rat @ ( inverse_inverse_rat @ A ) )
      = ( inverse_inverse_rat @ ( sgn_sgn_rat @ A ) ) ) ).

% sgn_inverse
thf(fact_7163_inverse__sgn,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( sgn_sgn_real @ A ) )
      = ( sgn_sgn_real @ A ) ) ).

% inverse_sgn
thf(fact_7164_inverse__sgn,axiom,
    ! [A: rat] :
      ( ( inverse_inverse_rat @ ( sgn_sgn_rat @ A ) )
      = ( sgn_sgn_rat @ A ) ) ).

% inverse_sgn
thf(fact_7165_take__bit__and,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_and
thf(fact_7166_take__bit__and,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_and
thf(fact_7167_push__bit__and,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).

% push_bit_and
thf(fact_7168_push__bit__and,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).

% push_bit_and
thf(fact_7169_push__bit__and,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( bit_se3949692690581998587nteger @ A @ B ) )
      = ( bit_se3949692690581998587nteger @ ( bit_se7788150548672797655nteger @ N @ A ) @ ( bit_se7788150548672797655nteger @ N @ B ) ) ) ).

% push_bit_and
thf(fact_7170_push__bit__and,axiom,
    ! [N: nat,A: code_natural,B: code_natural] :
      ( ( bit_se6611745700429515170atural @ N @ ( bit_se2773287842338716102atural @ A @ B ) )
      = ( bit_se2773287842338716102atural @ ( bit_se6611745700429515170atural @ N @ A ) @ ( bit_se6611745700429515170atural @ N @ B ) ) ) ).

% push_bit_and
thf(fact_7171_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_7172_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_7173_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_7174_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_7175_inverse__less__iff__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_7176_inverse__less__iff__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_7177_inverse__less__iff__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_7178_inverse__less__iff__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_rat @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_7179_inverse__negative__iff__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_7180_inverse__negative__iff__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% inverse_negative_iff_negative
thf(fact_7181_inverse__positive__iff__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_7182_inverse__positive__iff__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_7183_and_Oleft__neutral,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ A )
      = A ) ).

% and.left_neutral
thf(fact_7184_and_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ one_one_int ) @ A )
      = A ) ).

% and.left_neutral
thf(fact_7185_and_Oright__neutral,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = A ) ).

% and.right_neutral
thf(fact_7186_and_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = A ) ).

% and.right_neutral
thf(fact_7187_bit_Oconj__one__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se3949692690581998587nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = X ) ).

% bit.conj_one_right
thf(fact_7188_bit_Oconj__one__right,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( uminus_uminus_int @ one_one_int ) )
      = X ) ).

% bit.conj_one_right
thf(fact_7189_and__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        | ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% and_nonnegative_int_iff
thf(fact_7190_and__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        & ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% and_negative_int_iff
thf(fact_7191_norm__ii,axiom,
    ( ( real_V1022390504157884413omplex @ imaginary_unit )
    = one_one_real ) ).

% norm_ii
thf(fact_7192_norm__cis,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( cis @ A ) )
      = one_one_real ) ).

% norm_cis
thf(fact_7193_cis__zero,axiom,
    ( ( cis @ zero_zero_real )
    = one_one_complex ) ).

% cis_zero
thf(fact_7194_divide__i,axiom,
    ! [X: complex] :
      ( ( divide1717551699836669952omplex @ X @ imaginary_unit )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X ) ) ).

% divide_i
thf(fact_7195_complex__i__mult__minus,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X ) )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% complex_i_mult_minus
thf(fact_7196_inverse__le__iff__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_7197_inverse__le__iff__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_7198_inverse__le__iff__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_7199_inverse__le__iff__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_7200_right__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
        = one_one_real ) ) ).

% right_inverse
thf(fact_7201_right__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ A @ ( invers8013647133539491842omplex @ A ) )
        = one_one_complex ) ) ).

% right_inverse
thf(fact_7202_right__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ A @ ( inverse_inverse_rat @ A ) )
        = one_one_rat ) ) ).

% right_inverse
thf(fact_7203_left__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% left_inverse
thf(fact_7204_left__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
        = one_one_complex ) ) ).

% left_inverse
thf(fact_7205_left__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% left_inverse
thf(fact_7206_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_real @ ( numeral_numeral_real @ W ) )
      = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_7207_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_7208_inverse__eq__divide__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_rat @ ( numeral_numeral_rat @ W ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% inverse_eq_divide_numeral
thf(fact_7209_and__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = one_one_int ) ).

% and_numerals(2)
thf(fact_7210_and__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = one_one_nat ) ).

% and_numerals(2)
thf(fact_7211_and__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
      = one_one_int ) ).

% and_numerals(8)
thf(fact_7212_and__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
      = one_one_nat ) ).

% and_numerals(8)
thf(fact_7213_cis__pi,axiom,
    ( ( cis @ pi )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% cis_pi
thf(fact_7214_i__squared,axiom,
    ( ( times_times_complex @ imaginary_unit @ imaginary_unit )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% i_squared
thf(fact_7215_divide__numeral__i,axiom,
    ! [Z2: complex,N: num] :
      ( ( divide1717551699836669952omplex @ Z2 @ ( times_times_complex @ ( numera6690914467698888265omplex @ N ) @ imaginary_unit ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z2 ) ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% divide_numeral_i
thf(fact_7216_and__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_numerals(5)
thf(fact_7217_and__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
      = zero_zero_nat ) ).

% and_numerals(5)
thf(fact_7218_and__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = zero_zero_int ) ).

% and_numerals(1)
thf(fact_7219_and__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = zero_zero_nat ) ).

% and_numerals(1)
thf(fact_7220_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_7221_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_7222_inverse__eq__divide__neg__numeral,axiom,
    ! [W: num] :
      ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% inverse_eq_divide_neg_numeral
thf(fact_7223_and__numerals_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).

% and_numerals(3)
thf(fact_7224_and__numerals_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).

% and_numerals(3)
thf(fact_7225_and__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = one_one_int ) ).

% and_minus_numerals(2)
thf(fact_7226_and__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = one_one_int ) ).

% and_minus_numerals(6)
thf(fact_7227_and__numerals_I6_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).

% and_numerals(6)
thf(fact_7228_and__numerals_I6_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).

% and_numerals(6)
thf(fact_7229_and__numerals_I4_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).

% and_numerals(4)
thf(fact_7230_and__numerals_I4_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).

% and_numerals(4)
thf(fact_7231_and__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_minus_numerals(5)
thf(fact_7232_and__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = zero_zero_int ) ).

% and_minus_numerals(1)
thf(fact_7233_power2__i,axiom,
    ( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power2_i
thf(fact_7234_cis__pi__half,axiom,
    ( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = imaginary_unit ) ).

% cis_pi_half
thf(fact_7235_i__even__power,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).

% i_even_power
thf(fact_7236_and__numerals_I7_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).

% and_numerals(7)
thf(fact_7237_and__numerals_I7_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).

% and_numerals(7)
thf(fact_7238_exp__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i
thf(fact_7239_exp__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i'
thf(fact_7240_cis__minus__pi__half,axiom,
    ( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
    = ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).

% cis_minus_pi_half
thf(fact_7241_bit__and__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
        & ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).

% bit_and_iff
thf(fact_7242_bit__and__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
        & ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).

% bit_and_iff
thf(fact_7243_of__int__and__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( bit_se725231765392027082nd_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_and_eq
thf(fact_7244_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_7245_field__class_Ofield__inverse__zero,axiom,
    ( ( invers8013647133539491842omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% field_class.field_inverse_zero
thf(fact_7246_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% field_class.field_inverse_zero
thf(fact_7247_inverse__zero__imp__zero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
     => ( A = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_7248_inverse__zero__imp__zero,axiom,
    ! [A: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = zero_zero_complex )
     => ( A = zero_zero_complex ) ) ).

% inverse_zero_imp_zero
thf(fact_7249_inverse__zero__imp__zero,axiom,
    ! [A: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = zero_zero_rat )
     => ( A = zero_zero_rat ) ) ).

% inverse_zero_imp_zero
thf(fact_7250_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( ( A != zero_zero_real )
       => ( ( B != zero_zero_real )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_7251_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
     => ( ( A != zero_zero_complex )
       => ( ( B != zero_zero_complex )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_7252_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( ( A != zero_zero_rat )
       => ( ( B != zero_zero_rat )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_7253_nonzero__inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_7254_nonzero__inverse__inverse__eq,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_7255_nonzero__inverse__inverse__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_7256_nonzero__imp__inverse__nonzero,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_7257_nonzero__imp__inverse__nonzero,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A )
       != zero_zero_complex ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_7258_nonzero__imp__inverse__nonzero,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
       != zero_zero_rat ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_7259_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: real,X: real] :
      ( ( ( times_times_real @ Y @ X )
        = ( times_times_real @ X @ Y ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y ) @ X )
        = ( times_times_real @ X @ ( inverse_inverse_real @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_7260_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: complex,X: complex] :
      ( ( ( times_times_complex @ Y @ X )
        = ( times_times_complex @ X @ Y ) )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ Y ) @ X )
        = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_7261_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: rat,X: rat] :
      ( ( ( times_times_rat @ Y @ X )
        = ( times_times_rat @ X @ Y ) )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ Y ) @ X )
        = ( times_times_rat @ X @ ( inverse_inverse_rat @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_7262_of__nat__and__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se727722235901077358nd_nat @ M @ N ) )
      = ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_and_eq
thf(fact_7263_of__nat__and__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se727722235901077358nd_nat @ M @ N ) )
      = ( bit_se727722235901077358nd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_and_eq
thf(fact_7264_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_7265_inverse__eq__imp__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( ( invers8013647133539491842omplex @ A )
        = ( invers8013647133539491842omplex @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_7266_inverse__eq__imp__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ( inverse_inverse_rat @ A )
        = ( inverse_inverse_rat @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_7267_and_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ C )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).

% and.assoc
thf(fact_7268_and_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ C )
      = ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).

% and.assoc
thf(fact_7269_and_Ocommute,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [A2: int,B2: int] : ( bit_se725231765392027082nd_int @ B2 @ A2 ) ) ) ).

% and.commute
thf(fact_7270_and_Ocommute,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [A2: nat,B2: nat] : ( bit_se727722235901077358nd_nat @ B2 @ A2 ) ) ) ).

% and.commute
thf(fact_7271_and_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se725231765392027082nd_int @ B @ ( bit_se725231765392027082nd_int @ A @ C ) )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).

% and.left_commute
thf(fact_7272_and_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se727722235901077358nd_nat @ B @ ( bit_se727722235901077358nd_nat @ A @ C ) )
      = ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).

% and.left_commute
thf(fact_7273_nonzero__norm__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ A ) )
        = ( inverse_inverse_real @ ( real_V7735802525324610683m_real @ A ) ) ) ) ).

% nonzero_norm_inverse
thf(fact_7274_nonzero__norm__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ A ) )
        = ( inverse_inverse_real @ ( real_V1022390504157884413omplex @ A ) ) ) ) ).

% nonzero_norm_inverse
thf(fact_7275_power__inverse,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( inverse_inverse_real @ A ) @ N )
      = ( inverse_inverse_real @ ( power_power_real @ A @ N ) ) ) ).

% power_inverse
thf(fact_7276_power__inverse,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( invers8013647133539491842omplex @ A ) @ N )
      = ( invers8013647133539491842omplex @ ( power_power_complex @ A @ N ) ) ) ).

% power_inverse
thf(fact_7277_power__inverse,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( inverse_inverse_rat @ A ) @ N )
      = ( inverse_inverse_rat @ ( power_power_rat @ A @ N ) ) ) ).

% power_inverse
thf(fact_7278_real__sqrt__inverse,axiom,
    ! [X: real] :
      ( ( sqrt @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_inverse
thf(fact_7279_bit__and__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
        & ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_and_int_iff
thf(fact_7280_cis__conv__exp,axiom,
    ( cis
    = ( ^ [B2: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B2 ) ) ) ) ) ).

% cis_conv_exp
thf(fact_7281_cis__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide1717551699836669952omplex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( minus_minus_real @ A @ B ) ) ) ).

% cis_divide
thf(fact_7282_complex__i__not__one,axiom,
    imaginary_unit != one_one_complex ).

% complex_i_not_one
thf(fact_7283_and__eq__minus__1__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( bit_se3949692690581998587nteger @ A @ B )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
        & ( B
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% and_eq_minus_1_iff
thf(fact_7284_and__eq__minus__1__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( bit_se725231765392027082nd_int @ A @ B )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( ( A
          = ( uminus_uminus_int @ one_one_int ) )
        & ( B
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% and_eq_minus_1_iff
thf(fact_7285_positive__imp__inverse__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_7286_positive__imp__inverse__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_7287_negative__imp__inverse__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_7288_negative__imp__inverse__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat ) ) ).

% negative_imp_inverse_negative
thf(fact_7289_inverse__positive__imp__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_7290_inverse__positive__imp__positive,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_7291_inverse__negative__imp__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_7292_inverse__negative__imp__negative,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
     => ( ( A != zero_zero_rat )
       => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% inverse_negative_imp_negative
thf(fact_7293_less__imp__inverse__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_7294_less__imp__inverse__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_7295_inverse__less__imp__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_7296_inverse__less__imp__less__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_7297_less__imp__inverse__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_7298_less__imp__inverse__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_7299_inverse__less__imp__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_7300_inverse__less__imp__less,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_7301_nonzero__inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
          = ( times_times_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_7302_nonzero__inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
          = ( times_times_complex @ ( invers8013647133539491842omplex @ B ) @ ( invers8013647133539491842omplex @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_7303_nonzero__inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
          = ( times_times_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_7304_not__bit__Suc__0__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).

% not_bit_Suc_0_Suc
thf(fact_7305_bit__Suc__0__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_Suc_0_iff
thf(fact_7306_nonzero__inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
        = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_7307_nonzero__inverse__minus__eq,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
        = ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_7308_nonzero__inverse__minus__eq,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
        = ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_7309_inverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = one_one_real )
     => ( ( inverse_inverse_real @ A )
        = B ) ) ).

% inverse_unique
thf(fact_7310_inverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = one_one_complex )
     => ( ( invers8013647133539491842omplex @ A )
        = B ) ) ).

% inverse_unique
thf(fact_7311_inverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = one_one_rat )
     => ( ( inverse_inverse_rat @ A )
        = B ) ) ).

% inverse_unique
thf(fact_7312_inverse__numeral__1,axiom,
    ( ( inverse_inverse_real @ ( numeral_numeral_real @ one ) )
    = ( numeral_numeral_real @ one ) ) ).

% inverse_numeral_1
thf(fact_7313_inverse__numeral__1,axiom,
    ( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( numera6690914467698888265omplex @ one ) ) ).

% inverse_numeral_1
thf(fact_7314_inverse__numeral__1,axiom,
    ( ( inverse_inverse_rat @ ( numeral_numeral_rat @ one ) )
    = ( numeral_numeral_rat @ one ) ) ).

% inverse_numeral_1
thf(fact_7315_divide__inverse__commute,axiom,
    ( divide_divide_real
    = ( ^ [A2: real,B2: real] : ( times_times_real @ ( inverse_inverse_real @ B2 ) @ A2 ) ) ) ).

% divide_inverse_commute
thf(fact_7316_divide__inverse__commute,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A2: complex,B2: complex] : ( times_times_complex @ ( invers8013647133539491842omplex @ B2 ) @ A2 ) ) ) ).

% divide_inverse_commute
thf(fact_7317_divide__inverse__commute,axiom,
    ( divide_divide_rat
    = ( ^ [A2: rat,B2: rat] : ( times_times_rat @ ( inverse_inverse_rat @ B2 ) @ A2 ) ) ) ).

% divide_inverse_commute
thf(fact_7318_divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A2: real,B2: real] : ( times_times_real @ A2 @ ( inverse_inverse_real @ B2 ) ) ) ) ).

% divide_inverse
thf(fact_7319_divide__inverse,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A2: complex,B2: complex] : ( times_times_complex @ A2 @ ( invers8013647133539491842omplex @ B2 ) ) ) ) ).

% divide_inverse
thf(fact_7320_divide__inverse,axiom,
    ( divide_divide_rat
    = ( ^ [A2: rat,B2: rat] : ( times_times_rat @ A2 @ ( inverse_inverse_rat @ B2 ) ) ) ) ).

% divide_inverse
thf(fact_7321_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A2: real,B2: real] : ( times_times_real @ A2 @ ( inverse_inverse_real @ B2 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_7322_field__class_Ofield__divide__inverse,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A2: complex,B2: complex] : ( times_times_complex @ A2 @ ( invers8013647133539491842omplex @ B2 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_7323_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_rat
    = ( ^ [A2: rat,B2: rat] : ( times_times_rat @ A2 @ ( inverse_inverse_rat @ B2 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_7324_inverse__eq__divide,axiom,
    ( inverse_inverse_real
    = ( divide_divide_real @ one_one_real ) ) ).

% inverse_eq_divide
thf(fact_7325_inverse__eq__divide,axiom,
    ( invers8013647133539491842omplex
    = ( divide1717551699836669952omplex @ one_one_complex ) ) ).

% inverse_eq_divide
thf(fact_7326_inverse__eq__divide,axiom,
    ( inverse_inverse_rat
    = ( divide_divide_rat @ one_one_rat ) ) ).

% inverse_eq_divide
thf(fact_7327_power__mult__inverse__distrib,axiom,
    ! [X: real,M: nat] :
      ( ( times_times_real @ ( power_power_real @ X @ M ) @ ( inverse_inverse_real @ X ) )
      = ( times_times_real @ ( inverse_inverse_real @ X ) @ ( power_power_real @ X @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_7328_power__mult__inverse__distrib,axiom,
    ! [X: complex,M: nat] :
      ( ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( invers8013647133539491842omplex @ X ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ X ) @ ( power_power_complex @ X @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_7329_power__mult__inverse__distrib,axiom,
    ! [X: rat,M: nat] :
      ( ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( inverse_inverse_rat @ X ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ X ) @ ( power_power_rat @ X @ M ) ) ) ).

% power_mult_inverse_distrib
thf(fact_7330_power__mult__power__inverse__commute,axiom,
    ! [X: real,M: nat,N: nat] :
      ( ( times_times_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ ( inverse_inverse_real @ X ) @ N ) )
      = ( times_times_real @ ( power_power_real @ ( inverse_inverse_real @ X ) @ N ) @ ( power_power_real @ X @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_7331_power__mult__power__inverse__commute,axiom,
    ! [X: complex,M: nat,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ N ) )
      = ( times_times_complex @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ N ) @ ( power_power_complex @ X @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_7332_power__mult__power__inverse__commute,axiom,
    ! [X: rat,M: nat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ N ) )
      = ( times_times_rat @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ N ) @ ( power_power_rat @ X @ M ) ) ) ).

% power_mult_power_inverse_commute
thf(fact_7333_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) @ X )
      = ( times_times_real @ X @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_7334_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: complex] :
      ( ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa ) ) @ X )
      = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_7335_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: rat] :
      ( ( times_times_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa ) ) @ X )
      = ( times_times_rat @ X @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_7336_nonzero__abs__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
        = ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ) ).

% nonzero_abs_inverse
thf(fact_7337_nonzero__abs__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
        = ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ) ).

% nonzero_abs_inverse
thf(fact_7338_mult__inverse__of__int__commute,axiom,
    ! [Xa: int,X: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa ) ) @ X )
      = ( times_times_real @ X @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_7339_mult__inverse__of__int__commute,axiom,
    ! [Xa: int,X: complex] :
      ( ( times_times_complex @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa ) ) @ X )
      = ( times_times_complex @ X @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_7340_mult__inverse__of__int__commute,axiom,
    ! [Xa: int,X: rat] :
      ( ( times_times_rat @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa ) ) @ X )
      = ( times_times_rat @ X @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa ) ) ) ) ).

% mult_inverse_of_int_commute
thf(fact_7341_AND__lower,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X @ Y ) ) ) ).

% AND_lower
thf(fact_7342_AND__upper1,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ X ) ) ).

% AND_upper1
thf(fact_7343_AND__upper2,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ Y ) ) ).

% AND_upper2
thf(fact_7344_AND__upper1_H,axiom,
    ! [Y: int,Z2: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z2 ) ) ) ).

% AND_upper1'
thf(fact_7345_AND__upper2_H,axiom,
    ! [Y: int,Z2: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ Z2 ) ) ) ).

% AND_upper2'
thf(fact_7346_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X3: real,Y6: real] : ( times_times_real @ X3 @ ( inverse_inverse_real @ Y6 ) ) ) ) ).

% divide_real_def
thf(fact_7347_take__bit__eq__mask,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,A2: int] : ( bit_se725231765392027082nd_int @ A2 @ ( bit_se2000444600071755411sk_int @ N3 ) ) ) ) ).

% take_bit_eq_mask
thf(fact_7348_take__bit__eq__mask,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,A2: nat] : ( bit_se727722235901077358nd_nat @ A2 @ ( bit_se2002935070580805687sk_nat @ N3 ) ) ) ) ).

% take_bit_eq_mask
thf(fact_7349_DeMoivre,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_complex @ ( cis @ A ) @ N )
      = ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).

% DeMoivre
thf(fact_7350_cis__mult,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( plus_plus_real @ A @ B ) ) ) ).

% cis_mult
thf(fact_7351_i__times__eq__iff,axiom,
    ! [W: complex,Z2: complex] :
      ( ( ( times_times_complex @ imaginary_unit @ W )
        = Z2 )
      = ( W
        = ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z2 ) ) ) ) ).

% i_times_eq_iff
thf(fact_7352_inverse__le__imp__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_7353_inverse__le__imp__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_7354_le__imp__inverse__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_7355_le__imp__inverse__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_7356_inverse__le__imp__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_7357_inverse__le__imp__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_7358_le__imp__inverse__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_7359_le__imp__inverse__le__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_7360_inverse__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ X ) @ one_one_real )
      = ( ( ord_less_eq_real @ X @ zero_zero_real )
        | ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% inverse_le_1_iff
thf(fact_7361_inverse__le__1__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ X ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X @ zero_zero_rat )
        | ( ord_less_eq_rat @ one_one_rat @ X ) ) ) ).

% inverse_le_1_iff
thf(fact_7362_one__less__inverse__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X ) )
      = ( ( ord_less_real @ zero_zero_real @ X )
        & ( ord_less_real @ X @ one_one_real ) ) ) ).

% one_less_inverse_iff
thf(fact_7363_one__less__inverse__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ X ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X )
        & ( ord_less_rat @ X @ one_one_rat ) ) ) ).

% one_less_inverse_iff
thf(fact_7364_one__less__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_less_inverse
thf(fact_7365_one__less__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_less_inverse
thf(fact_7366_field__class_Ofield__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% field_class.field_inverse
thf(fact_7367_field__class_Ofield__inverse,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
        = one_one_complex ) ) ).

% field_class.field_inverse
thf(fact_7368_field__class_Ofield__inverse,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
        = one_one_rat ) ) ).

% field_class.field_inverse
thf(fact_7369_division__ring__inverse__add,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( plus_plus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_7370_division__ring__inverse__add,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( plus_plus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_7371_division__ring__inverse__add,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( plus_plus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% division_ring_inverse_add
thf(fact_7372_inverse__add,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( inverse_inverse_real @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% inverse_add
thf(fact_7373_inverse__add,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( invers8013647133539491842omplex @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% inverse_add
thf(fact_7374_inverse__add,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( inverse_inverse_rat @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% inverse_add
thf(fact_7375_division__ring__inverse__diff,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ B @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_7376_division__ring__inverse__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ B @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_7377_division__ring__inverse__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ B @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).

% division_ring_inverse_diff
thf(fact_7378_nonzero__inverse__eq__divide,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_7379_nonzero__inverse__eq__divide,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( invers8013647133539491842omplex @ A )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_7380_nonzero__inverse__eq__divide,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( inverse_inverse_rat @ A )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_inverse_eq_divide
thf(fact_7381_not__bit__Suc__0__numeral,axiom,
    ! [N: num] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).

% not_bit_Suc_0_numeral
thf(fact_7382_and__less__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ K ) ) ).

% and_less_eq
thf(fact_7383_AND__upper1_H_H,axiom,
    ! [Y: int,Z2: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z2 ) ) ) ).

% AND_upper1''
thf(fact_7384_AND__upper2_H_H,axiom,
    ! [Y: int,Z2: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ Z2 ) ) ) ).

% AND_upper2''
thf(fact_7385_bit__push__bit__iff__nat,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_nat
thf(fact_7386_imaginary__unit_Ocode,axiom,
    ( imaginary_unit
    = ( complex2 @ zero_zero_real @ one_one_real ) ) ).

% imaginary_unit.code
thf(fact_7387_Complex__eq__i,axiom,
    ! [X: real,Y: real] :
      ( ( ( complex2 @ X @ Y )
        = imaginary_unit )
      = ( ( X = zero_zero_real )
        & ( Y = one_one_real ) ) ) ).

% Complex_eq_i
thf(fact_7388_even__and__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3949692690581998587nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_7389_even__and__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_7390_even__and__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_7391_inverse__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_real @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_7392_inverse__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_rat @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_7393_inverse__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_eq_real @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_7394_inverse__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ B @ A ) )
        & ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
         => ( ord_less_eq_rat @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_7395_one__le__inverse__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X ) )
      = ( ( ord_less_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% one_le_inverse_iff
thf(fact_7396_one__le__inverse__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ X ) )
      = ( ( ord_less_rat @ zero_zero_rat @ X )
        & ( ord_less_eq_rat @ X @ one_one_rat ) ) ) ).

% one_le_inverse_iff
thf(fact_7397_inverse__less__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ X ) @ one_one_real )
      = ( ( ord_less_eq_real @ X @ zero_zero_real )
        | ( ord_less_real @ one_one_real @ X ) ) ) ).

% inverse_less_1_iff
thf(fact_7398_inverse__less__1__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( inverse_inverse_rat @ X ) @ one_one_rat )
      = ( ( ord_less_eq_rat @ X @ zero_zero_rat )
        | ( ord_less_rat @ one_one_rat @ X ) ) ) ).

% inverse_less_1_iff
thf(fact_7399_one__le__inverse,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% one_le_inverse
thf(fact_7400_one__le__inverse,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).

% one_le_inverse
thf(fact_7401_inverse__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_7402_inverse__diff__inverse,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
          = ( uminus1482373934393186551omplex @ ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_7403_inverse__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
          = ( uminus_uminus_rat @ ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ) ).

% inverse_diff_inverse
thf(fact_7404_reals__Archimedean,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N2: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ X ) ) ).

% reals_Archimedean
thf(fact_7405_reals__Archimedean,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N2: nat] : ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ X ) ) ).

% reals_Archimedean
thf(fact_7406_i__mult__Complex,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% i_mult_Complex
thf(fact_7407_Complex__mult__i,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% Complex_mult_i
thf(fact_7408_bit__iff__and__push__bit__not__eq__0,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A2: nat,N3: nat] :
          ( ( bit_se727722235901077358nd_nat @ A2 @ ( bit_se547839408752420682it_nat @ N3 @ one_one_nat ) )
         != zero_zero_nat ) ) ) ).

% bit_iff_and_push_bit_not_eq_0
thf(fact_7409_bit__iff__and__push__bit__not__eq__0,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A2: int,N3: nat] :
          ( ( bit_se725231765392027082nd_int @ A2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) )
         != zero_zero_int ) ) ) ).

% bit_iff_and_push_bit_not_eq_0
thf(fact_7410_bit__iff__and__push__bit__not__eq__0,axiom,
    ( bit_se9216721137139052372nteger
    = ( ^ [A2: code_integer,N3: nat] :
          ( ( bit_se3949692690581998587nteger @ A2 @ ( bit_se7788150548672797655nteger @ N3 @ one_one_Code_integer ) )
         != zero_z3403309356797280102nteger ) ) ) ).

% bit_iff_and_push_bit_not_eq_0
thf(fact_7411_bit__iff__and__push__bit__not__eq__0,axiom,
    ( bit_se8040316288895769887atural
    = ( ^ [A2: code_natural,N3: nat] :
          ( ( bit_se2773287842338716102atural @ A2 @ ( bit_se6611745700429515170atural @ N3 @ one_one_Code_natural ) )
         != zero_z2226904508553997617atural ) ) ) ).

% bit_iff_and_push_bit_not_eq_0
thf(fact_7412_even__and__iff__int,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ).

% even_and_iff_int
thf(fact_7413_forall__pos__mono__1,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D2: real,E2: real] :
          ( ( ord_less_real @ D2 @ E2 )
         => ( ( P @ D2 )
           => ( P @ E2 ) ) )
     => ( ! [N2: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono_1
thf(fact_7414_forall__pos__mono,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D2: real,E2: real] :
          ( ( ord_less_real @ D2 @ E2 )
         => ( ( P @ D2 )
           => ( P @ E2 ) ) )
     => ( ! [N2: nat] :
            ( ( N2 != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono
thf(fact_7415_real__arch__inverse,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
      = ( ? [N3: nat] :
            ( ( N3 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E ) ) ) ) ).

% real_arch_inverse
thf(fact_7416_bit__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_nat_iff
thf(fact_7417_sqrt__divide__self__eq,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( divide_divide_real @ ( sqrt @ X ) @ X )
        = ( inverse_inverse_real @ ( sqrt @ X ) ) ) ) ).

% sqrt_divide_self_eq
thf(fact_7418_and__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ A @ one_one_Code_integer )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7419_and__one__eq,axiom,
    ! [A: code_natural] :
      ( ( bit_se2773287842338716102atural @ A @ one_one_Code_natural )
      = ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7420_and__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ one_one_int )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7421_and__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ one_one_nat )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7422_one__and__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ one_one_Code_integer @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7423_one__and__eq,axiom,
    ! [A: code_natural] :
      ( ( bit_se2773287842338716102atural @ one_one_Code_natural @ A )
      = ( modulo8411746178871703098atural @ A @ ( numera5444537566228673987atural @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7424_one__and__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7425_one__and__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7426_ex__inverse__of__nat__less,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_7427_ex__inverse__of__nat__less,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_7428_power__diff__conv__inverse,axiom,
    ! [X: real,M: nat,N: nat] :
      ( ( X != zero_zero_real )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( power_power_real @ X @ ( minus_minus_nat @ N @ M ) )
          = ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ ( inverse_inverse_real @ X ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_7429_power__diff__conv__inverse,axiom,
    ! [X: complex,M: nat,N: nat] :
      ( ( X != zero_zero_complex )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( power_power_complex @ X @ ( minus_minus_nat @ N @ M ) )
          = ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_7430_power__diff__conv__inverse,axiom,
    ! [X: rat,M: nat,N: nat] :
      ( ( X != zero_zero_rat )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( power_power_rat @ X @ ( minus_minus_nat @ N @ M ) )
          = ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ M ) ) ) ) ) ).

% power_diff_conv_inverse
thf(fact_7431_complex__of__real__i,axiom,
    ! [R: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ imaginary_unit )
      = ( complex2 @ zero_zero_real @ R ) ) ).

% complex_of_real_i
thf(fact_7432_i__complex__of__real,axiom,
    ! [R: real] :
      ( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R ) )
      = ( complex2 @ zero_zero_real @ R ) ) ).

% i_complex_of_real
thf(fact_7433_log__inverse,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( log2 @ A @ ( inverse_inverse_real @ X ) )
            = ( uminus_uminus_real @ ( log2 @ A @ X ) ) ) ) ) ) ).

% log_inverse
thf(fact_7434_Complex__eq,axiom,
    ( complex2
    = ( ^ [A2: real,B2: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A2 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B2 ) ) ) ) ) ).

% Complex_eq
thf(fact_7435_and__exp__eq__0__iff__not__bit,axiom,
    ! [A: int,N: nat] :
      ( ( ( bit_se725231765392027082nd_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
        = zero_zero_int )
      = ( ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% and_exp_eq_0_iff_not_bit
thf(fact_7436_and__exp__eq__0__iff__not__bit,axiom,
    ! [A: nat,N: nat] :
      ( ( ( bit_se727722235901077358nd_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
        = zero_zero_nat )
      = ( ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).

% and_exp_eq_0_iff_not_bit
thf(fact_7437_bit__nat__def,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [M3: nat,N3: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_nat_def
thf(fact_7438_exp__plus__inverse__exp,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) ) ).

% exp_plus_inverse_exp
thf(fact_7439_complex__split__polar,axiom,
    ! [Z2: complex] :
    ? [R2: real,A4: real] :
      ( Z2
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A4 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A4 ) ) ) ) ) ) ).

% complex_split_polar
thf(fact_7440_plus__inverse__ge__2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_7441_real__inv__sqrt__pow2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( inverse_inverse_real @ X ) ) ) ).

% real_inv_sqrt_pow2
thf(fact_7442_tan__cot,axiom,
    ! [X: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
      = ( inverse_inverse_real @ ( tan_real @ X ) ) ) ).

% tan_cot
thf(fact_7443_and__int__rec,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
              & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_int_rec
thf(fact_7444_real__le__x__sinh,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ X @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_x_sinh
thf(fact_7445_real__le__abs__sinh,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_abs_sinh
thf(fact_7446_tan__sec,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( power_power_real @ ( inverse_inverse_real @ ( cos_real @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% tan_sec
thf(fact_7447_tan__sec,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( plus_plus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( power_power_complex @ ( invers8013647133539491842omplex @ ( cos_complex @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% tan_sec
thf(fact_7448_cmod__unit__one,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
      = one_one_real ) ).

% cmod_unit_one
thf(fact_7449_cmod__complex__polar,axiom,
    ! [R: real,A: real] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
      = ( abs_abs_real @ R ) ) ).

% cmod_complex_polar
thf(fact_7450_Arg__minus__ii,axiom,
    ( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
    = ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_minus_ii
thf(fact_7451_csqrt__ii,axiom,
    ( ( csqrt @ imaginary_unit )
    = ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt_ii
thf(fact_7452_Arg__ii,axiom,
    ( ( arg @ imaginary_unit )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_ii
thf(fact_7453_sinh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( sinh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_ln_real
thf(fact_7454_cis__multiple__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_complex ) ) ).

% cis_multiple_2pi
thf(fact_7455_sinh__0,axiom,
    ( ( sinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% sinh_0
thf(fact_7456_frac__in__Ints__iff,axiom,
    ! [X: real] :
      ( ( member_real @ ( archim2898591450579166408c_real @ X ) @ ring_1_Ints_real )
      = ( member_real @ X @ ring_1_Ints_real ) ) ).

% frac_in_Ints_iff
thf(fact_7457_csqrt__eq__1,axiom,
    ! [Z2: complex] :
      ( ( ( csqrt @ Z2 )
        = one_one_complex )
      = ( Z2 = one_one_complex ) ) ).

% csqrt_eq_1
thf(fact_7458_csqrt__1,axiom,
    ( ( csqrt @ one_one_complex )
    = one_one_complex ) ).

% csqrt_1
thf(fact_7459_frac__eq__0__iff,axiom,
    ! [X: real] :
      ( ( ( archim2898591450579166408c_real @ X )
        = zero_zero_real )
      = ( member_real @ X @ ring_1_Ints_real ) ) ).

% frac_eq_0_iff
thf(fact_7460_frac__eq__0__iff,axiom,
    ! [X: rat] :
      ( ( ( archimedean_frac_rat @ X )
        = zero_zero_rat )
      = ( member_rat @ X @ ring_1_Ints_rat ) ) ).

% frac_eq_0_iff
thf(fact_7461_floor__add2,axiom,
    ! [X: real,Y: real] :
      ( ( ( member_real @ X @ ring_1_Ints_real )
        | ( member_real @ Y @ ring_1_Ints_real ) )
     => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) ) ) ).

% floor_add2
thf(fact_7462_floor__add2,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( member_rat @ X @ ring_1_Ints_rat )
        | ( member_rat @ Y @ ring_1_Ints_rat ) )
     => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y ) )
        = ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y ) ) ) ) ).

% floor_add2
thf(fact_7463_frac__gt__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) )
      = ( ~ ( member_real @ X @ ring_1_Ints_real ) ) ) ).

% frac_gt_0_iff
thf(fact_7464_frac__gt__0__iff,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X ) )
      = ( ~ ( member_rat @ X @ ring_1_Ints_rat ) ) ) ).

% frac_gt_0_iff
thf(fact_7465_and__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = zero_zero_nat ) ).

% and_nat_numerals(1)
thf(fact_7466_and__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% and_nat_numerals(3)
thf(fact_7467_power2__csqrt,axiom,
    ! [Z2: complex] :
      ( ( power_power_complex @ ( csqrt @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = Z2 ) ).

% power2_csqrt
thf(fact_7468_and__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = one_one_nat ) ).

% and_nat_numerals(2)
thf(fact_7469_and__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% and_nat_numerals(4)
thf(fact_7470_and__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_Suc_0_eq
thf(fact_7471_Suc__0__and__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Suc_0_and_eq
thf(fact_7472_Ints__0,axiom,
    member_complex @ zero_zero_complex @ ring_1_Ints_complex ).

% Ints_0
thf(fact_7473_Ints__0,axiom,
    member_real @ zero_zero_real @ ring_1_Ints_real ).

% Ints_0
thf(fact_7474_Ints__0,axiom,
    member_rat @ zero_zero_rat @ ring_1_Ints_rat ).

% Ints_0
thf(fact_7475_Ints__0,axiom,
    member_int @ zero_zero_int @ ring_1_Ints_int ).

% Ints_0
thf(fact_7476_Ints__numeral,axiom,
    ! [N: num] : ( member_complex @ ( numera6690914467698888265omplex @ N ) @ ring_1_Ints_complex ) ).

% Ints_numeral
thf(fact_7477_Ints__numeral,axiom,
    ! [N: num] : ( member_real @ ( numeral_numeral_real @ N ) @ ring_1_Ints_real ) ).

% Ints_numeral
thf(fact_7478_Ints__numeral,axiom,
    ! [N: num] : ( member_rat @ ( numeral_numeral_rat @ N ) @ ring_1_Ints_rat ) ).

% Ints_numeral
thf(fact_7479_Ints__numeral,axiom,
    ! [N: num] : ( member_int @ ( numeral_numeral_int @ N ) @ ring_1_Ints_int ) ).

% Ints_numeral
thf(fact_7480_Ints__mult,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( member_complex @ B @ ring_1_Ints_complex )
       => ( member_complex @ ( times_times_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).

% Ints_mult
thf(fact_7481_Ints__mult,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( member_real @ B @ ring_1_Ints_real )
       => ( member_real @ ( times_times_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).

% Ints_mult
thf(fact_7482_Ints__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( member_rat @ B @ ring_1_Ints_rat )
       => ( member_rat @ ( times_times_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).

% Ints_mult
thf(fact_7483_Ints__mult,axiom,
    ! [A: int,B: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( member_int @ B @ ring_1_Ints_int )
       => ( member_int @ ( times_times_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).

% Ints_mult
thf(fact_7484_Ints__1,axiom,
    member_complex @ one_one_complex @ ring_1_Ints_complex ).

% Ints_1
thf(fact_7485_Ints__1,axiom,
    member_rat @ one_one_rat @ ring_1_Ints_rat ).

% Ints_1
thf(fact_7486_Ints__1,axiom,
    member_int @ one_one_int @ ring_1_Ints_int ).

% Ints_1
thf(fact_7487_Ints__1,axiom,
    member_real @ one_one_real @ ring_1_Ints_real ).

% Ints_1
thf(fact_7488_Ints__add,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( member_complex @ B @ ring_1_Ints_complex )
       => ( member_complex @ ( plus_plus_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).

% Ints_add
thf(fact_7489_Ints__add,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( member_real @ B @ ring_1_Ints_real )
       => ( member_real @ ( plus_plus_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).

% Ints_add
thf(fact_7490_Ints__add,axiom,
    ! [A: rat,B: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( member_rat @ B @ ring_1_Ints_rat )
       => ( member_rat @ ( plus_plus_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).

% Ints_add
thf(fact_7491_Ints__add,axiom,
    ! [A: int,B: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( member_int @ B @ ring_1_Ints_int )
       => ( member_int @ ( plus_plus_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).

% Ints_add
thf(fact_7492_Ints__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( member_complex @ B @ ring_1_Ints_complex )
       => ( member_complex @ ( minus_minus_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).

% Ints_diff
thf(fact_7493_Ints__diff,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( member_real @ B @ ring_1_Ints_real )
       => ( member_real @ ( minus_minus_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).

% Ints_diff
thf(fact_7494_Ints__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( member_rat @ B @ ring_1_Ints_rat )
       => ( member_rat @ ( minus_minus_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).

% Ints_diff
thf(fact_7495_Ints__diff,axiom,
    ! [A: int,B: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( member_int @ B @ ring_1_Ints_int )
       => ( member_int @ ( minus_minus_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).

% Ints_diff
thf(fact_7496_minus__in__Ints__iff,axiom,
    ! [X: real] :
      ( ( member_real @ ( uminus_uminus_real @ X ) @ ring_1_Ints_real )
      = ( member_real @ X @ ring_1_Ints_real ) ) ).

% minus_in_Ints_iff
thf(fact_7497_minus__in__Ints__iff,axiom,
    ! [X: int] :
      ( ( member_int @ ( uminus_uminus_int @ X ) @ ring_1_Ints_int )
      = ( member_int @ X @ ring_1_Ints_int ) ) ).

% minus_in_Ints_iff
thf(fact_7498_minus__in__Ints__iff,axiom,
    ! [X: complex] :
      ( ( member_complex @ ( uminus1482373934393186551omplex @ X ) @ ring_1_Ints_complex )
      = ( member_complex @ X @ ring_1_Ints_complex ) ) ).

% minus_in_Ints_iff
thf(fact_7499_minus__in__Ints__iff,axiom,
    ! [X: rat] :
      ( ( member_rat @ ( uminus_uminus_rat @ X ) @ ring_1_Ints_rat )
      = ( member_rat @ X @ ring_1_Ints_rat ) ) ).

% minus_in_Ints_iff
thf(fact_7500_minus__in__Ints__iff,axiom,
    ! [X: code_integer] :
      ( ( member_Code_integer @ ( uminus1351360451143612070nteger @ X ) @ ring_11222124179247155820nteger )
      = ( member_Code_integer @ X @ ring_11222124179247155820nteger ) ) ).

% minus_in_Ints_iff
thf(fact_7501_Ints__minus,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( member_real @ ( uminus_uminus_real @ A ) @ ring_1_Ints_real ) ) ).

% Ints_minus
thf(fact_7502_Ints__minus,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( member_int @ ( uminus_uminus_int @ A ) @ ring_1_Ints_int ) ) ).

% Ints_minus
thf(fact_7503_Ints__minus,axiom,
    ! [A: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( member_complex @ ( uminus1482373934393186551omplex @ A ) @ ring_1_Ints_complex ) ) ).

% Ints_minus
thf(fact_7504_Ints__minus,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( member_rat @ ( uminus_uminus_rat @ A ) @ ring_1_Ints_rat ) ) ).

% Ints_minus
thf(fact_7505_Ints__minus,axiom,
    ! [A: code_integer] :
      ( ( member_Code_integer @ A @ ring_11222124179247155820nteger )
     => ( member_Code_integer @ ( uminus1351360451143612070nteger @ A ) @ ring_11222124179247155820nteger ) ) ).

% Ints_minus
thf(fact_7506_divide__complex__def,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X3: complex,Y6: complex] : ( times_times_complex @ X3 @ ( invers8013647133539491842omplex @ Y6 ) ) ) ) ).

% divide_complex_def
thf(fact_7507_Ints__power,axiom,
    ! [A: real,N: nat] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( member_real @ ( power_power_real @ A @ N ) @ ring_1_Ints_real ) ) ).

% Ints_power
thf(fact_7508_Ints__power,axiom,
    ! [A: int,N: nat] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( member_int @ ( power_power_int @ A @ N ) @ ring_1_Ints_int ) ) ).

% Ints_power
thf(fact_7509_Ints__power,axiom,
    ! [A: complex,N: nat] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( member_complex @ ( power_power_complex @ A @ N ) @ ring_1_Ints_complex ) ) ).

% Ints_power
thf(fact_7510_Ints__of__nat,axiom,
    ! [N: nat] : ( member_complex @ ( semiri8010041392384452111omplex @ N ) @ ring_1_Ints_complex ) ).

% Ints_of_nat
thf(fact_7511_Ints__of__nat,axiom,
    ! [N: nat] : ( member_real @ ( semiri5074537144036343181t_real @ N ) @ ring_1_Ints_real ) ).

% Ints_of_nat
thf(fact_7512_Ints__of__nat,axiom,
    ! [N: nat] : ( member_rat @ ( semiri681578069525770553at_rat @ N ) @ ring_1_Ints_rat ) ).

% Ints_of_nat
thf(fact_7513_Ints__of__nat,axiom,
    ! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ring_1_Ints_int ) ).

% Ints_of_nat
thf(fact_7514_Ints__abs,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( member_int @ ( abs_abs_int @ A ) @ ring_1_Ints_int ) ) ).

% Ints_abs
thf(fact_7515_Ints__abs,axiom,
    ! [A: code_integer] :
      ( ( member_Code_integer @ A @ ring_11222124179247155820nteger )
     => ( member_Code_integer @ ( abs_abs_Code_integer @ A ) @ ring_11222124179247155820nteger ) ) ).

% Ints_abs
thf(fact_7516_Ints__abs,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( member_rat @ ( abs_abs_rat @ A ) @ ring_1_Ints_rat ) ) ).

% Ints_abs
thf(fact_7517_Ints__abs,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( member_real @ ( abs_abs_real @ A ) @ ring_1_Ints_real ) ) ).

% Ints_abs
thf(fact_7518_Ints__of__int,axiom,
    ! [Z2: int] : ( member_complex @ ( ring_17405671764205052669omplex @ Z2 ) @ ring_1_Ints_complex ) ).

% Ints_of_int
thf(fact_7519_Ints__of__int,axiom,
    ! [Z2: int] : ( member_int @ ( ring_1_of_int_int @ Z2 ) @ ring_1_Ints_int ) ).

% Ints_of_int
thf(fact_7520_Ints__of__int,axiom,
    ! [Z2: int] : ( member_real @ ( ring_1_of_int_real @ Z2 ) @ ring_1_Ints_real ) ).

% Ints_of_int
thf(fact_7521_Ints__of__int,axiom,
    ! [Z2: int] : ( member_rat @ ( ring_1_of_int_rat @ Z2 ) @ ring_1_Ints_rat ) ).

% Ints_of_int
thf(fact_7522_Ints__induct,axiom,
    ! [Q2: complex,P: complex > $o] :
      ( ( member_complex @ Q2 @ ring_1_Ints_complex )
     => ( ! [Z4: int] : ( P @ ( ring_17405671764205052669omplex @ Z4 ) )
       => ( P @ Q2 ) ) ) ).

% Ints_induct
thf(fact_7523_Ints__induct,axiom,
    ! [Q2: int,P: int > $o] :
      ( ( member_int @ Q2 @ ring_1_Ints_int )
     => ( ! [Z4: int] : ( P @ ( ring_1_of_int_int @ Z4 ) )
       => ( P @ Q2 ) ) ) ).

% Ints_induct
thf(fact_7524_Ints__induct,axiom,
    ! [Q2: real,P: real > $o] :
      ( ( member_real @ Q2 @ ring_1_Ints_real )
     => ( ! [Z4: int] : ( P @ ( ring_1_of_int_real @ Z4 ) )
       => ( P @ Q2 ) ) ) ).

% Ints_induct
thf(fact_7525_Ints__induct,axiom,
    ! [Q2: rat,P: rat > $o] :
      ( ( member_rat @ Q2 @ ring_1_Ints_rat )
     => ( ! [Z4: int] : ( P @ ( ring_1_of_int_rat @ Z4 ) )
       => ( P @ Q2 ) ) ) ).

% Ints_induct
thf(fact_7526_Ints__cases,axiom,
    ! [Q2: complex] :
      ( ( member_complex @ Q2 @ ring_1_Ints_complex )
     => ~ ! [Z4: int] :
            ( Q2
           != ( ring_17405671764205052669omplex @ Z4 ) ) ) ).

% Ints_cases
thf(fact_7527_Ints__cases,axiom,
    ! [Q2: int] :
      ( ( member_int @ Q2 @ ring_1_Ints_int )
     => ~ ! [Z4: int] :
            ( Q2
           != ( ring_1_of_int_int @ Z4 ) ) ) ).

% Ints_cases
thf(fact_7528_Ints__cases,axiom,
    ! [Q2: real] :
      ( ( member_real @ Q2 @ ring_1_Ints_real )
     => ~ ! [Z4: int] :
            ( Q2
           != ( ring_1_of_int_real @ Z4 ) ) ) ).

% Ints_cases
thf(fact_7529_Ints__cases,axiom,
    ! [Q2: rat] :
      ( ( member_rat @ Q2 @ ring_1_Ints_rat )
     => ~ ! [Z4: int] :
            ( Q2
           != ( ring_1_of_int_rat @ Z4 ) ) ) ).

% Ints_cases
thf(fact_7530_Ints__double__eq__0__iff,axiom,
    ! [A: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( ( plus_plus_complex @ A @ A )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_7531_Ints__double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( ( plus_plus_real @ A @ A )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_7532_Ints__double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( ( plus_plus_rat @ A @ A )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_7533_Ints__double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( ( plus_plus_int @ A @ A )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% Ints_double_eq_0_iff
thf(fact_7534_and__nat__def,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% and_nat_def
thf(fact_7535_Ints__odd__nonzero,axiom,
    ! [A: complex] :
      ( ( member_complex @ A @ ring_1_Ints_complex )
     => ( ( plus_plus_complex @ ( plus_plus_complex @ one_one_complex @ A ) @ A )
       != zero_zero_complex ) ) ).

% Ints_odd_nonzero
thf(fact_7536_Ints__odd__nonzero,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A )
       != zero_zero_real ) ) ).

% Ints_odd_nonzero
thf(fact_7537_Ints__odd__nonzero,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( plus_plus_rat @ ( plus_plus_rat @ one_one_rat @ A ) @ A )
       != zero_zero_rat ) ) ).

% Ints_odd_nonzero
thf(fact_7538_Ints__odd__nonzero,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A )
       != zero_zero_int ) ) ).

% Ints_odd_nonzero
thf(fact_7539_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_complex @ ( divide1717551699836669952omplex @ ( ring_17405671764205052669omplex @ A ) @ ( ring_17405671764205052669omplex @ B ) ) @ ring_1_Ints_complex ) ) ).

% of_int_divide_in_Ints
thf(fact_7540_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) @ ring_1_Ints_real ) ) ).

% of_int_divide_in_Ints
thf(fact_7541_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) @ ring_1_Ints_rat ) ) ).

% of_int_divide_in_Ints
thf(fact_7542_of__int__divide__in__Ints,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( member_int @ ( divide_divide_int @ ( ring_1_of_int_int @ A ) @ ( ring_1_of_int_int @ B ) ) @ ring_1_Ints_int ) ) ).

% of_int_divide_in_Ints
thf(fact_7543_Ints__odd__less__0,axiom,
    ! [A: real] :
      ( ( member_real @ A @ ring_1_Ints_real )
     => ( ( ord_less_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A ) @ zero_zero_real )
        = ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% Ints_odd_less_0
thf(fact_7544_Ints__odd__less__0,axiom,
    ! [A: rat] :
      ( ( member_rat @ A @ ring_1_Ints_rat )
     => ( ( ord_less_rat @ ( plus_plus_rat @ ( plus_plus_rat @ one_one_rat @ A ) @ A ) @ zero_zero_rat )
        = ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% Ints_odd_less_0
thf(fact_7545_Ints__odd__less__0,axiom,
    ! [A: int] :
      ( ( member_int @ A @ ring_1_Ints_int )
     => ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% Ints_odd_less_0
thf(fact_7546_Ints__nonzero__abs__ge1,axiom,
    ! [X: code_integer] :
      ( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
     => ( ( X != zero_z3403309356797280102nteger )
       => ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_7547_Ints__nonzero__abs__ge1,axiom,
    ! [X: real] :
      ( ( member_real @ X @ ring_1_Ints_real )
     => ( ( X != zero_zero_real )
       => ( ord_less_eq_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_7548_Ints__nonzero__abs__ge1,axiom,
    ! [X: rat] :
      ( ( member_rat @ X @ ring_1_Ints_rat )
     => ( ( X != zero_zero_rat )
       => ( ord_less_eq_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_7549_Ints__nonzero__abs__ge1,axiom,
    ! [X: int] :
      ( ( member_int @ X @ ring_1_Ints_int )
     => ( ( X != zero_zero_int )
       => ( ord_less_eq_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ) ).

% Ints_nonzero_abs_ge1
thf(fact_7550_Ints__nonzero__abs__less1,axiom,
    ! [X: code_integer] :
      ( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer )
       => ( X = zero_z3403309356797280102nteger ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_7551_Ints__nonzero__abs__less1,axiom,
    ! [X: real] :
      ( ( member_real @ X @ ring_1_Ints_real )
     => ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
       => ( X = zero_zero_real ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_7552_Ints__nonzero__abs__less1,axiom,
    ! [X: rat] :
      ( ( member_rat @ X @ ring_1_Ints_rat )
     => ( ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat )
       => ( X = zero_zero_rat ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_7553_Ints__nonzero__abs__less1,axiom,
    ! [X: int] :
      ( ( member_int @ X @ ring_1_Ints_int )
     => ( ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int )
       => ( X = zero_zero_int ) ) ) ).

% Ints_nonzero_abs_less1
thf(fact_7554_Ints__eq__abs__less1,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
     => ( ( member_Code_integer @ Y @ ring_11222124179247155820nteger )
       => ( ( X = Y )
          = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ Y ) ) @ one_one_Code_integer ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_7555_Ints__eq__abs__less1,axiom,
    ! [X: real,Y: real] :
      ( ( member_real @ X @ ring_1_Ints_real )
     => ( ( member_real @ Y @ ring_1_Ints_real )
       => ( ( X = Y )
          = ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y ) ) @ one_one_real ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_7556_Ints__eq__abs__less1,axiom,
    ! [X: rat,Y: rat] :
      ( ( member_rat @ X @ ring_1_Ints_rat )
     => ( ( member_rat @ Y @ ring_1_Ints_rat )
       => ( ( X = Y )
          = ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ Y ) ) @ one_one_rat ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_7557_Ints__eq__abs__less1,axiom,
    ! [X: int,Y: int] :
      ( ( member_int @ X @ ring_1_Ints_int )
     => ( ( member_int @ Y @ ring_1_Ints_int )
       => ( ( X = Y )
          = ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Y ) ) @ one_one_int ) ) ) ) ).

% Ints_eq_abs_less1
thf(fact_7558_sin__times__pi__eq__0,axiom,
    ! [X: real] :
      ( ( ( sin_real @ ( times_times_real @ X @ pi ) )
        = zero_zero_real )
      = ( member_real @ X @ ring_1_Ints_real ) ) ).

% sin_times_pi_eq_0
thf(fact_7559_frac__neg,axiom,
    ! [X: real] :
      ( ( ( member_real @ X @ ring_1_Ints_real )
       => ( ( archim2898591450579166408c_real @ ( uminus_uminus_real @ X ) )
          = zero_zero_real ) )
      & ( ~ ( member_real @ X @ ring_1_Ints_real )
       => ( ( archim2898591450579166408c_real @ ( uminus_uminus_real @ X ) )
          = ( minus_minus_real @ one_one_real @ ( archim2898591450579166408c_real @ X ) ) ) ) ) ).

% frac_neg
thf(fact_7560_frac__neg,axiom,
    ! [X: rat] :
      ( ( ( member_rat @ X @ ring_1_Ints_rat )
       => ( ( archimedean_frac_rat @ ( uminus_uminus_rat @ X ) )
          = zero_zero_rat ) )
      & ( ~ ( member_rat @ X @ ring_1_Ints_rat )
       => ( ( archimedean_frac_rat @ ( uminus_uminus_rat @ X ) )
          = ( minus_minus_rat @ one_one_rat @ ( archimedean_frac_rat @ X ) ) ) ) ) ).

% frac_neg
thf(fact_7561_le__mult__floor__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_7562_le__mult__floor__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_rat @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_7563_le__mult__floor__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_int @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_7564_le__mult__floor__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_real @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_7565_le__mult__floor__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_7566_le__mult__floor__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_int @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).

% le_mult_floor_Ints
thf(fact_7567_frac__unique__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( archim2898591450579166408c_real @ X )
        = A )
      = ( ( member_real @ ( minus_minus_real @ X @ A ) @ ring_1_Ints_real )
        & ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ord_less_real @ A @ one_one_real ) ) ) ).

% frac_unique_iff
thf(fact_7568_frac__unique__iff,axiom,
    ! [X: rat,A: rat] :
      ( ( ( archimedean_frac_rat @ X )
        = A )
      = ( ( member_rat @ ( minus_minus_rat @ X @ A ) @ ring_1_Ints_rat )
        & ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ord_less_rat @ A @ one_one_rat ) ) ) ).

% frac_unique_iff
thf(fact_7569_mult__ceiling__le__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_real @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_7570_mult__ceiling__le__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_7571_mult__ceiling__le__Ints,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( member_real @ A @ ring_1_Ints_real )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_int @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_7572_mult__ceiling__le__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_real @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_7573_mult__ceiling__le__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_7574_mult__ceiling__le__Ints,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( member_rat @ A @ ring_1_Ints_rat )
       => ( ord_less_eq_int @ ( ring_1_of_int_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_int @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).

% mult_ceiling_le_Ints
thf(fact_7575_sin__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = zero_zero_real ) ) ).

% sin_integer_2pi
thf(fact_7576_cos__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_real ) ) ).

% cos_integer_2pi
thf(fact_7577_and__nat__unfold,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_nat
          @ ( ( M3 = zero_zero_nat )
            | ( N3 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_nat_unfold
thf(fact_7578_and__nat__rec,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_nat_rec
thf(fact_7579_complex__inverse,axiom,
    ! [A: real,B: real] :
      ( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_inverse
thf(fact_7580_sinh__field__def,axiom,
    ( sinh_real
    = ( ^ [Z5: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ Z5 ) @ ( exp_real @ ( uminus_uminus_real @ Z5 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_field_def
thf(fact_7581_sinh__field__def,axiom,
    ( sinh_complex
    = ( ^ [Z5: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ Z5 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ Z5 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ).

% sinh_field_def
thf(fact_7582_cosh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( cosh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_ln_real
thf(fact_7583_xor__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% xor_Suc_0_eq
thf(fact_7584_Suc__0__xor__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_xor_eq
thf(fact_7585_gbinomial__absorption_H,axiom,
    ! [K: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_complex @ A @ K )
        = ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_7586_gbinomial__absorption_H,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_real @ A @ K )
        = ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_7587_gbinomial__absorption_H,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_rat @ A @ K )
        = ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_7588_cosh__double,axiom,
    ! [X: complex] :
      ( ( cosh_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( plus_plus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cosh_double
thf(fact_7589_cosh__double,axiom,
    ! [X: real] :
      ( ( cosh_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( plus_plus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cosh_double
thf(fact_7590_bit_Oxor__left__self,axiom,
    ! [X: int,Y: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( bit_se6526347334894502574or_int @ X @ Y ) )
      = Y ) ).

% bit.xor_left_self
thf(fact_7591_xor_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ zero_zero_nat )
      = A ) ).

% xor.right_neutral
thf(fact_7592_xor_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ zero_zero_int )
      = A ) ).

% xor.right_neutral
thf(fact_7593_xor_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ zero_zero_nat @ A )
      = A ) ).

% xor.left_neutral
thf(fact_7594_xor_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ zero_zero_int @ A )
      = A ) ).

% xor.left_neutral
thf(fact_7595_xor__self__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ A )
      = zero_zero_nat ) ).

% xor_self_eq
thf(fact_7596_xor__self__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ A )
      = zero_zero_int ) ).

% xor_self_eq
thf(fact_7597_bit_Oxor__self,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ X @ X )
      = zero_zero_int ) ).

% bit.xor_self
thf(fact_7598_take__bit__xor,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_xor
thf(fact_7599_take__bit__xor,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( bit_se6528837805403552850or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_xor
thf(fact_7600_push__bit__xor,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( bit_se6528837805403552850or_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).

% push_bit_xor
thf(fact_7601_push__bit__xor,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).

% push_bit_xor
thf(fact_7602_push__bit__xor,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( bit_se3222712562003087583nteger @ A @ B ) )
      = ( bit_se3222712562003087583nteger @ ( bit_se7788150548672797655nteger @ N @ A ) @ ( bit_se7788150548672797655nteger @ N @ B ) ) ) ).

% push_bit_xor
thf(fact_7603_push__bit__xor,axiom,
    ! [N: nat,A: code_natural,B: code_natural] :
      ( ( bit_se6611745700429515170atural @ N @ ( bit_se2046307713759805098atural @ A @ B ) )
      = ( bit_se2046307713759805098atural @ ( bit_se6611745700429515170atural @ N @ A ) @ ( bit_se6611745700429515170atural @ N @ B ) ) ) ).

% push_bit_xor
thf(fact_7604_cosh__0,axiom,
    ( ( cosh_complex @ zero_zero_complex )
    = one_one_complex ) ).

% cosh_0
thf(fact_7605_cosh__0,axiom,
    ( ( cosh_real @ zero_zero_real )
    = one_one_real ) ).

% cosh_0
thf(fact_7606_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
      = zero_zero_real ) ).

% gbinomial_0(2)
thf(fact_7607_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
      = zero_zero_rat ) ).

% gbinomial_0(2)
thf(fact_7608_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% gbinomial_0(2)
thf(fact_7609_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
      = zero_zero_int ) ).

% gbinomial_0(2)
thf(fact_7610_gbinomial__0_I1_J,axiom,
    ! [A: complex] :
      ( ( gbinomial_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% gbinomial_0(1)
thf(fact_7611_gbinomial__0_I1_J,axiom,
    ! [A: real] :
      ( ( gbinomial_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% gbinomial_0(1)
thf(fact_7612_gbinomial__0_I1_J,axiom,
    ! [A: rat] :
      ( ( gbinomial_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% gbinomial_0(1)
thf(fact_7613_gbinomial__0_I1_J,axiom,
    ! [A: nat] :
      ( ( gbinomial_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% gbinomial_0(1)
thf(fact_7614_gbinomial__0_I1_J,axiom,
    ! [A: int] :
      ( ( gbinomial_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% gbinomial_0(1)
thf(fact_7615_xor__numerals_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).

% xor_numerals(3)
thf(fact_7616_xor__numerals_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).

% xor_numerals(3)
thf(fact_7617_xor__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).

% xor_numerals(8)
thf(fact_7618_xor__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit0 @ X ) ) ) ).

% xor_numerals(8)
thf(fact_7619_xor__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% xor_numerals(5)
thf(fact_7620_xor__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).

% xor_numerals(5)
thf(fact_7621_xor__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y ) ) ) ).

% xor_numerals(2)
thf(fact_7622_xor__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_int @ ( bit0 @ Y ) ) ) ).

% xor_numerals(2)
thf(fact_7623_xor__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% xor_numerals(1)
thf(fact_7624_xor__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y ) ) ) ).

% xor_numerals(1)
thf(fact_7625_xor__numerals_I7_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).

% xor_numerals(7)
thf(fact_7626_xor__numerals_I7_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).

% xor_numerals(7)
thf(fact_7627_xor__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).

% xor_nat_numerals(4)
thf(fact_7628_xor__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% xor_nat_numerals(3)
thf(fact_7629_xor__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y ) ) ) ).

% xor_nat_numerals(2)
thf(fact_7630_xor__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% xor_nat_numerals(1)
thf(fact_7631_xor__numerals_I6_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).

% xor_numerals(6)
thf(fact_7632_xor__numerals_I6_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).

% xor_numerals(6)
thf(fact_7633_xor__numerals_I4_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).

% xor_numerals(4)
thf(fact_7634_xor__numerals_I4_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).

% xor_numerals(4)
thf(fact_7635_of__int__xor__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
      = ( bit_se6526347334894502574or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_xor_eq
thf(fact_7636_of__nat__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri8010041392384452111omplex @ ( gbinomial_nat @ N @ K ) )
      = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K ) ) ).

% of_nat_gbinomial
thf(fact_7637_of__nat__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri5074537144036343181t_real @ ( gbinomial_nat @ N @ K ) )
      = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).

% of_nat_gbinomial
thf(fact_7638_of__nat__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri681578069525770553at_rat @ ( gbinomial_nat @ N @ K ) )
      = ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K ) ) ).

% of_nat_gbinomial
thf(fact_7639_xor_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ C )
      = ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).

% xor.assoc
thf(fact_7640_xor_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ C )
      = ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).

% xor.assoc
thf(fact_7641_xor_Ocommute,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [A2: nat,B2: nat] : ( bit_se6528837805403552850or_nat @ B2 @ A2 ) ) ) ).

% xor.commute
thf(fact_7642_xor_Ocommute,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [A2: int,B2: int] : ( bit_se6526347334894502574or_int @ B2 @ A2 ) ) ) ).

% xor.commute
thf(fact_7643_xor_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se6528837805403552850or_nat @ B @ ( bit_se6528837805403552850or_nat @ A @ C ) )
      = ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).

% xor.left_commute
thf(fact_7644_xor_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se6526347334894502574or_int @ B @ ( bit_se6526347334894502574or_int @ A @ C ) )
      = ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).

% xor.left_commute
thf(fact_7645_of__nat__xor__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se6528837805403552850or_nat @ M @ N ) )
      = ( bit_se6528837805403552850or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_xor_eq
thf(fact_7646_of__nat__xor__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se6528837805403552850or_nat @ M @ N ) )
      = ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_xor_eq
thf(fact_7647_bit_Oconj__xor__distrib,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( bit_se6526347334894502574or_int @ Y @ Z2 ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ ( bit_se725231765392027082nd_int @ X @ Z2 ) ) ) ).

% bit.conj_xor_distrib
thf(fact_7648_bit_Oconj__xor__distrib2,axiom,
    ! [Y: int,Z2: int,X: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se6526347334894502574or_int @ Y @ Z2 ) @ X )
      = ( bit_se6526347334894502574or_int @ ( bit_se725231765392027082nd_int @ Y @ X ) @ ( bit_se725231765392027082nd_int @ Z2 @ X ) ) ) ).

% bit.conj_xor_distrib2
thf(fact_7649_bit__xor__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
       != ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).

% bit_xor_iff
thf(fact_7650_bit__xor__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
       != ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).

% bit_xor_iff
thf(fact_7651_cosh__real__ge__1,axiom,
    ! [X: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X ) ) ).

% cosh_real_ge_1
thf(fact_7652_binomial__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
      = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K ) ) ).

% binomial_gbinomial
thf(fact_7653_binomial__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
      = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).

% binomial_gbinomial
thf(fact_7654_binomial__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
      = ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K ) ) ).

% binomial_gbinomial
thf(fact_7655_flip__bit__nat__def,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [M3: nat,N3: nat] : ( bit_se6528837805403552850or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% flip_bit_nat_def
thf(fact_7656_gbinomial__Suc__Suc,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_7657_gbinomial__Suc__Suc,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_7658_gbinomial__Suc__Suc,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_7659_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K )
        = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_7660_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K )
        = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_7661_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K )
        = ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_7662_flip__bit__eq__xor,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [N3: nat,A2: nat] : ( bit_se6528837805403552850or_nat @ A2 @ ( bit_se547839408752420682it_nat @ N3 @ one_one_nat ) ) ) ) ).

% flip_bit_eq_xor
thf(fact_7663_flip__bit__eq__xor,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N3: nat,A2: int] : ( bit_se6526347334894502574or_int @ A2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% flip_bit_eq_xor
thf(fact_7664_flip__bit__eq__xor,axiom,
    ( bit_se1345352211410354436nteger
    = ( ^ [N3: nat,A2: code_integer] : ( bit_se3222712562003087583nteger @ A2 @ ( bit_se7788150548672797655nteger @ N3 @ one_one_Code_integer ) ) ) ) ).

% flip_bit_eq_xor
thf(fact_7665_flip__bit__eq__xor,axiom,
    ( bit_se168947363167071951atural
    = ( ^ [N3: nat,A2: code_natural] : ( bit_se2046307713759805098atural @ A2 @ ( bit_se6611745700429515170atural @ N3 @ one_one_Code_natural ) ) ) ) ).

% flip_bit_eq_xor
thf(fact_7666_sinh__add,axiom,
    ! [X: real,Y: real] :
      ( ( sinh_real @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( sinh_real @ X ) @ ( cosh_real @ Y ) ) @ ( times_times_real @ ( cosh_real @ X ) @ ( sinh_real @ Y ) ) ) ) ).

% sinh_add
thf(fact_7667_cosh__add,axiom,
    ! [X: real,Y: real] :
      ( ( cosh_real @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) ) @ ( times_times_real @ ( sinh_real @ X ) @ ( sinh_real @ Y ) ) ) ) ).

% cosh_add
thf(fact_7668_sinh__diff,axiom,
    ! [X: real,Y: real] :
      ( ( sinh_real @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( sinh_real @ X ) @ ( cosh_real @ Y ) ) @ ( times_times_real @ ( cosh_real @ X ) @ ( sinh_real @ Y ) ) ) ) ).

% sinh_diff
thf(fact_7669_cosh__diff,axiom,
    ! [X: real,Y: real] :
      ( ( cosh_real @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) ) @ ( times_times_real @ ( sinh_real @ X ) @ ( sinh_real @ Y ) ) ) ) ).

% cosh_diff
thf(fact_7670_sinh__plus__cosh,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( sinh_complex @ X ) @ ( cosh_complex @ X ) )
      = ( exp_complex @ X ) ) ).

% sinh_plus_cosh
thf(fact_7671_sinh__plus__cosh,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) )
      = ( exp_real @ X ) ) ).

% sinh_plus_cosh
thf(fact_7672_cosh__plus__sinh,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( cosh_complex @ X ) @ ( sinh_complex @ X ) )
      = ( exp_complex @ X ) ) ).

% cosh_plus_sinh
thf(fact_7673_cosh__plus__sinh,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( cosh_real @ X ) @ ( sinh_real @ X ) )
      = ( exp_real @ X ) ) ).

% cosh_plus_sinh
thf(fact_7674_tanh__def,axiom,
    ( tanh_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sinh_complex @ X3 ) @ ( cosh_complex @ X3 ) ) ) ) ).

% tanh_def
thf(fact_7675_tanh__def,axiom,
    ( tanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( sinh_real @ X3 ) @ ( cosh_real @ X3 ) ) ) ) ).

% tanh_def
thf(fact_7676_gbinomial__addition__formula,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ A @ ( suc @ K ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_7677_gbinomial__addition__formula,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ A @ ( suc @ K ) )
      = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_7678_gbinomial__addition__formula,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ A @ ( suc @ K ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_7679_gbinomial__absorb__comp,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_7680_gbinomial__absorb__comp,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_7681_gbinomial__absorb__comp,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_7682_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_7683_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_7684_gbinomial__mult__1_H,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ A )
      = ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_7685_gbinomial__mult__1_H,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_7686_gbinomial__mult__1_H,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_7687_gbinomial__mult__1,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ A @ ( gbinomial_complex @ A @ K ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_7688_gbinomial__mult__1,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_7689_gbinomial__mult__1,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_7690_even__xor__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3222712562003087583nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_7691_even__xor__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_7692_even__xor__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_7693_cosh__minus__sinh,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( cosh_real @ X ) @ ( sinh_real @ X ) )
      = ( exp_real @ ( uminus_uminus_real @ X ) ) ) ).

% cosh_minus_sinh
thf(fact_7694_cosh__minus__sinh,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( cosh_complex @ X ) @ ( sinh_complex @ X ) )
      = ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) ).

% cosh_minus_sinh
thf(fact_7695_sinh__minus__cosh,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) )
      = ( uminus_uminus_real @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ).

% sinh_minus_cosh
thf(fact_7696_sinh__minus__cosh,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( sinh_complex @ X ) @ ( cosh_complex @ X ) )
      = ( uminus1482373934393186551omplex @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) ) ).

% sinh_minus_cosh
thf(fact_7697_Suc__times__gbinomial,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_7698_Suc__times__gbinomial,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
      = ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_7699_Suc__times__gbinomial,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_7700_gbinomial__absorption,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_7701_gbinomial__absorption,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_7702_gbinomial__absorption,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_7703_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: complex] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_complex @ ( gbinomial_complex @ A @ M ) @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ M ) @ K ) )
        = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_7704_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: real] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
        = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_7705_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: rat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
        = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_7706_sinh__double,axiom,
    ! [X: complex] :
      ( ( sinh_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sinh_complex @ X ) ) @ ( cosh_complex @ X ) ) ) ).

% sinh_double
thf(fact_7707_sinh__double,axiom,
    ! [X: real] :
      ( ( sinh_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sinh_real @ X ) ) @ ( cosh_real @ X ) ) ) ).

% sinh_double
thf(fact_7708_gbinomial__rec,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_7709_gbinomial__rec,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_7710_gbinomial__rec,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_7711_gbinomial__factors,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_7712_gbinomial__factors,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_7713_gbinomial__factors,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_7714_gbinomial__negated__upper,axiom,
    ( gbinomial_complex
    = ( ^ [A2: complex,K2: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K2 ) @ A2 ) @ one_one_complex ) @ K2 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_7715_gbinomial__negated__upper,axiom,
    ( gbinomial_real
    = ( ^ [A2: real,K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K2 ) @ A2 ) @ one_one_real ) @ K2 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_7716_gbinomial__negated__upper,axiom,
    ( gbinomial_rat
    = ( ^ [A2: rat,K2: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K2 ) @ A2 ) @ one_one_rat ) @ K2 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_7717_gbinomial__index__swap,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ K ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_7718_gbinomial__index__swap,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ K ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_7719_gbinomial__index__swap,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ K ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_7720_tanh__add,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cosh_complex @ X )
       != zero_zero_complex )
     => ( ( ( cosh_complex @ Y )
         != zero_zero_complex )
       => ( ( tanh_complex @ ( plus_plus_complex @ X @ Y ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tanh_complex @ X ) @ ( tanh_complex @ Y ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tanh_complex @ X ) @ ( tanh_complex @ Y ) ) ) ) ) ) ) ).

% tanh_add
thf(fact_7721_tanh__add,axiom,
    ! [X: real,Y: real] :
      ( ( ( cosh_real @ X )
       != zero_zero_real )
     => ( ( ( cosh_real @ Y )
         != zero_zero_real )
       => ( ( tanh_real @ ( plus_plus_real @ X @ Y ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( tanh_real @ X ) @ ( tanh_real @ Y ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tanh_real @ X ) @ ( tanh_real @ Y ) ) ) ) ) ) ) ).

% tanh_add
thf(fact_7722_gbinomial__minus,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_7723_gbinomial__minus,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_7724_gbinomial__minus,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_7725_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_complex @ A @ K )
        = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_7726_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_real @ A @ K )
        = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_7727_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_rat @ A @ K )
        = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_7728_gbinomial__pochhammer,axiom,
    ( gbinomial_complex
    = ( ^ [A2: complex,K2: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A2 ) @ K2 ) ) @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_7729_gbinomial__pochhammer,axiom,
    ( gbinomial_rat
    = ( ^ [A2: rat,K2: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A2 ) @ K2 ) ) @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_7730_gbinomial__pochhammer,axiom,
    ( gbinomial_real
    = ( ^ [A2: real,K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A2 ) @ K2 ) ) @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_7731_gbinomial__pochhammer_H,axiom,
    ( gbinomial_complex
    = ( ^ [A2: complex,K2: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A2 @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ K2 ) @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_7732_gbinomial__pochhammer_H,axiom,
    ( gbinomial_rat
    = ( ^ [A2: rat,K2: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A2 @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ K2 ) @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_7733_gbinomial__pochhammer_H,axiom,
    ( gbinomial_real
    = ( ^ [A2: real,K2: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A2 @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ K2 ) @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_7734_cosh__field__def,axiom,
    ( cosh_real
    = ( ^ [Z5: real] : ( divide_divide_real @ ( plus_plus_real @ ( exp_real @ Z5 ) @ ( exp_real @ ( uminus_uminus_real @ Z5 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_field_def
thf(fact_7735_cosh__field__def,axiom,
    ( cosh_complex
    = ( ^ [Z5: complex] : ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( exp_complex @ Z5 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ Z5 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ).

% cosh_field_def
thf(fact_7736_xor__nat__unfold,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% xor_nat_unfold
thf(fact_7737_cosh__square__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ).

% cosh_square_eq
thf(fact_7738_cosh__square__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ).

% cosh_square_eq
thf(fact_7739_sinh__square__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ).

% sinh_square_eq
thf(fact_7740_sinh__square__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ).

% sinh_square_eq
thf(fact_7741_hyperbolic__pythagoras,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% hyperbolic_pythagoras
thf(fact_7742_hyperbolic__pythagoras,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% hyperbolic_pythagoras
thf(fact_7743_xor__nat__rec,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
             != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_nat_rec
thf(fact_7744_xor__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3222712562003087583nteger @ A @ one_one_Code_integer )
      = ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n356916108424825756nteger
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% xor_one_eq
thf(fact_7745_xor__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ one_one_nat )
      = ( minus_minus_nat @ ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% xor_one_eq
thf(fact_7746_xor__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ one_one_int )
      = ( minus_minus_int @ ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2684676970156552555ol_int
          @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% xor_one_eq
thf(fact_7747_one__xor__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3222712562003087583nteger @ one_one_Code_integer @ A )
      = ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n356916108424825756nteger
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_xor_eq
thf(fact_7748_one__xor__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ A )
      = ( minus_minus_nat @ ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_xor_eq
thf(fact_7749_one__xor__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ A )
      = ( minus_minus_int @ ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
        @ ( zero_n2684676970156552555ol_int
          @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_xor_eq
thf(fact_7750_cosh__zero__iff,axiom,
    ! [X: real] :
      ( ( ( cosh_real @ X )
        = zero_zero_real )
      = ( ( power_power_real @ ( exp_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% cosh_zero_iff
thf(fact_7751_cosh__zero__iff,axiom,
    ! [X: complex] :
      ( ( ( cosh_complex @ X )
        = zero_zero_complex )
      = ( ( power_power_complex @ ( exp_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% cosh_zero_iff
thf(fact_7752_Cauchy__iff2,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X8: nat > real] :
        ! [J3: nat] :
        ? [M7: nat] :
        ! [M3: nat] :
          ( ( ord_less_eq_nat @ M7 @ M3 )
         => ! [N3: nat] :
              ( ( ord_less_eq_nat @ M7 @ N3 )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X8 @ M3 ) @ ( X8 @ N3 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).

% Cauchy_iff2
thf(fact_7753_csqrt_Osimps_I1_J,axiom,
    ! [Z2: complex] :
      ( ( re @ ( csqrt @ Z2 ) )
      = ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% csqrt.simps(1)
thf(fact_7754_sinh__def,axiom,
    ( sinh_real
    = ( ^ [X3: real] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).

% sinh_def
thf(fact_7755_sinh__def,axiom,
    ( sinh_complex
    = ( ^ [X3: complex] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( minus_minus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).

% sinh_def
thf(fact_7756_cosh__def,axiom,
    ( cosh_real
    = ( ^ [X3: real] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).

% cosh_def
thf(fact_7757_cosh__def,axiom,
    ( cosh_complex
    = ( ^ [X3: complex] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).

% cosh_def
thf(fact_7758_complex__div__cnj,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A2: complex,B2: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A2 @ ( cnj @ B2 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_div_cnj
thf(fact_7759_scaleR__cancel__right,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ( real_V1485227260804924795R_real @ A @ X )
        = ( real_V1485227260804924795R_real @ B @ X ) )
      = ( ( A = B )
        | ( X = zero_zero_real ) ) ) ).

% scaleR_cancel_right
thf(fact_7760_scaleR__cancel__right,axiom,
    ! [A: real,X: complex,B: real] :
      ( ( ( real_V2046097035970521341omplex @ A @ X )
        = ( real_V2046097035970521341omplex @ B @ X ) )
      = ( ( A = B )
        | ( X = zero_zero_complex ) ) ) ).

% scaleR_cancel_right
thf(fact_7761_scaleR__zero__right,axiom,
    ! [A: real] :
      ( ( real_V1485227260804924795R_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% scaleR_zero_right
thf(fact_7762_scaleR__zero__right,axiom,
    ! [A: real] :
      ( ( real_V2046097035970521341omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% scaleR_zero_right
thf(fact_7763_mult__scaleR__right,axiom,
    ! [X: real,A: real,Y: real] :
      ( ( times_times_real @ X @ ( real_V1485227260804924795R_real @ A @ Y ) )
      = ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y ) ) ) ).

% mult_scaleR_right
thf(fact_7764_mult__scaleR__right,axiom,
    ! [X: complex,A: real,Y: complex] :
      ( ( times_times_complex @ X @ ( real_V2046097035970521341omplex @ A @ Y ) )
      = ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y ) ) ) ).

% mult_scaleR_right
thf(fact_7765_mult__scaleR__left,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( times_times_real @ ( real_V1485227260804924795R_real @ A @ X ) @ Y )
      = ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y ) ) ) ).

% mult_scaleR_left
thf(fact_7766_mult__scaleR__left,axiom,
    ! [A: real,X: complex,Y: complex] :
      ( ( times_times_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ Y )
      = ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y ) ) ) ).

% mult_scaleR_left
thf(fact_7767_scaleR__one,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ one_one_real @ X )
      = X ) ).

% scaleR_one
thf(fact_7768_scaleR__one,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ one_one_real @ X )
      = X ) ).

% scaleR_one
thf(fact_7769_scaleR__scaleR,axiom,
    ! [A: real,B: real,X: real] :
      ( ( real_V1485227260804924795R_real @ A @ ( real_V1485227260804924795R_real @ B @ X ) )
      = ( real_V1485227260804924795R_real @ ( times_times_real @ A @ B ) @ X ) ) ).

% scaleR_scaleR
thf(fact_7770_scaleR__scaleR,axiom,
    ! [A: real,B: real,X: complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( real_V2046097035970521341omplex @ B @ X ) )
      = ( real_V2046097035970521341omplex @ ( times_times_real @ A @ B ) @ X ) ) ).

% scaleR_scaleR
thf(fact_7771_complex__Re__of__nat,axiom,
    ! [N: nat] :
      ( ( re @ ( semiri8010041392384452111omplex @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% complex_Re_of_nat
thf(fact_7772_complex__cnj__mult,axiom,
    ! [X: complex,Y: complex] :
      ( ( cnj @ ( times_times_complex @ X @ Y ) )
      = ( times_times_complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_mult
thf(fact_7773_complex__cnj__one__iff,axiom,
    ! [Z2: complex] :
      ( ( ( cnj @ Z2 )
        = one_one_complex )
      = ( Z2 = one_one_complex ) ) ).

% complex_cnj_one_iff
thf(fact_7774_complex__cnj__one,axiom,
    ( ( cnj @ one_one_complex )
    = one_one_complex ) ).

% complex_cnj_one
thf(fact_7775_complex__cnj__power,axiom,
    ! [X: complex,N: nat] :
      ( ( cnj @ ( power_power_complex @ X @ N ) )
      = ( power_power_complex @ ( cnj @ X ) @ N ) ) ).

% complex_cnj_power
thf(fact_7776_complex__cnj__add,axiom,
    ! [X: complex,Y: complex] :
      ( ( cnj @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_add
thf(fact_7777_complex__cnj__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( cnj @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_diff
thf(fact_7778_scaleR__eq__0__iff,axiom,
    ! [A: real,X: real] :
      ( ( ( real_V1485227260804924795R_real @ A @ X )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( X = zero_zero_real ) ) ) ).

% scaleR_eq_0_iff
thf(fact_7779_scaleR__eq__0__iff,axiom,
    ! [A: real,X: complex] :
      ( ( ( real_V2046097035970521341omplex @ A @ X )
        = zero_zero_complex )
      = ( ( A = zero_zero_real )
        | ( X = zero_zero_complex ) ) ) ).

% scaleR_eq_0_iff
thf(fact_7780_scaleR__zero__left,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ zero_zero_real @ X )
      = zero_zero_real ) ).

% scaleR_zero_left
thf(fact_7781_scaleR__zero__left,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ zero_zero_real @ X )
      = zero_zero_complex ) ).

% scaleR_zero_left
thf(fact_7782_scaleR__eq__iff,axiom,
    ! [B: real,U: real,A: real] :
      ( ( ( plus_plus_real @ B @ ( real_V1485227260804924795R_real @ U @ A ) )
        = ( plus_plus_real @ A @ ( real_V1485227260804924795R_real @ U @ B ) ) )
      = ( ( A = B )
        | ( U = one_one_real ) ) ) ).

% scaleR_eq_iff
thf(fact_7783_scaleR__eq__iff,axiom,
    ! [B: complex,U: real,A: complex] :
      ( ( ( plus_plus_complex @ B @ ( real_V2046097035970521341omplex @ U @ A ) )
        = ( plus_plus_complex @ A @ ( real_V2046097035970521341omplex @ U @ B ) ) )
      = ( ( A = B )
        | ( U = one_one_real ) ) ) ).

% scaleR_eq_iff
thf(fact_7784_scaleR__power,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( power_power_real @ ( real_V1485227260804924795R_real @ X @ Y ) @ N )
      = ( real_V1485227260804924795R_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) ) ) ).

% scaleR_power
thf(fact_7785_scaleR__power,axiom,
    ! [X: real,Y: complex,N: nat] :
      ( ( power_power_complex @ ( real_V2046097035970521341omplex @ X @ Y ) @ N )
      = ( real_V2046097035970521341omplex @ ( power_power_real @ X @ N ) @ ( power_power_complex @ Y @ N ) ) ) ).

% scaleR_power
thf(fact_7786_Re__sgn,axiom,
    ! [Z2: complex] :
      ( ( re @ ( sgn_sgn_complex @ Z2 ) )
      = ( divide_divide_real @ ( re @ Z2 ) @ ( real_V1022390504157884413omplex @ Z2 ) ) ) ).

% Re_sgn
thf(fact_7787_xor__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        = ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% xor_nonnegative_int_iff
thf(fact_7788_xor__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
       != ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% xor_negative_int_iff
thf(fact_7789_scaleR__minus1__left,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ ( uminus_uminus_real @ one_one_real ) @ X )
      = ( uminus_uminus_real @ X ) ) ).

% scaleR_minus1_left
thf(fact_7790_scaleR__minus1__left,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ ( uminus_uminus_real @ one_one_real ) @ X )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% scaleR_minus1_left
thf(fact_7791_scaleR__collapse,axiom,
    ! [U: real,A: real] :
      ( ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V1485227260804924795R_real @ U @ A ) )
      = A ) ).

% scaleR_collapse
thf(fact_7792_scaleR__collapse,axiom,
    ! [U: real,A: complex] :
      ( ( plus_plus_complex @ ( real_V2046097035970521341omplex @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V2046097035970521341omplex @ U @ A ) )
      = A ) ).

% scaleR_collapse
thf(fact_7793_norm__scaleR,axiom,
    ! [A: real,X: real] :
      ( ( real_V7735802525324610683m_real @ ( real_V1485227260804924795R_real @ A @ X ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( real_V7735802525324610683m_real @ X ) ) ) ).

% norm_scaleR
thf(fact_7794_norm__scaleR,axiom,
    ! [A: real,X: complex] :
      ( ( real_V1022390504157884413omplex @ ( real_V2046097035970521341omplex @ A @ X ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( real_V1022390504157884413omplex @ X ) ) ) ).

% norm_scaleR
thf(fact_7795_Re__divide__of__nat,axiom,
    ! [Z2: complex,N: nat] :
      ( ( re @ ( divide1717551699836669952omplex @ Z2 @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( divide_divide_real @ ( re @ Z2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% Re_divide_of_nat
thf(fact_7796_Re__divide__of__real,axiom,
    ! [Z2: complex,R: real] :
      ( ( re @ ( divide1717551699836669952omplex @ Z2 @ ( real_V4546457046886955230omplex @ R ) ) )
      = ( divide_divide_real @ ( re @ Z2 ) @ R ) ) ).

% Re_divide_of_real
thf(fact_7797_scaleR__times,axiom,
    ! [U: num,W: num,A: real] :
      ( ( real_V1485227260804924795R_real @ ( numeral_numeral_real @ U ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( real_V1485227260804924795R_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ A ) ) ).

% scaleR_times
thf(fact_7798_scaleR__times,axiom,
    ! [U: num,W: num,A: complex] :
      ( ( real_V2046097035970521341omplex @ ( numeral_numeral_real @ U ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( real_V2046097035970521341omplex @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ A ) ) ).

% scaleR_times
thf(fact_7799_Re__divide__numeral,axiom,
    ! [Z2: complex,W: num] :
      ( ( re @ ( divide1717551699836669952omplex @ Z2 @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( re @ Z2 ) @ ( numeral_numeral_real @ W ) ) ) ).

% Re_divide_numeral
thf(fact_7800_inverse__scaleR__times,axiom,
    ! [V: num,W: num,A: real] :
      ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( numeral_numeral_real @ W ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% inverse_scaleR_times
thf(fact_7801_inverse__scaleR__times,axiom,
    ! [V: num,W: num,A: complex] :
      ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( numeral_numeral_real @ W ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% inverse_scaleR_times
thf(fact_7802_fraction__scaleR__times,axiom,
    ! [U: num,V: num,W: num,A: real] :
      ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% fraction_scaleR_times
thf(fact_7803_fraction__scaleR__times,axiom,
    ! [U: num,V: num,W: num,A: complex] :
      ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).

% fraction_scaleR_times
thf(fact_7804_scaleR__half__double,axiom,
    ! [A: real] :
      ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ A @ A ) )
      = A ) ).

% scaleR_half_double
thf(fact_7805_scaleR__half__double,axiom,
    ! [A: complex] :
      ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_complex @ A @ A ) )
      = A ) ).

% scaleR_half_double
thf(fact_7806_bit__xor__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
       != ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_xor_int_iff
thf(fact_7807_real__scaleR__def,axiom,
    real_V1485227260804924795R_real = times_times_real ).

% real_scaleR_def
thf(fact_7808_scaleR__right__imp__eq,axiom,
    ! [X: real,A: real,B: real] :
      ( ( X != zero_zero_real )
     => ( ( ( real_V1485227260804924795R_real @ A @ X )
          = ( real_V1485227260804924795R_real @ B @ X ) )
       => ( A = B ) ) ) ).

% scaleR_right_imp_eq
thf(fact_7809_scaleR__right__imp__eq,axiom,
    ! [X: complex,A: real,B: real] :
      ( ( X != zero_zero_complex )
     => ( ( ( real_V2046097035970521341omplex @ A @ X )
          = ( real_V2046097035970521341omplex @ B @ X ) )
       => ( A = B ) ) ) ).

% scaleR_right_imp_eq
thf(fact_7810_scaleR__right__distrib,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( real_V1485227260804924795R_real @ A @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ A @ Y ) ) ) ).

% scaleR_right_distrib
thf(fact_7811_scaleR__right__distrib,axiom,
    ! [A: real,X: complex,Y: complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ A @ Y ) ) ) ).

% scaleR_right_distrib
thf(fact_7812_scaleR__right__diff__distrib,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( real_V1485227260804924795R_real @ A @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ A @ Y ) ) ) ).

% scaleR_right_diff_distrib
thf(fact_7813_scaleR__right__diff__distrib,axiom,
    ! [A: real,X: complex,Y: complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ A @ Y ) ) ) ).

% scaleR_right_diff_distrib
thf(fact_7814_scaleR__complex_Osimps_I1_J,axiom,
    ! [R: real,X: complex] :
      ( ( re @ ( real_V2046097035970521341omplex @ R @ X ) )
      = ( times_times_real @ R @ ( re @ X ) ) ) ).

% scaleR_complex.simps(1)
thf(fact_7815_Re__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Re_complex_div_eq_0
thf(fact_7816_complex__mod__sqrt__Re__mult__cnj,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z5: complex] : ( sqrt @ ( re @ ( times_times_complex @ Z5 @ ( cnj @ Z5 ) ) ) ) ) ) ).

% complex_mod_sqrt_Re_mult_cnj
thf(fact_7817_Re__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_lt_0
thf(fact_7818_Re__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_gt_0
thf(fact_7819_Re__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_le_0
thf(fact_7820_Re__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_ge_0
thf(fact_7821_XOR__lower,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X @ Y ) ) ) ) ).

% XOR_lower
thf(fact_7822_scaleR__left_Oadd,axiom,
    ! [X: real,Y: real,Xa: real] :
      ( ( real_V1485227260804924795R_real @ ( plus_plus_real @ X @ Y ) @ Xa )
      = ( plus_plus_real @ ( real_V1485227260804924795R_real @ X @ Xa ) @ ( real_V1485227260804924795R_real @ Y @ Xa ) ) ) ).

% scaleR_left.add
thf(fact_7823_scaleR__left_Oadd,axiom,
    ! [X: real,Y: real,Xa: complex] :
      ( ( real_V2046097035970521341omplex @ ( plus_plus_real @ X @ Y ) @ Xa )
      = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ X @ Xa ) @ ( real_V2046097035970521341omplex @ Y @ Xa ) ) ) ).

% scaleR_left.add
thf(fact_7824_scaleR__left__distrib,axiom,
    ! [A: real,B: real,X: real] :
      ( ( real_V1485227260804924795R_real @ ( plus_plus_real @ A @ B ) @ X )
      = ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ).

% scaleR_left_distrib
thf(fact_7825_scaleR__left__distrib,axiom,
    ! [A: real,B: real,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( plus_plus_real @ A @ B ) @ X )
      = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ B @ X ) ) ) ).

% scaleR_left_distrib
thf(fact_7826_scaleR__conv__of__real,axiom,
    ( real_V1485227260804924795R_real
    = ( ^ [R5: real] : ( times_times_real @ ( real_V1803761363581548252l_real @ R5 ) ) ) ) ).

% scaleR_conv_of_real
thf(fact_7827_scaleR__conv__of__real,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real] : ( times_times_complex @ ( real_V4546457046886955230omplex @ R5 ) ) ) ) ).

% scaleR_conv_of_real
thf(fact_7828_of__real__def,axiom,
    ( real_V1803761363581548252l_real
    = ( ^ [R5: real] : ( real_V1485227260804924795R_real @ R5 @ one_one_real ) ) ) ).

% of_real_def
thf(fact_7829_of__real__def,axiom,
    ( real_V4546457046886955230omplex
    = ( ^ [R5: real] : ( real_V2046097035970521341omplex @ R5 @ one_one_complex ) ) ) ).

% of_real_def
thf(fact_7830_scaleR__left_Odiff,axiom,
    ! [X: real,Y: real,Xa: real] :
      ( ( real_V1485227260804924795R_real @ ( minus_minus_real @ X @ Y ) @ Xa )
      = ( minus_minus_real @ ( real_V1485227260804924795R_real @ X @ Xa ) @ ( real_V1485227260804924795R_real @ Y @ Xa ) ) ) ).

% scaleR_left.diff
thf(fact_7831_scaleR__left_Odiff,axiom,
    ! [X: real,Y: real,Xa: complex] :
      ( ( real_V2046097035970521341omplex @ ( minus_minus_real @ X @ Y ) @ Xa )
      = ( minus_minus_complex @ ( real_V2046097035970521341omplex @ X @ Xa ) @ ( real_V2046097035970521341omplex @ Y @ Xa ) ) ) ).

% scaleR_left.diff
thf(fact_7832_scaleR__left__diff__distrib,axiom,
    ! [A: real,B: real,X: real] :
      ( ( real_V1485227260804924795R_real @ ( minus_minus_real @ A @ B ) @ X )
      = ( minus_minus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ).

% scaleR_left_diff_distrib
thf(fact_7833_scaleR__left__diff__distrib,axiom,
    ! [A: real,B: real,X: complex] :
      ( ( real_V2046097035970521341omplex @ ( minus_minus_real @ A @ B ) @ X )
      = ( minus_minus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ B @ X ) ) ) ).

% scaleR_left_diff_distrib
thf(fact_7834_complex__scaleR,axiom,
    ! [R: real,A: real,B: real] :
      ( ( real_V2046097035970521341omplex @ R @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ B ) ) ) ).

% complex_scaleR
thf(fact_7835_one__complex_Osimps_I1_J,axiom,
    ( ( re @ one_one_complex )
    = one_one_real ) ).

% one_complex.simps(1)
thf(fact_7836_plus__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_real @ ( re @ X ) @ ( re @ Y ) ) ) ).

% plus_complex.simps(1)
thf(fact_7837_minus__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_real @ ( re @ X ) @ ( re @ Y ) ) ) ).

% minus_complex.simps(1)
thf(fact_7838_scaleR__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ C ) @ ( real_V1485227260804924795R_real @ B @ C ) ) ) ) ).

% scaleR_right_mono_neg
thf(fact_7839_scaleR__right__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ) ).

% scaleR_right_mono
thf(fact_7840_complex__add__cnj,axiom,
    ! [Z2: complex] :
      ( ( plus_plus_complex @ Z2 @ ( cnj @ Z2 ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z2 ) ) ) ) ).

% complex_add_cnj
thf(fact_7841_vector__fraction__eq__iff,axiom,
    ! [U: real,V: real,A: real,X: real] :
      ( ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ U @ V ) @ A )
        = X )
      = ( ( ( V = zero_zero_real )
         => ( X = zero_zero_real ) )
        & ( ( V != zero_zero_real )
         => ( ( real_V1485227260804924795R_real @ U @ A )
            = ( real_V1485227260804924795R_real @ V @ X ) ) ) ) ) ).

% vector_fraction_eq_iff
thf(fact_7842_vector__fraction__eq__iff,axiom,
    ! [U: real,V: real,A: complex,X: complex] :
      ( ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ U @ V ) @ A )
        = X )
      = ( ( ( V = zero_zero_real )
         => ( X = zero_zero_complex ) )
        & ( ( V != zero_zero_real )
         => ( ( real_V2046097035970521341omplex @ U @ A )
            = ( real_V2046097035970521341omplex @ V @ X ) ) ) ) ) ).

% vector_fraction_eq_iff
thf(fact_7843_eq__vector__fraction__iff,axiom,
    ! [X: real,U: real,V: real,A: real] :
      ( ( X
        = ( real_V1485227260804924795R_real @ ( divide_divide_real @ U @ V ) @ A ) )
      = ( ( ( V = zero_zero_real )
         => ( X = zero_zero_real ) )
        & ( ( V != zero_zero_real )
         => ( ( real_V1485227260804924795R_real @ V @ X )
            = ( real_V1485227260804924795R_real @ U @ A ) ) ) ) ) ).

% eq_vector_fraction_iff
thf(fact_7844_eq__vector__fraction__iff,axiom,
    ! [X: complex,U: real,V: real,A: complex] :
      ( ( X
        = ( real_V2046097035970521341omplex @ ( divide_divide_real @ U @ V ) @ A ) )
      = ( ( ( V = zero_zero_real )
         => ( X = zero_zero_complex ) )
        & ( ( V != zero_zero_real )
         => ( ( real_V2046097035970521341omplex @ V @ X )
            = ( real_V2046097035970521341omplex @ U @ A ) ) ) ) ) ).

% eq_vector_fraction_iff
thf(fact_7845_Real__Vector__Spaces_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% Real_Vector_Spaces.le_add_iff2
thf(fact_7846_Real__Vector__Spaces_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% Real_Vector_Spaces.le_add_iff1
thf(fact_7847_xor__nat__def,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% xor_nat_def
thf(fact_7848_cnj__add__mult__eq__Re,axiom,
    ! [Z2: complex,W: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ Z2 @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z2 ) @ W ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z2 @ ( cnj @ W ) ) ) ) ) ) ).

% cnj_add_mult_eq_Re
thf(fact_7849_flip__bit__int__def,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N3: nat,K2: int] : ( bit_se6526347334894502574or_int @ K2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% flip_bit_int_def
thf(fact_7850_zero__le__scaleR__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( A = zero_zero_real ) ) ) ).

% zero_le_scaleR_iff
thf(fact_7851_scaleR__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% scaleR_le_0_iff
thf(fact_7852_scaleR__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) ) ) ) ).

% scaleR_nonpos_nonpos
thf(fact_7853_scaleR__nonpos__nonneg,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ) ).

% scaleR_nonpos_nonneg
thf(fact_7854_scaleR__nonneg__nonpos,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ X @ zero_zero_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ) ).

% scaleR_nonneg_nonpos
thf(fact_7855_scaleR__nonneg__nonneg,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ X ) ) ) ) ).

% scaleR_nonneg_nonneg
thf(fact_7856_split__scaleR__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) ) ) ).

% split_scaleR_pos_le
thf(fact_7857_split__scaleR__neg__le,axiom,
    ! [A: real,X: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ X @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ X ) ) )
     => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ).

% split_scaleR_neg_le
thf(fact_7858_scaleR__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ C ) @ ( real_V1485227260804924795R_real @ B @ D ) ) ) ) ) ) ).

% scaleR_mono'
thf(fact_7859_scaleR__mono,axiom,
    ! [A: real,B: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ X )
           => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ Y ) ) ) ) ) ) ).

% scaleR_mono
thf(fact_7860_scaleR__left__le__one__le,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ X ) ) ) ).

% scaleR_left_le_one_le
thf(fact_7861_scaleR__2,axiom,
    ! [X: real] :
      ( ( real_V1485227260804924795R_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X )
      = ( plus_plus_real @ X @ X ) ) ).

% scaleR_2
thf(fact_7862_scaleR__2,axiom,
    ! [X: complex] :
      ( ( real_V2046097035970521341omplex @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X )
      = ( plus_plus_complex @ X @ X ) ) ).

% scaleR_2
thf(fact_7863_real__vector__eq__affinity,axiom,
    ! [M: real,Y: real,X: real,C: real] :
      ( ( M != zero_zero_real )
     => ( ( Y
          = ( plus_plus_real @ ( real_V1485227260804924795R_real @ M @ X ) @ C ) )
        = ( ( minus_minus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ Y ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ C ) )
          = X ) ) ) ).

% real_vector_eq_affinity
thf(fact_7864_real__vector__eq__affinity,axiom,
    ! [M: real,Y: complex,X: complex,C: complex] :
      ( ( M != zero_zero_real )
     => ( ( Y
          = ( plus_plus_complex @ ( real_V2046097035970521341omplex @ M @ X ) @ C ) )
        = ( ( minus_minus_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ Y ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ C ) )
          = X ) ) ) ).

% real_vector_eq_affinity
thf(fact_7865_real__vector__affinity__eq,axiom,
    ! [M: real,X: real,C: real,Y: real] :
      ( ( M != zero_zero_real )
     => ( ( ( plus_plus_real @ ( real_V1485227260804924795R_real @ M @ X ) @ C )
          = Y )
        = ( X
          = ( minus_minus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ Y ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ C ) ) ) ) ) ).

% real_vector_affinity_eq
thf(fact_7866_real__vector__affinity__eq,axiom,
    ! [M: real,X: complex,C: complex,Y: complex] :
      ( ( M != zero_zero_real )
     => ( ( ( plus_plus_complex @ ( real_V2046097035970521341omplex @ M @ X ) @ C )
          = Y )
        = ( X
          = ( minus_minus_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ Y ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ C ) ) ) ) ) ).

% real_vector_affinity_eq
thf(fact_7867_nonzero__inverse__scaleR__distrib,axiom,
    ! [A: real,X: real] :
      ( ( A != zero_zero_real )
     => ( ( X != zero_zero_real )
       => ( ( inverse_inverse_real @ ( real_V1485227260804924795R_real @ A @ X ) )
          = ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ X ) ) ) ) ) ).

% nonzero_inverse_scaleR_distrib
thf(fact_7868_nonzero__inverse__scaleR__distrib,axiom,
    ! [A: real,X: complex] :
      ( ( A != zero_zero_real )
     => ( ( X != zero_zero_complex )
       => ( ( invers8013647133539491842omplex @ ( real_V2046097035970521341omplex @ A @ X ) )
          = ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ A ) @ ( invers8013647133539491842omplex @ X ) ) ) ) ) ).

% nonzero_inverse_scaleR_distrib
thf(fact_7869_cmod__plus__Re__le__0__iff,axiom,
    ! [Z2: complex] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ zero_zero_real )
      = ( ( re @ Z2 )
        = ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z2 ) ) ) ) ).

% cmod_plus_Re_le_0_iff
thf(fact_7870_cos__n__Re__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( re @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% cos_n_Re_cis_pow_n
thf(fact_7871_complex__mod__mult__cnj,axiom,
    ! [Z2: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z2 @ ( cnj @ Z2 ) ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% complex_mod_mult_cnj
thf(fact_7872_Cauchy__iff,axiom,
    ( topolo6517432010174082258omplex
    = ( ^ [X8: nat > complex] :
        ! [E3: real] :
          ( ( ord_less_real @ zero_zero_real @ E3 )
         => ? [M7: nat] :
            ! [M3: nat] :
              ( ( ord_less_eq_nat @ M7 @ M3 )
             => ! [N3: nat] :
                  ( ( ord_less_eq_nat @ M7 @ N3 )
                 => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( X8 @ M3 ) @ ( X8 @ N3 ) ) ) @ E3 ) ) ) ) ) ) ).

% Cauchy_iff
thf(fact_7873_Cauchy__iff,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X8: nat > real] :
        ! [E3: real] :
          ( ( ord_less_real @ zero_zero_real @ E3 )
         => ? [M7: nat] :
            ! [M3: nat] :
              ( ( ord_less_eq_nat @ M7 @ M3 )
             => ! [N3: nat] :
                  ( ( ord_less_eq_nat @ M7 @ N3 )
                 => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( X8 @ M3 ) @ ( X8 @ N3 ) ) ) @ E3 ) ) ) ) ) ) ).

% Cauchy_iff
thf(fact_7874_CauchyI,axiom,
    ! [X9: nat > complex] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ? [M8: nat] :
            ! [M2: nat] :
              ( ( ord_less_eq_nat @ M8 @ M2 )
             => ! [N2: nat] :
                  ( ( ord_less_eq_nat @ M8 @ N2 )
                 => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( X9 @ M2 ) @ ( X9 @ N2 ) ) ) @ E2 ) ) ) )
     => ( topolo6517432010174082258omplex @ X9 ) ) ).

% CauchyI
thf(fact_7875_CauchyI,axiom,
    ! [X9: nat > real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ? [M8: nat] :
            ! [M2: nat] :
              ( ( ord_less_eq_nat @ M8 @ M2 )
             => ! [N2: nat] :
                  ( ( ord_less_eq_nat @ M8 @ N2 )
                 => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( X9 @ M2 ) @ ( X9 @ N2 ) ) ) @ E2 ) ) ) )
     => ( topolo4055970368930404560y_real @ X9 ) ) ).

% CauchyI
thf(fact_7876_CauchyD,axiom,
    ! [X9: nat > complex,E: real] :
      ( ( topolo6517432010174082258omplex @ X9 )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ? [M9: nat] :
          ! [M4: nat] :
            ( ( ord_less_eq_nat @ M9 @ M4 )
           => ! [N6: nat] :
                ( ( ord_less_eq_nat @ M9 @ N6 )
               => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( X9 @ M4 ) @ ( X9 @ N6 ) ) ) @ E ) ) ) ) ) ).

% CauchyD
thf(fact_7877_CauchyD,axiom,
    ! [X9: nat > real,E: real] :
      ( ( topolo4055970368930404560y_real @ X9 )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ? [M9: nat] :
          ! [M4: nat] :
            ( ( ord_less_eq_nat @ M9 @ M4 )
           => ! [N6: nat] :
                ( ( ord_less_eq_nat @ M9 @ N6 )
               => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( X9 @ M4 ) @ ( X9 @ N6 ) ) ) @ E ) ) ) ) ) ).

% CauchyD
thf(fact_7878_XOR__upper,axiom,
    ! [X: int,N: nat,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se6526347334894502574or_int @ X @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% XOR_upper
thf(fact_7879_complex__norm__square,axiom,
    ! [Z2: complex] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ Z2 @ ( cnj @ Z2 ) ) ) ).

% complex_norm_square
thf(fact_7880_xor__int__rec,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) )
             != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_int_rec
thf(fact_7881_csqrt_Ocode,axiom,
    ( csqrt
    = ( ^ [Z5: complex] :
          ( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z5 ) @ ( re @ Z5 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          @ ( times_times_real
            @ ( if_real
              @ ( ( im @ Z5 )
                = zero_zero_real )
              @ one_one_real
              @ ( sgn_sgn_real @ ( im @ Z5 ) ) )
            @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z5 ) @ ( re @ Z5 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% csqrt.code
thf(fact_7882_csqrt_Osimps_I2_J,axiom,
    ! [Z2: complex] :
      ( ( im @ ( csqrt @ Z2 ) )
      = ( times_times_real
        @ ( if_real
          @ ( ( im @ Z2 )
            = zero_zero_real )
          @ one_one_real
          @ ( sgn_sgn_real @ ( im @ Z2 ) ) )
        @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt.simps(2)
thf(fact_7883_xor__int__unfold,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( K2
            = ( uminus_uminus_int @ one_one_int ) )
          @ ( bit_ri7919022796975470100ot_int @ L2 )
          @ ( if_int
            @ ( L2
              = ( uminus_uminus_int @ one_one_int ) )
            @ ( bit_ri7919022796975470100ot_int @ K2 )
            @ ( if_int @ ( K2 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_int_unfold
thf(fact_7884_csqrt__of__real__nonpos,axiom,
    ! [X: complex] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ ( re @ X ) @ zero_zero_real )
       => ( ( csqrt @ X )
          = ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X ) ) ) ) ) ) ) ) ).

% csqrt_of_real_nonpos
thf(fact_7885_Complex__divide,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y6 ) ) @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y6 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% Complex_divide
thf(fact_7886_bit_Odouble__compl,axiom,
    ! [X: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( bit_ri7919022796975470100ot_int @ X ) )
      = X ) ).

% bit.double_compl
thf(fact_7887_bit_Ocompl__eq__compl__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( bit_ri7919022796975470100ot_int @ X )
        = ( bit_ri7919022796975470100ot_int @ Y ) )
      = ( X = Y ) ) ).

% bit.compl_eq_compl_iff
thf(fact_7888_bit_Oxor__compl__left,axiom,
    ! [X: int,Y: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ Y )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X @ Y ) ) ) ).

% bit.xor_compl_left
thf(fact_7889_bit_Oxor__compl__right,axiom,
    ! [X: int,Y: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( bit_ri7919022796975470100ot_int @ Y ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X @ Y ) ) ) ).

% bit.xor_compl_right
thf(fact_7890_bit_Oconj__cancel__left,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
      = zero_zero_int ) ).

% bit.conj_cancel_left
thf(fact_7891_bit_Oconj__cancel__right,axiom,
    ! [X: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
      = zero_zero_int ) ).

% bit.conj_cancel_right
thf(fact_7892_Im__power__real,axiom,
    ! [X: complex,N: nat] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( im @ ( power_power_complex @ X @ N ) )
        = zero_zero_real ) ) ).

% Im_power_real
thf(fact_7893_bit_Ocompl__zero,axiom,
    ( ( bit_ri7632146776885996613nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.compl_zero
thf(fact_7894_bit_Ocompl__zero,axiom,
    ( ( bit_ri7919022796975470100ot_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.compl_zero
thf(fact_7895_bit_Ocompl__one,axiom,
    ( ( bit_ri7632146776885996613nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% bit.compl_one
thf(fact_7896_bit_Ocompl__one,axiom,
    ( ( bit_ri7919022796975470100ot_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% bit.compl_one
thf(fact_7897_bit_Oxor__cancel__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ X @ ( bit_ri7632146776885996613nteger @ X ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.xor_cancel_right
thf(fact_7898_bit_Oxor__cancel__right,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.xor_cancel_right
thf(fact_7899_bit_Oxor__cancel__left,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ ( bit_ri7632146776885996613nteger @ X ) @ X )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.xor_cancel_left
thf(fact_7900_bit_Oxor__cancel__left,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.xor_cancel_left
thf(fact_7901_bit_Oxor__one__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_ri7632146776885996613nteger @ X ) ) ).

% bit.xor_one_right
thf(fact_7902_bit_Oxor__one__right,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ X @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ X ) ) ).

% bit.xor_one_right
thf(fact_7903_bit_Oxor__one__left,axiom,
    ! [X: code_integer] :
      ( ( bit_se3222712562003087583nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
      = ( bit_ri7632146776885996613nteger @ X ) ) ).

% bit.xor_one_left
thf(fact_7904_bit_Oxor__one__left,axiom,
    ! [X: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ one_one_int ) @ X )
      = ( bit_ri7919022796975470100ot_int @ X ) ) ).

% bit.xor_one_left
thf(fact_7905_not__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% not_negative_int_iff
thf(fact_7906_not__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% not_nonnegative_int_iff
thf(fact_7907_minus__not__numeral__eq,axiom,
    ! [N: num] :
      ( ( uminus1351360451143612070nteger @ ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ).

% minus_not_numeral_eq
thf(fact_7908_minus__not__numeral__eq,axiom,
    ! [N: num] :
      ( ( uminus_uminus_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( inc @ N ) ) ) ).

% minus_not_numeral_eq
thf(fact_7909_complex__In__mult__cnj__zero,axiom,
    ! [Z2: complex] :
      ( ( im @ ( times_times_complex @ Z2 @ ( cnj @ Z2 ) ) )
      = zero_zero_real ) ).

% complex_In_mult_cnj_zero
thf(fact_7910_Im__i__times,axiom,
    ! [Z2: complex] :
      ( ( im @ ( times_times_complex @ imaginary_unit @ Z2 ) )
      = ( re @ Z2 ) ) ).

% Im_i_times
thf(fact_7911_Im__divide__of__real,axiom,
    ! [Z2: complex,R: real] :
      ( ( im @ ( divide1717551699836669952omplex @ Z2 @ ( real_V4546457046886955230omplex @ R ) ) )
      = ( divide_divide_real @ ( im @ Z2 ) @ R ) ) ).

% Im_divide_of_real
thf(fact_7912_Im__sgn,axiom,
    ! [Z2: complex] :
      ( ( im @ ( sgn_sgn_complex @ Z2 ) )
      = ( divide_divide_real @ ( im @ Z2 ) @ ( real_V1022390504157884413omplex @ Z2 ) ) ) ).

% Im_sgn
thf(fact_7913_even__not__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri7632146776885996613nteger @ A ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_not_iff
thf(fact_7914_even__not__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ A ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_not_iff
thf(fact_7915_push__bit__minus__one__eq__not__mask,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).

% push_bit_minus_one_eq_not_mask
thf(fact_7916_push__bit__minus__one__eq__not__mask,axiom,
    ! [N: nat] :
      ( ( bit_se7788150548672797655nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N ) ) ) ).

% push_bit_minus_one_eq_not_mask
thf(fact_7917_Re__power__real,axiom,
    ! [X: complex,N: nat] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( re @ ( power_power_complex @ X @ N ) )
        = ( power_power_real @ ( re @ X ) @ N ) ) ) ).

% Re_power_real
thf(fact_7918_Re__i__times,axiom,
    ! [Z2: complex] :
      ( ( re @ ( times_times_complex @ imaginary_unit @ Z2 ) )
      = ( uminus_uminus_real @ ( im @ Z2 ) ) ) ).

% Re_i_times
thf(fact_7919_Im__divide__numeral,axiom,
    ! [Z2: complex,W: num] :
      ( ( im @ ( divide1717551699836669952omplex @ Z2 @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( im @ Z2 ) @ ( numeral_numeral_real @ W ) ) ) ).

% Im_divide_numeral
thf(fact_7920_Im__divide__of__nat,axiom,
    ! [Z2: complex,N: nat] :
      ( ( im @ ( divide1717551699836669952omplex @ Z2 @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( divide_divide_real @ ( im @ Z2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% Im_divide_of_nat
thf(fact_7921_not__one__eq,axiom,
    ( ( bit_ri7632146776885996613nteger @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% not_one_eq
thf(fact_7922_not__one__eq,axiom,
    ( ( bit_ri7919022796975470100ot_int @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% not_one_eq
thf(fact_7923_csqrt__minus,axiom,
    ! [X: complex] :
      ( ( ( ord_less_real @ ( im @ X ) @ zero_zero_real )
        | ( ( ( im @ X )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) ) ) )
     => ( ( csqrt @ ( uminus1482373934393186551omplex @ X ) )
        = ( times_times_complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).

% csqrt_minus
thf(fact_7924_scaleR__complex_Osimps_I2_J,axiom,
    ! [R: real,X: complex] :
      ( ( im @ ( real_V2046097035970521341omplex @ R @ X ) )
      = ( times_times_real @ R @ ( im @ X ) ) ) ).

% scaleR_complex.simps(2)
thf(fact_7925_take__bit__not__take__bit,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ ( bit_se2923211474154528505it_int @ N @ A ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) ) ) ).

% take_bit_not_take_bit
thf(fact_7926_take__bit__not__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
        = ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ B ) ) )
      = ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_not_iff
thf(fact_7927_bit__not__int__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_not_int_iff
thf(fact_7928_of__int__not__eq,axiom,
    ! [K: int] :
      ( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( bit_ri7919022796975470100ot_int @ ( ring_1_of_int_int @ K ) ) ) ).

% of_int_not_eq
thf(fact_7929_of__int__not__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_not_numeral
thf(fact_7930_not__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( plus_plus_int @ A @ B ) )
      = ( minus_minus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).

% not_add_distrib
thf(fact_7931_not__diff__distrib,axiom,
    ! [A: int,B: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A @ B ) )
      = ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).

% not_diff_distrib
thf(fact_7932_imaginary__unit_Osimps_I2_J,axiom,
    ( ( im @ imaginary_unit )
    = one_one_real ) ).

% imaginary_unit.simps(2)
thf(fact_7933_one__complex_Osimps_I2_J,axiom,
    ( ( im @ one_one_complex )
    = zero_zero_real ) ).

% one_complex.simps(2)
thf(fact_7934_plus__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_real @ ( im @ X ) @ ( im @ Y ) ) ) ).

% plus_complex.simps(2)
thf(fact_7935_minus__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_real @ ( im @ X ) @ ( im @ Y ) ) ) ).

% minus_complex.simps(2)
thf(fact_7936_minus__eq__not__plus__1,axiom,
    ( uminus1351360451143612070nteger
    = ( ^ [A2: code_integer] : ( plus_p5714425477246183910nteger @ ( bit_ri7632146776885996613nteger @ A2 ) @ one_one_Code_integer ) ) ) ).

% minus_eq_not_plus_1
thf(fact_7937_minus__eq__not__plus__1,axiom,
    ( uminus_uminus_int
    = ( ^ [A2: int] : ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A2 ) @ one_one_int ) ) ) ).

% minus_eq_not_plus_1
thf(fact_7938_minus__eq__not__minus__1,axiom,
    ( uminus1351360451143612070nteger
    = ( ^ [A2: code_integer] : ( bit_ri7632146776885996613nteger @ ( minus_8373710615458151222nteger @ A2 @ one_one_Code_integer ) ) ) ) ).

% minus_eq_not_minus_1
thf(fact_7939_minus__eq__not__minus__1,axiom,
    ( uminus_uminus_int
    = ( ^ [A2: int] : ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A2 @ one_one_int ) ) ) ) ).

% minus_eq_not_minus_1
thf(fact_7940_not__eq__complement,axiom,
    ( bit_ri7632146776885996613nteger
    = ( ^ [A2: code_integer] : ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A2 ) @ one_one_Code_integer ) ) ) ).

% not_eq_complement
thf(fact_7941_not__eq__complement,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [A2: int] : ( minus_minus_int @ ( uminus_uminus_int @ A2 ) @ one_one_int ) ) ) ).

% not_eq_complement
thf(fact_7942_not__int__def,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K2: int] : ( minus_minus_int @ ( uminus_uminus_int @ K2 ) @ one_one_int ) ) ) ).

% not_int_def
thf(fact_7943_and__not__numerals_I1_J,axiom,
    ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = zero_zero_int ) ).

% and_not_numerals(1)
thf(fact_7944_scaleR__complex_Ocode,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real,X3: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X3 ) ) @ ( times_times_real @ R5 @ ( im @ X3 ) ) ) ) ) ).

% scaleR_complex.code
thf(fact_7945_disjunctive__diff,axiom,
    ! [B: int,A: int] :
      ( ! [N2: nat] :
          ( ( bit_se1146084159140164899it_int @ B @ N2 )
         => ( bit_se1146084159140164899it_int @ A @ N2 ) )
     => ( ( minus_minus_int @ A @ B )
        = ( bit_se725231765392027082nd_int @ A @ ( bit_ri7919022796975470100ot_int @ B ) ) ) ) ).

% disjunctive_diff
thf(fact_7946_take__bit__not__eq__mask__diff,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
      = ( minus_minus_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ).

% take_bit_not_eq_mask_diff
thf(fact_7947_minus__numeral__inc__eq,axiom,
    ! [N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) )
      = ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% minus_numeral_inc_eq
thf(fact_7948_minus__numeral__inc__eq,axiom,
    ! [N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ).

% minus_numeral_inc_eq
thf(fact_7949_not__int__div__2,axiom,
    ! [K: int] :
      ( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% not_int_div_2
thf(fact_7950_even__not__iff__int,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_not_iff_int
thf(fact_7951_and__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(4)
thf(fact_7952_and__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = one_one_int ) ).

% and_not_numerals(2)
thf(fact_7953_not__numeral__Bit0__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ) ).

% not_numeral_Bit0_eq
thf(fact_7954_not__numeral__Bit0__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% not_numeral_Bit0_eq
thf(fact_7955_bit__minus__int__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N )
      = ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N ) ) ).

% bit_minus_int_iff
thf(fact_7956_times__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( times_times_complex @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) ) ) ).

% times_complex.simps(2)
thf(fact_7957_times__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( times_times_complex @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) ) ).

% times_complex.simps(1)
thf(fact_7958_take__bit__not__mask__eq__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) )
        = zero_zero_int ) ) ).

% take_bit_not_mask_eq_0
thf(fact_7959_Im__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Im_complex_div_eq_0
thf(fact_7960_push__bit__mask__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se545348938243370406it_int @ M @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se2000444600071755411sk_int @ ( plus_plus_nat @ N @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ M ) ) ) ) ).

% push_bit_mask_eq
thf(fact_7961_push__bit__mask__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se7788150548672797655nteger @ M @ ( bit_se2119862282449309892nteger @ N ) )
      = ( bit_se3949692690581998587nteger @ ( bit_se2119862282449309892nteger @ ( plus_plus_nat @ N @ M ) ) @ ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ M ) ) ) ) ).

% push_bit_mask_eq
thf(fact_7962_plus__complex_Ocode,axiom,
    ( plus_plus_complex
    = ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( plus_plus_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( plus_plus_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) ) ) ).

% plus_complex.code
thf(fact_7963_unset__bit__eq__and__not,axiom,
    ( bit_se8260200283734997820nteger
    = ( ^ [N3: nat,A2: code_integer] : ( bit_se3949692690581998587nteger @ A2 @ ( bit_ri7632146776885996613nteger @ ( bit_se7788150548672797655nteger @ N3 @ one_one_Code_integer ) ) ) ) ) ).

% unset_bit_eq_and_not
thf(fact_7964_unset__bit__eq__and__not,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,A2: int] : ( bit_se725231765392027082nd_int @ A2 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ) ).

% unset_bit_eq_and_not
thf(fact_7965_minus__complex_Ocode,axiom,
    ( minus_minus_complex
    = ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( minus_minus_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( minus_minus_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) ) ) ).

% minus_complex.code
thf(fact_7966_unset__bit__int__def,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,K2: int] : ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ) ).

% unset_bit_int_def
thf(fact_7967_and__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(5)
thf(fact_7968_and__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(7)
thf(fact_7969_and__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = zero_zero_int ) ).

% and_not_numerals(3)
thf(fact_7970_cmod__le,axiom,
    ! [Z2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z2 ) ) @ ( abs_abs_real @ ( im @ Z2 ) ) ) ) ).

% cmod_le
thf(fact_7971_Im__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_gt_0
thf(fact_7972_Im__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_lt_0
thf(fact_7973_Im__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_ge_0
thf(fact_7974_Im__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_le_0
thf(fact_7975_sin__n__Im__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( im @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% sin_n_Im_cis_pow_n
thf(fact_7976_Re__exp,axiom,
    ! [Z2: complex] :
      ( ( re @ ( exp_complex @ Z2 ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z2 ) ) @ ( cos_real @ ( im @ Z2 ) ) ) ) ).

% Re_exp
thf(fact_7977_Im__exp,axiom,
    ! [Z2: complex] :
      ( ( im @ ( exp_complex @ Z2 ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z2 ) ) @ ( sin_real @ ( im @ Z2 ) ) ) ) ).

% Im_exp
thf(fact_7978_complex__eq,axiom,
    ! [A: complex] :
      ( A
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( re @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( im @ A ) ) ) ) ) ).

% complex_eq
thf(fact_7979_and__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(9)
thf(fact_7980_and__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(6)
thf(fact_7981_bit__not__iff__eq,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ A ) @ N )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
         != zero_zero_int )
        & ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% bit_not_iff_eq
thf(fact_7982_minus__exp__eq__not__mask,axiom,
    ! [N: nat] :
      ( ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N ) ) ) ).

% minus_exp_eq_not_mask
thf(fact_7983_minus__exp__eq__not__mask,axiom,
    ! [N: nat] :
      ( ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).

% minus_exp_eq_not_mask
thf(fact_7984_times__complex_Ocode,axiom,
    ( times_times_complex
    = ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y6 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y6 ) ) ) ) ) ) ).

% times_complex.code
thf(fact_7985_complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
      & ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).

% complex_div_gt_0
thf(fact_7986_exp__eq__polar,axiom,
    ( exp_complex
    = ( ^ [Z5: complex] : ( times_times_complex @ ( real_V4546457046886955230omplex @ ( exp_real @ ( re @ Z5 ) ) ) @ ( cis @ ( im @ Z5 ) ) ) ) ) ).

% exp_eq_polar
thf(fact_7987_complex__eq__0,axiom,
    ! [Z2: complex] :
      ( ( Z2 = zero_zero_complex )
      = ( ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real ) ) ).

% complex_eq_0
thf(fact_7988_cmod__power2,axiom,
    ! [Z2: complex] :
      ( ( power_power_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cmod_power2
thf(fact_7989_Im__power2,axiom,
    ! [X: complex] :
      ( ( im @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X ) ) @ ( im @ X ) ) ) ).

% Im_power2
thf(fact_7990_Re__power2,axiom,
    ! [X: complex] :
      ( ( re @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Re_power2
thf(fact_7991_complex__neq__0,axiom,
    ! [Z2: complex] :
      ( ( Z2 != zero_zero_complex )
      = ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_neq_0
thf(fact_7992_and__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% and_not_numerals(8)
thf(fact_7993_norm__complex__def,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z5: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z5 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z5 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% norm_complex_def
thf(fact_7994_not__int__rec,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K2: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% not_int_rec
thf(fact_7995_inverse__complex_Osimps_I1_J,axiom,
    ! [X: complex] :
      ( ( re @ ( invers8013647133539491842omplex @ X ) )
      = ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(1)
thf(fact_7996_complex__unit__circle,axiom,
    ! [Z2: complex] :
      ( ( Z2 != zero_zero_complex )
     => ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z2 ) @ ( real_V1022390504157884413omplex @ Z2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z2 ) @ ( real_V1022390504157884413omplex @ Z2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real ) ) ).

% complex_unit_circle
thf(fact_7997_Re__divide,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( divide1717551699836669952omplex @ X @ Y ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_divide
thf(fact_7998_complex__mult__cnj,axiom,
    ! [Z2: complex] :
      ( ( times_times_complex @ Z2 @ ( cnj @ Z2 ) )
      = ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_mult_cnj
thf(fact_7999_csqrt__unique,axiom,
    ! [W: complex,Z2: complex] :
      ( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = Z2 )
     => ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
          | ( ( ( re @ W )
              = zero_zero_real )
            & ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
       => ( ( csqrt @ Z2 )
          = W ) ) ) ).

% csqrt_unique
thf(fact_8000_csqrt__square,axiom,
    ! [B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
        | ( ( ( re @ B )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
     => ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = B ) ) ).

% csqrt_square
thf(fact_8001_inverse__complex_Osimps_I2_J,axiom,
    ! [X: complex] :
      ( ( im @ ( invers8013647133539491842omplex @ X ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(2)
thf(fact_8002_complex__diff__cnj,axiom,
    ! [Z2: complex] :
      ( ( minus_minus_complex @ Z2 @ ( cnj @ Z2 ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z2 ) ) ) @ imaginary_unit ) ) ).

% complex_diff_cnj
thf(fact_8003_Im__divide,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( divide1717551699836669952omplex @ X @ Y ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_divide
thf(fact_8004_complex__abs__le__norm,axiom,
    ! [Z2: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z2 ) ) @ ( abs_abs_real @ ( im @ Z2 ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z2 ) ) ) ).

% complex_abs_le_norm
thf(fact_8005_inverse__complex_Ocode,axiom,
    ( invers8013647133539491842omplex
    = ( ^ [X3: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X3 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X3 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% inverse_complex.code
thf(fact_8006_Im__Reals__divide,axiom,
    ! [R: complex,Z2: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ R @ Z2 ) )
        = ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R ) ) @ ( im @ Z2 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_Reals_divide
thf(fact_8007_Re__Reals__divide,axiom,
    ! [R: complex,Z2: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ R @ Z2 ) )
        = ( divide_divide_real @ ( times_times_real @ ( re @ R ) @ ( re @ Z2 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_Reals_divide
thf(fact_8008_num_Osize_I6_J,axiom,
    ! [X32: num] :
      ( ( size_size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(6)
thf(fact_8009_num_Osize_I5_J,axiom,
    ! [X2: num] :
      ( ( size_size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_8010_or__int__rec,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
              | ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_int_rec
thf(fact_8011_or_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ B )
      = ( bit_se1409905431419307370or_int @ A @ B ) ) ).

% or.right_idem
thf(fact_8012_or_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ B )
      = ( bit_se1412395901928357646or_nat @ A @ B ) ) ).

% or.right_idem
thf(fact_8013_or_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ A @ B ) ) ).

% or.left_idem
thf(fact_8014_or_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ A @ B ) ) ).

% or.left_idem
thf(fact_8015_or_Oidem,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ A )
      = A ) ).

% or.idem
thf(fact_8016_or_Oidem,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ A )
      = A ) ).

% or.idem
thf(fact_8017_or_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ zero_zero_int )
      = A ) ).

% or.right_neutral
thf(fact_8018_or_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ zero_zero_nat )
      = A ) ).

% or.right_neutral
thf(fact_8019_or_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ zero_zero_int @ A )
      = A ) ).

% or.left_neutral
thf(fact_8020_or_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ zero_zero_nat @ A )
      = A ) ).

% or.left_neutral
thf(fact_8021_take__bit__or,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_or
thf(fact_8022_take__bit__or,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_or
thf(fact_8023_push__bit__or,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).

% push_bit_or
thf(fact_8024_push__bit__or,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).

% push_bit_or
thf(fact_8025_push__bit__or,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( bit_se1080825931792720795nteger @ A @ B ) )
      = ( bit_se1080825931792720795nteger @ ( bit_se7788150548672797655nteger @ N @ A ) @ ( bit_se7788150548672797655nteger @ N @ B ) ) ) ).

% push_bit_or
thf(fact_8026_push__bit__or,axiom,
    ! [N: nat,A: code_natural,B: code_natural] :
      ( ( bit_se6611745700429515170atural @ N @ ( bit_se9127793120404214118atural @ A @ B ) )
      = ( bit_se9127793120404214118atural @ ( bit_se6611745700429515170atural @ N @ A ) @ ( bit_se6611745700429515170atural @ N @ B ) ) ) ).

% push_bit_or
thf(fact_8027_bit_Odisj__one__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se1080825931792720795nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_one_right
thf(fact_8028_bit_Odisj__one__right,axiom,
    ! [X: int] :
      ( ( bit_se1409905431419307370or_int @ X @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_one_right
thf(fact_8029_bit_Odisj__one__left,axiom,
    ! [X: code_integer] :
      ( ( bit_se1080825931792720795nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_one_left
thf(fact_8030_bit_Odisj__one__left,axiom,
    ! [X: int] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ one_one_int ) @ X )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_one_left
thf(fact_8031_or__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% or_nonnegative_int_iff
thf(fact_8032_or__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        | ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% or_negative_int_iff
thf(fact_8033_bit_Ode__Morgan__disj,axiom,
    ! [X: int,Y: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ X @ Y ) )
      = ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X ) @ ( bit_ri7919022796975470100ot_int @ Y ) ) ) ).

% bit.de_Morgan_disj
thf(fact_8034_bit_Ode__Morgan__conj,axiom,
    ! [X: int,Y: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ X @ Y ) )
      = ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ ( bit_ri7919022796975470100ot_int @ Y ) ) ) ).

% bit.de_Morgan_conj
thf(fact_8035_or__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).

% or_numerals(8)
thf(fact_8036_or__numerals_I8_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_numerals(8)
thf(fact_8037_or__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y ) ) ) ).

% or_numerals(2)
thf(fact_8038_or__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_numerals(2)
thf(fact_8039_bit_Odisj__cancel__right,axiom,
    ! [X: code_integer] :
      ( ( bit_se1080825931792720795nteger @ X @ ( bit_ri7632146776885996613nteger @ X ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_cancel_right
thf(fact_8040_bit_Odisj__cancel__right,axiom,
    ! [X: int] :
      ( ( bit_se1409905431419307370or_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_cancel_right
thf(fact_8041_bit_Odisj__cancel__left,axiom,
    ! [X: code_integer] :
      ( ( bit_se1080825931792720795nteger @ ( bit_ri7632146776885996613nteger @ X ) @ X )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_cancel_left
thf(fact_8042_bit_Odisj__cancel__left,axiom,
    ! [X: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_cancel_left
thf(fact_8043_Re__divide__Reals,axiom,
    ! [R: complex,Z2: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ Z2 @ R ) )
        = ( divide_divide_real @ ( re @ Z2 ) @ ( re @ R ) ) ) ) ).

% Re_divide_Reals
thf(fact_8044_imaginary__eq__real__iff,axiom,
    ! [Y: complex,X: complex] :
      ( ( member_complex @ Y @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X @ real_V2521375963428798218omplex )
       => ( ( ( times_times_complex @ imaginary_unit @ Y )
            = X )
          = ( ( X = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% imaginary_eq_real_iff
thf(fact_8045_real__eq__imaginary__iff,axiom,
    ! [Y: complex,X: complex] :
      ( ( member_complex @ Y @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X @ real_V2521375963428798218omplex )
       => ( ( X
            = ( times_times_complex @ imaginary_unit @ Y ) )
          = ( ( X = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% real_eq_imaginary_iff
thf(fact_8046_or__numerals_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).

% or_numerals(3)
thf(fact_8047_or__numerals_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).

% or_numerals(3)
thf(fact_8048_or__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y ) ) ) ).

% or_numerals(1)
thf(fact_8049_or__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_numerals(1)
thf(fact_8050_or__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).

% or_numerals(5)
thf(fact_8051_or__numerals_I5_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_numerals(5)
thf(fact_8052_or__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(6)
thf(fact_8053_or__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(2)
thf(fact_8054_Im__divide__Reals,axiom,
    ! [R: complex,Z2: complex] :
      ( ( member_complex @ R @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ Z2 @ R ) )
        = ( divide_divide_real @ ( im @ Z2 ) @ ( re @ R ) ) ) ) ).

% Im_divide_Reals
thf(fact_8055_or__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% or_minus_minus_numerals
thf(fact_8056_and__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% and_minus_minus_numerals
thf(fact_8057_or__numerals_I4_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).

% or_numerals(4)
thf(fact_8058_or__numerals_I4_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).

% or_numerals(4)
thf(fact_8059_or__numerals_I6_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).

% or_numerals(6)
thf(fact_8060_or__numerals_I6_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).

% or_numerals(6)
thf(fact_8061_or__numerals_I7_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).

% or_numerals(7)
thf(fact_8062_or__numerals_I7_J,axiom,
    ! [X: num,Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).

% or_numerals(7)
thf(fact_8063_of__nat__or__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se1412395901928357646or_nat @ M @ N ) )
      = ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_or_eq
thf(fact_8064_of__nat__or__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se1412395901928357646or_nat @ M @ N ) )
      = ( bit_se1412395901928357646or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_or_eq
thf(fact_8065_Reals__numeral,axiom,
    ! [W: num] : ( member_complex @ ( numera6690914467698888265omplex @ W ) @ real_V2521375963428798218omplex ) ).

% Reals_numeral
thf(fact_8066_Reals__numeral,axiom,
    ! [W: num] : ( member_real @ ( numeral_numeral_real @ W ) @ real_V470468836141973256s_real ) ).

% Reals_numeral
thf(fact_8067_Reals__mult,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( ( member_real @ B @ real_V470468836141973256s_real )
       => ( member_real @ ( times_times_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).

% Reals_mult
thf(fact_8068_Reals__mult,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( ( member_complex @ B @ real_V2521375963428798218omplex )
       => ( member_complex @ ( times_times_complex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).

% Reals_mult
thf(fact_8069_Reals__1,axiom,
    member_real @ one_one_real @ real_V470468836141973256s_real ).

% Reals_1
thf(fact_8070_Reals__1,axiom,
    member_complex @ one_one_complex @ real_V2521375963428798218omplex ).

% Reals_1
thf(fact_8071_Reals__add,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( ( member_real @ B @ real_V470468836141973256s_real )
       => ( member_real @ ( plus_plus_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).

% Reals_add
thf(fact_8072_Reals__add,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( ( member_complex @ B @ real_V2521375963428798218omplex )
       => ( member_complex @ ( plus_plus_complex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).

% Reals_add
thf(fact_8073_Reals__diff,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( ( member_real @ B @ real_V470468836141973256s_real )
       => ( member_real @ ( minus_minus_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).

% Reals_diff
thf(fact_8074_Reals__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( ( member_complex @ B @ real_V2521375963428798218omplex )
       => ( member_complex @ ( minus_minus_complex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).

% Reals_diff
thf(fact_8075_Reals__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( ( member_complex @ B @ real_V2521375963428798218omplex )
       => ( member_complex @ ( divide1717551699836669952omplex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).

% Reals_divide
thf(fact_8076_Reals__divide,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( ( member_real @ B @ real_V470468836141973256s_real )
       => ( member_real @ ( divide_divide_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).

% Reals_divide
thf(fact_8077_bit__or__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ N )
      = ( ( bit_se1146084159140164899it_int @ A @ N )
        | ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).

% bit_or_iff
thf(fact_8078_bit__or__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ N )
      = ( ( bit_se1148574629649215175it_nat @ A @ N )
        | ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).

% bit_or_iff
thf(fact_8079_size__neq__size__imp__neq,axiom,
    ! [X: list_VEBT_VEBT,Y: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ X )
       != ( size_s6755466524823107622T_VEBT @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_8080_size__neq__size__imp__neq,axiom,
    ! [X: list_o,Y: list_o] :
      ( ( ( size_size_list_o @ X )
       != ( size_size_list_o @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_8081_size__neq__size__imp__neq,axiom,
    ! [X: list_nat,Y: list_nat] :
      ( ( ( size_size_list_nat @ X )
       != ( size_size_list_nat @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_8082_size__neq__size__imp__neq,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( ( size_size_list_int @ X )
       != ( size_size_list_int @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_8083_size__neq__size__imp__neq,axiom,
    ! [X: num,Y: num] :
      ( ( ( size_size_num @ X )
       != ( size_size_num @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_8084_or_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se1409905431419307370or_int @ B @ ( bit_se1409905431419307370or_int @ A @ C ) )
      = ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).

% or.left_commute
thf(fact_8085_or_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se1412395901928357646or_nat @ B @ ( bit_se1412395901928357646or_nat @ A @ C ) )
      = ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).

% or.left_commute
thf(fact_8086_or_Ocommute,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [A2: int,B2: int] : ( bit_se1409905431419307370or_int @ B2 @ A2 ) ) ) ).

% or.commute
thf(fact_8087_or_Ocommute,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [A2: nat,B2: nat] : ( bit_se1412395901928357646or_nat @ B2 @ A2 ) ) ) ).

% or.commute
thf(fact_8088_or_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ C )
      = ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).

% or.assoc
thf(fact_8089_or_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ C )
      = ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).

% or.assoc
thf(fact_8090_bit_Odisj__zero__right,axiom,
    ! [X: int] :
      ( ( bit_se1409905431419307370or_int @ X @ zero_zero_int )
      = X ) ).

% bit.disj_zero_right
thf(fact_8091_or__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( bit_se1409905431419307370or_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( B = zero_zero_int ) ) ) ).

% or_eq_0_iff
thf(fact_8092_or__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( bit_se1412395901928357646or_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% or_eq_0_iff
thf(fact_8093_of__int__or__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
      = ( bit_se1409905431419307370or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_or_eq
thf(fact_8094_bit__or__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
        | ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_or_int_iff
thf(fact_8095_bit_Odisj__conj__distrib2,axiom,
    ! [Y: int,Z2: int,X: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ Y @ Z2 ) @ X )
      = ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ Y @ X ) @ ( bit_se1409905431419307370or_int @ Z2 @ X ) ) ) ).

% bit.disj_conj_distrib2
thf(fact_8096_bit_Oconj__disj__distrib2,axiom,
    ! [Y: int,Z2: int,X: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ Y @ Z2 ) @ X )
      = ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ Y @ X ) @ ( bit_se725231765392027082nd_int @ Z2 @ X ) ) ) ).

% bit.conj_disj_distrib2
thf(fact_8097_bit_Odisj__conj__distrib,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( bit_se1409905431419307370or_int @ X @ ( bit_se725231765392027082nd_int @ Y @ Z2 ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ X @ Y ) @ ( bit_se1409905431419307370or_int @ X @ Z2 ) ) ) ).

% bit.disj_conj_distrib
thf(fact_8098_bit_Oconj__disj__distrib,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( bit_se725231765392027082nd_int @ X @ ( bit_se1409905431419307370or_int @ Y @ Z2 ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ ( bit_se725231765392027082nd_int @ X @ Z2 ) ) ) ).

% bit.conj_disj_distrib
thf(fact_8099_Reals__0,axiom,
    member_real @ zero_zero_real @ real_V470468836141973256s_real ).

% Reals_0
thf(fact_8100_Reals__0,axiom,
    member_complex @ zero_zero_complex @ real_V2521375963428798218omplex ).

% Reals_0
thf(fact_8101_Reals__power,axiom,
    ! [A: real,N: nat] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( member_real @ ( power_power_real @ A @ N ) @ real_V470468836141973256s_real ) ) ).

% Reals_power
thf(fact_8102_Reals__power,axiom,
    ! [A: complex,N: nat] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( member_complex @ ( power_power_complex @ A @ N ) @ real_V2521375963428798218omplex ) ) ).

% Reals_power
thf(fact_8103_Reals__of__nat,axiom,
    ! [N: nat] : ( member_complex @ ( semiri8010041392384452111omplex @ N ) @ real_V2521375963428798218omplex ) ).

% Reals_of_nat
thf(fact_8104_Reals__of__nat,axiom,
    ! [N: nat] : ( member_real @ ( semiri5074537144036343181t_real @ N ) @ real_V470468836141973256s_real ) ).

% Reals_of_nat
thf(fact_8105_or__greater__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L ) ) ) ).

% or_greater_eq
thf(fact_8106_OR__lower,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X @ Y ) ) ) ) ).

% OR_lower
thf(fact_8107_disjunctive__add,axiom,
    ! [A: int,B: int] :
      ( ! [N2: nat] :
          ( ~ ( bit_se1146084159140164899it_int @ A @ N2 )
          | ~ ( bit_se1146084159140164899it_int @ B @ N2 ) )
     => ( ( plus_plus_int @ A @ B )
        = ( bit_se1409905431419307370or_int @ A @ B ) ) ) ).

% disjunctive_add
thf(fact_8108_disjunctive__add,axiom,
    ! [A: nat,B: nat] :
      ( ! [N2: nat] :
          ( ~ ( bit_se1148574629649215175it_nat @ A @ N2 )
          | ~ ( bit_se1148574629649215175it_nat @ B @ N2 ) )
     => ( ( plus_plus_nat @ A @ B )
        = ( bit_se1412395901928357646or_nat @ A @ B ) ) ) ).

% disjunctive_add
thf(fact_8109_plus__and__or,axiom,
    ! [X: int,Y: int] :
      ( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ ( bit_se1409905431419307370or_int @ X @ Y ) )
      = ( plus_plus_int @ X @ Y ) ) ).

% plus_and_or
thf(fact_8110_or__eq__not__not__and,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [A2: int,B2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ A2 ) @ ( bit_ri7919022796975470100ot_int @ B2 ) ) ) ) ) ).

% or_eq_not_not_and
thf(fact_8111_and__eq__not__not__or,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [A2: int,B2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ A2 ) @ ( bit_ri7919022796975470100ot_int @ B2 ) ) ) ) ) ).

% and_eq_not_not_or
thf(fact_8112_or__int__def,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ ( bit_ri7919022796975470100ot_int @ L2 ) ) ) ) ) ).

% or_int_def
thf(fact_8113_nonzero__Reals__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( ( member_complex @ B @ real_V2521375963428798218omplex )
       => ( ( B != zero_zero_complex )
         => ( member_complex @ ( divide1717551699836669952omplex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ) ).

% nonzero_Reals_divide
thf(fact_8114_nonzero__Reals__divide,axiom,
    ! [A: real,B: real] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( ( member_real @ B @ real_V470468836141973256s_real )
       => ( ( B != zero_zero_real )
         => ( member_real @ ( divide_divide_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ) ).

% nonzero_Reals_divide
thf(fact_8115_nonzero__Reals__inverse,axiom,
    ! [A: real] :
      ( ( member_real @ A @ real_V470468836141973256s_real )
     => ( ( A != zero_zero_real )
       => ( member_real @ ( inverse_inverse_real @ A ) @ real_V470468836141973256s_real ) ) ) ).

% nonzero_Reals_inverse
thf(fact_8116_nonzero__Reals__inverse,axiom,
    ! [A: complex] :
      ( ( member_complex @ A @ real_V2521375963428798218omplex )
     => ( ( A != zero_zero_complex )
       => ( member_complex @ ( invers8013647133539491842omplex @ A ) @ real_V2521375963428798218omplex ) ) ) ).

% nonzero_Reals_inverse
thf(fact_8117_or__not__numerals_I1_J,axiom,
    ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(1)
thf(fact_8118_bit_Oxor__def2,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [X3: int,Y6: int] : ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ X3 @ Y6 ) @ ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ ( bit_ri7919022796975470100ot_int @ Y6 ) ) ) ) ) ).

% bit.xor_def2
thf(fact_8119_bit_Oxor__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [X3: int,Y6: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ X3 @ ( bit_ri7919022796975470100ot_int @ Y6 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ Y6 ) ) ) ) ).

% bit.xor_def
thf(fact_8120_set__bit__eq__or,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [N3: nat,A2: nat] : ( bit_se1412395901928357646or_nat @ A2 @ ( bit_se547839408752420682it_nat @ N3 @ one_one_nat ) ) ) ) ).

% set_bit_eq_or
thf(fact_8121_set__bit__eq__or,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,A2: int] : ( bit_se1409905431419307370or_int @ A2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% set_bit_eq_or
thf(fact_8122_set__bit__eq__or,axiom,
    ( bit_se2793503036327961859nteger
    = ( ^ [N3: nat,A2: code_integer] : ( bit_se1080825931792720795nteger @ A2 @ ( bit_se7788150548672797655nteger @ N3 @ one_one_Code_integer ) ) ) ) ).

% set_bit_eq_or
thf(fact_8123_set__bit__eq__or,axiom,
    ( bit_se1617098188084679374atural
    = ( ^ [N3: nat,A2: code_natural] : ( bit_se9127793120404214118atural @ A2 @ ( bit_se6611745700429515170atural @ N3 @ one_one_Code_natural ) ) ) ) ).

% set_bit_eq_or
thf(fact_8124_xor__int__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ L2 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ L2 ) ) ) ) ).

% xor_int_def
thf(fact_8125_concat__bit__def,axiom,
    ( bit_concat_bit
    = ( ^ [N3: nat,K2: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N3 @ K2 ) @ ( bit_se545348938243370406it_int @ N3 @ L2 ) ) ) ) ).

% concat_bit_def
thf(fact_8126_set__bit__int__def,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,K2: int] : ( bit_se1409905431419307370or_int @ K2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% set_bit_int_def
thf(fact_8127_even__or__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1080825931792720795nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_8128_even__or__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_8129_even__or__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_8130_bit_Ocomplement__unique,axiom,
    ! [A: code_integer,X: code_integer,Y: code_integer] :
      ( ( ( bit_se3949692690581998587nteger @ A @ X )
        = zero_z3403309356797280102nteger )
     => ( ( ( bit_se1080825931792720795nteger @ A @ X )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
       => ( ( ( bit_se3949692690581998587nteger @ A @ Y )
            = zero_z3403309356797280102nteger )
         => ( ( ( bit_se1080825931792720795nteger @ A @ Y )
              = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
           => ( X = Y ) ) ) ) ) ).

% bit.complement_unique
thf(fact_8131_bit_Ocomplement__unique,axiom,
    ! [A: int,X: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ A @ X )
        = zero_zero_int )
     => ( ( ( bit_se1409905431419307370or_int @ A @ X )
          = ( uminus_uminus_int @ one_one_int ) )
       => ( ( ( bit_se725231765392027082nd_int @ A @ Y )
            = zero_zero_int )
         => ( ( ( bit_se1409905431419307370or_int @ A @ Y )
              = ( uminus_uminus_int @ one_one_int ) )
           => ( X = Y ) ) ) ) ) ).

% bit.complement_unique
thf(fact_8132_or__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(2)
thf(fact_8133_or__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).

% or_not_numerals(4)
thf(fact_8134_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_8135_bit_Ocompl__unique,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ( bit_se3949692690581998587nteger @ X @ Y )
        = zero_z3403309356797280102nteger )
     => ( ( ( bit_se1080825931792720795nteger @ X @ Y )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
       => ( ( bit_ri7632146776885996613nteger @ X )
          = Y ) ) ) ).

% bit.compl_unique
thf(fact_8136_bit_Ocompl__unique,axiom,
    ! [X: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Y )
        = zero_zero_int )
     => ( ( ( bit_se1409905431419307370or_int @ X @ Y )
          = ( uminus_uminus_int @ one_one_int ) )
       => ( ( bit_ri7919022796975470100ot_int @ X )
          = Y ) ) ) ).

% bit.compl_unique
thf(fact_8137_or__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(3)
thf(fact_8138_or__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(7)
thf(fact_8139_signed__take__bit__eq__if__negative,axiom,
    ! [A: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ A @ N )
     => ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ) ).

% signed_take_bit_eq_if_negative
thf(fact_8140_mask__Suc__exp,axiom,
    ! [N: nat] :
      ( ( bit_se2002935070580805687sk_nat @ ( suc @ N ) )
      = ( bit_se1412395901928357646or_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% mask_Suc_exp
thf(fact_8141_mask__Suc__exp,axiom,
    ! [N: nat] :
      ( ( bit_se2000444600071755411sk_int @ ( suc @ N ) )
      = ( bit_se1409905431419307370or_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).

% mask_Suc_exp
thf(fact_8142_or__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% or_not_numerals(6)
thf(fact_8143_or__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se1080825931792720795nteger @ A @ one_one_Code_integer )
      = ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% or_one_eq
thf(fact_8144_or__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ one_one_int )
      = ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% or_one_eq
thf(fact_8145_or__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ one_one_nat )
      = ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% or_one_eq
thf(fact_8146_one__or__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se1080825931792720795nteger @ one_one_Code_integer @ A )
      = ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_or_eq
thf(fact_8147_one__or__eq,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ A )
      = ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_or_eq
thf(fact_8148_one__or__eq,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ A )
      = ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_or_eq
thf(fact_8149_mask__Suc__double,axiom,
    ! [N: nat] :
      ( ( bit_se2002935070580805687sk_nat @ ( suc @ N ) )
      = ( bit_se1412395901928357646or_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ) ).

% mask_Suc_double
thf(fact_8150_mask__Suc__double,axiom,
    ! [N: nat] :
      ( ( bit_se2000444600071755411sk_int @ ( suc @ N ) )
      = ( bit_se1409905431419307370or_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ).

% mask_Suc_double
thf(fact_8151_OR__upper,axiom,
    ! [X: int,N: nat,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se1409905431419307370or_int @ X @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% OR_upper
thf(fact_8152_or__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(5)
thf(fact_8153_signed__take__bit__def,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N3: nat,A2: code_integer] : ( bit_se1080825931792720795nteger @ ( bit_se1745604003318907178nteger @ N3 @ A2 ) @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( bit_se9216721137139052372nteger @ A2 @ N3 ) ) @ ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N3 ) ) ) ) ) ) ).

% signed_take_bit_def
thf(fact_8154_signed__take__bit__def,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,A2: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N3 @ A2 ) @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ A2 @ N3 ) ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N3 ) ) ) ) ) ) ).

% signed_take_bit_def
thf(fact_8155_or__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(9)
thf(fact_8156_or__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(8)
thf(fact_8157_or__int__unfold,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( ( K2
              = ( uminus_uminus_int @ one_one_int ) )
            | ( L2
              = ( uminus_uminus_int @ one_one_int ) ) )
          @ ( uminus_uminus_int @ one_one_int )
          @ ( if_int @ ( K2 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% or_int_unfold
thf(fact_8158_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
    boolea2445317508997433345nteger @ bit_se3949692690581998587nteger @ bit_se1080825931792720795nteger @ bit_ri7632146776885996613nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ bit_se3222712562003087583nteger ).

% bit.abstract_boolean_algebra_sym_diff_axioms
thf(fact_8159_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
    boolea8527374999097803216ff_int @ bit_se725231765392027082nd_int @ bit_se1409905431419307370or_int @ bit_ri7919022796975470100ot_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) @ bit_se6526347334894502574or_int ).

% bit.abstract_boolean_algebra_sym_diff_axioms
thf(fact_8160_or__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(4)
thf(fact_8161_or__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(8)
thf(fact_8162_max_Oidem,axiom,
    ! [A: int] :
      ( ( ord_max_int @ A @ A )
      = A ) ).

% max.idem
thf(fact_8163_max_Oidem,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ A )
      = A ) ).

% max.idem
thf(fact_8164_max_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( ord_max_int @ A @ ( ord_max_int @ A @ B ) )
      = ( ord_max_int @ A @ B ) ) ).

% max.left_idem
thf(fact_8165_max_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_max_nat @ A @ ( ord_max_nat @ A @ B ) )
      = ( ord_max_nat @ A @ B ) ) ).

% max.left_idem
thf(fact_8166_max_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( ord_max_int @ ( ord_max_int @ A @ B ) @ B )
      = ( ord_max_int @ A @ B ) ) ).

% max.right_idem
thf(fact_8167_max_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_max_nat @ ( ord_max_nat @ A @ B ) @ B )
      = ( ord_max_nat @ A @ B ) ) ).

% max.right_idem
thf(fact_8168_max_Obounded__iff,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_8169_max_Obounded__iff,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
      = ( ( ord_less_eq_num @ B @ A )
        & ( ord_less_eq_num @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_8170_max_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_8171_max_Obounded__iff,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
      = ( ( ord_less_eq_int @ B @ A )
        & ( ord_less_eq_int @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_8172_max_Oabsorb2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_8173_max_Oabsorb2,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_8174_max_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_8175_max_Oabsorb2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_8176_max_Oabsorb1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_8177_max_Oabsorb1,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_8178_max_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_8179_max_Oabsorb1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_8180_max__less__iff__conj,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ ( ord_max_real @ X @ Y ) @ Z2 )
      = ( ( ord_less_real @ X @ Z2 )
        & ( ord_less_real @ Y @ Z2 ) ) ) ).

% max_less_iff_conj
thf(fact_8181_max__less__iff__conj,axiom,
    ! [X: rat,Y: rat,Z2: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ X @ Y ) @ Z2 )
      = ( ( ord_less_rat @ X @ Z2 )
        & ( ord_less_rat @ Y @ Z2 ) ) ) ).

% max_less_iff_conj
thf(fact_8182_max__less__iff__conj,axiom,
    ! [X: num,Y: num,Z2: num] :
      ( ( ord_less_num @ ( ord_max_num @ X @ Y ) @ Z2 )
      = ( ( ord_less_num @ X @ Z2 )
        & ( ord_less_num @ Y @ Z2 ) ) ) ).

% max_less_iff_conj
thf(fact_8183_max__less__iff__conj,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ X @ Y ) @ Z2 )
      = ( ( ord_less_nat @ X @ Z2 )
        & ( ord_less_nat @ Y @ Z2 ) ) ) ).

% max_less_iff_conj
thf(fact_8184_max__less__iff__conj,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_int @ ( ord_max_int @ X @ Y ) @ Z2 )
      = ( ( ord_less_int @ X @ Z2 )
        & ( ord_less_int @ Y @ Z2 ) ) ) ).

% max_less_iff_conj
thf(fact_8185_max_Oabsorb4,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_max_real @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_8186_max_Oabsorb4,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_8187_max_Oabsorb4,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_8188_max_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_8189_max_Oabsorb4,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_8190_max_Oabsorb3,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_max_real @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_8191_max_Oabsorb3,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_8192_max_Oabsorb3,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_8193_max_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_8194_max_Oabsorb3,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_8195_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          | Q ) )
      = ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_8196_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          | Q ) )
      = ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_8197_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          | Q ) )
      = ( ord_max_Code_integer @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_8198_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_8199_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_8200_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ V ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_8201_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_8202_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X ) )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(3)
thf(fact_8203_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X ) )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(3)
thf(fact_8204_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X ) )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(3)
thf(fact_8205_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X ) )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(3)
thf(fact_8206_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X ) @ zero_zero_real )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(4)
thf(fact_8207_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ zero_zero_rat )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(4)
thf(fact_8208_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ zero_zero_nat )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(4)
thf(fact_8209_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X ) @ zero_zero_int )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(4)
thf(fact_8210_max__0__1_I2_J,axiom,
    ( ( ord_max_real @ one_one_real @ zero_zero_real )
    = one_one_real ) ).

% max_0_1(2)
thf(fact_8211_max__0__1_I2_J,axiom,
    ( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
    = one_one_rat ) ).

% max_0_1(2)
thf(fact_8212_max__0__1_I2_J,axiom,
    ( ( ord_max_int @ one_one_int @ zero_zero_int )
    = one_one_int ) ).

% max_0_1(2)
thf(fact_8213_max__0__1_I2_J,axiom,
    ( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
    = one_one_nat ) ).

% max_0_1(2)
thf(fact_8214_max__0__1_I1_J,axiom,
    ( ( ord_max_real @ zero_zero_real @ one_one_real )
    = one_one_real ) ).

% max_0_1(1)
thf(fact_8215_max__0__1_I1_J,axiom,
    ( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
    = one_one_rat ) ).

% max_0_1(1)
thf(fact_8216_max__0__1_I1_J,axiom,
    ( ( ord_max_int @ zero_zero_int @ one_one_int )
    = one_one_int ) ).

% max_0_1(1)
thf(fact_8217_max__0__1_I1_J,axiom,
    ( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
    = one_one_nat ) ).

% max_0_1(1)
thf(fact_8218_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(5)
thf(fact_8219_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(5)
thf(fact_8220_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(5)
thf(fact_8221_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(5)
thf(fact_8222_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X ) @ one_one_real )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(6)
thf(fact_8223_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(6)
thf(fact_8224_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(6)
thf(fact_8225_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X ) @ one_one_int )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(6)
thf(fact_8226_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_8227_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_8228_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_8229_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_8230_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_8231_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_8232_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_8233_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_8234_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_8235_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_8236_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_8237_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_8238_or__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_nat_numerals(4)
thf(fact_8239_or__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_nat_numerals(2)
thf(fact_8240_or__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_nat_numerals(3)
thf(fact_8241_or__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_nat_numerals(1)
thf(fact_8242_of__int__max,axiom,
    ! [X: int,Y: int] :
      ( ( ring_1_of_int_real @ ( ord_max_int @ X @ Y ) )
      = ( ord_max_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ Y ) ) ) ).

% of_int_max
thf(fact_8243_of__int__max,axiom,
    ! [X: int,Y: int] :
      ( ( ring_1_of_int_rat @ ( ord_max_int @ X @ Y ) )
      = ( ord_max_rat @ ( ring_1_of_int_rat @ X ) @ ( ring_1_of_int_rat @ Y ) ) ) ).

% of_int_max
thf(fact_8244_of__int__max,axiom,
    ! [X: int,Y: int] :
      ( ( ring_1_of_int_int @ ( ord_max_int @ X @ Y ) )
      = ( ord_max_int @ ( ring_1_of_int_int @ X ) @ ( ring_1_of_int_int @ Y ) ) ) ).

% of_int_max
thf(fact_8245_max_OcoboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ B )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_8246_max_OcoboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_eq_num @ C @ B )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_8247_max_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_8248_max_OcoboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ C @ B )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_8249_max_OcoboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_8250_max_OcoboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_8251_max_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_8252_max_OcoboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_8253_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_rat
    = ( ^ [A2: rat,B2: rat] :
          ( ( ord_max_rat @ A2 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_8254_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_num
    = ( ^ [A2: num,B2: num] :
          ( ( ord_max_num @ A2 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_8255_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_max_nat @ A2 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_8256_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_int
    = ( ^ [A2: int,B2: int] :
          ( ( ord_max_int @ A2 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_8257_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_rat
    = ( ^ [B2: rat,A2: rat] :
          ( ( ord_max_rat @ A2 @ B2 )
          = A2 ) ) ) ).

% max.absorb_iff1
thf(fact_8258_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_num
    = ( ^ [B2: num,A2: num] :
          ( ( ord_max_num @ A2 @ B2 )
          = A2 ) ) ) ).

% max.absorb_iff1
thf(fact_8259_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( ord_max_nat @ A2 @ B2 )
          = A2 ) ) ) ).

% max.absorb_iff1
thf(fact_8260_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A2: int] :
          ( ( ord_max_int @ A2 @ B2 )
          = A2 ) ) ) ).

% max.absorb_iff1
thf(fact_8261_le__max__iff__disj,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ Z2 @ ( ord_max_rat @ X @ Y ) )
      = ( ( ord_less_eq_rat @ Z2 @ X )
        | ( ord_less_eq_rat @ Z2 @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_8262_le__max__iff__disj,axiom,
    ! [Z2: num,X: num,Y: num] :
      ( ( ord_less_eq_num @ Z2 @ ( ord_max_num @ X @ Y ) )
      = ( ( ord_less_eq_num @ Z2 @ X )
        | ( ord_less_eq_num @ Z2 @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_8263_le__max__iff__disj,axiom,
    ! [Z2: nat,X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ Z2 @ ( ord_max_nat @ X @ Y ) )
      = ( ( ord_less_eq_nat @ Z2 @ X )
        | ( ord_less_eq_nat @ Z2 @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_8264_le__max__iff__disj,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_eq_int @ Z2 @ ( ord_max_int @ X @ Y ) )
      = ( ( ord_less_eq_int @ Z2 @ X )
        | ( ord_less_eq_int @ Z2 @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_8265_max_Ocobounded2,axiom,
    ! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded2
thf(fact_8266_max_Ocobounded2,axiom,
    ! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded2
thf(fact_8267_max_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded2
thf(fact_8268_max_Ocobounded2,axiom,
    ! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded2
thf(fact_8269_max_Ocobounded1,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded1
thf(fact_8270_max_Ocobounded1,axiom,
    ! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded1
thf(fact_8271_max_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded1
thf(fact_8272_max_Ocobounded1,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded1
thf(fact_8273_max_Oorder__iff,axiom,
    ( ord_less_eq_rat
    = ( ^ [B2: rat,A2: rat] :
          ( A2
          = ( ord_max_rat @ A2 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_8274_max_Oorder__iff,axiom,
    ( ord_less_eq_num
    = ( ^ [B2: num,A2: num] :
          ( A2
          = ( ord_max_num @ A2 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_8275_max_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A2: nat] :
          ( A2
          = ( ord_max_nat @ A2 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_8276_max_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A2: int] :
          ( A2
          = ( ord_max_int @ A2 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_8277_max_OboundedI,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ A )
       => ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_8278_max_OboundedI,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ A )
       => ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_8279_max_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_8280_max_OboundedI,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ A )
       => ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_8281_max_OboundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_rat @ B @ A )
         => ~ ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_8282_max_OboundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_num @ B @ A )
         => ~ ( ord_less_eq_num @ C @ A ) ) ) ).

% max.boundedE
thf(fact_8283_max_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_8284_max_OboundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_int @ B @ A )
         => ~ ( ord_less_eq_int @ C @ A ) ) ) ).

% max.boundedE
thf(fact_8285_max_OorderI,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( ord_max_rat @ A @ B ) )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% max.orderI
thf(fact_8286_max_OorderI,axiom,
    ! [A: num,B: num] :
      ( ( A
        = ( ord_max_num @ A @ B ) )
     => ( ord_less_eq_num @ B @ A ) ) ).

% max.orderI
thf(fact_8287_max_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( ord_max_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% max.orderI
thf(fact_8288_max_OorderI,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( ord_max_int @ A @ B ) )
     => ( ord_less_eq_int @ B @ A ) ) ).

% max.orderI
thf(fact_8289_max_OorderE,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( A
        = ( ord_max_rat @ A @ B ) ) ) ).

% max.orderE
thf(fact_8290_max_OorderE,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( A
        = ( ord_max_num @ A @ B ) ) ) ).

% max.orderE
thf(fact_8291_max_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( ord_max_nat @ A @ B ) ) ) ).

% max.orderE
thf(fact_8292_max_OorderE,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( A
        = ( ord_max_int @ A @ B ) ) ) ).

% max.orderE
thf(fact_8293_max_Omono,axiom,
    ! [C: rat,A: rat,D: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ( ord_less_eq_rat @ D @ B )
       => ( ord_less_eq_rat @ ( ord_max_rat @ C @ D ) @ ( ord_max_rat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_8294_max_Omono,axiom,
    ! [C: num,A: num,D: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ( ord_less_eq_num @ D @ B )
       => ( ord_less_eq_num @ ( ord_max_num @ C @ D ) @ ( ord_max_num @ A @ B ) ) ) ) ).

% max.mono
thf(fact_8295_max_Omono,axiom,
    ! [C: nat,A: nat,D: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D @ B )
       => ( ord_less_eq_nat @ ( ord_max_nat @ C @ D ) @ ( ord_max_nat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_8296_max_Omono,axiom,
    ! [C: int,A: int,D: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ( ord_less_eq_int @ D @ B )
       => ( ord_less_eq_int @ ( ord_max_int @ C @ D ) @ ( ord_max_int @ A @ B ) ) ) ) ).

% max.mono
thf(fact_8297_max_Ostrict__coboundedI2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ B )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_8298_max_Ostrict__coboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ B )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_8299_max_Ostrict__coboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_num @ C @ B )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_8300_max_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_8301_max_Ostrict__coboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_int @ C @ B )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_8302_max_Ostrict__coboundedI1,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ A )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_8303_max_Ostrict__coboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ A )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_8304_max_Ostrict__coboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_num @ C @ A )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_8305_max_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_8306_max_Ostrict__coboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ A )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_8307_max_Ostrict__order__iff,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A2: real] :
          ( ( A2
            = ( ord_max_real @ A2 @ B2 ) )
          & ( A2 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_8308_max_Ostrict__order__iff,axiom,
    ( ord_less_rat
    = ( ^ [B2: rat,A2: rat] :
          ( ( A2
            = ( ord_max_rat @ A2 @ B2 ) )
          & ( A2 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_8309_max_Ostrict__order__iff,axiom,
    ( ord_less_num
    = ( ^ [B2: num,A2: num] :
          ( ( A2
            = ( ord_max_num @ A2 @ B2 ) )
          & ( A2 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_8310_max_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( A2
            = ( ord_max_nat @ A2 @ B2 ) )
          & ( A2 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_8311_max_Ostrict__order__iff,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A2: int] :
          ( ( A2
            = ( ord_max_int @ A2 @ B2 ) )
          & ( A2 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_8312_max_Ostrict__boundedE,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
     => ~ ( ( ord_less_real @ B @ A )
         => ~ ( ord_less_real @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_8313_max_Ostrict__boundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_rat @ B @ A )
         => ~ ( ord_less_rat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_8314_max_Ostrict__boundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_num @ B @ A )
         => ~ ( ord_less_num @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_8315_max_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_8316_max_Ostrict__boundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_int @ B @ A )
         => ~ ( ord_less_int @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_8317_less__max__iff__disj,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ Z2 @ ( ord_max_real @ X @ Y ) )
      = ( ( ord_less_real @ Z2 @ X )
        | ( ord_less_real @ Z2 @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_8318_less__max__iff__disj,axiom,
    ! [Z2: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ Z2 @ ( ord_max_rat @ X @ Y ) )
      = ( ( ord_less_rat @ Z2 @ X )
        | ( ord_less_rat @ Z2 @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_8319_less__max__iff__disj,axiom,
    ! [Z2: num,X: num,Y: num] :
      ( ( ord_less_num @ Z2 @ ( ord_max_num @ X @ Y ) )
      = ( ( ord_less_num @ Z2 @ X )
        | ( ord_less_num @ Z2 @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_8320_less__max__iff__disj,axiom,
    ! [Z2: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ Z2 @ ( ord_max_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Z2 @ X )
        | ( ord_less_nat @ Z2 @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_8321_less__max__iff__disj,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ Z2 @ ( ord_max_int @ X @ Y ) )
      = ( ( ord_less_int @ Z2 @ X )
        | ( ord_less_int @ Z2 @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_8322_max__add__distrib__right,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( plus_plus_real @ X @ ( ord_max_real @ Y @ Z2 ) )
      = ( ord_max_real @ ( plus_plus_real @ X @ Y ) @ ( plus_plus_real @ X @ Z2 ) ) ) ).

% max_add_distrib_right
thf(fact_8323_max__add__distrib__right,axiom,
    ! [X: rat,Y: rat,Z2: rat] :
      ( ( plus_plus_rat @ X @ ( ord_max_rat @ Y @ Z2 ) )
      = ( ord_max_rat @ ( plus_plus_rat @ X @ Y ) @ ( plus_plus_rat @ X @ Z2 ) ) ) ).

% max_add_distrib_right
thf(fact_8324_max__add__distrib__right,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( plus_plus_int @ X @ ( ord_max_int @ Y @ Z2 ) )
      = ( ord_max_int @ ( plus_plus_int @ X @ Y ) @ ( plus_plus_int @ X @ Z2 ) ) ) ).

% max_add_distrib_right
thf(fact_8325_max__add__distrib__right,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( plus_plus_nat @ X @ ( ord_max_nat @ Y @ Z2 ) )
      = ( ord_max_nat @ ( plus_plus_nat @ X @ Y ) @ ( plus_plus_nat @ X @ Z2 ) ) ) ).

% max_add_distrib_right
thf(fact_8326_max__add__distrib__left,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( plus_plus_real @ ( ord_max_real @ X @ Y ) @ Z2 )
      = ( ord_max_real @ ( plus_plus_real @ X @ Z2 ) @ ( plus_plus_real @ Y @ Z2 ) ) ) ).

% max_add_distrib_left
thf(fact_8327_max__add__distrib__left,axiom,
    ! [X: rat,Y: rat,Z2: rat] :
      ( ( plus_plus_rat @ ( ord_max_rat @ X @ Y ) @ Z2 )
      = ( ord_max_rat @ ( plus_plus_rat @ X @ Z2 ) @ ( plus_plus_rat @ Y @ Z2 ) ) ) ).

% max_add_distrib_left
thf(fact_8328_max__add__distrib__left,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( plus_plus_int @ ( ord_max_int @ X @ Y ) @ Z2 )
      = ( ord_max_int @ ( plus_plus_int @ X @ Z2 ) @ ( plus_plus_int @ Y @ Z2 ) ) ) ).

% max_add_distrib_left
thf(fact_8329_max__add__distrib__left,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ X @ Y ) @ Z2 )
      = ( ord_max_nat @ ( plus_plus_nat @ X @ Z2 ) @ ( plus_plus_nat @ Y @ Z2 ) ) ) ).

% max_add_distrib_left
thf(fact_8330_max__diff__distrib__left,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( minus_minus_real @ ( ord_max_real @ X @ Y ) @ Z2 )
      = ( ord_max_real @ ( minus_minus_real @ X @ Z2 ) @ ( minus_minus_real @ Y @ Z2 ) ) ) ).

% max_diff_distrib_left
thf(fact_8331_max__diff__distrib__left,axiom,
    ! [X: rat,Y: rat,Z2: rat] :
      ( ( minus_minus_rat @ ( ord_max_rat @ X @ Y ) @ Z2 )
      = ( ord_max_rat @ ( minus_minus_rat @ X @ Z2 ) @ ( minus_minus_rat @ Y @ Z2 ) ) ) ).

% max_diff_distrib_left
thf(fact_8332_max__diff__distrib__left,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( minus_minus_int @ ( ord_max_int @ X @ Y ) @ Z2 )
      = ( ord_max_int @ ( minus_minus_int @ X @ Z2 ) @ ( minus_minus_int @ Y @ Z2 ) ) ) ).

% max_diff_distrib_left
thf(fact_8333_max_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_max_int @ ( ord_max_int @ A @ B ) @ C )
      = ( ord_max_int @ A @ ( ord_max_int @ B @ C ) ) ) ).

% max.assoc
thf(fact_8334_max_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_max_nat @ ( ord_max_nat @ A @ B ) @ C )
      = ( ord_max_nat @ A @ ( ord_max_nat @ B @ C ) ) ) ).

% max.assoc
thf(fact_8335_max_Ocommute,axiom,
    ( ord_max_int
    = ( ^ [A2: int,B2: int] : ( ord_max_int @ B2 @ A2 ) ) ) ).

% max.commute
thf(fact_8336_max_Ocommute,axiom,
    ( ord_max_nat
    = ( ^ [A2: nat,B2: nat] : ( ord_max_nat @ B2 @ A2 ) ) ) ).

% max.commute
thf(fact_8337_max_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_max_int @ B @ ( ord_max_int @ A @ C ) )
      = ( ord_max_int @ A @ ( ord_max_int @ B @ C ) ) ) ).

% max.left_commute
thf(fact_8338_max_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_max_nat @ B @ ( ord_max_nat @ A @ C ) )
      = ( ord_max_nat @ A @ ( ord_max_nat @ B @ C ) ) ) ).

% max.left_commute
thf(fact_8339_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ Y ) ) ) ).

% of_nat_max
thf(fact_8340_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri681578069525770553at_rat @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_rat @ ( semiri681578069525770553at_rat @ X ) @ ( semiri681578069525770553at_rat @ Y ) ) ) ).

% of_nat_max
thf(fact_8341_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( semiri1316708129612266289at_nat @ Y ) ) ) ).

% of_nat_max
thf(fact_8342_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ).

% of_nat_max
thf(fact_8343_or__not__num__neg_Osimps_I1_J,axiom,
    ( ( bit_or_not_num_neg @ one @ one )
    = one ) ).

% or_not_num_neg.simps(1)
thf(fact_8344_set__bit__nat__def,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [M3: nat,N3: nat] : ( bit_se1412395901928357646or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% set_bit_nat_def
thf(fact_8345_or__not__num__neg_Osimps_I4_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
      = ( bit0 @ one ) ) ).

% or_not_num_neg.simps(4)
thf(fact_8346_or__not__num__neg_Osimps_I6_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
      = ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(6)
thf(fact_8347_or__not__num__neg_Osimps_I7_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
      = one ) ).

% or_not_num_neg.simps(7)
thf(fact_8348_or__not__num__neg_Osimps_I3_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(3)
thf(fact_8349_or__nat__def,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% or_nat_def
thf(fact_8350_or__not__num__neg_Osimps_I2_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(2)
thf(fact_8351_int__numeral__or__not__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).

% int_numeral_or_not_num_neg
thf(fact_8352_int__numeral__not__or__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).

% int_numeral_not_or_num_neg
thf(fact_8353_numeral__or__not__num__eq,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
      = ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% numeral_or_not_num_eq
thf(fact_8354_Suc__0__or__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_or_eq
thf(fact_8355_or__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% or_Suc_0_eq
thf(fact_8356_or__nat__rec,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              | ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_nat_rec
thf(fact_8357_or__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(5)
thf(fact_8358_or__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(1)
thf(fact_8359_or__nat__unfold,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% or_nat_unfold
thf(fact_8360_horner__sum__of__bool__2__less,axiom,
    ! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).

% horner_sum_of_bool_2_less
thf(fact_8361_max__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ M @ N ) ) ) ).

% max_Suc_Suc
thf(fact_8362_max__0R,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ N @ zero_zero_nat )
      = N ) ).

% max_0R
thf(fact_8363_max__0L,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ N )
      = N ) ).

% max_0L
thf(fact_8364_max__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ zero_zero_nat )
      = A ) ).

% max_nat.right_neutral
thf(fact_8365_max__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( ord_max_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.neutr_eq_iff
thf(fact_8366_max__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ A )
      = A ) ).

% max_nat.left_neutral
thf(fact_8367_max__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_max_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.eq_neutr_iff
thf(fact_8368_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_8369_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_8370_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_8371_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_8372_pred__numeral__simps_I2_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit0 @ K ) )
      = ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).

% pred_numeral_simps(2)
thf(fact_8373_max__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N ) ) ) ).

% max_numeral_Suc
thf(fact_8374_max__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K ) ) ) ) ).

% max_Suc_numeral
thf(fact_8375_or__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(7)
thf(fact_8376_or__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(3)
thf(fact_8377_nat__mult__max__left,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
      = ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).

% nat_mult_max_left
thf(fact_8378_nat__mult__max__right,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
      = ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).

% nat_mult_max_right
thf(fact_8379_nat__add__max__left,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N @ Q2 ) ) ) ).

% nat_add_max_left
thf(fact_8380_nat__add__max__right,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).

% nat_add_max_right
thf(fact_8381_semiring__norm_I26_J,axiom,
    ( ( bitM @ one )
    = one ) ).

% semiring_norm(26)
thf(fact_8382_nat__minus__add__max,axiom,
    ! [N: nat,M: nat] :
      ( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
      = ( ord_max_nat @ N @ M ) ) ).

% nat_minus_add_max
thf(fact_8383_semiring__norm_I27_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit0 @ N ) )
      = ( bit1 @ ( bitM @ N ) ) ) ).

% semiring_norm(27)
thf(fact_8384_semiring__norm_I28_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit1 @ N ) )
      = ( bit1 @ ( bit0 @ N ) ) ) ).

% semiring_norm(28)
thf(fact_8385_or__not__num__neg_Osimps_I5_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(5)
thf(fact_8386_inc__BitM__eq,axiom,
    ! [N: num] :
      ( ( inc @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% inc_BitM_eq
thf(fact_8387_or__not__num__neg_Osimps_I9_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(9)
thf(fact_8388_BitM__inc__eq,axiom,
    ! [N: num] :
      ( ( bitM @ ( inc @ N ) )
      = ( bit1 @ N ) ) ).

% BitM_inc_eq
thf(fact_8389_eval__nat__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).

% eval_nat_numeral(2)
thf(fact_8390_one__plus__BitM,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% one_plus_BitM
thf(fact_8391_BitM__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ ( bitM @ N ) @ one )
      = ( bit0 @ N ) ) ).

% BitM_plus_one
thf(fact_8392_or__not__num__neg_Osimps_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(8)
thf(fact_8393_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bitM @ N ) )
      = ( minus_minus_complex @ ( numera6690914467698888265omplex @ ( bit0 @ N ) ) @ one_one_complex ) ) ).

% numeral_BitM
thf(fact_8394_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bitM @ N ) )
      = ( minus_minus_real @ ( numeral_numeral_real @ ( bit0 @ N ) ) @ one_one_real ) ) ).

% numeral_BitM
thf(fact_8395_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bitM @ N ) )
      = ( minus_minus_rat @ ( numeral_numeral_rat @ ( bit0 @ N ) ) @ one_one_rat ) ) ).

% numeral_BitM
thf(fact_8396_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bitM @ N ) )
      = ( minus_minus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ one_one_int ) ) ).

% numeral_BitM
thf(fact_8397_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_8398_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_8399_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_8400_not__numeral__BitM__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ ( bitM @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ) ).

% not_numeral_BitM_eq
thf(fact_8401_not__numeral__BitM__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bitM @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% not_numeral_BitM_eq
thf(fact_8402_or__not__num__neg_Oelims,axiom,
    ! [X: num,Xa: num,Y: num] :
      ( ( ( bit_or_not_num_neg @ X @ Xa )
        = Y )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y != one ) ) )
       => ( ( ( X = one )
           => ! [M2: num] :
                ( ( Xa
                  = ( bit0 @ M2 ) )
               => ( Y
                 != ( bit1 @ M2 ) ) ) )
         => ( ( ( X = one )
             => ! [M2: num] :
                  ( ( Xa
                    = ( bit1 @ M2 ) )
                 => ( Y
                   != ( bit1 @ M2 ) ) ) )
           => ( ( ? [N2: num] :
                    ( X
                    = ( bit0 @ N2 ) )
               => ( ( Xa = one )
                 => ( Y
                   != ( bit0 @ one ) ) ) )
             => ( ! [N2: num] :
                    ( ( X
                      = ( bit0 @ N2 ) )
                   => ! [M2: num] :
                        ( ( Xa
                          = ( bit0 @ M2 ) )
                       => ( Y
                         != ( bitM @ ( bit_or_not_num_neg @ N2 @ M2 ) ) ) ) )
               => ( ! [N2: num] :
                      ( ( X
                        = ( bit0 @ N2 ) )
                     => ! [M2: num] :
                          ( ( Xa
                            = ( bit1 @ M2 ) )
                         => ( Y
                           != ( bit0 @ ( bit_or_not_num_neg @ N2 @ M2 ) ) ) ) )
                 => ( ( ? [N2: num] :
                          ( X
                          = ( bit1 @ N2 ) )
                     => ( ( Xa = one )
                       => ( Y != one ) ) )
                   => ( ! [N2: num] :
                          ( ( X
                            = ( bit1 @ N2 ) )
                         => ! [M2: num] :
                              ( ( Xa
                                = ( bit0 @ M2 ) )
                             => ( Y
                               != ( bitM @ ( bit_or_not_num_neg @ N2 @ M2 ) ) ) ) )
                     => ~ ! [N2: num] :
                            ( ( X
                              = ( bit1 @ N2 ) )
                           => ! [M2: num] :
                                ( ( Xa
                                  = ( bit1 @ M2 ) )
                               => ( Y
                                 != ( bitM @ ( bit_or_not_num_neg @ N2 @ M2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.elims
thf(fact_8403_bit__horner__sum__bit__iff,axiom,
    ! [Bs: list_o,N: nat] :
      ( ( bit_se9216721137139052372nteger @ ( groups3417619833198082522nteger @ zero_n356916108424825756nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Bs ) @ N )
      = ( ( ord_less_nat @ N @ ( size_size_list_o @ Bs ) )
        & ( nth_o @ Bs @ N ) ) ) ).

% bit_horner_sum_bit_iff
thf(fact_8404_bit__horner__sum__bit__iff,axiom,
    ! [Bs: list_o,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( groups9119017779487936845_o_nat @ zero_n2687167440665602831ol_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Bs ) @ N )
      = ( ( ord_less_nat @ N @ ( size_size_list_o @ Bs ) )
        & ( nth_o @ Bs @ N ) ) ) ).

% bit_horner_sum_bit_iff
thf(fact_8405_bit__horner__sum__bit__iff,axiom,
    ! [Bs: list_o,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ N )
      = ( ( ord_less_nat @ N @ ( size_size_list_o @ Bs ) )
        & ( nth_o @ Bs @ N ) ) ) ).

% bit_horner_sum_bit_iff
thf(fact_8406_length__subseqs,axiom,
    ! [Xs: list_VEBT_VEBT] :
      ( ( size_s8217280938318005548T_VEBT @ ( subseqs_VEBT_VEBT @ Xs ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ).

% length_subseqs
thf(fact_8407_length__subseqs,axiom,
    ! [Xs: list_o] :
      ( ( size_s2710708370519433104list_o @ ( subseqs_o @ Xs ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_o @ Xs ) ) ) ).

% length_subseqs
thf(fact_8408_length__subseqs,axiom,
    ! [Xs: list_nat] :
      ( ( size_s3023201423986296836st_nat @ ( subseqs_nat @ Xs ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_nat @ Xs ) ) ) ).

% length_subseqs
thf(fact_8409_length__subseqs,axiom,
    ! [Xs: list_int] :
      ( ( size_s533118279054570080st_int @ ( subseqs_int @ Xs ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_int @ Xs ) ) ) ).

% length_subseqs
thf(fact_8410_drop__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_numeral_minus_bit1
thf(fact_8411_drop__bit__rec,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N3: nat,A2: int] : ( if_int @ ( N3 = zero_zero_nat ) @ A2 @ ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% drop_bit_rec
thf(fact_8412_drop__bit__rec,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N3: nat,A2: nat] : ( if_nat @ ( N3 = zero_zero_nat ) @ A2 @ ( bit_se8570568707652914677it_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% drop_bit_rec
thf(fact_8413_drop__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% drop_bit_of_0
thf(fact_8414_drop__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% drop_bit_of_0
thf(fact_8415_drop__bit__drop__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se8568078237143864401it_int @ N @ A ) )
      = ( bit_se8568078237143864401it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ).

% drop_bit_drop_bit
thf(fact_8416_drop__bit__drop__bit,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( bit_se8570568707652914677it_nat @ M @ ( bit_se8570568707652914677it_nat @ N @ A ) )
      = ( bit_se8570568707652914677it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ).

% drop_bit_drop_bit
thf(fact_8417_drop__bit__and,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se8568078237143864401it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( bit_se8568078237143864401it_int @ N @ B ) ) ) ).

% drop_bit_and
thf(fact_8418_drop__bit__and,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( bit_se8570568707652914677it_nat @ N @ B ) ) ) ).

% drop_bit_and
thf(fact_8419_drop__bit__or,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se8568078237143864401it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( bit_se8568078237143864401it_int @ N @ B ) ) ) ).

% drop_bit_or
thf(fact_8420_drop__bit__or,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( bit_se8570568707652914677it_nat @ N @ B ) ) ) ).

% drop_bit_or
thf(fact_8421_drop__bit__xor,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se8568078237143864401it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( bit_se8568078237143864401it_int @ N @ B ) ) ) ).

% drop_bit_xor
thf(fact_8422_drop__bit__xor,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( bit_se6528837805403552850or_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( bit_se8570568707652914677it_nat @ N @ B ) ) ) ).

% drop_bit_xor
thf(fact_8423_drop__bit__of__bool,axiom,
    ! [N: nat,B: $o] :
      ( ( bit_se3928097537394005634nteger @ N @ ( zero_n356916108424825756nteger @ B ) )
      = ( zero_n356916108424825756nteger
        @ ( ( N = zero_zero_nat )
          & B ) ) ) ).

% drop_bit_of_bool
thf(fact_8424_drop__bit__of__bool,axiom,
    ! [N: nat,B: $o] :
      ( ( bit_se8568078237143864401it_int @ N @ ( zero_n2684676970156552555ol_int @ B ) )
      = ( zero_n2684676970156552555ol_int
        @ ( ( N = zero_zero_nat )
          & B ) ) ) ).

% drop_bit_of_bool
thf(fact_8425_drop__bit__of__bool,axiom,
    ! [N: nat,B: $o] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( zero_n2687167440665602831ol_nat @ B ) )
      = ( zero_n2687167440665602831ol_nat
        @ ( ( N = zero_zero_nat )
          & B ) ) ) ).

% drop_bit_of_bool
thf(fact_8426_drop__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_Suc_0
thf(fact_8427_drop__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% drop_bit_nonnegative_int_iff
thf(fact_8428_drop__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% drop_bit_negative_int_iff
thf(fact_8429_drop__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% drop_bit_minus_one
thf(fact_8430_drop__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( numeral_numeral_int @ K ) ) ) ).

% drop_bit_Suc_bit0
thf(fact_8431_drop__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8570568707652914677it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( bit_se8570568707652914677it_nat @ N @ ( numeral_numeral_nat @ K ) ) ) ).

% drop_bit_Suc_bit0
thf(fact_8432_drop__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( numeral_numeral_int @ K ) ) ) ).

% drop_bit_Suc_bit1
thf(fact_8433_drop__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8570568707652914677it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( bit_se8570568707652914677it_nat @ N @ ( numeral_numeral_nat @ K ) ) ) ).

% drop_bit_Suc_bit1
thf(fact_8434_drop__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se3928097537394005634nteger @ N @ one_one_Code_integer )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_1
thf(fact_8435_drop__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ one_one_int )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_1
thf(fact_8436_drop__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ one_one_nat )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_1
thf(fact_8437_drop__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) ) ).

% drop_bit_numeral_bit0
thf(fact_8438_drop__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8570568707652914677it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( bit_se8570568707652914677it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) ) ).

% drop_bit_numeral_bit0
thf(fact_8439_drop__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) ) ).

% drop_bit_numeral_bit1
thf(fact_8440_drop__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8570568707652914677it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( bit_se8570568707652914677it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) ) ).

% drop_bit_numeral_bit1
thf(fact_8441_drop__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_Suc_minus_bit0
thf(fact_8442_drop__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_numeral_minus_bit0
thf(fact_8443_drop__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_Suc_minus_bit1
thf(fact_8444_drop__bit__nat__eq,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K ) ) ) ).

% drop_bit_nat_eq
thf(fact_8445_of__nat__drop__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se8570568707652914677it_nat @ M @ N ) )
      = ( bit_se8568078237143864401it_int @ M @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_drop_bit
thf(fact_8446_of__nat__drop__bit,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se8570568707652914677it_nat @ M @ N ) )
      = ( bit_se8570568707652914677it_nat @ M @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_drop_bit
thf(fact_8447_drop__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
      = ( semiri1314217659103216013at_int @ ( bit_se8570568707652914677it_nat @ N @ M ) ) ) ).

% drop_bit_of_nat
thf(fact_8448_drop__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
      = ( semiri1316708129612266289at_nat @ ( bit_se8570568707652914677it_nat @ N @ M ) ) ) ).

% drop_bit_of_nat
thf(fact_8449_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
    ! [N: nat,A: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = A )
      = ( ( bit_se8568078237143864401it_int @ N @ A )
        = zero_zero_int ) ) ).

% take_bit_eq_self_iff_drop_bit_eq_0
thf(fact_8450_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
    ! [N: nat,A: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = A )
      = ( ( bit_se8570568707652914677it_nat @ N @ A )
        = zero_zero_nat ) ) ).

% take_bit_eq_self_iff_drop_bit_eq_0
thf(fact_8451_drop__bit__push__bit__int,axiom,
    ! [M: nat,N: nat,K: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K ) )
      = ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K ) ) ) ).

% drop_bit_push_bit_int
thf(fact_8452_take__bit__drop__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ M @ ( bit_se8568078237143864401it_int @ N @ A ) )
      = ( bit_se8568078237143864401it_int @ N @ ( bit_se2923211474154528505it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ) ).

% take_bit_drop_bit
thf(fact_8453_take__bit__drop__bit,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( bit_se2925701944663578781it_nat @ M @ ( bit_se8570568707652914677it_nat @ N @ A ) )
      = ( bit_se8570568707652914677it_nat @ N @ ( bit_se2925701944663578781it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ) ).

% take_bit_drop_bit
thf(fact_8454_drop__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N @ M ) @ ( bit_se8568078237143864401it_int @ M @ A ) ) ) ).

% drop_bit_take_bit
thf(fact_8455_drop__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( bit_se8570568707652914677it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N @ M ) @ ( bit_se8570568707652914677it_nat @ M @ A ) ) ) ).

% drop_bit_take_bit
thf(fact_8456_div__push__bit__of__1__eq__drop__bit,axiom,
    ! [A: nat,N: nat] :
      ( ( divide_divide_nat @ A @ ( bit_se547839408752420682it_nat @ N @ one_one_nat ) )
      = ( bit_se8570568707652914677it_nat @ N @ A ) ) ).

% div_push_bit_of_1_eq_drop_bit
thf(fact_8457_div__push__bit__of__1__eq__drop__bit,axiom,
    ! [A: int,N: nat] :
      ( ( divide_divide_int @ A @ ( bit_se545348938243370406it_int @ N @ one_one_int ) )
      = ( bit_se8568078237143864401it_int @ N @ A ) ) ).

% div_push_bit_of_1_eq_drop_bit
thf(fact_8458_div__push__bit__of__1__eq__drop__bit,axiom,
    ! [A: code_integer,N: nat] :
      ( ( divide6298287555418463151nteger @ A @ ( bit_se7788150548672797655nteger @ N @ one_one_Code_integer ) )
      = ( bit_se3928097537394005634nteger @ N @ A ) ) ).

% div_push_bit_of_1_eq_drop_bit
thf(fact_8459_div__push__bit__of__1__eq__drop__bit,axiom,
    ! [A: code_natural,N: nat] :
      ( ( divide5121882707175180666atural @ A @ ( bit_se6611745700429515170atural @ N @ one_one_Code_natural ) )
      = ( bit_se2751692689150723149atural @ N @ A ) ) ).

% div_push_bit_of_1_eq_drop_bit
thf(fact_8460_bit__iff__and__drop__bit__eq__1,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A2: int,N3: nat] :
          ( ( bit_se725231765392027082nd_int @ ( bit_se8568078237143864401it_int @ N3 @ A2 ) @ one_one_int )
          = one_one_int ) ) ) ).

% bit_iff_and_drop_bit_eq_1
thf(fact_8461_bit__iff__and__drop__bit__eq__1,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A2: nat,N3: nat] :
          ( ( bit_se727722235901077358nd_nat @ ( bit_se8570568707652914677it_nat @ N3 @ A2 ) @ one_one_nat )
          = one_one_nat ) ) ) ).

% bit_iff_and_drop_bit_eq_1
thf(fact_8462_bits__ident,axiom,
    ! [N: nat,A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( bit_se7788150548672797655nteger @ N @ ( bit_se3928097537394005634nteger @ N @ A ) ) @ ( bit_se1745604003318907178nteger @ N @ A ) )
      = A ) ).

% bits_ident
thf(fact_8463_bits__ident,axiom,
    ! [N: nat,A: code_natural] :
      ( ( plus_p4538020629002901425atural @ ( bit_se6611745700429515170atural @ N @ ( bit_se2751692689150723149atural @ N @ A ) ) @ ( bit_se569199155075624693atural @ N @ A ) )
      = A ) ).

% bits_ident
thf(fact_8464_bits__ident,axiom,
    ! [N: nat,A: int] :
      ( ( plus_plus_int @ ( bit_se545348938243370406it_int @ N @ ( bit_se8568078237143864401it_int @ N @ A ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = A ) ).

% bits_ident
thf(fact_8465_bits__ident,axiom,
    ! [N: nat,A: nat] :
      ( ( plus_plus_nat @ ( bit_se547839408752420682it_nat @ N @ ( bit_se8570568707652914677it_nat @ N @ A ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = A ) ).

% bits_ident
thf(fact_8466_drop__bit__half,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se8568078237143864401it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( divide_divide_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% drop_bit_half
thf(fact_8467_drop__bit__half,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( divide_divide_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% drop_bit_half
thf(fact_8468_stable__imp__drop__bit__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se8568078237143864401it_int @ N @ A )
        = A ) ) ).

% stable_imp_drop_bit_eq
thf(fact_8469_stable__imp__drop__bit__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( bit_se8570568707652914677it_nat @ N @ A )
        = A ) ) ).

% stable_imp_drop_bit_eq
thf(fact_8470_drop__bit__int__def,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N3: nat,K2: int] : ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_int_def
thf(fact_8471_drop__bit__nat__def,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N3: nat,M3: nat] : ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_nat_def
thf(fact_8472_drop__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ A )
      = ( bit_se8568078237143864401it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% drop_bit_Suc
thf(fact_8473_drop__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se8570568707652914677it_nat @ ( suc @ N ) @ A )
      = ( bit_se8570568707652914677it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% drop_bit_Suc
thf(fact_8474_drop__bit__eq__div,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N3: nat,A2: int] : ( divide_divide_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_eq_div
thf(fact_8475_drop__bit__eq__div,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N3: nat,A2: nat] : ( divide_divide_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_eq_div
thf(fact_8476_bit__iff__odd__drop__bit,axiom,
    ( bit_se9216721137139052372nteger
    = ( ^ [A2: code_integer,N3: nat] :
          ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3928097537394005634nteger @ N3 @ A2 ) ) ) ) ).

% bit_iff_odd_drop_bit
thf(fact_8477_bit__iff__odd__drop__bit,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [A2: int,N3: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se8568078237143864401it_int @ N3 @ A2 ) ) ) ) ).

% bit_iff_odd_drop_bit
thf(fact_8478_bit__iff__odd__drop__bit,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [A2: nat,N3: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se8570568707652914677it_nat @ N3 @ A2 ) ) ) ) ).

% bit_iff_odd_drop_bit
thf(fact_8479_even__drop__bit__iff__not__bit,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3928097537394005634nteger @ N @ A ) )
      = ( ~ ( bit_se9216721137139052372nteger @ A @ N ) ) ) ).

% even_drop_bit_iff_not_bit
thf(fact_8480_even__drop__bit__iff__not__bit,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se8568078237143864401it_int @ N @ A ) )
      = ( ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).

% even_drop_bit_iff_not_bit
thf(fact_8481_even__drop__bit__iff__not__bit,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se8570568707652914677it_nat @ N @ A ) )
      = ( ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).

% even_drop_bit_iff_not_bit
thf(fact_8482_slice__eq__mask,axiom,
    ! [N: nat,M: nat,A: code_integer] :
      ( ( bit_se7788150548672797655nteger @ N @ ( bit_se1745604003318907178nteger @ M @ ( bit_se3928097537394005634nteger @ N @ A ) ) )
      = ( bit_se3949692690581998587nteger @ A @ ( bit_se3949692690581998587nteger @ ( bit_se2119862282449309892nteger @ ( plus_plus_nat @ M @ N ) ) @ ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N ) ) ) ) ) ).

% slice_eq_mask
thf(fact_8483_slice__eq__mask,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( bit_se545348938243370406it_int @ N @ ( bit_se2923211474154528505it_int @ M @ ( bit_se8568078237143864401it_int @ N @ A ) ) )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ ( bit_se2000444600071755411sk_int @ ( plus_plus_nat @ M @ N ) ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ) ).

% slice_eq_mask
thf(fact_8484_inthall,axiom,
    ! [Xs: list_real,P: real > $o,N: nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_real2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
       => ( P @ ( nth_real @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8485_inthall,axiom,
    ! [Xs: list_complex,P: complex > $o,N: nat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ ( set_complex2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
       => ( P @ ( nth_complex @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8486_inthall,axiom,
    ! [Xs: list_set_nat,P: set_nat > $o,N: nat] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
       => ( P @ ( nth_set_nat @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8487_inthall,axiom,
    ! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o,N: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8488_inthall,axiom,
    ! [Xs: list_o,P: $o > $o,N: nat] :
      ( ! [X4: $o] :
          ( ( member_o @ X4 @ ( set_o2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
       => ( P @ ( nth_o @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8489_inthall,axiom,
    ! [Xs: list_nat,P: nat > $o,N: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
       => ( P @ ( nth_nat @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8490_inthall,axiom,
    ! [Xs: list_int,P: int > $o,N: nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ ( set_int2 @ Xs ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
       => ( P @ ( nth_int @ Xs @ N ) ) ) ) ).

% inthall
thf(fact_8491_nth__rotate1,axiom,
    ! [N: nat,Xs: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
     => ( ( nth_VEBT_VEBT @ ( rotate1_VEBT_VEBT @ Xs ) @ N )
        = ( nth_VEBT_VEBT @ Xs @ ( modulo_modulo_nat @ ( suc @ N ) @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_8492_nth__rotate1,axiom,
    ! [N: nat,Xs: list_o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
     => ( ( nth_o @ ( rotate1_o @ Xs ) @ N )
        = ( nth_o @ Xs @ ( modulo_modulo_nat @ ( suc @ N ) @ ( size_size_list_o @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_8493_nth__rotate1,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_nat @ ( rotate1_nat @ Xs ) @ N )
        = ( nth_nat @ Xs @ ( modulo_modulo_nat @ ( suc @ N ) @ ( size_size_list_nat @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_8494_nth__rotate1,axiom,
    ! [N: nat,Xs: list_int] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
     => ( ( nth_int @ ( rotate1_int @ Xs ) @ N )
        = ( nth_int @ Xs @ ( modulo_modulo_nat @ ( suc @ N ) @ ( size_size_list_int @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_8495_root__powr__inverse,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( root @ N @ X )
          = ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_8496_xor__minus__numerals_I2_J,axiom,
    ! [K: int,N: num] :
      ( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N @ one ) ) ) ) ).

% xor_minus_numerals(2)
thf(fact_8497_real__root__zero,axiom,
    ! [N: nat] :
      ( ( root @ N @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_8498_real__root__Suc__0,axiom,
    ! [X: real] :
      ( ( root @ ( suc @ zero_zero_nat ) @ X )
      = X ) ).

% real_root_Suc_0
thf(fact_8499_root__0,axiom,
    ! [X: real] :
      ( ( root @ zero_zero_nat @ X )
      = zero_zero_real ) ).

% root_0
thf(fact_8500_real__root__eq__iff,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = ( root @ N @ Y ) )
        = ( X = Y ) ) ) ).

% real_root_eq_iff
thf(fact_8501_sub__num__simps_I1_J,axiom,
    ( ( neg_numeral_sub_real @ one @ one )
    = zero_zero_real ) ).

% sub_num_simps(1)
thf(fact_8502_sub__num__simps_I1_J,axiom,
    ( ( neg_numeral_sub_rat @ one @ one )
    = zero_zero_rat ) ).

% sub_num_simps(1)
thf(fact_8503_sub__num__simps_I1_J,axiom,
    ( ( neg_numeral_sub_int @ one @ one )
    = zero_zero_int ) ).

% sub_num_simps(1)
thf(fact_8504_diff__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( neg_nu8416839295433526191omplex @ M @ N ) ) ).

% diff_numeral_simps(1)
thf(fact_8505_diff__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( neg_numeral_sub_real @ M @ N ) ) ).

% diff_numeral_simps(1)
thf(fact_8506_diff__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( neg_numeral_sub_rat @ M @ N ) ) ).

% diff_numeral_simps(1)
thf(fact_8507_diff__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( neg_numeral_sub_int @ M @ N ) ) ).

% diff_numeral_simps(1)
thf(fact_8508_sub__num__simps_I6_J,axiom,
    ! [K: num,L: num] :
      ( ( neg_numeral_sub_int @ ( bit0 @ K ) @ ( bit0 @ L ) )
      = ( neg_numeral_dbl_int @ ( neg_numeral_sub_int @ K @ L ) ) ) ).

% sub_num_simps(6)
thf(fact_8509_sub__num__simps_I9_J,axiom,
    ! [K: num,L: num] :
      ( ( neg_numeral_sub_int @ ( bit1 @ K ) @ ( bit1 @ L ) )
      = ( neg_numeral_dbl_int @ ( neg_numeral_sub_int @ K @ L ) ) ) ).

% sub_num_simps(9)
thf(fact_8510_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Y ) )
      = ( plus_plus_real @ ( neg_numeral_sub_real @ W @ V ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_8511_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Y ) )
      = ( plus_plus_int @ ( neg_numeral_sub_int @ W @ V ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_8512_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Y ) )
      = ( plus_plus_complex @ ( neg_nu8416839295433526191omplex @ W @ V ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_8513_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Y ) )
      = ( plus_plus_rat @ ( neg_numeral_sub_rat @ W @ V ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_8514_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ W ) @ Y ) )
      = ( plus_p5714425477246183910nteger @ ( neg_nu5755505904847501662nteger @ W @ V ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_8515_semiring__norm_I166_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( plus_plus_real @ ( neg_numeral_sub_real @ V @ W ) @ Y ) ) ).

% semiring_norm(166)
thf(fact_8516_semiring__norm_I166_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( neg_numeral_sub_int @ V @ W ) @ Y ) ) ).

% semiring_norm(166)
thf(fact_8517_semiring__norm_I166_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( plus_plus_complex @ ( neg_nu8416839295433526191omplex @ V @ W ) @ Y ) ) ).

% semiring_norm(166)
thf(fact_8518_semiring__norm_I166_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( plus_plus_rat @ ( neg_numeral_sub_rat @ V @ W ) @ Y ) ) ).

% semiring_norm(166)
thf(fact_8519_semiring__norm_I166_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ V ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( plus_p5714425477246183910nteger @ ( neg_nu5755505904847501662nteger @ V @ W ) @ Y ) ) ).

% semiring_norm(166)
thf(fact_8520_add__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( neg_numeral_sub_real @ N @ M ) ) ).

% add_neg_numeral_simps(2)
thf(fact_8521_add__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( neg_numeral_sub_int @ N @ M ) ) ).

% add_neg_numeral_simps(2)
thf(fact_8522_add__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( neg_nu8416839295433526191omplex @ N @ M ) ) ).

% add_neg_numeral_simps(2)
thf(fact_8523_add__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( neg_numeral_sub_rat @ N @ M ) ) ).

% add_neg_numeral_simps(2)
thf(fact_8524_add__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( neg_nu5755505904847501662nteger @ N @ M ) ) ).

% add_neg_numeral_simps(2)
thf(fact_8525_add__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( neg_numeral_sub_real @ M @ N ) ) ).

% add_neg_numeral_simps(1)
thf(fact_8526_add__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( neg_numeral_sub_int @ M @ N ) ) ).

% add_neg_numeral_simps(1)
thf(fact_8527_add__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( neg_nu8416839295433526191omplex @ M @ N ) ) ).

% add_neg_numeral_simps(1)
thf(fact_8528_add__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( neg_numeral_sub_rat @ M @ N ) ) ).

% add_neg_numeral_simps(1)
thf(fact_8529_add__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( neg_nu5755505904847501662nteger @ M @ N ) ) ).

% add_neg_numeral_simps(1)
thf(fact_8530_real__root__eq__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = zero_zero_real )
        = ( X = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_8531_real__root__less__iff,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% real_root_less_iff
thf(fact_8532_diff__numeral__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( neg_numeral_sub_real @ N @ M ) ) ).

% diff_numeral_simps(4)
thf(fact_8533_diff__numeral__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( neg_numeral_sub_int @ N @ M ) ) ).

% diff_numeral_simps(4)
thf(fact_8534_diff__numeral__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( neg_nu8416839295433526191omplex @ N @ M ) ) ).

% diff_numeral_simps(4)
thf(fact_8535_diff__numeral__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( neg_numeral_sub_rat @ N @ M ) ) ).

% diff_numeral_simps(4)
thf(fact_8536_diff__numeral__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( neg_nu5755505904847501662nteger @ N @ M ) ) ).

% diff_numeral_simps(4)
thf(fact_8537_real__root__le__iff,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% real_root_le_iff
thf(fact_8538_real__root__eq__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = one_one_real )
        = ( X = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_8539_real__root__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_8540_rotate1__length01,axiom,
    ! [Xs: list_VEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ one_one_nat )
     => ( ( rotate1_VEBT_VEBT @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_8541_rotate1__length01,axiom,
    ! [Xs: list_o] :
      ( ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ one_one_nat )
     => ( ( rotate1_o @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_8542_rotate1__length01,axiom,
    ! [Xs: list_nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ one_one_nat )
     => ( ( rotate1_nat @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_8543_rotate1__length01,axiom,
    ! [Xs: list_int] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ one_one_nat )
     => ( ( rotate1_int @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_8544_sub__num__simps_I7_J,axiom,
    ! [K: num,L: num] :
      ( ( neg_numeral_sub_int @ ( bit0 @ K ) @ ( bit1 @ L ) )
      = ( neg_nu3811975205180677377ec_int @ ( neg_numeral_sub_int @ K @ L ) ) ) ).

% sub_num_simps(7)
thf(fact_8545_sub__num__simps_I8_J,axiom,
    ! [K: num,L: num] :
      ( ( neg_numeral_sub_int @ ( bit1 @ K ) @ ( bit0 @ L ) )
      = ( neg_nu5851722552734809277nc_int @ ( neg_numeral_sub_int @ K @ L ) ) ) ).

% sub_num_simps(8)
thf(fact_8546_diff__numeral__special_I1_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
      = ( neg_nu8416839295433526191omplex @ one @ N ) ) ).

% diff_numeral_special(1)
thf(fact_8547_diff__numeral__special_I1_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( neg_numeral_sub_real @ one @ N ) ) ).

% diff_numeral_special(1)
thf(fact_8548_diff__numeral__special_I1_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( neg_numeral_sub_rat @ one @ N ) ) ).

% diff_numeral_special(1)
thf(fact_8549_diff__numeral__special_I1_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( neg_numeral_sub_int @ one @ N ) ) ).

% diff_numeral_special(1)
thf(fact_8550_diff__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ one_one_complex )
      = ( neg_nu8416839295433526191omplex @ M @ one ) ) ).

% diff_numeral_special(2)
thf(fact_8551_diff__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ one_one_real )
      = ( neg_numeral_sub_real @ M @ one ) ) ).

% diff_numeral_special(2)
thf(fact_8552_diff__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ one_one_rat )
      = ( neg_numeral_sub_rat @ M @ one ) ) ).

% diff_numeral_special(2)
thf(fact_8553_diff__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int )
      = ( neg_numeral_sub_int @ M @ one ) ) ).

% diff_numeral_special(2)
thf(fact_8554_real__root__gt__0__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y ) )
        = ( ord_less_real @ zero_zero_real @ Y ) ) ) ).

% real_root_gt_0_iff
thf(fact_8555_real__root__lt__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_8556_real__root__ge__0__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ) ).

% real_root_ge_0_iff
thf(fact_8557_real__root__le__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_8558_sub__num__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8416839295433526191omplex @ ( bit1 @ K ) @ one )
      = ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).

% sub_num_simps(5)
thf(fact_8559_sub__num__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_sub_real @ ( bit1 @ K ) @ one )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% sub_num_simps(5)
thf(fact_8560_sub__num__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_sub_rat @ ( bit1 @ K ) @ one )
      = ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).

% sub_num_simps(5)
thf(fact_8561_sub__num__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_sub_int @ ( bit1 @ K ) @ one )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% sub_num_simps(5)
thf(fact_8562_real__root__gt__1__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ one_one_real @ ( root @ N @ Y ) )
        = ( ord_less_real @ one_one_real @ Y ) ) ) ).

% real_root_gt_1_iff
thf(fact_8563_real__root__lt__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ one_one_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_8564_real__root__ge__1__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y ) )
        = ( ord_less_eq_real @ one_one_real @ Y ) ) ) ).

% real_root_ge_1_iff
thf(fact_8565_real__root__le__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ one_one_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_8566_not__minus__numeral__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7632146776885996613nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( neg_nu5755505904847501662nteger @ N @ one ) ) ).

% not_minus_numeral_eq
thf(fact_8567_not__minus__numeral__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7919022796975470100ot_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( neg_numeral_sub_int @ N @ one ) ) ).

% not_minus_numeral_eq
thf(fact_8568_sub__num__simps_I4_J,axiom,
    ! [K: num] :
      ( ( neg_nu8416839295433526191omplex @ ( bit0 @ K ) @ one )
      = ( numera6690914467698888265omplex @ ( bitM @ K ) ) ) ).

% sub_num_simps(4)
thf(fact_8569_sub__num__simps_I4_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_sub_real @ ( bit0 @ K ) @ one )
      = ( numeral_numeral_real @ ( bitM @ K ) ) ) ).

% sub_num_simps(4)
thf(fact_8570_sub__num__simps_I4_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_sub_rat @ ( bit0 @ K ) @ one )
      = ( numeral_numeral_rat @ ( bitM @ K ) ) ) ).

% sub_num_simps(4)
thf(fact_8571_sub__num__simps_I4_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_sub_int @ ( bit0 @ K ) @ one )
      = ( numeral_numeral_int @ ( bitM @ K ) ) ) ).

% sub_num_simps(4)
thf(fact_8572_add__neg__numeral__special_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ N ) )
      = ( neg_numeral_sub_real @ N @ one ) ) ).

% add_neg_numeral_special(4)
thf(fact_8573_add__neg__numeral__special_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( neg_numeral_sub_int @ N @ one ) ) ).

% add_neg_numeral_special(4)
thf(fact_8574_add__neg__numeral__special_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( numera6690914467698888265omplex @ N ) )
      = ( neg_nu8416839295433526191omplex @ N @ one ) ) ).

% add_neg_numeral_special(4)
thf(fact_8575_add__neg__numeral__special_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ N ) )
      = ( neg_numeral_sub_rat @ N @ one ) ) ).

% add_neg_numeral_special(4)
thf(fact_8576_add__neg__numeral__special_I4_J,axiom,
    ! [N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ N ) )
      = ( neg_nu5755505904847501662nteger @ N @ one ) ) ).

% add_neg_numeral_special(4)
thf(fact_8577_add__neg__numeral__special_I3_J,axiom,
    ! [M: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( neg_numeral_sub_real @ M @ one ) ) ).

% add_neg_numeral_special(3)
thf(fact_8578_add__neg__numeral__special_I3_J,axiom,
    ! [M: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( neg_numeral_sub_int @ M @ one ) ) ).

% add_neg_numeral_special(3)
thf(fact_8579_add__neg__numeral__special_I3_J,axiom,
    ! [M: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( neg_nu8416839295433526191omplex @ M @ one ) ) ).

% add_neg_numeral_special(3)
thf(fact_8580_add__neg__numeral__special_I3_J,axiom,
    ! [M: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( neg_numeral_sub_rat @ M @ one ) ) ).

% add_neg_numeral_special(3)
thf(fact_8581_add__neg__numeral__special_I3_J,axiom,
    ! [M: num] :
      ( ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( neg_nu5755505904847501662nteger @ M @ one ) ) ).

% add_neg_numeral_special(3)
thf(fact_8582_add__neg__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( neg_numeral_sub_real @ one @ M ) ) ).

% add_neg_numeral_special(2)
thf(fact_8583_add__neg__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( neg_numeral_sub_int @ one @ M ) ) ).

% add_neg_numeral_special(2)
thf(fact_8584_add__neg__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( neg_nu8416839295433526191omplex @ one @ M ) ) ).

% add_neg_numeral_special(2)
thf(fact_8585_add__neg__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( neg_numeral_sub_rat @ one @ M ) ) ).

% add_neg_numeral_special(2)
thf(fact_8586_add__neg__numeral__special_I2_J,axiom,
    ! [M: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( neg_nu5755505904847501662nteger @ one @ M ) ) ).

% add_neg_numeral_special(2)
thf(fact_8587_add__neg__numeral__special_I1_J,axiom,
    ! [M: num] :
      ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) )
      = ( neg_numeral_sub_real @ one @ M ) ) ).

% add_neg_numeral_special(1)
thf(fact_8588_add__neg__numeral__special_I1_J,axiom,
    ! [M: num] :
      ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) )
      = ( neg_numeral_sub_int @ one @ M ) ) ).

% add_neg_numeral_special(1)
thf(fact_8589_add__neg__numeral__special_I1_J,axiom,
    ! [M: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) )
      = ( neg_nu8416839295433526191omplex @ one @ M ) ) ).

% add_neg_numeral_special(1)
thf(fact_8590_add__neg__numeral__special_I1_J,axiom,
    ! [M: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) )
      = ( neg_numeral_sub_rat @ one @ M ) ) ).

% add_neg_numeral_special(1)
thf(fact_8591_add__neg__numeral__special_I1_J,axiom,
    ! [M: num] :
      ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) )
      = ( neg_nu5755505904847501662nteger @ one @ M ) ) ).

% add_neg_numeral_special(1)
thf(fact_8592_diff__numeral__special_I8_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( neg_numeral_sub_real @ one @ M ) ) ).

% diff_numeral_special(8)
thf(fact_8593_diff__numeral__special_I8_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( neg_numeral_sub_int @ one @ M ) ) ).

% diff_numeral_special(8)
thf(fact_8594_diff__numeral__special_I8_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( neg_nu8416839295433526191omplex @ one @ M ) ) ).

% diff_numeral_special(8)
thf(fact_8595_diff__numeral__special_I8_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( neg_numeral_sub_rat @ one @ M ) ) ).

% diff_numeral_special(8)
thf(fact_8596_diff__numeral__special_I8_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( neg_nu5755505904847501662nteger @ one @ M ) ) ).

% diff_numeral_special(8)
thf(fact_8597_diff__numeral__special_I7_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( neg_numeral_sub_real @ N @ one ) ) ).

% diff_numeral_special(7)
thf(fact_8598_diff__numeral__special_I7_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( neg_numeral_sub_int @ N @ one ) ) ).

% diff_numeral_special(7)
thf(fact_8599_diff__numeral__special_I7_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( neg_nu8416839295433526191omplex @ N @ one ) ) ).

% diff_numeral_special(7)
thf(fact_8600_diff__numeral__special_I7_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( neg_numeral_sub_rat @ N @ one ) ) ).

% diff_numeral_special(7)
thf(fact_8601_diff__numeral__special_I7_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( neg_nu5755505904847501662nteger @ N @ one ) ) ).

% diff_numeral_special(7)
thf(fact_8602_minus__sub__one__diff__one,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( neg_numeral_sub_real @ M @ one ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% minus_sub_one_diff_one
thf(fact_8603_minus__sub__one__diff__one,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( neg_numeral_sub_int @ M @ one ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% minus_sub_one_diff_one
thf(fact_8604_minus__sub__one__diff__one,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( neg_nu8416839295433526191omplex @ M @ one ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) ) ).

% minus_sub_one_diff_one
thf(fact_8605_minus__sub__one__diff__one,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( neg_numeral_sub_rat @ M @ one ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% minus_sub_one_diff_one
thf(fact_8606_minus__sub__one__diff__one,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( neg_nu5755505904847501662nteger @ M @ one ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% minus_sub_one_diff_one
thf(fact_8607_sub__num__simps_I3_J,axiom,
    ! [L: num] :
      ( ( neg_numeral_sub_real @ one @ ( bit1 @ L ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ L ) ) ) ) ).

% sub_num_simps(3)
thf(fact_8608_sub__num__simps_I3_J,axiom,
    ! [L: num] :
      ( ( neg_numeral_sub_int @ one @ ( bit1 @ L ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ L ) ) ) ) ).

% sub_num_simps(3)
thf(fact_8609_sub__num__simps_I3_J,axiom,
    ! [L: num] :
      ( ( neg_nu8416839295433526191omplex @ one @ ( bit1 @ L ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ L ) ) ) ) ).

% sub_num_simps(3)
thf(fact_8610_sub__num__simps_I3_J,axiom,
    ! [L: num] :
      ( ( neg_numeral_sub_rat @ one @ ( bit1 @ L ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ L ) ) ) ) ).

% sub_num_simps(3)
thf(fact_8611_sub__num__simps_I3_J,axiom,
    ! [L: num] :
      ( ( neg_nu5755505904847501662nteger @ one @ ( bit1 @ L ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ L ) ) ) ) ).

% sub_num_simps(3)
thf(fact_8612_real__root__pow__pos2,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N @ X ) @ N )
          = X ) ) ) ).

% real_root_pow_pos2
thf(fact_8613_sub__num__simps_I2_J,axiom,
    ! [L: num] :
      ( ( neg_numeral_sub_real @ one @ ( bit0 @ L ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bitM @ L ) ) ) ) ).

% sub_num_simps(2)
thf(fact_8614_sub__num__simps_I2_J,axiom,
    ! [L: num] :
      ( ( neg_numeral_sub_int @ one @ ( bit0 @ L ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bitM @ L ) ) ) ) ).

% sub_num_simps(2)
thf(fact_8615_sub__num__simps_I2_J,axiom,
    ! [L: num] :
      ( ( neg_nu8416839295433526191omplex @ one @ ( bit0 @ L ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bitM @ L ) ) ) ) ).

% sub_num_simps(2)
thf(fact_8616_sub__num__simps_I2_J,axiom,
    ! [L: num] :
      ( ( neg_numeral_sub_rat @ one @ ( bit0 @ L ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bitM @ L ) ) ) ) ).

% sub_num_simps(2)
thf(fact_8617_sub__num__simps_I2_J,axiom,
    ! [L: num] :
      ( ( neg_nu5755505904847501662nteger @ one @ ( bit0 @ L ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bitM @ L ) ) ) ) ).

% sub_num_simps(2)
thf(fact_8618_xor__minus__numerals_I1_J,axiom,
    ! [N: num,K: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ K )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N @ one ) @ K ) ) ) ).

% xor_minus_numerals(1)
thf(fact_8619_real__root__inverse,axiom,
    ! [N: nat,X: real] :
      ( ( root @ N @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( root @ N @ X ) ) ) ).

% real_root_inverse
thf(fact_8620_real__root__mult__exp,axiom,
    ! [M: nat,N: nat,X: real] :
      ( ( root @ ( times_times_nat @ M @ N ) @ X )
      = ( root @ M @ ( root @ N @ X ) ) ) ).

% real_root_mult_exp
thf(fact_8621_real__root__mult,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( root @ N @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ).

% real_root_mult
thf(fact_8622_real__root__minus,axiom,
    ! [N: nat,X: real] :
      ( ( root @ N @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( root @ N @ X ) ) ) ).

% real_root_minus
thf(fact_8623_real__root__commute,axiom,
    ! [M: nat,N: nat,X: real] :
      ( ( root @ M @ ( root @ N @ X ) )
      = ( root @ N @ ( root @ M @ X ) ) ) ).

% real_root_commute
thf(fact_8624_real__root__divide,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( root @ N @ ( divide_divide_real @ X @ Y ) )
      = ( divide_divide_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ).

% real_root_divide
thf(fact_8625_real__root__pos__pos__le,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ).

% real_root_pos_pos_le
thf(fact_8626_neg__numeral__class_Osub__def,axiom,
    ( neg_nu8416839295433526191omplex
    = ( ^ [K2: num,L2: num] : ( minus_minus_complex @ ( numera6690914467698888265omplex @ K2 ) @ ( numera6690914467698888265omplex @ L2 ) ) ) ) ).

% neg_numeral_class.sub_def
thf(fact_8627_neg__numeral__class_Osub__def,axiom,
    ( neg_numeral_sub_real
    = ( ^ [K2: num,L2: num] : ( minus_minus_real @ ( numeral_numeral_real @ K2 ) @ ( numeral_numeral_real @ L2 ) ) ) ) ).

% neg_numeral_class.sub_def
thf(fact_8628_neg__numeral__class_Osub__def,axiom,
    ( neg_numeral_sub_rat
    = ( ^ [K2: num,L2: num] : ( minus_minus_rat @ ( numeral_numeral_rat @ K2 ) @ ( numeral_numeral_rat @ L2 ) ) ) ) ).

% neg_numeral_class.sub_def
thf(fact_8629_neg__numeral__class_Osub__def,axiom,
    ( neg_numeral_sub_int
    = ( ^ [K2: num,L2: num] : ( minus_minus_int @ ( numeral_numeral_int @ K2 ) @ ( numeral_numeral_int @ L2 ) ) ) ) ).

% neg_numeral_class.sub_def
thf(fact_8630_real__root__less__mono,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X @ Y )
       => ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ) ).

% real_root_less_mono
thf(fact_8631_real__root__le__mono,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ) ).

% real_root_le_mono
thf(fact_8632_real__root__power,axiom,
    ! [N: nat,X: real,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( power_power_real @ X @ K ) )
        = ( power_power_real @ ( root @ N @ X ) @ K ) ) ) ).

% real_root_power
thf(fact_8633_real__root__abs,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( abs_abs_real @ X ) )
        = ( abs_abs_real @ ( root @ N @ X ) ) ) ) ).

% real_root_abs
thf(fact_8634_length__pos__if__in__set,axiom,
    ! [X: real,Xs: list_real] :
      ( ( member_real @ X @ ( set_real2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8635_length__pos__if__in__set,axiom,
    ! [X: complex,Xs: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8636_length__pos__if__in__set,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8637_length__pos__if__in__set,axiom,
    ! [X: vEBT_VEBT,Xs: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8638_length__pos__if__in__set,axiom,
    ! [X: $o,Xs: list_o] :
      ( ( member_o @ X @ ( set_o2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8639_length__pos__if__in__set,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8640_length__pos__if__in__set,axiom,
    ! [X: int,Xs: list_int] :
      ( ( member_int @ X @ ( set_int2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_8641_sgn__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( sgn_sgn_real @ ( root @ N @ X ) )
        = ( sgn_sgn_real @ X ) ) ) ).

% sgn_root
thf(fact_8642_sub__non__negative,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( neg_numeral_sub_real @ N @ M ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% sub_non_negative
thf(fact_8643_sub__non__negative,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( neg_numeral_sub_rat @ N @ M ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% sub_non_negative
thf(fact_8644_sub__non__negative,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( neg_numeral_sub_int @ N @ M ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% sub_non_negative
thf(fact_8645_sub__non__positive,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_eq_real @ ( neg_numeral_sub_real @ N @ M ) @ zero_zero_real )
      = ( ord_less_eq_num @ N @ M ) ) ).

% sub_non_positive
thf(fact_8646_sub__non__positive,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_eq_rat @ ( neg_numeral_sub_rat @ N @ M ) @ zero_zero_rat )
      = ( ord_less_eq_num @ N @ M ) ) ).

% sub_non_positive
thf(fact_8647_sub__non__positive,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_eq_int @ ( neg_numeral_sub_int @ N @ M ) @ zero_zero_int )
      = ( ord_less_eq_num @ N @ M ) ) ).

% sub_non_positive
thf(fact_8648_sub__negative,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_real @ ( neg_numeral_sub_real @ N @ M ) @ zero_zero_real )
      = ( ord_less_num @ N @ M ) ) ).

% sub_negative
thf(fact_8649_sub__negative,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_rat @ ( neg_numeral_sub_rat @ N @ M ) @ zero_zero_rat )
      = ( ord_less_num @ N @ M ) ) ).

% sub_negative
thf(fact_8650_sub__negative,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_int @ ( neg_numeral_sub_int @ N @ M ) @ zero_zero_int )
      = ( ord_less_num @ N @ M ) ) ).

% sub_negative
thf(fact_8651_sub__positive,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_real @ zero_zero_real @ ( neg_numeral_sub_real @ N @ M ) )
      = ( ord_less_num @ M @ N ) ) ).

% sub_positive
thf(fact_8652_sub__positive,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( neg_numeral_sub_rat @ N @ M ) )
      = ( ord_less_num @ M @ N ) ) ).

% sub_positive
thf(fact_8653_sub__positive,axiom,
    ! [N: num,M: num] :
      ( ( ord_less_int @ zero_zero_int @ ( neg_numeral_sub_int @ N @ M ) )
      = ( ord_less_num @ M @ N ) ) ).

% sub_positive
thf(fact_8654_real__root__gt__zero,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).

% real_root_gt_zero
thf(fact_8655_real__root__strict__decreasing,axiom,
    ! [N: nat,N5: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ( ord_less_real @ one_one_real @ X )
         => ( ord_less_real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_8656_sqrt__def,axiom,
    ( sqrt
    = ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% sqrt_def
thf(fact_8657_root__abs__power,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y @ N ) ) )
        = ( abs_abs_real @ Y ) ) ) ).

% root_abs_power
thf(fact_8658_real__root__pos__pos,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).

% real_root_pos_pos
thf(fact_8659_real__root__strict__increasing,axiom,
    ! [N: nat,N5: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ X @ one_one_real )
           => ( ord_less_real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_8660_real__root__decreasing,axiom,
    ! [N: nat,N5: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ord_less_eq_real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).

% real_root_decreasing
thf(fact_8661_real__root__pow__pos,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N @ X ) @ N )
          = X ) ) ) ).

% real_root_pow_pos
thf(fact_8662_real__root__pos__unique,axiom,
    ! [N: nat,Y: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ Y @ N )
            = X )
         => ( ( root @ N @ X )
            = Y ) ) ) ) ).

% real_root_pos_unique
thf(fact_8663_real__root__power__cancel,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( root @ N @ ( power_power_real @ X @ N ) )
          = X ) ) ) ).

% real_root_power_cancel
thf(fact_8664_odd__real__root__power__cancel,axiom,
    ! [N: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( root @ N @ ( power_power_real @ X @ N ) )
        = X ) ) ).

% odd_real_root_power_cancel
thf(fact_8665_odd__real__root__unique,axiom,
    ! [N: nat,Y: real,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ( power_power_real @ Y @ N )
          = X )
       => ( ( root @ N @ X )
          = Y ) ) ) ).

% odd_real_root_unique
thf(fact_8666_odd__real__root__pow,axiom,
    ! [N: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( root @ N @ X ) @ N )
        = X ) ) ).

% odd_real_root_pow
thf(fact_8667_real__root__increasing,axiom,
    ! [N: nat,N5: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ X @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_8668_sub__BitM__One__eq,axiom,
    ! [N: num] :
      ( ( neg_numeral_sub_int @ ( bitM @ N ) @ one )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N @ one ) ) ) ).

% sub_BitM_One_eq
thf(fact_8669_root__sgn__power,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) ) )
        = Y ) ) ).

% root_sgn_power
thf(fact_8670_sgn__power__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X ) ) @ N ) )
        = X ) ) ).

% sgn_power_root
thf(fact_8671_ln__root,axiom,
    ! [N: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% ln_root
thf(fact_8672_log__root,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( log2 @ B @ ( root @ N @ A ) )
          = ( divide_divide_real @ ( log2 @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_root
thf(fact_8673_log__base__root,axiom,
    ! [N: nat,B: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( log2 @ ( root @ N @ B ) @ X )
          = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log2 @ B @ X ) ) ) ) ) ).

% log_base_root
thf(fact_8674_split__root,axiom,
    ! [P: real > $o,N: nat,X: real] :
      ( ( P @ ( root @ N @ X ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_real ) )
        & ( ( ord_less_nat @ zero_zero_nat @ N )
         => ! [Y6: real] :
              ( ( ( times_times_real @ ( sgn_sgn_real @ Y6 ) @ ( power_power_real @ ( abs_abs_real @ Y6 ) @ N ) )
                = X )
             => ( P @ Y6 ) ) ) ) ) ).

% split_root
thf(fact_8675_num__of__nat_Osimps_I2_J,axiom,
    ! [N: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( suc @ N ) )
          = ( inc @ ( num_of_nat @ N ) ) ) )
      & ( ~ ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( suc @ N ) )
          = one ) ) ) ).

% num_of_nat.simps(2)
thf(fact_8676_pow_Osimps_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( pow @ X @ ( bit1 @ Y ) )
      = ( times_times_num @ ( sqr @ ( pow @ X @ Y ) ) @ X ) ) ).

% pow.simps(3)
thf(fact_8677_num__of__nat__numeral__eq,axiom,
    ! [Q2: num] :
      ( ( num_of_nat @ ( numeral_numeral_nat @ Q2 ) )
      = Q2 ) ).

% num_of_nat_numeral_eq
thf(fact_8678_sqr_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( sqr @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( sqr @ N ) ) ) ) ).

% sqr.simps(2)
thf(fact_8679_sqr_Osimps_I1_J,axiom,
    ( ( sqr @ one )
    = one ) ).

% sqr.simps(1)
thf(fact_8680_sqr__conv__mult,axiom,
    ( sqr
    = ( ^ [X3: num] : ( times_times_num @ X3 @ X3 ) ) ) ).

% sqr_conv_mult
thf(fact_8681_num__of__nat_Osimps_I1_J,axiom,
    ( ( num_of_nat @ zero_zero_nat )
    = one ) ).

% num_of_nat.simps(1)
thf(fact_8682_numeral__num__of__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( numeral_numeral_nat @ ( num_of_nat @ N ) )
        = N ) ) ).

% numeral_num_of_nat
thf(fact_8683_num__of__nat__One,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ one_one_nat )
     => ( ( num_of_nat @ N )
        = one ) ) ).

% num_of_nat_One
thf(fact_8684_pow_Osimps_I2_J,axiom,
    ! [X: num,Y: num] :
      ( ( pow @ X @ ( bit0 @ Y ) )
      = ( sqr @ ( pow @ X @ Y ) ) ) ).

% pow.simps(2)
thf(fact_8685_num__of__nat__double,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( num_of_nat @ ( plus_plus_nat @ N @ N ) )
        = ( bit0 @ ( num_of_nat @ N ) ) ) ) ).

% num_of_nat_double
thf(fact_8686_num__of__nat__plus__distrib,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( plus_plus_nat @ M @ N ) )
          = ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).

% num_of_nat_plus_distrib
thf(fact_8687_sqr_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( sqr @ ( bit1 @ N ) )
      = ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N ) @ N ) ) ) ) ).

% sqr.simps(3)
thf(fact_8688_and__int_Oelims,axiom,
    ! [X: int,Xa: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Xa )
        = Y )
     => ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
        & ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.elims
thf(fact_8689_and__int_Osimps,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
          @ ( uminus_uminus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
          @ ( plus_plus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
            @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_int.simps
thf(fact_8690_min__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_min_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( suc @ ( ord_min_nat @ M @ N ) ) ) ).

% min_Suc_Suc
thf(fact_8691_min__0R,axiom,
    ! [N: nat] :
      ( ( ord_min_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% min_0R
thf(fact_8692_min__0L,axiom,
    ! [N: nat] :
      ( ( ord_min_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% min_0L
thf(fact_8693_min__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_min_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_min_nat @ N @ ( pred_numeral @ K ) ) ) ) ).

% min_Suc_numeral
thf(fact_8694_min__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_min_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( suc @ ( ord_min_nat @ ( pred_numeral @ K ) @ N ) ) ) ).

% min_numeral_Suc
thf(fact_8695_min__diff,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_min_nat @ ( minus_minus_nat @ M @ I ) @ ( minus_minus_nat @ N @ I ) )
      = ( minus_minus_nat @ ( ord_min_nat @ M @ N ) @ I ) ) ).

% min_diff
thf(fact_8696_nat__mult__min__left,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( times_times_nat @ ( ord_min_nat @ M @ N ) @ Q2 )
      = ( ord_min_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).

% nat_mult_min_left
thf(fact_8697_nat__mult__min__right,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( times_times_nat @ M @ ( ord_min_nat @ N @ Q2 ) )
      = ( ord_min_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).

% nat_mult_min_right
thf(fact_8698_concat__bit__assoc__sym,axiom,
    ! [M: nat,N: nat,K: int,L: int,R: int] :
      ( ( bit_concat_bit @ M @ ( bit_concat_bit @ N @ K @ L ) @ R )
      = ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_concat_bit @ ( minus_minus_nat @ M @ N ) @ L @ R ) ) ) ).

% concat_bit_assoc_sym
thf(fact_8699_take__bit__concat__bit__eq,axiom,
    ! [M: nat,N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ M @ ( bit_concat_bit @ N @ K @ L ) )
      = ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N ) @ L ) ) ) ).

% take_bit_concat_bit_eq
thf(fact_8700_set__decode__zero,axiom,
    ( ( nat_set_decode @ zero_zero_nat )
    = bot_bot_set_nat ) ).

% set_decode_zero
thf(fact_8701_set__decode__plus__power__2,axiom,
    ! [N: nat,Z2: nat] :
      ( ~ ( member_nat @ N @ ( nat_set_decode @ Z2 ) )
     => ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z2 ) )
        = ( insert_nat @ N @ ( nat_set_decode @ Z2 ) ) ) ) ).

% set_decode_plus_power_2
thf(fact_8702_and__int_Opsimps,axiom,
    ! [K: int,L: int] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L ) )
     => ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L )
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
        & ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L )
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.psimps
thf(fact_8703_and__int_Opelims,axiom,
    ! [X: int,Xa: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Xa )
        = Y )
     => ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa ) )
       => ~ ( ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                  & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y
                  = ( uminus_uminus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
              & ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y
                  = ( plus_plus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
                    @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa ) ) ) ) ) ).

% and_int.pelims
thf(fact_8704_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_8705_and__int_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [K3: int,L3: int] :
            ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K3 @ L3 ) )
           => ( ( ~ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ L3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( P @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
             => ( P @ K3 @ L3 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% and_int.pinduct
thf(fact_8706_Divides_Oadjust__div__eq,axiom,
    ! [Q2: int,R: int] :
      ( ( adjust_div @ ( product_Pair_int_int @ Q2 @ R ) )
      = ( plus_plus_int @ Q2 @ ( zero_n2684676970156552555ol_int @ ( R != zero_zero_int ) ) ) ) ).

% Divides.adjust_div_eq
thf(fact_8707_neg__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ B @ zero_zero_int )
     => ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q2 @ R ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R ) @ one_one_int ) ) ) ) ) ).

% neg_eucl_rel_int_mult_2
thf(fact_8708_upto_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [I2: int,J2: int] :
            ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I2 @ J2 ) )
           => ( ( ( ord_less_eq_int @ I2 @ J2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) @ J2 ) )
             => ( P @ I2 @ J2 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% upto.pinduct
thf(fact_8709_unique__remainder,axiom,
    ! [A: int,B: int,Q2: int,R: int,Q4: int,R4: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q4 @ R4 ) )
       => ( R = R4 ) ) ) ).

% unique_remainder
thf(fact_8710_unique__quotient,axiom,
    ! [A: int,B: int,Q2: int,R: int,Q4: int,R4: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q4 @ R4 ) )
       => ( Q2 = Q4 ) ) ) ).

% unique_quotient
thf(fact_8711_xor__num_Ocases,axiom,
    ! [X: product_prod_num_num] :
      ( ( X
       != ( product_Pair_num_num @ one @ one ) )
     => ( ! [N2: num] :
            ( X
           != ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) )
       => ( ! [N2: num] :
              ( X
             != ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) )
         => ( ! [M2: num] :
                ( X
               != ( product_Pair_num_num @ ( bit0 @ M2 ) @ one ) )
           => ( ! [M2: num,N2: num] :
                  ( X
                 != ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit0 @ N2 ) ) )
             => ( ! [M2: num,N2: num] :
                    ( X
                   != ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit1 @ N2 ) ) )
               => ( ! [M2: num] :
                      ( X
                     != ( product_Pair_num_num @ ( bit1 @ M2 ) @ one ) )
                 => ( ! [M2: num,N2: num] :
                        ( X
                       != ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit0 @ N2 ) ) )
                   => ~ ! [M2: num,N2: num] :
                          ( X
                         != ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.cases
thf(fact_8712_eucl__rel__int__by0,axiom,
    ! [K: int] : ( eucl_rel_int @ K @ zero_zero_int @ ( product_Pair_int_int @ zero_zero_int @ K ) ) ).

% eucl_rel_int_by0
thf(fact_8713_div__int__unique,axiom,
    ! [K: int,L: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( divide_divide_int @ K @ L )
        = Q2 ) ) ).

% div_int_unique
thf(fact_8714_mod__int__unique,axiom,
    ! [K: int,L: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( modulo_modulo_int @ K @ L )
        = R ) ) ).

% mod_int_unique
thf(fact_8715_eucl__rel__int__dividesI,axiom,
    ! [L: int,K: int,Q2: int] :
      ( ( L != zero_zero_int )
     => ( ( K
          = ( times_times_int @ Q2 @ L ) )
       => ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ zero_zero_int ) ) ) ) ).

% eucl_rel_int_dividesI
thf(fact_8716_eucl__rel__int,axiom,
    ! [K: int,L: int] : ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ ( divide_divide_int @ K @ L ) @ ( modulo_modulo_int @ K @ L ) ) ) ).

% eucl_rel_int
thf(fact_8717_zminus1__lemma,axiom,
    ! [A: int,B: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
     => ( ( B != zero_zero_int )
       => ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R = zero_zero_int ) @ ( uminus_uminus_int @ Q2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q2 ) @ one_one_int ) ) @ ( if_int @ ( R = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R ) ) ) ) ) ) ).

% zminus1_lemma
thf(fact_8718_eucl__rel__int__iff,axiom,
    ! [K: int,L: int,Q2: int,R: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R ) )
      = ( ( K
          = ( plus_plus_int @ ( times_times_int @ L @ Q2 ) @ R ) )
        & ( ( ord_less_int @ zero_zero_int @ L )
         => ( ( ord_less_eq_int @ zero_zero_int @ R )
            & ( ord_less_int @ R @ L ) ) )
        & ( ~ ( ord_less_int @ zero_zero_int @ L )
         => ( ( ( ord_less_int @ L @ zero_zero_int )
             => ( ( ord_less_int @ L @ R )
                & ( ord_less_eq_int @ R @ zero_zero_int ) ) )
            & ( ~ ( ord_less_int @ L @ zero_zero_int )
             => ( Q2 = zero_zero_int ) ) ) ) ) ) ).

% eucl_rel_int_iff
thf(fact_8719_eucl__rel__int__remainderI,axiom,
    ! [R: int,L: int,K: int,Q2: int] :
      ( ( ( sgn_sgn_int @ R )
        = ( sgn_sgn_int @ L ) )
     => ( ( ord_less_int @ ( abs_abs_int @ R ) @ ( abs_abs_int @ L ) )
       => ( ( K
            = ( plus_plus_int @ ( times_times_int @ Q2 @ L ) @ R ) )
         => ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R ) ) ) ) ) ).

% eucl_rel_int_remainderI
thf(fact_8720_eucl__rel__int_Ocases,axiom,
    ! [A1: int,A22: int,A32: product_prod_int_int] :
      ( ( eucl_rel_int @ A1 @ A22 @ A32 )
     => ( ( ( A22 = zero_zero_int )
         => ( A32
           != ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
       => ( ! [Q6: int] :
              ( ( A32
                = ( product_Pair_int_int @ Q6 @ zero_zero_int ) )
             => ( ( A22 != zero_zero_int )
               => ( A1
                 != ( times_times_int @ Q6 @ A22 ) ) ) )
         => ~ ! [R2: int,Q6: int] :
                ( ( A32
                  = ( product_Pair_int_int @ Q6 @ R2 ) )
               => ( ( ( sgn_sgn_int @ R2 )
                    = ( sgn_sgn_int @ A22 ) )
                 => ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ A22 ) )
                   => ( A1
                     != ( plus_plus_int @ ( times_times_int @ Q6 @ A22 ) @ R2 ) ) ) ) ) ) ) ) ).

% eucl_rel_int.cases
thf(fact_8721_eucl__rel__int_Osimps,axiom,
    ( eucl_rel_int
    = ( ^ [A12: int,A23: int,A33: product_prod_int_int] :
          ( ? [K2: int] :
              ( ( A12 = K2 )
              & ( A23 = zero_zero_int )
              & ( A33
                = ( product_Pair_int_int @ zero_zero_int @ K2 ) ) )
          | ? [L2: int,K2: int,Q5: int] :
              ( ( A12 = K2 )
              & ( A23 = L2 )
              & ( A33
                = ( product_Pair_int_int @ Q5 @ zero_zero_int ) )
              & ( L2 != zero_zero_int )
              & ( K2
                = ( times_times_int @ Q5 @ L2 ) ) )
          | ? [R5: int,L2: int,K2: int,Q5: int] :
              ( ( A12 = K2 )
              & ( A23 = L2 )
              & ( A33
                = ( product_Pair_int_int @ Q5 @ R5 ) )
              & ( ( sgn_sgn_int @ R5 )
                = ( sgn_sgn_int @ L2 ) )
              & ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L2 ) )
              & ( K2
                = ( plus_plus_int @ ( times_times_int @ Q5 @ L2 ) @ R5 ) ) ) ) ) ) ).

% eucl_rel_int.simps
thf(fact_8722_pos__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R ) ) ) ) ) ) ).

% pos_eucl_rel_int_mult_2
thf(fact_8723_minus__numeral__div__numeral,axiom,
    ! [M: num,N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_div_numeral
thf(fact_8724_numeral__div__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% numeral_div_minus_numeral
thf(fact_8725_minus__one__div__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_div_numeral
thf(fact_8726_one__div__minus__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% one_div_minus_numeral
thf(fact_8727_divmod__BitM__2__eq,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
      = ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).

% divmod_BitM_2_eq
thf(fact_8728_divmod_H__nat__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N3: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N3 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N3 ) ) ) ) ) ).

% divmod'_nat_def
thf(fact_8729_divmod__int__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N3: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ) ).

% divmod_int_def
thf(fact_8730_bezw__0,axiom,
    ! [X: nat] :
      ( ( bezw @ X @ zero_zero_nat )
      = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) ).

% bezw_0
thf(fact_8731_rcis__inverse,axiom,
    ! [R: real,A: real] :
      ( ( invers8013647133539491842omplex @ ( rcis @ R @ A ) )
      = ( rcis @ ( divide_divide_real @ one_one_real @ R ) @ ( uminus_uminus_real @ A ) ) ) ).

% rcis_inverse
thf(fact_8732_abs__Gcd__eq,axiom,
    ! [K5: set_int] :
      ( ( abs_abs_int @ ( gcd_Gcd_int @ K5 ) )
      = ( gcd_Gcd_int @ K5 ) ) ).

% abs_Gcd_eq
thf(fact_8733_Re__rcis,axiom,
    ! [R: real,A: real] :
      ( ( re @ ( rcis @ R @ A ) )
      = ( times_times_real @ R @ ( cos_real @ A ) ) ) ).

% Re_rcis
thf(fact_8734_Im__rcis,axiom,
    ! [R: real,A: real] :
      ( ( im @ ( rcis @ R @ A ) )
      = ( times_times_real @ R @ ( sin_real @ A ) ) ) ).

% Im_rcis
thf(fact_8735_prod__decode__aux_Ocases,axiom,
    ! [X: product_prod_nat_nat] :
      ~ ! [K3: nat,M2: nat] :
          ( X
         != ( product_Pair_nat_nat @ K3 @ M2 ) ) ).

% prod_decode_aux.cases
thf(fact_8736_Gcd__greatest__int,axiom,
    ! [A3: set_int,A: int] :
      ( ! [B4: int] :
          ( ( member_int @ B4 @ A3 )
         => ( dvd_dvd_int @ A @ B4 ) )
     => ( dvd_dvd_int @ A @ ( gcd_Gcd_int @ A3 ) ) ) ).

% Gcd_greatest_int
thf(fact_8737_Gcd__dvd__int,axiom,
    ! [A: int,A3: set_int] :
      ( ( member_int @ A @ A3 )
     => ( dvd_dvd_int @ ( gcd_Gcd_int @ A3 ) @ A ) ) ).

% Gcd_dvd_int
thf(fact_8738_Gcd__nat__eq__one,axiom,
    ! [N5: set_nat] :
      ( ( member_nat @ one_one_nat @ N5 )
     => ( ( gcd_Gcd_nat @ N5 )
        = one_one_nat ) ) ).

% Gcd_nat_eq_one
thf(fact_8739_Gcd__greatest__nat,axiom,
    ! [A3: set_nat,A: nat] :
      ( ! [B4: nat] :
          ( ( member_nat @ B4 @ A3 )
         => ( dvd_dvd_nat @ A @ B4 ) )
     => ( dvd_dvd_nat @ A @ ( gcd_Gcd_nat @ A3 ) ) ) ).

% Gcd_greatest_nat
thf(fact_8740_Gcd__dvd__nat,axiom,
    ! [A: nat,A3: set_nat] :
      ( ( member_nat @ A @ A3 )
     => ( dvd_dvd_nat @ ( gcd_Gcd_nat @ A3 ) @ A ) ) ).

% Gcd_dvd_nat
thf(fact_8741_Gcd__int__greater__eq__0,axiom,
    ! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_int_greater_eq_0
thf(fact_8742_cis__rcis__eq,axiom,
    ( cis
    = ( rcis @ one_one_real ) ) ).

% cis_rcis_eq
thf(fact_8743_rcis__mult,axiom,
    ! [R1: real,A: real,R22: real,B: real] :
      ( ( times_times_complex @ ( rcis @ R1 @ A ) @ ( rcis @ R22 @ B ) )
      = ( rcis @ ( times_times_real @ R1 @ R22 ) @ ( plus_plus_real @ A @ B ) ) ) ).

% rcis_mult
thf(fact_8744_rcis__divide,axiom,
    ! [R1: real,A: real,R22: real,B: real] :
      ( ( divide1717551699836669952omplex @ ( rcis @ R1 @ A ) @ ( rcis @ R22 @ B ) )
      = ( rcis @ ( divide_divide_real @ R1 @ R22 ) @ ( minus_minus_real @ A @ B ) ) ) ).

% rcis_divide
thf(fact_8745_rcis__def,axiom,
    ( rcis
    = ( ^ [R5: real,A2: real] : ( times_times_complex @ ( real_V4546457046886955230omplex @ R5 ) @ ( cis @ A2 ) ) ) ) ).

% rcis_def
thf(fact_8746_DeMoivre2,axiom,
    ! [R: real,A: real,N: nat] :
      ( ( power_power_complex @ ( rcis @ R @ A ) @ N )
      = ( rcis @ ( power_power_real @ R @ N ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).

% DeMoivre2
thf(fact_8747_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K2: nat,M3: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M3 @ K2 ) @ ( product_Pair_nat_nat @ M3 @ ( minus_minus_nat @ K2 @ M3 ) ) @ ( nat_prod_decode_aux @ ( suc @ K2 ) @ ( minus_minus_nat @ M3 @ ( suc @ K2 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_8748_prod__decode__aux_Oelims,axiom,
    ! [X: nat,Xa: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa )
        = Y )
     => ( ( ( ord_less_eq_nat @ Xa @ X )
         => ( Y
            = ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X @ Xa ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa @ X )
         => ( Y
            = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa @ ( suc @ X ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_8749_Suc__0__div__numeral,axiom,
    ! [K: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_div_numeral
thf(fact_8750_Suc__0__mod__numeral,axiom,
    ! [K: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_mod_numeral
thf(fact_8751_snd__divmod__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( product_snd_nat_nat @ ( divmod_nat @ M @ N ) )
      = ( modulo_modulo_nat @ M @ N ) ) ).

% snd_divmod_nat
thf(fact_8752_fst__divmod__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( product_fst_nat_nat @ ( divmod_nat @ M @ N ) )
      = ( divide_divide_nat @ M @ N ) ) ).

% fst_divmod_nat
thf(fact_8753_bezw__non__0,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Y )
     => ( ( bezw @ X @ Y )
        = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y ) ) ) ) ) ) ) ).

% bezw_non_0
thf(fact_8754_bezw_Osimps,axiom,
    ( bezw
    = ( ^ [X3: nat,Y6: nat] : ( if_Pro3027730157355071871nt_int @ ( Y6 = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X3 @ Y6 ) ) ) ) ) ) ) ) ).

% bezw.simps
thf(fact_8755_bezw_Oelims,axiom,
    ! [X: nat,Xa: nat,Y: product_prod_int_int] :
      ( ( ( bezw @ X @ Xa )
        = Y )
     => ( ( ( Xa = zero_zero_nat )
         => ( Y
            = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
        & ( ( Xa != zero_zero_nat )
         => ( Y
            = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa ) ) ) ) ) ) ) ) ) ).

% bezw.elims
thf(fact_8756_divmod__nat__def,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N3: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M3 @ N3 ) @ ( modulo_modulo_nat @ M3 @ N3 ) ) ) ) ).

% divmod_nat_def
thf(fact_8757_one__mod__minus__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ) ).

% one_mod_minus_numeral
thf(fact_8758_minus__one__mod__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_mod_numeral
thf(fact_8759_minus__numeral__mod__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_mod_numeral
thf(fact_8760_numeral__mod__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ) ).

% numeral_mod_minus_numeral
thf(fact_8761_Divides_Oadjust__mod__def,axiom,
    ( adjust_mod
    = ( ^ [L2: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L2 @ R5 ) ) ) ) ).

% Divides.adjust_mod_def
thf(fact_8762_bezw_Opelims,axiom,
    ! [X: nat,Xa: nat,Y: product_prod_int_int] :
      ( ( ( bezw @ X @ Xa )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
       => ~ ( ( ( ( Xa = zero_zero_nat )
               => ( Y
                  = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
              & ( ( Xa != zero_zero_nat )
               => ( Y
                  = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa ) ) ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).

% bezw.pelims
thf(fact_8763_prod__encode__prod__decode__aux,axiom,
    ! [K: nat,M: nat] :
      ( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
      = ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) ) ).

% prod_encode_prod_decode_aux
thf(fact_8764_bezw__aux,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X @ Y ) )
      = ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X @ Y ) ) @ ( semiri1314217659103216013at_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X @ Y ) ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ) ).

% bezw_aux
thf(fact_8765_gcd__idem__nat,axiom,
    ! [X: nat] :
      ( ( gcd_gcd_nat @ X @ X )
      = X ) ).

% gcd_idem_nat
thf(fact_8766_gcd__nat_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( gcd_gcd_nat @ ( gcd_gcd_nat @ A @ B ) @ B )
      = ( gcd_gcd_nat @ A @ B ) ) ).

% gcd_nat.right_idem
thf(fact_8767_gcd__nat_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( gcd_gcd_nat @ A @ ( gcd_gcd_nat @ A @ B ) )
      = ( gcd_gcd_nat @ A @ B ) ) ).

% gcd_nat.left_idem
thf(fact_8768_gcd__nat_Oidem,axiom,
    ! [A: nat] :
      ( ( gcd_gcd_nat @ A @ A )
      = A ) ).

% gcd_nat.idem
thf(fact_8769_prod__encode__eq,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_encode @ X )
        = ( nat_prod_encode @ Y ) )
      = ( X = Y ) ) ).

% prod_encode_eq
thf(fact_8770_gcd__0__left__nat,axiom,
    ! [X: nat] :
      ( ( gcd_gcd_nat @ zero_zero_nat @ X )
      = X ) ).

% gcd_0_left_nat
thf(fact_8771_gcd__0__nat,axiom,
    ! [X: nat] :
      ( ( gcd_gcd_nat @ X @ zero_zero_nat )
      = X ) ).

% gcd_0_nat
thf(fact_8772_gcd__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( gcd_gcd_nat @ A @ zero_zero_nat )
      = A ) ).

% gcd_nat.right_neutral
thf(fact_8773_gcd__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( gcd_gcd_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% gcd_nat.neutr_eq_iff
thf(fact_8774_gcd__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( gcd_gcd_nat @ zero_zero_nat @ A )
      = A ) ).

% gcd_nat.left_neutral
thf(fact_8775_gcd__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( gcd_gcd_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% gcd_nat.eq_neutr_iff
thf(fact_8776_gcd__1__nat,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ one_one_nat )
      = one_one_nat ) ).

% gcd_1_nat
thf(fact_8777_gcd__proj2__if__dvd__nat,axiom,
    ! [Y: nat,X: nat] :
      ( ( dvd_dvd_nat @ Y @ X )
     => ( ( gcd_gcd_nat @ X @ Y )
        = Y ) ) ).

% gcd_proj2_if_dvd_nat
thf(fact_8778_gcd__proj1__if__dvd__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( gcd_gcd_nat @ X @ Y )
        = X ) ) ).

% gcd_proj1_if_dvd_nat
thf(fact_8779_gcd__nat_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ( dvd_dvd_nat @ A @ C ) ) ) ).

% gcd_nat.bounded_iff
thf(fact_8780_gcd__nat_Oabsorb2,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( gcd_gcd_nat @ A @ B )
        = B ) ) ).

% gcd_nat.absorb2
thf(fact_8781_gcd__nat_Oabsorb1,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( gcd_gcd_nat @ A @ B )
        = A ) ) ).

% gcd_nat.absorb1
thf(fact_8782_gcd__Suc__0,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( suc @ zero_zero_nat ) ) ).

% gcd_Suc_0
thf(fact_8783_gcd__pos__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N ) )
      = ( ( M != zero_zero_nat )
        | ( N != zero_zero_nat ) ) ) ).

% gcd_pos_nat
thf(fact_8784_gcd__mult__distrib__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( gcd_gcd_nat @ M @ N ) )
      = ( gcd_gcd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% gcd_mult_distrib_nat
thf(fact_8785_gcd__unique__nat,axiom,
    ! [D: nat,A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ D @ A )
        & ( dvd_dvd_nat @ D @ B )
        & ! [E3: nat] :
            ( ( ( dvd_dvd_nat @ E3 @ A )
              & ( dvd_dvd_nat @ E3 @ B ) )
           => ( dvd_dvd_nat @ E3 @ D ) ) )
      = ( D
        = ( gcd_gcd_nat @ A @ B ) ) ) ).

% gcd_unique_nat
thf(fact_8786_gcd__nat_Ostrict__coboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ( dvd_dvd_nat @ B @ C )
        & ( B != C ) )
     => ( ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C )
        & ( ( gcd_gcd_nat @ A @ B )
         != C ) ) ) ).

% gcd_nat.strict_coboundedI2
thf(fact_8787_gcd__nat_Ostrict__coboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ C )
        & ( A != C ) )
     => ( ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C )
        & ( ( gcd_gcd_nat @ A @ B )
         != C ) ) ) ).

% gcd_nat.strict_coboundedI1
thf(fact_8788_gcd__nat_Ostrict__order__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
      = ( ( A
          = ( gcd_gcd_nat @ A @ B ) )
        & ( A != B ) ) ) ).

% gcd_nat.strict_order_iff
thf(fact_8789_gcd__nat_Ostrict__boundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) )
        & ( A
         != ( gcd_gcd_nat @ B @ C ) ) )
     => ~ ( ( ( dvd_dvd_nat @ A @ B )
            & ( A != B ) )
         => ~ ( ( dvd_dvd_nat @ A @ C )
              & ( A != C ) ) ) ) ).

% gcd_nat.strict_boundedE
thf(fact_8790_gcd__nat_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ C )
     => ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C ) ) ).

% gcd_nat.coboundedI2
thf(fact_8791_gcd__nat_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C ) ) ).

% gcd_nat.coboundedI1
thf(fact_8792_gcd__nat_Oabsorb__iff2,axiom,
    ( dvd_dvd_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( gcd_gcd_nat @ A2 @ B2 )
          = B2 ) ) ) ).

% gcd_nat.absorb_iff2
thf(fact_8793_gcd__nat_Oabsorb__iff1,axiom,
    ( dvd_dvd_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( gcd_gcd_nat @ A2 @ B2 )
          = A2 ) ) ) ).

% gcd_nat.absorb_iff1
thf(fact_8794_gcd__nat_Ocobounded2,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ).

% gcd_nat.cobounded2
thf(fact_8795_gcd__nat_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ).

% gcd_nat.cobounded1
thf(fact_8796_gcd__nat_Oorder__iff,axiom,
    ( dvd_dvd_nat
    = ( ^ [A2: nat,B2: nat] :
          ( A2
          = ( gcd_gcd_nat @ A2 @ B2 ) ) ) ) ).

% gcd_nat.order_iff
thf(fact_8797_gcd__nat_OboundedI,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) ) ) ) ).

% gcd_nat.boundedI
thf(fact_8798_gcd__nat_OboundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) )
     => ~ ( ( dvd_dvd_nat @ A @ B )
         => ~ ( dvd_dvd_nat @ A @ C ) ) ) ).

% gcd_nat.boundedE
thf(fact_8799_gcd__nat_Oabsorb4,axiom,
    ! [B: nat,A: nat] :
      ( ( ( dvd_dvd_nat @ B @ A )
        & ( B != A ) )
     => ( ( gcd_gcd_nat @ A @ B )
        = B ) ) ).

% gcd_nat.absorb4
thf(fact_8800_gcd__nat_Oabsorb3,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( ( gcd_gcd_nat @ A @ B )
        = A ) ) ).

% gcd_nat.absorb3
thf(fact_8801_gcd__nat_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( gcd_gcd_nat @ A @ B ) )
     => ( dvd_dvd_nat @ A @ B ) ) ).

% gcd_nat.orderI
thf(fact_8802_gcd__nat_OorderE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( A
        = ( gcd_gcd_nat @ A @ B ) ) ) ).

% gcd_nat.orderE
thf(fact_8803_gcd__nat_Omono,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ B @ D )
       => ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ ( gcd_gcd_nat @ C @ D ) ) ) ) ).

% gcd_nat.mono
thf(fact_8804_gcd__red__nat,axiom,
    ( gcd_gcd_nat
    = ( ^ [X3: nat,Y6: nat] : ( gcd_gcd_nat @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) ) ).

% gcd_red_nat
thf(fact_8805_gcd__le2__nat,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).

% gcd_le2_nat
thf(fact_8806_gcd__le1__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).

% gcd_le1_nat
thf(fact_8807_gcd__diff2__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ N @ M ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff2_nat
thf(fact_8808_gcd__diff1__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff1_nat
thf(fact_8809_gcd__non__0__nat,axiom,
    ! [Y: nat,X: nat] :
      ( ( Y != zero_zero_nat )
     => ( ( gcd_gcd_nat @ X @ Y )
        = ( gcd_gcd_nat @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) ) ).

% gcd_non_0_nat
thf(fact_8810_gcd__nat_Osimps,axiom,
    ( gcd_gcd_nat
    = ( ^ [X3: nat,Y6: nat] : ( if_nat @ ( Y6 = zero_zero_nat ) @ X3 @ ( gcd_gcd_nat @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) ) ) ).

% gcd_nat.simps
thf(fact_8811_gcd__nat_Oelims,axiom,
    ! [X: nat,Xa: nat,Y: nat] :
      ( ( ( gcd_gcd_nat @ X @ Xa )
        = Y )
     => ( ( ( Xa = zero_zero_nat )
         => ( Y = X ) )
        & ( ( Xa != zero_zero_nat )
         => ( Y
            = ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) ) ) ) ).

% gcd_nat.elims
thf(fact_8812_Gcd__in,axiom,
    ! [A3: set_nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( member_nat @ A4 @ A3 )
         => ( ( member_nat @ B4 @ A3 )
           => ( member_nat @ ( gcd_gcd_nat @ A4 @ B4 ) @ A3 ) ) )
     => ( ( A3 != bot_bot_set_nat )
       => ( member_nat @ ( gcd_Gcd_nat @ A3 ) @ A3 ) ) ) ).

% Gcd_in
thf(fact_8813_bezout__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [X4: nat,Y4: nat] :
          ( ( times_times_nat @ A @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_nat
thf(fact_8814_bezout__gcd__nat_H,axiom,
    ! [B: nat,A: nat] :
    ? [X4: nat,Y4: nat] :
      ( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y4 ) @ ( times_times_nat @ A @ X4 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y4 ) )
          = ( gcd_gcd_nat @ A @ B ) ) )
      | ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y4 ) @ ( times_times_nat @ B @ X4 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y4 ) )
          = ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_gcd_nat'
thf(fact_8815_le__prod__encode__1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_1
thf(fact_8816_le__prod__encode__2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_2
thf(fact_8817_prod__decode__aux_Opelims,axiom,
    ! [X: nat,Xa: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
       => ~ ( ( ( ( ord_less_eq_nat @ Xa @ X )
               => ( Y
                  = ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X @ Xa ) ) ) )
              & ( ~ ( ord_less_eq_nat @ Xa @ X )
               => ( Y
                  = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa @ ( suc @ X ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).

% prod_decode_aux.pelims
thf(fact_8818_gcd__nat_Opelims,axiom,
    ! [X: nat,Xa: nat,Y: nat] :
      ( ( ( gcd_gcd_nat @ X @ Xa )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
       => ~ ( ( ( ( Xa = zero_zero_nat )
               => ( Y = X ) )
              & ( ( Xa != zero_zero_nat )
               => ( Y
                  = ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).

% gcd_nat.pelims
thf(fact_8819_gcd__1__int,axiom,
    ! [M: int] :
      ( ( gcd_gcd_int @ M @ one_one_int )
      = one_one_int ) ).

% gcd_1_int
thf(fact_8820_gcd__neg1__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ Y )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% gcd_neg1_int
thf(fact_8821_gcd__neg2__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_gcd_int @ X @ ( uminus_uminus_int @ Y ) )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% gcd_neg2_int
thf(fact_8822_abs__gcd__int,axiom,
    ! [X: int,Y: int] :
      ( ( abs_abs_int @ ( gcd_gcd_int @ X @ Y ) )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% abs_gcd_int
thf(fact_8823_gcd__abs1__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_gcd_int @ ( abs_abs_int @ X ) @ Y )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% gcd_abs1_int
thf(fact_8824_gcd__abs2__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_gcd_int @ X @ ( abs_abs_int @ Y ) )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% gcd_abs2_int
thf(fact_8825_gcd__pos__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ ( gcd_gcd_int @ M @ N ) )
      = ( ( M != zero_zero_int )
        | ( N != zero_zero_int ) ) ) ).

% gcd_pos_int
thf(fact_8826_gcd__neg__numeral__2__int,axiom,
    ! [X: int,N: num] :
      ( ( gcd_gcd_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( gcd_gcd_int @ X @ ( numeral_numeral_int @ N ) ) ) ).

% gcd_neg_numeral_2_int
thf(fact_8827_gcd__neg__numeral__1__int,axiom,
    ! [N: num,X: int] :
      ( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ X )
      = ( gcd_gcd_int @ ( numeral_numeral_int @ N ) @ X ) ) ).

% gcd_neg_numeral_1_int
thf(fact_8828_gcd__0__int,axiom,
    ! [X: int] :
      ( ( gcd_gcd_int @ X @ zero_zero_int )
      = ( abs_abs_int @ X ) ) ).

% gcd_0_int
thf(fact_8829_gcd__0__left__int,axiom,
    ! [X: int] :
      ( ( gcd_gcd_int @ zero_zero_int @ X )
      = ( abs_abs_int @ X ) ) ).

% gcd_0_left_int
thf(fact_8830_gcd__proj1__if__dvd__int,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( gcd_gcd_int @ X @ Y )
        = ( abs_abs_int @ X ) ) ) ).

% gcd_proj1_if_dvd_int
thf(fact_8831_gcd__proj2__if__dvd__int,axiom,
    ! [Y: int,X: int] :
      ( ( dvd_dvd_int @ Y @ X )
     => ( ( gcd_gcd_int @ X @ Y )
        = ( abs_abs_int @ Y ) ) ) ).

% gcd_proj2_if_dvd_int
thf(fact_8832_gcd__int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( gcd_gcd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_int_int_eq
thf(fact_8833_gcd__nat__abs__right__eq,axiom,
    ! [N: nat,K: int] :
      ( ( gcd_gcd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( nat2 @ ( gcd_gcd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% gcd_nat_abs_right_eq
thf(fact_8834_gcd__nat__abs__left__eq,axiom,
    ! [K: int,N: nat] :
      ( ( gcd_gcd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( nat2 @ ( gcd_gcd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% gcd_nat_abs_left_eq
thf(fact_8835_gcd__red__int,axiom,
    ( gcd_gcd_int
    = ( ^ [X3: int,Y6: int] : ( gcd_gcd_int @ Y6 @ ( modulo_modulo_int @ X3 @ Y6 ) ) ) ) ).

% gcd_red_int
thf(fact_8836_gcd__idem__int,axiom,
    ! [X: int] :
      ( ( gcd_gcd_int @ X @ X )
      = ( abs_abs_int @ X ) ) ).

% gcd_idem_int
thf(fact_8837_gcd__ge__0__int,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X @ Y ) ) ).

% gcd_ge_0_int
thf(fact_8838_bezout__int,axiom,
    ! [X: int,Y: int] :
    ? [U2: int,V3: int] :
      ( ( plus_plus_int @ ( times_times_int @ U2 @ X ) @ ( times_times_int @ V3 @ Y ) )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% bezout_int
thf(fact_8839_gcd__mult__distrib__int,axiom,
    ! [K: int,M: int,N: int] :
      ( ( times_times_int @ ( abs_abs_int @ K ) @ ( gcd_gcd_int @ M @ N ) )
      = ( gcd_gcd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) ) ) ).

% gcd_mult_distrib_int
thf(fact_8840_gcd__le1__int,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).

% gcd_le1_int
thf(fact_8841_gcd__le2__int,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).

% gcd_le2_int
thf(fact_8842_gcd__cases__int,axiom,
    ! [X: int,Y: int,P: int > $o] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( P @ ( gcd_gcd_int @ X @ Y ) ) ) )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( ( ord_less_eq_int @ Y @ zero_zero_int )
           => ( P @ ( gcd_gcd_int @ X @ ( uminus_uminus_int @ Y ) ) ) ) )
       => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
           => ( ( ord_less_eq_int @ zero_zero_int @ Y )
             => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ Y ) ) ) )
         => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
             => ( ( ord_less_eq_int @ Y @ zero_zero_int )
               => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ ( uminus_uminus_int @ Y ) ) ) ) )
           => ( P @ ( gcd_gcd_int @ X @ Y ) ) ) ) ) ) ).

% gcd_cases_int
thf(fact_8843_gcd__unique__int,axiom,
    ! [D: int,A: int,B: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ D )
        & ( dvd_dvd_int @ D @ A )
        & ( dvd_dvd_int @ D @ B )
        & ! [E3: int] :
            ( ( ( dvd_dvd_int @ E3 @ A )
              & ( dvd_dvd_int @ E3 @ B ) )
           => ( dvd_dvd_int @ E3 @ D ) ) )
      = ( D
        = ( gcd_gcd_int @ A @ B ) ) ) ).

% gcd_unique_int
thf(fact_8844_gcd__non__0__int,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ Y )
     => ( ( gcd_gcd_int @ X @ Y )
        = ( gcd_gcd_int @ Y @ ( modulo_modulo_int @ X @ Y ) ) ) ) ).

% gcd_non_0_int
thf(fact_8845_gcd__code__int,axiom,
    ( gcd_gcd_int
    = ( ^ [K2: int,L2: int] : ( abs_abs_int @ ( if_int @ ( L2 = zero_zero_int ) @ K2 @ ( gcd_gcd_int @ L2 @ ( modulo_modulo_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L2 ) ) ) ) ) ) ) ).

% gcd_code_int
thf(fact_8846_gcd__int__def,axiom,
    ( gcd_gcd_int
    = ( ^ [X3: int,Y6: int] : ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ ( nat2 @ ( abs_abs_int @ X3 ) ) @ ( nat2 @ ( abs_abs_int @ Y6 ) ) ) ) ) ) ).

% gcd_int_def
thf(fact_8847_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I4: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I4 ) @ Js @ ( upto_aux @ I4 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_8848_powr__real__of__int_H,axiom,
    ! [X: real,N: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( X != zero_zero_real )
          | ( ord_less_int @ zero_zero_int @ N ) )
       => ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
          = ( power_int_real @ X @ N ) ) ) ) ).

% powr_real_of_int'
thf(fact_8849_complex__is__Nat__iff,axiom,
    ! [Z2: complex] :
      ( ( member_complex @ Z2 @ semiri3842193898606819883omplex )
      = ( ( ( im @ Z2 )
          = zero_zero_real )
        & ? [I4: nat] :
            ( ( re @ Z2 )
            = ( semiri5074537144036343181t_real @ I4 ) ) ) ) ).

% complex_is_Nat_iff
thf(fact_8850_cpmi,axiom,
    ! [D3: int,P: int > $o,P4: int > $o,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z3: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z3 )
           => ( ( P @ X4 )
              = ( P4 @ X4 ) ) )
       => ( ! [X4: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ B5 )
                     => ( X4
                       != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P @ X4 )
               => ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
         => ( ! [X4: int,K3: int] :
                ( ( P4 @ X4 )
                = ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
           => ( ( ? [X8: int] : ( P @ X8 ) )
              = ( ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P4 @ X3 ) )
                | ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y6: int] :
                        ( ( member_int @ Y6 @ B5 )
                        & ( P @ ( plus_plus_int @ Y6 @ X3 ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_8851_cppi,axiom,
    ! [D3: int,P: int > $o,P4: int > $o,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z3: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z3 @ X4 )
           => ( ( P @ X4 )
              = ( P4 @ X4 ) ) )
       => ( ! [X4: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ A3 )
                     => ( X4
                       != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P @ X4 )
               => ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
         => ( ! [X4: int,K3: int] :
                ( ( P4 @ X4 )
                = ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
           => ( ( ? [X8: int] : ( P @ X8 ) )
              = ( ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P4 @ X3 ) )
                | ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y6: int] :
                        ( ( member_int @ Y6 @ A3 )
                        & ( P @ ( minus_minus_int @ Y6 @ X3 ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_8852_aset_I2_J,axiom,
    ! [D3: int,A3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A3 )
                 => ( X4
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A3 )
                   => ( X4
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( plus_plus_int @ X4 @ D3 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
             => ( ( P @ ( plus_plus_int @ X5 @ D3 ) )
                | ( Q @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_8853_aset_I1_J,axiom,
    ! [D3: int,A3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A3 )
                 => ( X4
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A3 )
                   => ( X4
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( plus_plus_int @ X4 @ D3 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
             => ( ( P @ ( plus_plus_int @ X5 @ D3 ) )
                & ( Q @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_8854_bset_I2_J,axiom,
    ! [D3: int,B5: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B5 )
                 => ( X4
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X4
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( minus_minus_int @ X4 @ D3 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X5
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
             => ( ( P @ ( minus_minus_int @ X5 @ D3 ) )
                | ( Q @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_8855_bset_I1_J,axiom,
    ! [D3: int,B5: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B5 )
                 => ( X4
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X4
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( minus_minus_int @ X4 @ D3 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X5
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
             => ( ( P @ ( minus_minus_int @ X5 @ D3 ) )
                & ( Q @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_8856_aset_I10_J,axiom,
    ! [D: int,D3: int,A3: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X5
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).

% aset(10)
thf(fact_8857_aset_I9_J,axiom,
    ! [D: int,D3: int,A3: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X5
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).

% aset(9)
thf(fact_8858_bset_I10_J,axiom,
    ! [D: int,D3: int,B5: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X5
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).

% bset(10)
thf(fact_8859_bset_I9_J,axiom,
    ! [D: int,D3: int,B5: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X5
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).

% bset(9)
thf(fact_8860_atLeastAtMostPlus1__int__conv,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
     => ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
        = ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).

% atLeastAtMostPlus1_int_conv
thf(fact_8861_periodic__finite__ex,axiom,
    ! [D: int,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int,K3: int] :
            ( ( P @ X4 )
            = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ( ? [X8: int] : ( P @ X8 ) )
          = ( ? [X3: int] :
                ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
                & ( P @ X3 ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_8862_bset_I3_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B5 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X5
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X5 = T )
             => ( ( minus_minus_int @ X5 @ D3 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_8863_bset_I4_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B5 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X5
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X5 != T )
             => ( ( minus_minus_int @ X5 @ D3 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_8864_bset_I5_J,axiom,
    ! [D3: int,B5: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X5
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ X5 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_8865_bset_I7_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B5 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X5
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ T @ X5 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ).

% bset(7)
thf(fact_8866_aset_I3_J,axiom,
    ! [D3: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A3 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X5 = T )
             => ( ( plus_plus_int @ X5 @ D3 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_8867_aset_I4_J,axiom,
    ! [D3: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A3 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X5 != T )
             => ( ( plus_plus_int @ X5 @ D3 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_8868_aset_I5_J,axiom,
    ! [D3: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A3 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ X5 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_8869_aset_I7_J,axiom,
    ! [D3: int,A3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X5
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ T @ X5 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ).

% aset(7)
thf(fact_8870_simp__from__to,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I4: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I4 ) @ bot_bot_set_int @ ( insert_int @ I4 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ) ).

% simp_from_to
thf(fact_8871_bset_I6_J,axiom,
    ! [D3: int,B5: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X5
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ X5 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_8872_bset_I8_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B5 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X5
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X5 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ).

% bset(8)
thf(fact_8873_aset_I6_J,axiom,
    ! [D3: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A3 )
       => ! [X5: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ X5 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_8874_aset_I8_J,axiom,
    ! [D3: int,A3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X5: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X5
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X5 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ).

% aset(8)
thf(fact_8875_card__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L ) @ one_one_int ) ) ) ).

% card_atLeastAtMost_int
thf(fact_8876_dist__real__def,axiom,
    ( real_V975177566351809787t_real
    = ( ^ [X3: real,Y6: real] : ( abs_abs_real @ ( minus_minus_real @ X3 @ Y6 ) ) ) ) ).

% dist_real_def
thf(fact_8877_dist__complex__def,axiom,
    ( real_V3694042436643373181omplex
    = ( ^ [X3: complex,Y6: complex] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y6 ) ) ) ) ).

% dist_complex_def
thf(fact_8878_normalize__negative,axiom,
    ! [Q2: int,P2: int] :
      ( ( ord_less_int @ Q2 @ zero_zero_int )
     => ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
        = ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P2 ) @ ( uminus_uminus_int @ Q2 ) ) ) ) ) ).

% normalize_negative
thf(fact_8879_card__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).

% card_greaterThanLessThan_int
thf(fact_8880_normalize__denom__zero,axiom,
    ! [P2: int] :
      ( ( normalize @ ( product_Pair_int_int @ P2 @ zero_zero_int ) )
      = ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).

% normalize_denom_zero
thf(fact_8881_quotient__of__number_I5_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% quotient_of_number(5)
thf(fact_8882_rat__one__code,axiom,
    ( ( quotient_of @ one_one_rat )
    = ( product_Pair_int_int @ one_one_int @ one_one_int ) ) ).

% rat_one_code
thf(fact_8883_rat__zero__code,axiom,
    ( ( quotient_of @ zero_zero_rat )
    = ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).

% rat_zero_code
thf(fact_8884_quotient__of__number_I4_J,axiom,
    ( ( quotient_of @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( product_Pair_int_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ) ) ).

% quotient_of_number(4)
thf(fact_8885_quotient__of__number_I3_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( numeral_numeral_rat @ K ) )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).

% quotient_of_number(3)
thf(fact_8886_diff__rat__def,axiom,
    ( minus_minus_rat
    = ( ^ [Q5: rat,R5: rat] : ( plus_plus_rat @ Q5 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).

% diff_rat_def
thf(fact_8887_sgn__rat__def,axiom,
    ( sgn_sgn_rat
    = ( ^ [A2: rat] : ( if_rat @ ( A2 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A2 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_rat_def
thf(fact_8888_quotient__of__denom__pos,axiom,
    ! [R: rat,P2: int,Q2: int] :
      ( ( ( quotient_of @ R )
        = ( product_Pair_int_int @ P2 @ Q2 ) )
     => ( ord_less_int @ zero_zero_int @ Q2 ) ) ).

% quotient_of_denom_pos
thf(fact_8889_quotient__of__denom__pos_H,axiom,
    ! [R: rat] : ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ ( quotient_of @ R ) ) ) ).

% quotient_of_denom_pos'
thf(fact_8890_normalize__denom__pos,axiom,
    ! [R: product_prod_int_int,P2: int,Q2: int] :
      ( ( ( normalize @ R )
        = ( product_Pair_int_int @ P2 @ Q2 ) )
     => ( ord_less_int @ zero_zero_int @ Q2 ) ) ).

% normalize_denom_pos
thf(fact_8891_normalize__crossproduct,axiom,
    ! [Q2: int,S: int,P2: int,R: int] :
      ( ( Q2 != zero_zero_int )
     => ( ( S != zero_zero_int )
       => ( ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
            = ( normalize @ ( product_Pair_int_int @ R @ S ) ) )
         => ( ( times_times_int @ P2 @ S )
            = ( times_times_int @ R @ Q2 ) ) ) ) ) ).

% normalize_crossproduct
thf(fact_8892_rat__sgn__code,axiom,
    ! [P2: rat] :
      ( ( quotient_of @ ( sgn_sgn_rat @ P2 ) )
      = ( product_Pair_int_int @ ( sgn_sgn_int @ ( product_fst_int_int @ ( quotient_of @ P2 ) ) ) @ one_one_int ) ) ).

% rat_sgn_code
thf(fact_8893_quotient__of__int,axiom,
    ! [A: int] :
      ( ( quotient_of @ ( of_int @ A ) )
      = ( product_Pair_int_int @ A @ one_one_int ) ) ).

% quotient_of_int
thf(fact_8894_Frct__code__post_I5_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% Frct_code_post(5)
thf(fact_8895_Frct__code__post_I4_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
      = ( numeral_numeral_rat @ K ) ) ).

% Frct_code_post(4)
thf(fact_8896_Frct__code__post_I6_J,axiom,
    ! [K: num,L: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L ) ) )
      = ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L ) ) ) ).

% Frct_code_post(6)
thf(fact_8897_card__atLeastAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L @ U ) )
      = ( minus_minus_nat @ ( suc @ U ) @ L ) ) ).

% card_atLeastAtMost
thf(fact_8898_card__greaterThanLessThan,axiom,
    ! [L: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L @ U ) )
      = ( minus_minus_nat @ U @ ( suc @ L ) ) ) ).

% card_greaterThanLessThan
thf(fact_8899_divide__rat__def,axiom,
    ( divide_divide_rat
    = ( ^ [Q5: rat,R5: rat] : ( times_times_rat @ Q5 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).

% divide_rat_def
thf(fact_8900_obtain__pos__sum,axiom,
    ! [R: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R )
     => ~ ! [S3: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S3 )
           => ! [T3: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T3 )
               => ( R
                 != ( plus_plus_rat @ S3 @ T3 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_8901_all__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
           => ( P @ X3 ) ) ) ) ).

% all_nat_less
thf(fact_8902_ex__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
            & ( P @ X3 ) ) ) ) ).

% ex_nat_less
thf(fact_8903_atLeast0__atMost__Suc,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% atLeast0_atMost_Suc
thf(fact_8904_Icc__eq__insert__lb__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( set_or1269000886237332187st_nat @ M @ N )
        = ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).

% Icc_eq_insert_lb_nat
thf(fact_8905_atLeastAtMostSuc__conv,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
        = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).

% atLeastAtMostSuc_conv
thf(fact_8906_atLeastAtMost__insertL,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% atLeastAtMost_insertL
thf(fact_8907_tanh__real__bounds,axiom,
    ! [X: real] : ( member_real @ ( tanh_real @ X ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) ).

% tanh_real_bounds
thf(fact_8908_Frct__code__post_I2_J,axiom,
    ! [A: int] :
      ( ( frct @ ( product_Pair_int_int @ A @ zero_zero_int ) )
      = zero_zero_rat ) ).

% Frct_code_post(2)
thf(fact_8909_Frct__code__post_I1_J,axiom,
    ! [A: int] :
      ( ( frct @ ( product_Pair_int_int @ zero_zero_int @ A ) )
      = zero_zero_rat ) ).

% Frct_code_post(1)
thf(fact_8910_Frct__code__post_I3_J,axiom,
    ( ( frct @ ( product_Pair_int_int @ one_one_int @ one_one_int ) )
    = one_one_rat ) ).

% Frct_code_post(3)
thf(fact_8911_both__member__options__def,axiom,
    ( vEBT_V8194947554948674370ptions
    = ( ^ [T2: vEBT_VEBT,X3: nat] :
          ( ( vEBT_V5719532721284313246member @ T2 @ X3 )
          | ( vEBT_VEBT_membermima @ T2 @ X3 ) ) ) ) ).

% both_member_options_def
thf(fact_8912_image__Suc__atLeastAtMost,axiom,
    ! [I: nat,J: nat] :
      ( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( set_or1269000886237332187st_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).

% image_Suc_atLeastAtMost
thf(fact_8913_Gcd__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_int @ ( image_int_int @ abs_abs_int @ K5 ) )
      = ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_abs_eq
thf(fact_8914_card__Collect__le__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_eq_nat @ I4 @ N ) ) )
      = ( suc @ N ) ) ).

% card_Collect_le_nat
thf(fact_8915_Gcd__int__eq,axiom,
    ! [N5: set_nat] :
      ( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N5 ) )
      = ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N5 ) ) ) ).

% Gcd_int_eq
thf(fact_8916_Gcd__nat__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_nat
        @ ( image_int_nat
          @ ^ [K2: int] : ( nat2 @ ( abs_abs_int @ K2 ) )
          @ K5 ) )
      = ( nat2 @ ( gcd_Gcd_int @ K5 ) ) ) ).

% Gcd_nat_abs_eq
thf(fact_8917_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_less_as_int
thf(fact_8918_card__less,axiom,
    ! [M10: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M10 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M10 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) )
       != zero_zero_nat ) ) ).

% card_less
thf(fact_8919_card__less__Suc,axiom,
    ! [M10: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M10 )
     => ( ( suc
          @ ( finite_card_nat
            @ ( collect_nat
              @ ^ [K2: nat] :
                  ( ( member_nat @ ( suc @ K2 ) @ M10 )
                  & ( ord_less_nat @ K2 @ I ) ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M10 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc
thf(fact_8920_card__less__Suc2,axiom,
    ! [M10: set_nat,I: nat] :
      ( ~ ( member_nat @ zero_zero_nat @ M10 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ ( suc @ K2 ) @ M10 )
                & ( ord_less_nat @ K2 @ I ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M10 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc2
thf(fact_8921_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_leq_as_int
thf(fact_8922_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A2: nat,B2: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_8923_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A2: nat,B2: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_times_as_int
thf(fact_8924_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A2: nat,B2: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_8925_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A2: nat,B2: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_div_as_int
thf(fact_8926_nat__mod__as__int,axiom,
    ( modulo_modulo_nat
    = ( ^ [A2: nat,B2: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_mod_as_int
thf(fact_8927_card__nth__roots,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( finite_card_complex
            @ ( collect_complex
              @ ^ [Z5: complex] :
                  ( ( power_power_complex @ Z5 @ N )
                  = C ) ) )
          = N ) ) ) ).

% card_nth_roots
thf(fact_8928_card__roots__unity__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( finite_card_complex
          @ ( collect_complex
            @ ^ [Z5: complex] :
                ( ( power_power_complex @ Z5 @ N )
                = one_one_complex ) ) )
        = N ) ) ).

% card_roots_unity_eq
thf(fact_8929_zero__notin__Suc__image,axiom,
    ! [A3: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A3 ) ) ).

% zero_notin_Suc_image
thf(fact_8930_image__int__atLeastAtMost,axiom,
    ! [A: nat,B: nat] :
      ( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% image_int_atLeastAtMost
thf(fact_8931_diff__nat__eq__if,axiom,
    ! [Z6: int,Z2: int] :
      ( ( ( ord_less_int @ Z6 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) )
          = ( nat2 @ Z2 ) ) )
      & ( ~ ( ord_less_int @ Z6 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z2 @ Z6 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z2 @ Z6 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_8932_atLeast0__atMost__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ) ).

% atLeast0_atMost_Suc_eq_insert_0
thf(fact_8933_set__decode__def,axiom,
    ( nat_set_decode
    = ( ^ [X3: nat] :
          ( collect_nat
          @ ^ [N3: nat] :
              ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ) ).

% set_decode_def
thf(fact_8934_normalize__def,axiom,
    ( normalize
    = ( ^ [P3: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P3 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P3 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P3 ) @ ( product_snd_int_int @ P3 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P3 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P3 ) @ ( product_snd_int_int @ P3 ) ) ) )
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_snd_int_int @ P3 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P3 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P3 ) @ ( product_snd_int_int @ P3 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P3 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P3 ) @ ( product_snd_int_int @ P3 ) ) ) ) ) ) ) ) ) ).

% normalize_def
thf(fact_8935_in__children__def,axiom,
    ( vEBT_V5917875025757280293ildren
    = ( ^ [N3: nat,TreeList: list_VEBT_VEBT,X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X3 @ N3 ) ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) ) ) ).

% in_children_def
thf(fact_8936_monoseq__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( topolo6980174941875973593q_real
        @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% monoseq_arctan_series
thf(fact_8937_fact__eq__fact__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1408675320244567234ct_nat @ M )
        = ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
          @ ( groups708209901874060359at_nat
            @ ^ [X3: nat] : X3
            @ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).

% fact_eq_fact_times
thf(fact_8938_monoseq__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X ) ) ) ) ).

% monoseq_realpow
thf(fact_8939_fact__div__fact,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
        = ( groups708209901874060359at_nat
          @ ^ [X3: nat] : X3
          @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).

% fact_div_fact
thf(fact_8940_prod__int__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X3: int] : X3
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).

% prod_int_eq
thf(fact_8941_prod__int__plus__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X3: int] : X3
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).

% prod_int_plus_eq
thf(fact_8942_ln__series,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ( ln_ln_real @ X )
          = ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X @ one_one_real ) @ ( suc @ N3 ) ) ) ) ) ) ) ).

% ln_series
thf(fact_8943_arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( arctan @ X )
        = ( suminf_real
          @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% arctan_series
thf(fact_8944_bij__betw__nth__root__unity,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
          @ ( collect_complex
            @ ^ [Z5: complex] :
                ( ( power_power_complex @ Z5 @ N )
                = one_one_complex ) )
          @ ( collect_complex
            @ ^ [Z5: complex] :
                ( ( power_power_complex @ Z5 @ N )
                = C ) ) ) ) ) ).

% bij_betw_nth_root_unity
thf(fact_8945_pi__series,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( suminf_real
      @ ^ [K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% pi_series
thf(fact_8946_bij__betw__Suc,axiom,
    ! [M10: set_nat,N5: set_nat] :
      ( ( bij_betw_nat_nat @ suc @ M10 @ N5 )
      = ( ( image_nat_nat @ suc @ M10 )
        = N5 ) ) ).

% bij_betw_Suc
thf(fact_8947_summable__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( summable_real
        @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).

% summable_arctan_series
thf(fact_8948_bij__betw__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( bij_betw_nat_complex
        @ ^ [K2: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        @ ( set_ord_lessThan_nat @ N )
        @ ( collect_complex
          @ ^ [Z5: complex] :
              ( ( power_power_complex @ Z5 @ N )
              = one_one_complex ) ) ) ) ).

% bij_betw_roots_unity
thf(fact_8949_sin__paired,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
      @ ( sin_real @ X ) ) ).

% sin_paired
thf(fact_8950_lessThan__0,axiom,
    ( ( set_ord_lessThan_nat @ zero_zero_nat )
    = bot_bot_set_nat ) ).

% lessThan_0
thf(fact_8951_lessThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ K ) )
      = ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).

% lessThan_Suc
thf(fact_8952_lessThan__empty__iff,axiom,
    ! [N: nat] :
      ( ( ( set_ord_lessThan_nat @ N )
        = bot_bot_set_nat )
      = ( N = zero_zero_nat ) ) ).

% lessThan_empty_iff
thf(fact_8953_lessThan__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).

% lessThan_nat_numeral
thf(fact_8954_image__Suc__lessThan,axiom,
    ! [N: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ).

% image_Suc_lessThan
thf(fact_8955_lessThan__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% lessThan_Suc_eq_insert_0
thf(fact_8956_summable__power__series,axiom,
    ! [F: nat > real,Z2: real] :
      ( ! [I2: nat] : ( ord_less_eq_real @ ( F @ I2 ) @ one_one_real )
     => ( ! [I2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z2 )
         => ( ( ord_less_real @ Z2 @ one_one_real )
           => ( summable_real
              @ ^ [I4: nat] : ( times_times_real @ ( F @ I4 ) @ ( power_power_real @ Z2 @ I4 ) ) ) ) ) ) ) ).

% summable_power_series
thf(fact_8957_power__half__series,axiom,
    ( sums_real
    @ ^ [N3: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N3 ) )
    @ one_one_real ) ).

% power_half_series
thf(fact_8958_sums__if_H,axiom,
    ! [G: nat > real,X: real] :
      ( ( sums_real @ G @ X )
     => ( sums_real
        @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        @ X ) ) ).

% sums_if'
thf(fact_8959_sums__if,axiom,
    ! [G: nat > real,X: real,F: nat > real,Y: real] :
      ( ( sums_real @ G @ X )
     => ( ( sums_real @ F @ Y )
       => ( sums_real
          @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( F @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( plus_plus_real @ X @ Y ) ) ) ) ).

% sums_if
thf(fact_8960_cos__paired,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_real @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
      @ ( cos_real @ X ) ) ).

% cos_paired
thf(fact_8961_Maclaurin__minus__cos__expansion,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ? [T3: real] :
            ( ( ord_less_real @ X @ T3 )
            & ( ord_less_real @ T3 @ zero_zero_real )
            & ( ( cos_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_minus_cos_expansion
thf(fact_8962_Maclaurin__cos__expansion2,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ T3 )
            & ( ord_less_real @ T3 @ X )
            & ( ( cos_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_cos_expansion2
thf(fact_8963_Maclaurin__sin__expansion3,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ T3 )
            & ( ord_less_real @ T3 @ X )
            & ( ( sin_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_sin_expansion3
thf(fact_8964_sumr__cos__zero__one,axiom,
    ! [N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ zero_zero_real @ M3 ) )
        @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = one_one_real ) ).

% sumr_cos_zero_one
thf(fact_8965_Maclaurin__lemma,axiom,
    ! [H: real,F: real > real,J: nat > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H )
     => ? [B7: real] :
          ( ( F @ H )
          = ( plus_plus_real
            @ ( groups6591440286371151544t_real
              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H @ M3 ) )
              @ ( set_ord_lessThan_nat @ N ) )
            @ ( times_times_real @ B7 @ ( divide_divide_real @ ( power_power_real @ H @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).

% Maclaurin_lemma
thf(fact_8966_sum__split__even__odd,axiom,
    ! [F: nat > real,G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( F @ I4 ) @ ( G @ I4 ) )
        @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum_split_even_odd
thf(fact_8967_Maclaurin__exp__le,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
      & ( ( exp_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).

% Maclaurin_exp_le
thf(fact_8968_Maclaurin__sin__bound,axiom,
    ! [X: real,N: nat] :
      ( ord_less_eq_real
      @ ( abs_abs_real
        @ ( minus_minus_real @ ( sin_real @ X )
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) )
      @ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X ) @ N ) ) ) ).

% Maclaurin_sin_bound
thf(fact_8969_sum__pos__lt__pair,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ! [D2: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D2 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D2 ) @ one_one_nat ) ) ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_pos_lt_pair
thf(fact_8970_Maclaurin__exp__lt,axiom,
    ! [X: real,N: nat] :
      ( ( X != zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
            & ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
            & ( ( exp_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_exp_lt
thf(fact_8971_Maclaurin__sin__expansion,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( sin_real @ X )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ).

% Maclaurin_sin_expansion
thf(fact_8972_Maclaurin__sin__expansion2,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
      & ( ( sin_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).

% Maclaurin_sin_expansion2
thf(fact_8973_Maclaurin__cos__expansion,axiom,
    ! [X: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
      & ( ( cos_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).

% Maclaurin_cos_expansion
thf(fact_8974_Maclaurin__sin__expansion4,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [T3: real] :
          ( ( ord_less_real @ zero_zero_real @ T3 )
          & ( ord_less_eq_real @ T3 @ X )
          & ( ( sin_real @ X )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X @ M3 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).

% Maclaurin_sin_expansion4
thf(fact_8975_card__atMost,axiom,
    ! [U: nat] :
      ( ( finite_card_nat @ ( set_ord_atMost_nat @ U ) )
      = ( suc @ U ) ) ).

% card_atMost
thf(fact_8976_atMost__0,axiom,
    ( ( set_ord_atMost_nat @ zero_zero_nat )
    = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% atMost_0
thf(fact_8977_sum__choose__upper,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( binomial @ K2 @ M )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).

% sum_choose_upper
thf(fact_8978_choose__rising__sum_I2_J,axiom,
    ! [N: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ M ) ) ).

% choose_rising_sum(2)
thf(fact_8979_choose__rising__sum_I1_J,axiom,
    ! [N: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ).

% choose_rising_sum(1)
thf(fact_8980_sum__choose__lower,axiom,
    ! [R: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( binomial @ ( plus_plus_nat @ R @ K2 ) @ K2 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( suc @ ( plus_plus_nat @ R @ N ) ) @ N ) ) ).

% sum_choose_lower
thf(fact_8981_atMost__atLeast0,axiom,
    ( set_ord_atMost_nat
    = ( set_or1269000886237332187st_nat @ zero_zero_nat ) ) ).

% atMost_atLeast0
thf(fact_8982_lessThan__Suc__atMost,axiom,
    ! [K: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ K ) )
      = ( set_ord_atMost_nat @ K ) ) ).

% lessThan_Suc_atMost
thf(fact_8983_sum__choose__diagonal,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3542108847815614940at_nat
          @ ^ [K2: nat] : ( binomial @ ( minus_minus_nat @ N @ K2 ) @ ( minus_minus_nat @ M @ K2 ) )
          @ ( set_ord_atMost_nat @ M ) )
        = ( binomial @ ( suc @ N ) @ M ) ) ) ).

% sum_choose_diagonal
thf(fact_8984_vandermonde,axiom,
    ! [M: nat,N: nat,R: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( times_times_nat @ ( binomial @ M @ K2 ) @ ( binomial @ N @ ( minus_minus_nat @ R @ K2 ) ) )
        @ ( set_ord_atMost_nat @ R ) )
      = ( binomial @ ( plus_plus_nat @ M @ N ) @ R ) ) ).

% vandermonde
thf(fact_8985_atMost__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ K ) )
      = ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).

% atMost_Suc
thf(fact_8986_choose__row__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% choose_row_sum
thf(fact_8987_binomial,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
      = ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K2 ) ) @ ( power_power_nat @ A @ K2 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K2 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial
thf(fact_8988_polynomial__product__nat,axiom,
    ! [M: nat,A: nat > nat,N: nat,B: nat > nat,X: nat] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ M @ I2 )
         => ( ( A @ I2 )
            = zero_zero_nat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_nat ) )
       => ( ( times_times_nat
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( power_power_nat @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3542108847815614940at_nat
              @ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups3542108847815614940at_nat
            @ ^ [R5: nat] :
                ( times_times_nat
                @ ( groups3542108847815614940at_nat
                  @ ^ [K2: nat] : ( times_times_nat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_nat @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product_nat
thf(fact_8989_choose__square__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( power_power_nat @ ( binomial @ N @ K2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% choose_square_sum
thf(fact_8990_atMost__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).

% atMost_nat_numeral
thf(fact_8991_binomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% binomial_r_part_sum
thf(fact_8992_choose__linear__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( times_times_nat @ I4 @ ( binomial @ N @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% choose_linear_sum
thf(fact_8993_image__Suc__atMost,axiom,
    ! [N: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N ) ) ) ).

% image_Suc_atMost
thf(fact_8994_atMost__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% atMost_Suc_eq_insert_0
thf(fact_8995_sum__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X3: complex] : X3
          @ ( collect_complex
            @ ^ [Z5: complex] :
                ( ( power_power_complex @ Z5 @ N )
                = C ) ) )
        = zero_zero_complex ) ) ).

% sum_nth_roots
thf(fact_8996_atLeast1__atMost__eq__remove0,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_atMost_eq_remove0
thf(fact_8997_sum__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X3: complex] : X3
          @ ( collect_complex
            @ ^ [Z5: complex] :
                ( ( power_power_complex @ Z5 @ N )
                = one_one_complex ) ) )
        = zero_zero_complex ) ) ).

% sum_roots_unity
thf(fact_8998_mask__eq__sum__exp__nat,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_8999_gauss__sum__nat,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_nat
thf(fact_9000_arith__series__nat,axiom,
    ! [A: nat,D: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I4 @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series_nat
thf(fact_9001_Sum__Icc__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or1269000886237332187st_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Icc_nat
thf(fact_9002_Sum__Icc__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ N )
     => ( ( groups4538972089207619220nt_int
          @ ^ [X3: int] : X3
          @ ( set_or1266510415728281911st_int @ M @ N ) )
        = ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% Sum_Icc_int
thf(fact_9003_set__vebt__def,axiom,
    ( vEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).

% set_vebt_def
thf(fact_9004_rat__times__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( times_times_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A2: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ C4 @ D4 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_times_code
thf(fact_9005_rat__divide__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( divide_divide_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A2: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A2 @ D4 ) @ ( times_times_int @ C4 @ B2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_divide_code
thf(fact_9006_divmod__nat__if,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_Pro6206227464963214023at_nat
          @ ( ( N3 = zero_zero_nat )
            | ( ord_less_nat @ M3 @ N3 ) )
          @ ( product_Pair_nat_nat @ zero_zero_nat @ M3 )
          @ ( produc2626176000494625587at_nat
            @ ^ [Q5: nat] : ( product_Pair_nat_nat @ ( suc @ Q5 ) )
            @ ( divmod_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ) ).

% divmod_nat_if
thf(fact_9007_rat__plus__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( plus_plus_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A2: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A2 @ D4 ) @ ( times_times_int @ B2 @ C4 ) ) @ ( times_times_int @ C4 @ D4 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_plus_code
thf(fact_9008_rat__minus__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( minus_minus_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A2: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A2 @ D4 ) @ ( times_times_int @ B2 @ C4 ) ) @ ( times_times_int @ C4 @ D4 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_minus_code
thf(fact_9009_divmod__step__nat__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L2: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q5: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_nat_def
thf(fact_9010_rat__inverse__code,axiom,
    ! [P2: rat] :
      ( ( quotient_of @ ( inverse_inverse_rat @ P2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A2: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( A2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A2 ) @ B2 ) @ ( abs_abs_int @ A2 ) ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_inverse_code
thf(fact_9011_divmod__step__int__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L2: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q5: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_int_def
thf(fact_9012_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
    ! [Uy: option4927543243414619207at_nat,V: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT,X: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList2 @ S ) @ X )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).

% VEBT_internal.naive_member.simps(3)
thf(fact_9013_arctan__def,axiom,
    ( arctan
    = ( ^ [Y6: real] :
          ( the_real
          @ ^ [X3: real] :
              ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
              & ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( tan_real @ X3 )
                = Y6 ) ) ) ) ) ).

% arctan_def
thf(fact_9014_VEBT_Oinject_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
      ( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
        = ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 )
        & ( X13 = Y13 )
        & ( X14 = Y14 ) ) ) ).

% VEBT.inject(1)
thf(fact_9015_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
    ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).

% VEBT_internal.naive_member.simps(2)
thf(fact_9016_pi__half,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
    = ( the_real
      @ ^ [X3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X3 )
          & ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
          & ( ( cos_real @ X3 )
            = zero_zero_real ) ) ) ) ).

% pi_half
thf(fact_9017_pi__def,axiom,
    ( pi
    = ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
      @ ( the_real
        @ ^ [X3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X3 )
            & ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ X3 )
              = zero_zero_real ) ) ) ) ) ).

% pi_def
thf(fact_9018_arcsin__def,axiom,
    ( arcsin
    = ( ^ [Y6: real] :
          ( the_real
          @ ^ [X3: real] :
              ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
              & ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( sin_real @ X3 )
                = Y6 ) ) ) ) ) ).

% arcsin_def
thf(fact_9019_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X @ Xa )
        = Y )
     => ( ! [A4: $o,B4: $o] :
            ( ( X
              = ( vEBT_Leaf @ A4 @ B4 ) )
           => ( Y
              = ( ~ ( ( ( Xa = zero_zero_nat )
                     => A4 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
           => Y )
         => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S3: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
               => ( Y
                  = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(1)
thf(fact_9020_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ! [A4: $o,B4: $o] :
            ( ( X
              = ( vEBT_Leaf @ A4 @ B4 ) )
           => ~ ( ( ( Xa = zero_zero_nat )
                 => A4 )
                & ( ( Xa != zero_zero_nat )
                 => ( ( ( Xa = one_one_nat )
                     => B4 )
                    & ( Xa = one_one_nat ) ) ) ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [S3: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
             => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(2)
thf(fact_9021_VEBT_Oinject_I2_J,axiom,
    ! [X21: $o,X222: $o,Y21: $o,Y22: $o] :
      ( ( ( vEBT_Leaf @ X21 @ X222 )
        = ( vEBT_Leaf @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y22 ) ) ) ).

% VEBT.inject(2)
thf(fact_9022_VEBT_Osize_I4_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size(4)
thf(fact_9023_VEBT_Oexhaust,axiom,
    ! [Y: vEBT_VEBT] :
      ( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
          ( Y
         != ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
     => ~ ! [X212: $o,X223: $o] :
            ( Y
           != ( vEBT_Leaf @ X212 @ X223 ) ) ) ).

% VEBT.exhaust
thf(fact_9024_VEBT_Odistinct_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
      ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
     != ( vEBT_Leaf @ X21 @ X222 ) ) ).

% VEBT.distinct(1)
thf(fact_9025_VEBT__internal_Ovalid_H_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,D2: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D2 ) )
     => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg2: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) @ Deg2 ) ) ) ).

% VEBT_internal.valid'.cases
thf(fact_9026_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,Uw: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).

% VEBT_internal.membermima.simps(1)
thf(fact_9027_vebt__buildup_Osimps_I1_J,axiom,
    ( ( vEBT_vebt_buildup @ zero_zero_nat )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(1)
thf(fact_9028_VEBT__internal_Onaive__member_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [A4: $o,B4: $o,X4: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ X4 ) )
     => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ X4 ) ) ) ) ).

% VEBT_internal.naive_member.cases
thf(fact_9029_vebt__buildup_Osimps_I2_J,axiom,
    ( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(2)
thf(fact_9030_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X )
      = ( ( ( X = zero_zero_nat )
         => A )
        & ( ( X != zero_zero_nat )
         => ( ( ( X = one_one_nat )
             => B )
            & ( X = one_one_nat ) ) ) ) ) ).

% VEBT_internal.naive_member.simps(1)
thf(fact_9031_prod__encode__def,axiom,
    ( nat_prod_encode
    = ( produc6842872674320459806at_nat
      @ ^ [M3: nat,N3: nat] : ( plus_plus_nat @ ( nat_triangle @ ( plus_plus_nat @ M3 @ N3 ) ) @ M3 ) ) ) ).

% prod_encode_def
thf(fact_9032_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ! [A4: $o,B4: $o] :
            ( ( X
              = ( vEBT_Leaf @ A4 @ B4 ) )
           => ( ( ( Xa = zero_zero_nat )
               => A4 )
              & ( ( Xa != zero_zero_nat )
               => ( ( ( Xa = one_one_nat )
                   => B4 )
                  & ( Xa = one_one_nat ) ) ) ) )
       => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S3: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(3)
thf(fact_9033_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
    ! [Mi: nat,Ma: nat,V: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList2 @ Vc ) @ X )
      = ( ( X = Mi )
        | ( X = Ma )
        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ).

% VEBT_internal.membermima.simps(4)
thf(fact_9034_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
    ! [V: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList2 @ Vd ) @ X )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).

% VEBT_internal.membermima.simps(5)
thf(fact_9035_finite__interval__int1,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int1
thf(fact_9036_finite__interval__int4,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int4
thf(fact_9037_finite__interval__int2,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int2
thf(fact_9038_finite__interval__int3,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int3
thf(fact_9039_finite__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z5: complex] :
              ( ( power_power_complex @ Z5 @ N )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_9040_finite__set__decode,axiom,
    ! [N: nat] : ( finite_finite_nat @ ( nat_set_decode @ N ) ) ).

% finite_set_decode
thf(fact_9041_VEBT__internal_Omembermima_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
     => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz ) )
       => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT,X4: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ X4 ) )
         => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ X4 ) )
           => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT,X4: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ X4 ) ) ) ) ) ) ).

% VEBT_internal.membermima.cases
thf(fact_9042_finite__divisors__int,axiom,
    ! [I: int] :
      ( ( I != zero_zero_int )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [D4: int] : ( dvd_dvd_int @ D4 @ I ) ) ) ) ).

% finite_divisors_int
thf(fact_9043_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
    ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz2: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz2 ) ).

% VEBT_internal.membermima.simps(2)
thf(fact_9044_finite__divisors__nat,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M ) ) ) ) ).

% finite_divisors_nat
thf(fact_9045_subset__eq__atLeast0__atMost__finite,axiom,
    ! [N5: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N5 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N5 ) ) ).

% subset_eq_atLeast0_atMost_finite
thf(fact_9046_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ X )
      = ( ( X = Mi )
        | ( X = Ma ) ) ) ).

% VEBT_internal.membermima.simps(3)
thf(fact_9047_Gcd__remove0__nat,axiom,
    ! [M10: set_nat] :
      ( ( finite_finite_nat @ M10 )
     => ( ( gcd_Gcd_nat @ M10 )
        = ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M10 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).

% Gcd_remove0_nat
thf(fact_9048_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ! [Mi2: nat,Ma2: nat] :
            ( ? [Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
           => ~ ( ( Xa = Mi2 )
                | ( Xa = Ma2 ) ) )
       => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Vc2: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
             => ~ ( ( Xa = Mi2 )
                  | ( Xa = Ma2 )
                  | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
         => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [Vd2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
               => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(2)
thf(fact_9049_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y: $o] :
      ( ( ( vEBT_VEBT_membermima @ X @ Xa )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => Y )
       => ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
           => Y )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
               => ( Y
                  = ( ~ ( ( Xa = Mi2 )
                        | ( Xa = Ma2 ) ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                 => ( Y
                    = ( ~ ( ( Xa = Mi2 )
                          | ( Xa = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) )
             => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                   => ( Y
                      = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(1)
thf(fact_9050_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ! [Uu2: $o,Uv2: $o] :
            ( X
           != ( vEBT_Leaf @ Uu2 @ Uv2 ) )
       => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
               => ( ( Xa = Mi2 )
                  | ( Xa = Ma2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                 => ( ( Xa = Mi2 )
                    | ( Xa = Ma2 )
                    | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
             => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(3)
thf(fact_9051_invar__vebt_Osimps,axiom,
    ( vEBT_invar_vebt
    = ( ^ [A12: vEBT_VEBT,A23: nat] :
          ( ( ? [A2: $o,B2: $o] :
                ( A12
                = ( vEBT_Leaf @ A2 @ B2 ) )
            & ( A23
              = ( suc @ zero_zero_nat ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary2 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary2 @ N3 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ N3 ) )
              & ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary2 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary2 @ ( suc @ N3 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
              & ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary2 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary2 @ N3 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ N3 ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ X8 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X3: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                      & ! [X3: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X3 )
                            & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary2 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary2 @ ( suc @ N3 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ X8 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X3: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                      & ! [X3: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X3 )
                            & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.simps
thf(fact_9052_invar__vebt_Ocases,axiom,
    ! [A1: vEBT_VEBT,A22: nat] :
      ( ( vEBT_invar_vebt @ A1 @ A22 )
     => ( ( ? [A4: $o,B4: $o] :
              ( A1
              = ( vEBT_Leaf @ A4 @ B4 ) )
         => ( A22
           != ( suc @ zero_zero_nat ) ) )
       => ( ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M2: nat,Deg: nat] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList3 @ Summary ) )
             => ( ( A22 = Deg )
               => ( ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_invar_vebt @ X5 @ N2 ) )
                 => ( ( vEBT_invar_vebt @ Summary @ M2 )
                   => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                     => ( ( M2 = N2 )
                       => ( ( Deg
                            = ( plus_plus_nat @ N2 @ M2 ) )
                         => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
                           => ~ ! [X5: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) ) ) ) ) ) ) ) )
         => ( ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M2: nat,Deg: nat] :
                ( ( A1
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList3 @ Summary ) )
               => ( ( A22 = Deg )
                 => ( ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_invar_vebt @ X5 @ N2 ) )
                   => ( ( vEBT_invar_vebt @ Summary @ M2 )
                     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                       => ( ( M2
                            = ( suc @ N2 ) )
                         => ( ( Deg
                              = ( plus_plus_nat @ N2 @ M2 ) )
                           => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
                             => ~ ! [X5: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) ) ) ) ) ) ) ) )
           => ( ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M2: nat,Deg: nat,Mi2: nat,Ma2: nat] :
                  ( ( A1
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg @ TreeList3 @ Summary ) )
                 => ( ( A22 = Deg )
                   => ( ! [X5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_invar_vebt @ X5 @ N2 ) )
                     => ( ( vEBT_invar_vebt @ Summary @ M2 )
                       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                         => ( ( M2 = N2 )
                           => ( ( Deg
                                = ( plus_plus_nat @ N2 @ M2 ) )
                             => ( ! [I3: nat] :
                                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ X8 ) )
                                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
                               => ( ( ( Mi2 = Ma2 )
                                   => ! [X5: vEBT_VEBT] :
                                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) )
                                 => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                   => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                     => ~ ( ( Mi2 != Ma2 )
                                         => ! [I3: nat] :
                                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                             => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
                                                    = I3 )
                                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
                                                & ! [X5: nat] :
                                                    ( ( ( ( vEBT_VEBT_high @ X5 @ N2 )
                                                        = I3 )
                                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X5 @ N2 ) ) )
                                                   => ( ( ord_less_nat @ Mi2 @ X5 )
                                                      & ( ord_less_eq_nat @ X5 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
             => ~ ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M2: nat,Deg: nat,Mi2: nat,Ma2: nat] :
                    ( ( A1
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg @ TreeList3 @ Summary ) )
                   => ( ( A22 = Deg )
                     => ( ! [X5: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ( vEBT_invar_vebt @ X5 @ N2 ) )
                       => ( ( vEBT_invar_vebt @ Summary @ M2 )
                         => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                              = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                           => ( ( M2
                                = ( suc @ N2 ) )
                             => ( ( Deg
                                  = ( plus_plus_nat @ N2 @ M2 ) )
                               => ( ! [I3: nat] :
                                      ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                     => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ X8 ) )
                                        = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
                                 => ( ( ( Mi2 = Ma2 )
                                     => ! [X5: vEBT_VEBT] :
                                          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                         => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) )
                                   => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                     => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                       => ~ ( ( Mi2 != Ma2 )
                                           => ! [I3: nat] :
                                                ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                               => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
                                                      = I3 )
                                                   => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
                                                  & ! [X5: nat] :
                                                      ( ( ( ( vEBT_VEBT_high @ X5 @ N2 )
                                                          = I3 )
                                                        & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X5 @ N2 ) ) )
                                                     => ( ( ord_less_nat @ Mi2 @ X5 )
                                                        & ( ord_less_eq_nat @ X5 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.cases
thf(fact_9053_invar__vebt_Ointros_I1_J,axiom,
    ! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).

% invar_vebt.intros(1)
thf(fact_9054_invar__vebt_Ointros_I2_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,M: nat,Deg3: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary3 @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg3
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X_12 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg3 @ TreeList2 @ Summary3 ) @ Deg3 ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(2)
thf(fact_9055_invar__vebt_Ointros_I3_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,M: nat,Deg3: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary3 @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg3
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X_12 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg3 @ TreeList2 @ Summary3 ) @ Deg3 ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(3)
thf(fact_9056_invar__vebt_Ointros_I4_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,M: nat,Deg3: nat,Mi: nat,Ma: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary3 @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg3
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I2: nat] :
                    ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary3 @ I2 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg3 ) )
                     => ( ( ( Mi != Ma )
                         => ! [I2: nat] :
                              ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I2 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X4: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N )
                                        = I2 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg3 @ TreeList2 @ Summary3 ) @ Deg3 ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(4)
thf(fact_9057_invar__vebt_Ointros_I5_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary3: vEBT_VEBT,M: nat,Deg3: nat,Mi: nat,Ma: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary3 @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg3
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I2: nat] :
                    ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary3 @ I2 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg3 ) )
                     => ( ( ( Mi != Ma )
                         => ! [I2: nat] :
                              ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I2 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X4: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N )
                                        = I2 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg3 @ TreeList2 @ Summary3 ) @ Deg3 ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(5)
thf(fact_9058_set__encode__insert,axiom,
    ! [A3: set_nat,N: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ~ ( member_nat @ N @ A3 )
       => ( ( nat_set_encode @ ( insert_nat @ N @ A3 ) )
          = ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A3 ) ) ) ) ) ).

% set_encode_insert
thf(fact_9059_vebt__buildup_Oelims,axiom,
    ! [X: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X )
        = Y )
     => ( ( ( X = zero_zero_nat )
         => ( Y
           != ( vEBT_Leaf @ $false @ $false ) ) )
       => ( ( ( X
              = ( suc @ zero_zero_nat ) )
           => ( Y
             != ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Va: nat] :
                ( ( X
                  = ( suc @ ( suc @ Va ) ) )
               => ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                     => ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                    & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                     => ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.elims
thf(fact_9060_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ Xa ) )
                   => ( ( Xa = Mi2 )
                      | ( Xa = Ma2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                   => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ Xa ) )
                     => ( ( Xa = Mi2 )
                        | ( Xa = Ma2 )
                        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
               => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ Xa ) )
                       => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(3)
thf(fact_9061_set__decode__inverse,axiom,
    ! [N: nat] :
      ( ( nat_set_encode @ ( nat_set_decode @ N ) )
      = N ) ).

% set_decode_inverse
thf(fact_9062_set__encode__empty,axiom,
    ( ( nat_set_encode @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% set_encode_empty
thf(fact_9063_set__encode__inverse,axiom,
    ! [A3: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( nat_set_decode @ ( nat_set_encode @ A3 ) )
        = A3 ) ) ).

% set_encode_inverse
thf(fact_9064_set__encode__eq,axiom,
    ! [A3: set_nat,B5: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( finite_finite_nat @ B5 )
       => ( ( ( nat_set_encode @ A3 )
            = ( nat_set_encode @ B5 ) )
          = ( A3 = B5 ) ) ) ) ).

% set_encode_eq
thf(fact_9065_set__encode__inf,axiom,
    ! [A3: set_nat] :
      ( ~ ( finite_finite_nat @ A3 )
     => ( ( nat_set_encode @ A3 )
        = zero_zero_nat ) ) ).

% set_encode_inf
thf(fact_9066_set__encode__def,axiom,
    ( nat_set_encode
    = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% set_encode_def
thf(fact_9067_even__set__encode__iff,axiom,
    ! [A3: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A3 ) )
        = ( ~ ( member_nat @ zero_zero_nat @ A3 ) ) ) ) ).

% even_set_encode_iff
thf(fact_9068_vebt__buildup_Osimps_I3_J,axiom,
    ! [Va3: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va3 ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va3 ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.simps(3)
thf(fact_9069_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_membermima @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ Xa ) )
               => ~ ( ( Xa = Mi2 )
                    | ( Xa = Ma2 ) ) ) )
         => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ Xa ) )
                 => ~ ( ( Xa = Mi2 )
                      | ( Xa = Ma2 )
                      | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
           => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ Xa ) )
                   => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(2)
thf(fact_9070_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y: $o] :
      ( ( ( vEBT_VEBT_membermima @ X @ Xa )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ~ Y
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) )
                 => ( ( Y
                      = ( ( Xa = Mi2 )
                        | ( Xa = Ma2 ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb ) @ Xa ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                   => ( ( Y
                        = ( ( Xa = Mi2 )
                          | ( Xa = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ Xa ) ) ) )
               => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                     => ( ( Y
                          = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(1)
thf(fact_9071_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [A4: $o,B4: $o] :
              ( ( X
                = ( vEBT_Leaf @ A4 @ B4 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa ) )
               => ( ( ( Xa = zero_zero_nat )
                   => A4 )
                  & ( ( Xa != zero_zero_nat )
                   => ( ( ( Xa = one_one_nat )
                       => B4 )
                      & ( Xa = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ Xa ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(3)
thf(fact_9072_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_V5719532721284313246member @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [A4: $o,B4: $o] :
              ( ( X
                = ( vEBT_Leaf @ A4 @ B4 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa ) )
               => ~ ( ( ( Xa = zero_zero_nat )
                     => A4 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ Xa ) )
                 => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(2)
thf(fact_9073_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X @ Xa )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [A4: $o,B4: $o] :
              ( ( X
                = ( vEBT_Leaf @ A4 @ B4 ) )
             => ( ( Y
                  = ( ( ( Xa = zero_zero_nat )
                     => A4 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B4 ) @ Xa ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa ) ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
                 => ( ( Y
                      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ Xa ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(1)
thf(fact_9074_vebt__buildup_Opelims,axiom,
    ! [X: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X )
        = Y )
     => ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X )
       => ( ( ( X = zero_zero_nat )
           => ( ( Y
                = ( vEBT_Leaf @ $false @ $false ) )
             => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
         => ( ( ( X
                = ( suc @ zero_zero_nat ) )
             => ( ( Y
                  = ( vEBT_Leaf @ $false @ $false ) )
               => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
           => ~ ! [Va: nat] :
                  ( ( X
                    = ( suc @ ( suc @ Va ) ) )
                 => ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                       => ( Y
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                       => ( Y
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                   => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.pelims
thf(fact_9075_valid__eq2,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_VEBT_valid @ T @ D )
     => ( vEBT_invar_vebt @ T @ D ) ) ).

% valid_eq2
thf(fact_9076_valid__eq1,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_invar_vebt @ T @ D )
     => ( vEBT_VEBT_valid @ T @ D ) ) ).

% valid_eq1
thf(fact_9077_valid__eq,axiom,
    vEBT_VEBT_valid = vEBT_invar_vebt ).

% valid_eq
thf(fact_9078_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,D: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D )
      = ( D = one_one_nat ) ) ).

% VEBT_internal.valid'.simps(1)
thf(fact_9079_VEBT_Osize_I3_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size(3)
thf(fact_9080_Sum__Ico__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_9081_image__Suc__atLeastLessThan,axiom,
    ! [I: nat,J: nat] :
      ( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I @ J ) )
      = ( set_or4665077453230672383an_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).

% image_Suc_atLeastLessThan
thf(fact_9082_card__atLeastLessThan,axiom,
    ! [L: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or4665077453230672383an_nat @ L @ U ) )
      = ( minus_minus_nat @ U @ L ) ) ).

% card_atLeastLessThan
thf(fact_9083_atLeastLessThan__singleton,axiom,
    ! [M: nat] :
      ( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
      = ( insert_nat @ M @ bot_bot_set_nat ) ) ).

% atLeastLessThan_singleton
thf(fact_9084_ex__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
            & ( P @ X3 ) ) ) ) ).

% ex_nat_less_eq
thf(fact_9085_all__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
           => ( P @ X3 ) ) ) ) ).

% all_nat_less_eq
thf(fact_9086_atLeastLessThanSuc__atLeastAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( set_or4665077453230672383an_nat @ L @ ( suc @ U ) )
      = ( set_or1269000886237332187st_nat @ L @ U ) ) ).

% atLeastLessThanSuc_atLeastAtMost
thf(fact_9087_lessThan__atLeast0,axiom,
    ( set_ord_lessThan_nat
    = ( set_or4665077453230672383an_nat @ zero_zero_nat ) ) ).

% lessThan_atLeast0
thf(fact_9088_atLeastLessThan0,axiom,
    ! [M: nat] :
      ( ( set_or4665077453230672383an_nat @ M @ zero_zero_nat )
      = bot_bot_set_nat ) ).

% atLeastLessThan0
thf(fact_9089_atLeastSucLessThan__greaterThanLessThan,axiom,
    ! [L: nat,U: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ L ) @ U )
      = ( set_or5834768355832116004an_nat @ L @ U ) ) ).

% atLeastSucLessThan_greaterThanLessThan
thf(fact_9090_atLeast0__lessThan__Suc,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% atLeast0_lessThan_Suc
thf(fact_9091_subset__eq__atLeast0__lessThan__finite,axiom,
    ! [N5: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N5 ) ) ).

% subset_eq_atLeast0_lessThan_finite
thf(fact_9092_subset__card__intvl__is__intvl,axiom,
    ! [A3: set_nat,K: nat] :
      ( ( ord_less_eq_set_nat @ A3 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A3 ) ) ) )
     => ( A3
        = ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A3 ) ) ) ) ) ).

% subset_card_intvl_is_intvl
thf(fact_9093_atLeastLessThanSuc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThanSuc
thf(fact_9094_atLeast0__lessThan__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ).

% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9095_prod__Suc__fact,axiom,
    ! [N: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% prod_Suc_fact
thf(fact_9096_prod__Suc__Suc__fact,axiom,
    ! [N: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% prod_Suc_Suc_fact
thf(fact_9097_subset__eq__atLeast0__lessThan__card,axiom,
    ! [N5: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( ord_less_eq_nat @ ( finite_card_nat @ N5 ) @ N ) ) ).

% subset_eq_atLeast0_lessThan_card
thf(fact_9098_card__sum__le__nat__sum,axiom,
    ! [S2: set_nat] :
      ( ord_less_eq_nat
      @ ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S2 ) ) )
      @ ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ S2 ) ) ).

% card_sum_le_nat_sum
thf(fact_9099_atLeastLessThan__nat__numeral,axiom,
    ! [M: nat,K: num] :
      ( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThan_nat_numeral
thf(fact_9100_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y: nat,X: nat] :
      ( ( ( ord_less_nat @ C @ Y )
       => ( ( image_nat_nat
            @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
            @ ( set_or4665077453230672383an_nat @ X @ Y ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X @ C ) @ ( minus_minus_nat @ Y @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y )
       => ( ( ( ord_less_nat @ X @ Y )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X @ Y ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X @ Y )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X @ Y ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_9101_atLeast1__lessThan__eq__remove0,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_lessThan_eq_remove0
thf(fact_9102_sum__power2,axiom,
    ! [K: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_9103_Chebyshev__sum__upper__nat,axiom,
    ! [N: nat,A: nat > nat,B: nat > nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_eq_nat @ I2 @ J2 )
         => ( ( ord_less_nat @ J2 @ N )
           => ( ord_less_eq_nat @ ( A @ I2 ) @ ( A @ J2 ) ) ) )
     => ( ! [I2: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I2 @ J2 )
           => ( ( ord_less_nat @ J2 @ N )
             => ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I2 ) ) ) )
       => ( ord_less_eq_nat
          @ ( times_times_nat @ N
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( B @ I4 ) )
              @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
          @ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).

% Chebyshev_sum_upper_nat
thf(fact_9104_VEBT_Osize__gen_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size_gen(1)
thf(fact_9105_card__atLeastLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or4662586982721622107an_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).

% card_atLeastLessThan_int
thf(fact_9106_finite__atLeastZeroLessThan__int,axiom,
    ! [U: int] : ( finite_finite_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) ) ).

% finite_atLeastZeroLessThan_int
thf(fact_9107_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or4662586982721622107an_int @ L @ ( plus_plus_int @ U @ one_one_int ) )
      = ( set_or1266510415728281911st_int @ L @ U ) ) ).

% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9108_image__int__atLeastLessThan,axiom,
    ! [A: nat,B: nat] :
      ( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or4665077453230672383an_nat @ A @ B ) )
      = ( set_or4662586982721622107an_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% image_int_atLeastLessThan
thf(fact_9109_card__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( finite_card_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) )
      = ( nat2 @ U ) ) ).

% card_atLeastZeroLessThan_int
thf(fact_9110_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
      = ( set_or5832277885323065728an_int @ L @ U ) ) ).

% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9111_image__add__int__atLeastLessThan,axiom,
    ! [L: int,U: int] :
      ( ( image_int_int
        @ ^ [X3: int] : ( plus_plus_int @ X3 @ L )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L ) ) )
      = ( set_or4662586982721622107an_int @ L @ U ) ) ).

% image_add_int_atLeastLessThan
thf(fact_9112_VEBT_Osize__gen_I2_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size_gen(2)
thf(fact_9113_image__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ U )
     => ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
        = ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).

% image_atLeastZeroLessThan_int
thf(fact_9114_int__of__nat__def,axiom,
    code_T6385005292777649522of_nat = semiri1314217659103216013at_int ).

% int_of_nat_def
thf(fact_9115_Code__Target__Int_Opositive__def,axiom,
    code_Target_positive = numeral_numeral_int ).

% Code_Target_Int.positive_def
thf(fact_9116_divmod__step__integer__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L2: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q5: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_integer_def
thf(fact_9117_minus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% minus_integer_code(1)
thf(fact_9118_times__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(2)
thf(fact_9119_times__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(1)
thf(fact_9120_plus__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L )
      = L ) ).

% plus_integer_code(2)
thf(fact_9121_plus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% plus_integer_code(1)
thf(fact_9122_sgn__integer__code,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [K2: code_integer] : ( if_Code_integer @ ( K2 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).

% sgn_integer_code
thf(fact_9123_minus__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L )
      = ( uminus1351360451143612070nteger @ L ) ) ).

% minus_integer_code(2)
thf(fact_9124_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu3: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_9125_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu3: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_9126_zero__natural_Orsp,axiom,
    zero_zero_nat = zero_zero_nat ).

% zero_natural.rsp
thf(fact_9127_zero__integer_Orsp,axiom,
    zero_zero_int = zero_zero_int ).

% zero_integer.rsp
thf(fact_9128_one__integer_Orsp,axiom,
    one_one_int = one_one_int ).

% one_integer.rsp
thf(fact_9129_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_9130_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).

% less_eq_nat.simps(2)
thf(fact_9131_max__Suc2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ M5 @ N ) )
        @ M ) ) ).

% max_Suc2
thf(fact_9132_max__Suc1,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_max_nat @ ( suc @ N ) @ M )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ N @ M5 ) )
        @ M ) ) ).

% max_Suc1
thf(fact_9133_diff__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K2: nat] : K2
        @ ( minus_minus_nat @ M @ N ) ) ) ).

% diff_Suc
thf(fact_9134_min__Suc2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_min_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [M5: nat] : ( suc @ ( ord_min_nat @ M5 @ N ) )
        @ M ) ) ).

% min_Suc2
thf(fact_9135_min__Suc1,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_min_nat @ ( suc @ N ) @ M )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [M5: nat] : ( suc @ ( ord_min_nat @ N @ M5 ) )
        @ M ) ) ).

% min_Suc1
thf(fact_9136_integer__of__int__code,axiom,
    ( code_integer_of_int
    = ( ^ [K2: int] :
          ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K2 ) ) )
          @ ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% integer_of_int_code
thf(fact_9137_integer__of__num_I3_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit1 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) @ one_one_Code_integer ) ) ).

% integer_of_num(3)
thf(fact_9138_push__bit__integer_Oabs__eq,axiom,
    ! [Xa: nat,X: int] :
      ( ( bit_se7788150548672797655nteger @ Xa @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( bit_se545348938243370406it_int @ Xa @ X ) ) ) ).

% push_bit_integer.abs_eq
thf(fact_9139_zero__integer__def,axiom,
    ( zero_z3403309356797280102nteger
    = ( code_integer_of_int @ zero_zero_int ) ) ).

% zero_integer_def
thf(fact_9140_divide__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( divide6298287555418463151nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( divide_divide_int @ Xa @ X ) ) ) ).

% divide_integer.abs_eq
thf(fact_9141_gcd__code__integer,axiom,
    ( gcd_gcd_Code_integer
    = ( ^ [K2: code_integer,L2: code_integer] : ( abs_abs_Code_integer @ ( if_Code_integer @ ( L2 = zero_z3403309356797280102nteger ) @ K2 @ ( gcd_gcd_Code_integer @ L2 @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L2 ) ) ) ) ) ) ) ).

% gcd_code_integer
thf(fact_9142_gcd__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( gcd_gcd_Code_integer @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( gcd_gcd_int @ Xa @ X ) ) ) ).

% gcd_integer.abs_eq
thf(fact_9143_plus__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( plus_p5714425477246183910nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( plus_plus_int @ Xa @ X ) ) ) ).

% plus_integer.abs_eq
thf(fact_9144_times__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( times_times_int @ Xa @ X ) ) ) ).

% times_integer.abs_eq
thf(fact_9145_one__integer__def,axiom,
    ( one_one_Code_integer
    = ( code_integer_of_int @ one_one_int ) ) ).

% one_integer_def
thf(fact_9146_minus__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( minus_8373710615458151222nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( minus_minus_int @ Xa @ X ) ) ) ).

% minus_integer.abs_eq
thf(fact_9147_floor__rat__def,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [X3: rat] :
          ( the_int
          @ ^ [Z5: int] :
              ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z5 ) @ X3 )
              & ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ) ) ) ).

% floor_rat_def
thf(fact_9148_integer__of__num__triv_I1_J,axiom,
    ( ( code_integer_of_num @ one )
    = one_one_Code_integer ) ).

% integer_of_num_triv(1)
thf(fact_9149_integer__of__num_I2_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit0 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).

% integer_of_num(2)
thf(fact_9150_integer__of__num__triv_I2_J,axiom,
    ( ( code_integer_of_num @ ( bit0 @ one ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% integer_of_num_triv(2)
thf(fact_9151_floor__real__def,axiom,
    ( archim6058952711729229775r_real
    = ( ^ [X3: real] :
          ( the_int
          @ ^ [Z5: int] :
              ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z5 ) @ X3 )
              & ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ) ) ) ).

% floor_real_def
thf(fact_9152_bit__cut__integer__code,axiom,
    ( code_bit_cut_integer
    = ( ^ [K2: code_integer] :
          ( if_Pro5737122678794959658eger_o @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
          @ ( produc9125791028180074456eger_o
            @ ^ [R5: code_integer,S4: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S4 ) ) @ ( S4 = one_one_Code_integer ) )
            @ ( code_divmod_abs @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_cut_integer_code
thf(fact_9153_bit__cut__integer__def,axiom,
    ( code_bit_cut_integer
    = ( ^ [K2: code_integer] :
          ( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K2 ) ) ) ) ).

% bit_cut_integer_def
thf(fact_9154_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X23: nat] : X23 ) ) ).

% pred_def
thf(fact_9155_divmod__integer__code,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L2: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L2 )
            @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ ( code_divmod_abs @ K2 @ L2 )
              @ ( produc6916734918728496179nteger
                @ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L2 @ S4 ) ) )
                @ ( code_divmod_abs @ K2 @ L2 ) ) )
            @ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
              @ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
                @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K2 @ L2 )
                  @ ( produc6916734918728496179nteger
                    @ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L2 ) @ S4 ) ) )
                    @ ( code_divmod_abs @ K2 @ L2 ) ) ) ) ) ) ) ) ) ).

% divmod_integer_code
thf(fact_9156_Gcd__int__def,axiom,
    ( gcd_Gcd_int
    = ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).

% Gcd_int_def
thf(fact_9157_divmod__integer__eq__cases,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L2: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
            @ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L2
              @ ( if_Pro6119634080678213985nteger
                @ ( ( sgn_sgn_Code_integer @ K2 )
                  = ( sgn_sgn_Code_integer @ L2 ) )
                @ ( code_divmod_abs @ K2 @ L2 )
                @ ( produc6916734918728496179nteger
                  @ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L2 ) @ S4 ) ) )
                  @ ( code_divmod_abs @ K2 @ L2 ) ) ) ) ) ) ) ) ).

% divmod_integer_eq_cases
thf(fact_9158_nat__of__integer__non__positive,axiom,
    ! [K: code_integer] :
      ( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
     => ( ( code_nat_of_integer @ K )
        = zero_zero_nat ) ) ).

% nat_of_integer_non_positive
thf(fact_9159_Suc__funpow,axiom,
    ! [N: nat] :
      ( ( compow_nat_nat @ N @ suc )
      = ( plus_plus_nat @ N ) ) ).

% Suc_funpow
thf(fact_9160_card_Ocomp__fun__commute__on,axiom,
    ( ( comp_nat_nat_nat @ suc @ suc )
    = ( comp_nat_nat_nat @ suc @ suc ) ) ).

% card.comp_fun_commute_on
thf(fact_9161_nat__of__integer__code__post_I1_J,axiom,
    ( ( code_nat_of_integer @ zero_z3403309356797280102nteger )
    = zero_zero_nat ) ).

% nat_of_integer_code_post(1)
thf(fact_9162_nat__of__integer__code__post_I3_J,axiom,
    ! [K: num] :
      ( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_of_integer_code_post(3)
thf(fact_9163_nat__of__integer__code__post_I2_J,axiom,
    ( ( code_nat_of_integer @ one_one_Code_integer )
    = one_one_nat ) ).

% nat_of_integer_code_post(2)
thf(fact_9164_Code__Target__Int_Onegative__def,axiom,
    ( code_Target_negative
    = ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).

% Code_Target_Int.negative_def
thf(fact_9165_nat__of__integer__code,axiom,
    ( code_nat_of_integer
    = ( ^ [K2: code_integer] :
          ( if_nat @ ( ord_le3102999989581377725nteger @ K2 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
          @ ( produc1555791787009142072er_nat
            @ ^ [L2: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ one_one_nat ) )
            @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% nat_of_integer_code
thf(fact_9166_measure__function__int,axiom,
    fun_is_measure_int @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) ).

% measure_function_int
thf(fact_9167_max__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
    @ ^ [X3: nat,Y6: nat] : ( ord_less_eq_nat @ Y6 @ X3 )
    @ ^ [X3: nat,Y6: nat] : ( ord_less_nat @ Y6 @ X3 ) ) ).

% max_nat.semilattice_neutr_order_axioms
thf(fact_9168_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
    @ ^ [M3: nat,N3: nat] :
        ( ( dvd_dvd_nat @ M3 @ N3 )
        & ( M3 != N3 ) ) ) ).

% gcd_nat.semilattice_neutr_order_axioms
thf(fact_9169_int__of__integer__code,axiom,
    ( code_int_of_integer
    = ( ^ [K2: code_integer] :
          ( if_int @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K2 ) ) )
          @ ( if_int @ ( K2 = zero_z3403309356797280102nteger ) @ zero_zero_int
            @ ( produc1553301316500091796er_int
              @ ^ [L2: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ one_one_int ) )
              @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% int_of_integer_code
thf(fact_9170_times__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( times_times_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X3: nat,Y6: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) )
          @ Xa
          @ X ) ) ) ).

% times_int.abs_eq
thf(fact_9171_int__of__integer__of__nat,axiom,
    ! [N: nat] :
      ( ( code_int_of_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% int_of_integer_of_nat
thf(fact_9172_zero__integer_Orep__eq,axiom,
    ( ( code_int_of_integer @ zero_z3403309356797280102nteger )
    = zero_zero_int ) ).

% zero_integer.rep_eq
thf(fact_9173_int__of__integer__numeral,axiom,
    ! [K: num] :
      ( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% int_of_integer_numeral
thf(fact_9174_plus__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( plus_p5714425477246183910nteger @ X @ Xa ) )
      = ( plus_plus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% plus_integer.rep_eq
thf(fact_9175_times__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X @ Xa ) )
      = ( times_times_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% times_integer.rep_eq
thf(fact_9176_one__integer_Orep__eq,axiom,
    ( ( code_int_of_integer @ one_one_Code_integer )
    = one_one_int ) ).

% one_integer.rep_eq
thf(fact_9177_minus__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( minus_8373710615458151222nteger @ X @ Xa ) )
      = ( minus_minus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% minus_integer.rep_eq
thf(fact_9178_divide__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( divide6298287555418463151nteger @ X @ Xa ) )
      = ( divide_divide_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% divide_integer.rep_eq
thf(fact_9179_eq__Abs__Integ,axiom,
    ! [Z2: int] :
      ~ ! [X4: nat,Y4: nat] :
          ( Z2
         != ( abs_Integ @ ( product_Pair_nat_nat @ X4 @ Y4 ) ) ) ).

% eq_Abs_Integ
thf(fact_9180_int_Oabs__induct,axiom,
    ! [P: int > $o,X: int] :
      ( ! [Y4: product_prod_nat_nat] : ( P @ ( abs_Integ @ Y4 ) )
     => ( P @ X ) ) ).

% int.abs_induct
thf(fact_9181_gcd__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( gcd_gcd_Code_integer @ X @ Xa ) )
      = ( gcd_gcd_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% gcd_integer.rep_eq
thf(fact_9182_push__bit__integer_Orep__eq,axiom,
    ! [X: nat,Xa: code_integer] :
      ( ( code_int_of_integer @ ( bit_se7788150548672797655nteger @ X @ Xa ) )
      = ( bit_se545348938243370406it_int @ X @ ( code_int_of_integer @ Xa ) ) ) ).

% push_bit_integer.rep_eq
thf(fact_9183_zero__int__def,axiom,
    ( zero_zero_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).

% zero_int_def
thf(fact_9184_int__def,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N3: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N3 @ zero_zero_nat ) ) ) ) ).

% int_def
thf(fact_9185_nat_Oabs__eq,axiom,
    ! [X: product_prod_nat_nat] :
      ( ( nat2 @ ( abs_Integ @ X ) )
      = ( produc6842872674320459806at_nat @ minus_minus_nat @ X ) ) ).

% nat.abs_eq
thf(fact_9186_uminus__int_Oabs__eq,axiom,
    ! [X: product_prod_nat_nat] :
      ( ( uminus_uminus_int @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc2626176000494625587at_nat
          @ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 )
          @ X ) ) ) ).

% uminus_int.abs_eq
thf(fact_9187_one__int__def,axiom,
    ( one_one_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).

% one_int_def
thf(fact_9188_less__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( ord_less_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y6: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) )
        @ Xa
        @ X ) ) ).

% less_int.abs_eq
thf(fact_9189_less__eq__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( ord_less_eq_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y6: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) )
        @ Xa
        @ X ) ) ).

% less_eq_int.abs_eq
thf(fact_9190_plus__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( plus_plus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X3: nat,Y6: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) )
          @ Xa
          @ X ) ) ) ).

% plus_int.abs_eq
thf(fact_9191_minus__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( minus_minus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X3: nat,Y6: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) )
          @ Xa
          @ X ) ) ) ).

% minus_int.abs_eq
thf(fact_9192_rat__floor__lemma,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( divide_divide_int @ A @ B ) ) @ ( fract @ A @ B ) )
      & ( ord_less_rat @ ( fract @ A @ B ) @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ) ).

% rat_floor_lemma
thf(fact_9193_mult__rat,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( times_times_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
      = ( fract @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ).

% mult_rat
thf(fact_9194_divide__rat,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( divide_divide_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
      = ( fract @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ).

% divide_rat
thf(fact_9195_floor__Fract,axiom,
    ! [A: int,B: int] :
      ( ( archim3151403230148437115or_rat @ ( fract @ A @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% floor_Fract
thf(fact_9196_less__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% less_rat
thf(fact_9197_add__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( plus_plus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( fract @ ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% add_rat
thf(fact_9198_le__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( ord_less_eq_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% le_rat
thf(fact_9199_diff__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( minus_minus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( fract @ ( minus_minus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% diff_rat
thf(fact_9200_sgn__rat,axiom,
    ! [A: int,B: int] :
      ( ( sgn_sgn_rat @ ( fract @ A @ B ) )
      = ( ring_1_of_int_rat @ ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ) ).

% sgn_rat
thf(fact_9201_eq__rat_I3_J,axiom,
    ! [A: int,C: int] :
      ( ( fract @ zero_zero_int @ A )
      = ( fract @ zero_zero_int @ C ) ) ).

% eq_rat(3)
thf(fact_9202_eq__rat_I2_J,axiom,
    ! [A: int] :
      ( ( fract @ A @ zero_zero_int )
      = ( fract @ zero_zero_int @ one_one_int ) ) ).

% eq_rat(2)
thf(fact_9203_Rat__induct__pos,axiom,
    ! [P: rat > $o,Q2: rat] :
      ( ! [A4: int,B4: int] :
          ( ( ord_less_int @ zero_zero_int @ B4 )
         => ( P @ ( fract @ A4 @ B4 ) ) )
     => ( P @ Q2 ) ) ).

% Rat_induct_pos
thf(fact_9204_mult__rat__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( fract @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( fract @ A @ B ) ) ) ).

% mult_rat_cancel
thf(fact_9205_eq__rat_I1_J,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( ( fract @ A @ B )
            = ( fract @ C @ D ) )
          = ( ( times_times_int @ A @ D )
            = ( times_times_int @ C @ B ) ) ) ) ) ).

% eq_rat(1)
thf(fact_9206_Fract__of__nat__eq,axiom,
    ! [K: nat] :
      ( ( fract @ ( semiri1314217659103216013at_int @ K ) @ one_one_int )
      = ( semiri681578069525770553at_rat @ K ) ) ).

% Fract_of_nat_eq
thf(fact_9207_rat__number__collapse_I6_J,axiom,
    ! [K: int] :
      ( ( fract @ K @ zero_zero_int )
      = zero_zero_rat ) ).

% rat_number_collapse(6)
thf(fact_9208_rat__number__collapse_I1_J,axiom,
    ! [K: int] :
      ( ( fract @ zero_zero_int @ K )
      = zero_zero_rat ) ).

% rat_number_collapse(1)
thf(fact_9209_Fract__coprime,axiom,
    ! [A: int,B: int] :
      ( ( fract @ ( divide_divide_int @ A @ ( gcd_gcd_int @ A @ B ) ) @ ( divide_divide_int @ B @ ( gcd_gcd_int @ A @ B ) ) )
      = ( fract @ A @ B ) ) ).

% Fract_coprime
thf(fact_9210_One__rat__def,axiom,
    ( one_one_rat
    = ( fract @ one_one_int @ one_one_int ) ) ).

% One_rat_def
thf(fact_9211_Fract__of__int__eq,axiom,
    ! [K: int] :
      ( ( fract @ K @ one_one_int )
      = ( ring_1_of_int_rat @ K ) ) ).

% Fract_of_int_eq
thf(fact_9212_Zero__rat__def,axiom,
    ( zero_zero_rat
    = ( fract @ zero_zero_int @ one_one_int ) ) ).

% Zero_rat_def
thf(fact_9213_rat__number__collapse_I3_J,axiom,
    ! [W: num] :
      ( ( fract @ ( numeral_numeral_int @ W ) @ one_one_int )
      = ( numeral_numeral_rat @ W ) ) ).

% rat_number_collapse(3)
thf(fact_9214_rat__number__expand_I3_J,axiom,
    ( numeral_numeral_rat
    = ( ^ [K2: num] : ( fract @ ( numeral_numeral_int @ K2 ) @ one_one_int ) ) ) ).

% rat_number_expand(3)
thf(fact_9215_sorted__list__of__set__greaterThanLessThan,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) )
        = ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanLessThan
thf(fact_9216_zero__less__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% zero_less_Fract_iff
thf(fact_9217_Fract__less__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% Fract_less_zero_iff
thf(fact_9218_Fract__less__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_int @ A @ B ) ) ) ).

% Fract_less_one_iff
thf(fact_9219_one__less__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% one_less_Fract_iff
thf(fact_9220_rat__number__collapse_I5_J,axiom,
    ( ( fract @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% rat_number_collapse(5)
thf(fact_9221_Fract__add__one,axiom,
    ! [N: int,M: int] :
      ( ( N != zero_zero_int )
     => ( ( fract @ ( plus_plus_int @ M @ N ) @ N )
        = ( plus_plus_rat @ ( fract @ M @ N ) @ one_one_rat ) ) ) ).

% Fract_add_one
thf(fact_9222_zero__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_Fract_iff
thf(fact_9223_Fract__le__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% Fract_le_zero_iff
thf(fact_9224_Fract__le__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% Fract_le_one_iff
thf(fact_9225_one__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% one_le_Fract_iff
thf(fact_9226_rat__number__collapse_I4_J,axiom,
    ! [W: num] :
      ( ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ one_one_int )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% rat_number_collapse(4)
thf(fact_9227_rat__number__expand_I5_J,axiom,
    ! [K: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) )
      = ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% rat_number_expand(5)
thf(fact_9228_nth__sorted__list__of__set__greaterThanLessThan,axiom,
    ! [N: nat,J: nat,I: nat] :
      ( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ ( suc @ I ) ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) ) @ N )
        = ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9229_less__eq__int_Orep__eq,axiom,
    ( ord_less_eq_int
    = ( ^ [X3: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y6: nat,Z5: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y6 @ V4 ) @ ( plus_plus_nat @ U3 @ Z5 ) ) )
          @ ( rep_Integ @ X3 )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_eq_int.rep_eq
thf(fact_9230_less__int_Orep__eq,axiom,
    ( ord_less_int
    = ( ^ [X3: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y6: nat,Z5: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y6 @ V4 ) @ ( plus_plus_nat @ U3 @ Z5 ) ) )
          @ ( rep_Integ @ X3 )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_int.rep_eq
thf(fact_9231_inf__nat__def,axiom,
    inf_inf_nat = ord_min_nat ).

% inf_nat_def
thf(fact_9232_inf__int__def,axiom,
    inf_inf_int = ord_min_int ).

% inf_int_def
thf(fact_9233_nat_Orep__eq,axiom,
    ( nat2
    = ( ^ [X3: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X3 ) ) ) ) ).

% nat.rep_eq
thf(fact_9234_list__encode_Osimps_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( nat_list_encode @ ( cons_nat @ X @ Xs ) )
      = ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X @ ( nat_list_encode @ Xs ) ) ) ) ) ).

% list_encode.simps(2)
thf(fact_9235_nth__sorted__list__of__set__greaterThanAtMost,axiom,
    ! [N: nat,J: nat,I: nat] :
      ( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ I ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) ) @ N )
        = ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9236_card__greaterThanAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or6659071591806873216st_nat @ L @ U ) )
      = ( minus_minus_nat @ U @ L ) ) ).

% card_greaterThanAtMost
thf(fact_9237_list__encode__eq,axiom,
    ! [X: list_nat,Y: list_nat] :
      ( ( ( nat_list_encode @ X )
        = ( nat_list_encode @ Y ) )
      = ( X = Y ) ) ).

% list_encode_eq
thf(fact_9238_atLeastSucAtMost__greaterThanAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ L ) @ U )
      = ( set_or6659071591806873216st_nat @ L @ U ) ) ).

% atLeastSucAtMost_greaterThanAtMost
thf(fact_9239_sorted__list__of__set__greaterThanAtMost,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( suc @ I ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) )
        = ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanAtMost
thf(fact_9240_list__encode_Oelims,axiom,
    ! [X: list_nat,Y: nat] :
      ( ( ( nat_list_encode @ X )
        = Y )
     => ( ( ( X = nil_nat )
         => ( Y != zero_zero_nat ) )
       => ~ ! [X4: nat,Xs2: list_nat] :
              ( ( X
                = ( cons_nat @ X4 @ Xs2 ) )
             => ( Y
               != ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs2 ) ) ) ) ) ) ) ) ).

% list_encode.elims
thf(fact_9241_uminus__int__def,axiom,
    ( uminus_uminus_int
    = ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
      @ ( produc2626176000494625587at_nat
        @ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) ) ) ) ).

% uminus_int_def
thf(fact_9242_take__bit__numeral__minus__numeral__int,axiom,
    ! [M: num,N: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( case_option_int_num @ zero_zero_int
        @ ^ [Q5: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q5 ) ) )
        @ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N ) ) ) ).

% take_bit_numeral_minus_numeral_int
thf(fact_9243_take__bit__num__simps_I1_J,axiom,
    ! [M: num] :
      ( ( bit_take_bit_num @ zero_zero_nat @ M )
      = none_num ) ).

% take_bit_num_simps(1)
thf(fact_9244_take__bit__num__simps_I2_J,axiom,
    ! [N: nat] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(2)
thf(fact_9245_take__bit__num__simps_I5_J,axiom,
    ! [R: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(5)
thf(fact_9246_card__greaterThanAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or6656581121297822940st_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).

% card_greaterThanAtMost_int
thf(fact_9247_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
    ! [N: nat] :
      ( ( bit_take_bit_num @ N @ one )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] : ( some_num @ one )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_9248_list__encode_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ~ ! [X4: nat,Xs2: list_nat] :
            ( X
           != ( cons_nat @ X4 @ Xs2 ) ) ) ).

% list_encode.cases
thf(fact_9249_list__encode_Osimps_I1_J,axiom,
    ( ( nat_list_encode @ nil_nat )
    = zero_zero_nat ) ).

% list_encode.simps(1)
thf(fact_9250_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
      = ( set_or6656581121297822940st_int @ L @ U ) ) ).

% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_9251_take__bit__num__def,axiom,
    ( bit_take_bit_num
    = ( ^ [N3: nat,M3: num] :
          ( if_option_num
          @ ( ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M3 ) )
            = zero_zero_nat )
          @ none_num
          @ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M3 ) ) ) ) ) ) ) ).

% take_bit_num_def
thf(fact_9252_and__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).

% and_minus_numerals(3)
thf(fact_9253_and__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).

% and_minus_numerals(7)
thf(fact_9254_and__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).

% and_minus_numerals(4)
thf(fact_9255_take__bit__num__simps_I4_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).

% take_bit_num_simps(4)
thf(fact_9256_take__bit__num__simps_I3_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
        @ ( bit_take_bit_num @ N @ M ) ) ) ).

% take_bit_num_simps(3)
thf(fact_9257_take__bit__num__simps_I7_J,axiom,
    ! [R: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R ) @ M ) ) ) ) ).

% take_bit_num_simps(7)
thf(fact_9258_take__bit__num__simps_I6_J,axiom,
    ! [R: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
        @ ( bit_take_bit_num @ ( pred_numeral @ R ) @ M ) ) ) ).

% take_bit_num_simps(6)
thf(fact_9259_and__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).

% and_minus_numerals(8)
thf(fact_9260_and__not__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N7: num] : ( some_num @ ( bit1 @ N7 ) )
        @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(8)
thf(fact_9261_and__not__num_Osimps_I1_J,axiom,
    ( ( bit_and_not_num @ one @ one )
    = none_num ) ).

% and_not_num.simps(1)
thf(fact_9262_and__not__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_and_not_num @ one @ ( bit0 @ N ) )
      = ( some_num @ one ) ) ).

% and_not_num.simps(2)
thf(fact_9263_and__not__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(4)
thf(fact_9264_and__not__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_and_not_num @ one @ ( bit1 @ N ) )
      = none_num ) ).

% and_not_num.simps(3)
thf(fact_9265_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] :
            ( case_o6005452278849405969um_num @ none_num
            @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
            @ ( bit_take_bit_num @ N3 @ M ) )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_9266_and__not__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(7)
thf(fact_9267_and__not__num__eq__Some__iff,axiom,
    ! [M: num,N: num,Q2: num] :
      ( ( ( bit_and_not_num @ M @ N )
        = ( some_num @ Q2 ) )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
        = ( numeral_numeral_int @ Q2 ) ) ) ).

% and_not_num_eq_Some_iff
thf(fact_9268_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N3 @ M ) ) )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_9269_and__not__num__eq__None__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( bit_and_not_num @ M @ N )
        = none_num )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
        = zero_zero_int ) ) ).

% and_not_num_eq_None_iff
thf(fact_9270_int__numeral__not__and__num,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N @ M ) ) ) ).

% int_numeral_not_and_num
thf(fact_9271_int__numeral__and__not__num,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N ) ) ) ).

% int_numeral_and_not_num
thf(fact_9272_times__int__def,axiom,
    ( times_times_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y6: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) ) ) ) ).

% times_int_def
thf(fact_9273_minus__int__def,axiom,
    ( minus_minus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y6: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) ) ) ) ).

% minus_int_def
thf(fact_9274_plus__int__def,axiom,
    ( plus_plus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y6: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) ) ) ) ).

% plus_int_def
thf(fact_9275_upto_Opelims,axiom,
    ! [X: int,Xa: int,Y: list_int] :
      ( ( ( upto @ X @ Xa )
        = Y )
     => ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa ) )
       => ~ ( ( ( ( ord_less_eq_int @ X @ Xa )
               => ( Y
                  = ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa ) ) ) )
              & ( ~ ( ord_less_eq_int @ X @ Xa )
               => ( Y = nil_int ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa ) ) ) ) ) ).

% upto.pelims
thf(fact_9276_upto_Opsimps,axiom,
    ! [I: int,J: int] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
     => ( ( ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
        & ( ~ ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = nil_int ) ) ) ) ).

% upto.psimps
thf(fact_9277_nth__upto,axiom,
    ! [I: int,K: nat,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
     => ( ( nth_int @ ( upto @ I @ J ) @ K )
        = ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).

% nth_upto
thf(fact_9278_length__upto,axiom,
    ! [I: int,J: int] :
      ( ( size_size_list_int @ ( upto @ I @ J ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).

% length_upto
thf(fact_9279_sorted__list__of__set__lessThan__Suc,axiom,
    ! [K: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).

% sorted_list_of_set_lessThan_Suc
thf(fact_9280_sorted__list__of__set__atMost__Suc,axiom,
    ! [K: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).

% sorted_list_of_set_atMost_Suc
thf(fact_9281_upto__rec__numeral_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(1)
thf(fact_9282_upto__rec__numeral_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(2)
thf(fact_9283_upto__rec__numeral_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(3)
thf(fact_9284_upto__rec__numeral_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(4)
thf(fact_9285_upto__split1,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).

% upto_split1
thf(fact_9286_upto__split2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).

% upto_split2
thf(fact_9287_upto__rec2,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).

% upto_rec2
thf(fact_9288_upto__split3,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).

% upto_split3
thf(fact_9289_atLeastLessThan__upto,axiom,
    ( set_or4662586982721622107an_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ I4 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% atLeastLessThan_upto
thf(fact_9290_greaterThanAtMost__upto,axiom,
    ( set_or6656581121297822940st_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ).

% greaterThanAtMost_upto
thf(fact_9291_upto_Osimps,axiom,
    ( upto
    = ( ^ [I4: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I4 @ J3 ) @ ( cons_int @ I4 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).

% upto.simps
thf(fact_9292_upto_Oelims,axiom,
    ! [X: int,Xa: int,Y: list_int] :
      ( ( ( upto @ X @ Xa )
        = Y )
     => ( ( ( ord_less_eq_int @ X @ Xa )
         => ( Y
            = ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa ) ) ) )
        & ( ~ ( ord_less_eq_int @ X @ Xa )
         => ( Y = nil_int ) ) ) ) ).

% upto.elims
thf(fact_9293_upto__rec1,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).

% upto_rec1
thf(fact_9294_greaterThanLessThan__upto,axiom,
    ( set_or5832277885323065728an_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% greaterThanLessThan_upto
thf(fact_9295_and__not__num_Oelims,axiom,
    ! [X: num,Xa: num,Y: option_num] :
      ( ( ( bit_and_not_num @ X @ Xa )
        = Y )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y != none_num ) ) )
       => ( ( ( X = one )
           => ( ? [N2: num] :
                  ( Xa
                  = ( bit0 @ N2 ) )
             => ( Y
               != ( some_num @ one ) ) ) )
         => ( ( ( X = one )
             => ( ? [N2: num] :
                    ( Xa
                    = ( bit1 @ N2 ) )
               => ( Y != none_num ) ) )
           => ( ! [M2: num] :
                  ( ( X
                    = ( bit0 @ M2 ) )
                 => ( ( Xa = one )
                   => ( Y
                     != ( some_num @ ( bit0 @ M2 ) ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y
                         != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M2 @ N2 ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y
                           != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M2 @ N2 ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit1 @ M2 ) )
                       => ( ( Xa = one )
                         => ( Y
                           != ( some_num @ ( bit0 @ M2 ) ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y
                               != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                  @ ^ [N7: num] : ( some_num @ ( bit1 @ N7 ) )
                                  @ ( bit_and_not_num @ M2 @ N2 ) ) ) ) )
                     => ~ ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y
                                 != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M2 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_not_num.elims
thf(fact_9296_and__not__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(5)
thf(fact_9297_and__not__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(6)
thf(fact_9298_and__not__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(9)
thf(fact_9299_and__num_Oelims,axiom,
    ! [X: num,Xa: num,Y: option_num] :
      ( ( ( bit_un7362597486090784418nd_num @ X @ Xa )
        = Y )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y
             != ( some_num @ one ) ) ) )
       => ( ( ( X = one )
           => ( ? [N2: num] :
                  ( Xa
                  = ( bit0 @ N2 ) )
             => ( Y != none_num ) ) )
         => ( ( ( X = one )
             => ( ? [N2: num] :
                    ( Xa
                    = ( bit1 @ N2 ) )
               => ( Y
                 != ( some_num @ one ) ) ) )
           => ( ( ? [M2: num] :
                    ( X
                    = ( bit0 @ M2 ) )
               => ( ( Xa = one )
                 => ( Y != none_num ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y
                         != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y
                           != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) ) ) )
                 => ( ( ? [M2: num] :
                          ( X
                          = ( bit1 @ M2 ) )
                     => ( ( Xa = one )
                       => ( Y
                         != ( some_num @ one ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y
                               != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) ) ) )
                     => ~ ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y
                                 != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                    @ ^ [N7: num] : ( some_num @ ( bit1 @ N7 ) )
                                    @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_num.elims
thf(fact_9300_xor__num_Oelims,axiom,
    ! [X: num,Xa: num,Y: option_num] :
      ( ( ( bit_un2480387367778600638or_num @ X @ Xa )
        = Y )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y != none_num ) ) )
       => ( ( ( X = one )
           => ! [N2: num] :
                ( ( Xa
                  = ( bit0 @ N2 ) )
               => ( Y
                 != ( some_num @ ( bit1 @ N2 ) ) ) ) )
         => ( ( ( X = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit1 @ N2 ) )
                 => ( Y
                   != ( some_num @ ( bit0 @ N2 ) ) ) ) )
           => ( ! [M2: num] :
                  ( ( X
                    = ( bit0 @ M2 ) )
                 => ( ( Xa = one )
                   => ( Y
                     != ( some_num @ ( bit1 @ M2 ) ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y
                         != ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y
                           != ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit1 @ M2 ) )
                       => ( ( Xa = one )
                         => ( Y
                           != ( some_num @ ( bit0 @ M2 ) ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y
                               != ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) ) ) ) )
                     => ~ ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y
                                 != ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.elims
thf(fact_9301_and__num_Osimps_I1_J,axiom,
    ( ( bit_un7362597486090784418nd_num @ one @ one )
    = ( some_num @ one ) ) ).

% and_num.simps(1)
thf(fact_9302_xor__num_Osimps_I1_J,axiom,
    ( ( bit_un2480387367778600638or_num @ one @ one )
    = none_num ) ).

% xor_num.simps(1)
thf(fact_9303_xor__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).

% xor_num.simps(5)
thf(fact_9304_and__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(5)
thf(fact_9305_and__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_un7362597486090784418nd_num @ one @ ( bit1 @ N ) )
      = ( some_num @ one ) ) ).

% and_num.simps(3)
thf(fact_9306_and__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ one )
      = ( some_num @ one ) ) ).

% and_num.simps(7)
thf(fact_9307_and__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_un7362597486090784418nd_num @ one @ ( bit0 @ N ) )
      = none_num ) ).

% and_num.simps(2)
thf(fact_9308_and__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ one )
      = none_num ) ).

% and_num.simps(4)
thf(fact_9309_and__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(8)
thf(fact_9310_and__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(6)
thf(fact_9311_xor__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).

% xor_num.simps(9)
thf(fact_9312_xor__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% xor_num.simps(7)
thf(fact_9313_xor__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit1 @ M ) ) ) ).

% xor_num.simps(4)
thf(fact_9314_xor__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_un2480387367778600638or_num @ one @ ( bit1 @ N ) )
      = ( some_num @ ( bit0 @ N ) ) ) ).

% xor_num.simps(3)
thf(fact_9315_xor__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_un2480387367778600638or_num @ one @ ( bit0 @ N ) )
      = ( some_num @ ( bit1 @ N ) ) ) ).

% xor_num.simps(2)
thf(fact_9316_and__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N7: num] : ( some_num @ ( bit1 @ N7 ) )
        @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(9)
thf(fact_9317_xor__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).

% xor_num.simps(6)
thf(fact_9318_xor__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).

% xor_num.simps(8)
thf(fact_9319_xor__num__dict,axiom,
    bit_un2480387367778600638or_num = bit_un6178654185764691216or_num ).

% xor_num_dict
thf(fact_9320_and__num__dict,axiom,
    bit_un7362597486090784418nd_num = bit_un1837492267222099188nd_num ).

% and_num_dict
thf(fact_9321_Bit__Operations_Otake__bit__num__code,axiom,
    ( bit_take_bit_num
    = ( ^ [N3: nat,M3: num] :
          ( produc478579273971653890on_num
          @ ^ [A2: nat,X3: num] :
              ( case_nat_option_num @ none_num
              @ ^ [O: nat] :
                  ( case_num_option_num @ ( some_num @ one )
                  @ ^ [P3: num] :
                      ( case_o6005452278849405969um_num @ none_num
                      @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
                      @ ( bit_take_bit_num @ O @ P3 ) )
                  @ ^ [P3: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P3 ) ) )
                  @ X3 )
              @ A2 )
          @ ( product_Pair_nat_num @ N3 @ M3 ) ) ) ) ).

% Bit_Operations.take_bit_num_code
thf(fact_9322_of__nat__eq__id,axiom,
    semiri1316708129612266289at_nat = id_nat ).

% of_nat_eq_id
thf(fact_9323_less__int__def,axiom,
    ( ord_less_int
    = ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
      @ ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y6: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ) ).

% less_int_def
thf(fact_9324_less__eq__int__def,axiom,
    ( ord_less_eq_int
    = ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
      @ ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y6: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ) ).

% less_eq_int_def
thf(fact_9325_nat__def,axiom,
    ( nat2
    = ( map_fu2345160673673942751at_nat @ rep_Integ @ id_nat @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ) ).

% nat_def
thf(fact_9326_positive__rat,axiom,
    ! [A: int,B: int] :
      ( ( positive @ ( fract @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% positive_rat
thf(fact_9327_list__encode_Opelims,axiom,
    ! [X: list_nat,Y: nat] :
      ( ( ( nat_list_encode @ X )
        = Y )
     => ( ( accp_list_nat @ nat_list_encode_rel @ X )
       => ( ( ( X = nil_nat )
           => ( ( Y = zero_zero_nat )
             => ~ ( accp_list_nat @ nat_list_encode_rel @ nil_nat ) ) )
         => ~ ! [X4: nat,Xs2: list_nat] :
                ( ( X
                  = ( cons_nat @ X4 @ Xs2 ) )
               => ( ( Y
                    = ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs2 ) ) ) ) )
                 => ~ ( accp_list_nat @ nat_list_encode_rel @ ( cons_nat @ X4 @ Xs2 ) ) ) ) ) ) ) ).

% list_encode.pelims
thf(fact_9328_num__of__integer__code,axiom,
    ( code_num_of_integer
    = ( ^ [K2: code_integer] :
          ( if_num @ ( ord_le3102999989581377725nteger @ K2 @ one_one_Code_integer ) @ one
          @ ( produc7336495610019696514er_num
            @ ^ [L2: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ one ) )
            @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% num_of_integer_code
thf(fact_9329_Rat_Opositive__add,axiom,
    ! [X: rat,Y: rat] :
      ( ( positive @ X )
     => ( ( positive @ Y )
       => ( positive @ ( plus_plus_rat @ X @ Y ) ) ) ) ).

% Rat.positive_add
thf(fact_9330_Rat_Opositive__mult,axiom,
    ! [X: rat,Y: rat] :
      ( ( positive @ X )
     => ( ( positive @ Y )
       => ( positive @ ( times_times_rat @ X @ Y ) ) ) ) ).

% Rat.positive_mult
thf(fact_9331_less__rat__def,axiom,
    ( ord_less_rat
    = ( ^ [X3: rat,Y6: rat] : ( positive @ ( minus_minus_rat @ Y6 @ X3 ) ) ) ) ).

% less_rat_def
thf(fact_9332_Rat_Opositive_Orep__eq,axiom,
    ( positive
    = ( ^ [X3: rat] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ ( rep_Rat @ X3 ) ) @ ( product_snd_int_int @ ( rep_Rat @ X3 ) ) ) ) ) ) ).

% Rat.positive.rep_eq
thf(fact_9333_Rat_Opositive__def,axiom,
    ( positive
    = ( map_fu898904425404107465nt_o_o @ rep_Rat @ id_o
      @ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ).

% Rat.positive_def
thf(fact_9334_upt__rec__numeral,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) ) ) ) )
      & ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = nil_nat ) ) ) ).

% upt_rec_numeral
thf(fact_9335_tl__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( tl_nat @ ( upt @ M @ N ) )
      = ( upt @ ( suc @ M ) @ N ) ) ).

% tl_upt
thf(fact_9336_drop__upt,axiom,
    ! [M: nat,I: nat,J: nat] :
      ( ( drop_nat @ M @ ( upt @ I @ J ) )
      = ( upt @ ( plus_plus_nat @ I @ M ) @ J ) ) ).

% drop_upt
thf(fact_9337_length__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( size_size_list_nat @ ( upt @ I @ J ) )
      = ( minus_minus_nat @ J @ I ) ) ).

% length_upt
thf(fact_9338_take__upt,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ M ) @ N )
     => ( ( take_nat @ M @ ( upt @ I @ N ) )
        = ( upt @ I @ ( plus_plus_nat @ I @ M ) ) ) ) ).

% take_upt
thf(fact_9339_upt__eq__Nil__conv,axiom,
    ! [I: nat,J: nat] :
      ( ( ( upt @ I @ J )
        = nil_nat )
      = ( ( J = zero_zero_nat )
        | ( ord_less_eq_nat @ J @ I ) ) ) ).

% upt_eq_Nil_conv
thf(fact_9340_nth__upt,axiom,
    ! [I: nat,K: nat,J: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J )
     => ( ( nth_nat @ ( upt @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ K ) ) ) ).

% nth_upt
thf(fact_9341_mono__Suc,axiom,
    order_mono_nat_nat @ suc ).

% mono_Suc
thf(fact_9342_atLeastAtMost__upt,axiom,
    ( set_or1269000886237332187st_nat
    = ( ^ [N3: nat,M3: nat] : ( set_nat2 @ ( upt @ N3 @ ( suc @ M3 ) ) ) ) ) ).

% atLeastAtMost_upt
thf(fact_9343_atLeast__upt,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [N3: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N3 ) ) ) ) ).

% atLeast_upt
thf(fact_9344_upt__conv__Cons__Cons,axiom,
    ! [M: nat,N: nat,Ns: list_nat,Q2: nat] :
      ( ( ( cons_nat @ M @ ( cons_nat @ N @ Ns ) )
        = ( upt @ M @ Q2 ) )
      = ( ( cons_nat @ N @ Ns )
        = ( upt @ ( suc @ M ) @ Q2 ) ) ) ).

% upt_conv_Cons_Cons
thf(fact_9345_upt__0,axiom,
    ! [I: nat] :
      ( ( upt @ I @ zero_zero_nat )
      = nil_nat ) ).

% upt_0
thf(fact_9346_greaterThanAtMost__upt,axiom,
    ( set_or6659071591806873216st_nat
    = ( ^ [N3: nat,M3: nat] : ( set_nat2 @ ( upt @ ( suc @ N3 ) @ ( suc @ M3 ) ) ) ) ) ).

% greaterThanAtMost_upt
thf(fact_9347_greaterThanLessThan__upt,axiom,
    ( set_or5834768355832116004an_nat
    = ( ^ [N3: nat,M3: nat] : ( set_nat2 @ ( upt @ ( suc @ N3 ) @ M3 ) ) ) ) ).

% greaterThanLessThan_upt
thf(fact_9348_mono__times__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( order_mono_nat_nat @ ( times_times_nat @ N ) ) ) ).

% mono_times_nat
thf(fact_9349_atMost__upto,axiom,
    ( set_ord_atMost_nat
    = ( ^ [N3: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N3 ) ) ) ) ) ).

% atMost_upto
thf(fact_9350_upt__conv__Cons,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( upt @ I @ J )
        = ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).

% upt_conv_Cons
thf(fact_9351_upt__add__eq__append,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( plus_plus_nat @ J @ K ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% upt_add_eq_append
thf(fact_9352_upt__eq__Cons__conv,axiom,
    ! [I: nat,J: nat,X: nat,Xs: list_nat] :
      ( ( ( upt @ I @ J )
        = ( cons_nat @ X @ Xs ) )
      = ( ( ord_less_nat @ I @ J )
        & ( I = X )
        & ( ( upt @ ( plus_plus_nat @ I @ one_one_nat ) @ J )
          = Xs ) ) ) ).

% upt_eq_Cons_conv
thf(fact_9353_upt__rec,axiom,
    ( upt
    = ( ^ [I4: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I4 @ J3 ) @ ( cons_nat @ I4 @ ( upt @ ( suc @ I4 ) @ J3 ) ) @ nil_nat ) ) ) ).

% upt_rec
thf(fact_9354_mono__ge2__power__minus__self,axiom,
    ! [K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( order_mono_nat_nat
        @ ^ [M3: nat] : ( minus_minus_nat @ ( power_power_nat @ K @ M3 ) @ M3 ) ) ) ).

% mono_ge2_power_minus_self
thf(fact_9355_upt__Suc__append,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( suc @ J ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).

% upt_Suc_append
thf(fact_9356_upt__Suc,axiom,
    ! [I: nat,J: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
      & ( ~ ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = nil_nat ) ) ) ).

% upt_Suc
thf(fact_9357_of__rat__dense,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [Q6: rat] :
          ( ( ord_less_real @ X @ ( field_7254667332652039916t_real @ Q6 ) )
          & ( ord_less_real @ ( field_7254667332652039916t_real @ Q6 ) @ Y ) ) ) ).

% of_rat_dense
thf(fact_9358_range__mod,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( image_nat_nat
          @ ^ [M3: nat] : ( modulo_modulo_nat @ M3 @ N )
          @ top_top_set_nat )
        = ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% range_mod
thf(fact_9359_UNIV__nat__eq,axiom,
    ( top_top_set_nat
    = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).

% UNIV_nat_eq
thf(fact_9360_plus__rat__def,axiom,
    ( plus_plus_rat
    = ( map_fu4333342158222067775at_rat @ rep_Rat @ ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat )
      @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ) ).

% plus_rat_def
thf(fact_9361_card__UNIV__unit,axiom,
    ( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
    = one_one_nat ) ).

% card_UNIV_unit
thf(fact_9362_range__mult,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
      & ( ( A != zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = top_top_set_real ) ) ) ).

% range_mult
thf(fact_9363_range__abs__Nats,axiom,
    ( ( image_int_int @ abs_abs_int @ top_top_set_int )
    = semiring_1_Nats_int ) ).

% range_abs_Nats
thf(fact_9364_card__UNIV__bool,axiom,
    ( ( finite_card_o @ top_top_set_o )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% card_UNIV_bool
thf(fact_9365_map__Suc__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( map_nat_nat @ suc @ ( upt @ M @ N ) )
      = ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% map_Suc_upt
thf(fact_9366_infinite__UNIV__int,axiom,
    ~ ( finite_finite_int @ top_top_set_int ) ).

% infinite_UNIV_int
thf(fact_9367_surj__list__encode,axiom,
    ( ( image_list_nat_nat @ nat_list_encode @ top_top_set_list_nat )
    = top_top_set_nat ) ).

% surj_list_encode
thf(fact_9368_bij__list__encode,axiom,
    bij_be8532844293280997160at_nat @ nat_list_encode @ top_top_set_list_nat @ top_top_set_nat ).

% bij_list_encode
thf(fact_9369_surj__prod__encode,axiom,
    ( ( image_2486076414777270412at_nat @ nat_prod_encode @ top_to4669805908274784177at_nat )
    = top_top_set_nat ) ).

% surj_prod_encode
thf(fact_9370_bij__prod__encode,axiom,
    bij_be5333170631980326235at_nat @ nat_prod_encode @ top_to4669805908274784177at_nat @ top_top_set_nat ).

% bij_prod_encode
thf(fact_9371_map__add__upt,axiom,
    ! [N: nat,M: nat] :
      ( ( map_nat_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ I4 @ N )
        @ ( upt @ zero_zero_nat @ M ) )
      = ( upt @ N @ ( plus_plus_nat @ M @ N ) ) ) ).

% map_add_upt
thf(fact_9372_int__in__range__abs,axiom,
    ! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ( image_int_int @ abs_abs_int @ top_top_set_int ) ) ).

% int_in_range_abs
thf(fact_9373_map__decr__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( map_nat_nat
        @ ^ [N3: nat] : ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) )
        @ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
      = ( upt @ M @ N ) ) ).

% map_decr_upt
thf(fact_9374_one__rat__def,axiom,
    ( one_one_rat
    = ( abs_Rat @ ( product_Pair_int_int @ one_one_int @ one_one_int ) ) ) ).

% one_rat_def
thf(fact_9375_Fract_Oabs__eq,axiom,
    ( fract
    = ( ^ [Xa4: int,X3: int] : ( abs_Rat @ ( if_Pro3027730157355071871nt_int @ ( X3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ Xa4 @ X3 ) ) ) ) ) ).

% Fract.abs_eq
thf(fact_9376_zero__rat__def,axiom,
    ( zero_zero_rat
    = ( abs_Rat @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ) ).

% zero_rat_def
thf(fact_9377_times__rat__def,axiom,
    ( times_times_rat
    = ( map_fu4333342158222067775at_rat @ rep_Rat @ ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat )
      @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ) ).

% times_rat_def
thf(fact_9378_inverse__rat__def,axiom,
    ( inverse_inverse_rat
    = ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat
      @ ^ [X3: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int
          @ ( ( product_fst_int_int @ X3 )
            = zero_zero_int )
          @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
          @ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) ) ) ) ).

% inverse_rat_def
thf(fact_9379_root__def,axiom,
    ( root
    = ( ^ [N3: nat,X3: real] :
          ( if_real @ ( N3 = zero_zero_nat ) @ zero_zero_real
          @ ( the_in5290026491893676941l_real @ top_top_set_real
            @ ^ [Y6: real] : ( times_times_real @ ( sgn_sgn_real @ Y6 ) @ ( power_power_real @ ( abs_abs_real @ Y6 ) @ N3 ) )
            @ X3 ) ) ) ) ).

% root_def
thf(fact_9380_card__UNIV__char,axiom,
    ( ( finite_card_char @ top_top_set_char )
    = ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% card_UNIV_char
thf(fact_9381_plus__rat_Oabs__eq,axiom,
    ! [Xa: product_prod_int_int,X: product_prod_int_int] :
      ( ( ratrel @ Xa @ Xa )
     => ( ( ratrel @ X @ X )
       => ( ( plus_plus_rat @ ( abs_Rat @ Xa ) @ ( abs_Rat @ X ) )
          = ( abs_Rat @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ Xa ) @ ( product_snd_int_int @ X ) ) @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ Xa ) @ ( product_snd_int_int @ X ) ) ) ) ) ) ) ).

% plus_rat.abs_eq
thf(fact_9382_ratrel__iff,axiom,
    ( ratrel
    = ( ^ [X3: product_prod_int_int,Y6: product_prod_int_int] :
          ( ( ( product_snd_int_int @ X3 )
           != zero_zero_int )
          & ( ( product_snd_int_int @ Y6 )
           != zero_zero_int )
          & ( ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) )
            = ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ) ).

% ratrel_iff
thf(fact_9383_one__rat_Orsp,axiom,
    ratrel @ ( product_Pair_int_int @ one_one_int @ one_one_int ) @ ( product_Pair_int_int @ one_one_int @ one_one_int ) ).

% one_rat.rsp
thf(fact_9384_zero__rat_Orsp,axiom,
    ratrel @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ).

% zero_rat.rsp
thf(fact_9385_ratrel__def,axiom,
    ( ratrel
    = ( ^ [X3: product_prod_int_int,Y6: product_prod_int_int] :
          ( ( ( product_snd_int_int @ X3 )
           != zero_zero_int )
          & ( ( product_snd_int_int @ Y6 )
           != zero_zero_int )
          & ( ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) )
            = ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ) ).

% ratrel_def
thf(fact_9386_times__rat_Oabs__eq,axiom,
    ! [Xa: product_prod_int_int,X: product_prod_int_int] :
      ( ( ratrel @ Xa @ Xa )
     => ( ( ratrel @ X @ X )
       => ( ( times_times_rat @ ( abs_Rat @ Xa ) @ ( abs_Rat @ X ) )
          = ( abs_Rat @ ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ Xa ) @ ( product_fst_int_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ Xa ) @ ( product_snd_int_int @ X ) ) ) ) ) ) ) ).

% times_rat.abs_eq
thf(fact_9387_Rat_Opositive_Oabs__eq,axiom,
    ! [X: product_prod_int_int] :
      ( ( ratrel @ X @ X )
     => ( ( positive @ ( abs_Rat @ X ) )
        = ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ X ) ) ) ) ) ).

% Rat.positive.abs_eq
thf(fact_9388_inverse__rat_Oabs__eq,axiom,
    ! [X: product_prod_int_int] :
      ( ( ratrel @ X @ X )
     => ( ( inverse_inverse_rat @ ( abs_Rat @ X ) )
        = ( abs_Rat
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_fst_int_int @ X )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( product_snd_int_int @ X ) @ ( product_fst_int_int @ X ) ) ) ) ) ) ).

% inverse_rat.abs_eq
thf(fact_9389_UNIV__char__of__nat,axiom,
    ( top_top_set_char
    = ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% UNIV_char_of_nat
thf(fact_9390_char_Osize_I2_J,axiom,
    ! [X1: $o,X2: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
      ( ( size_size_char @ ( char2 @ X1 @ X2 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
      = zero_zero_nat ) ).

% char.size(2)
thf(fact_9391_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_9392_range__nat__of__char,axiom,
    ( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
    = ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% range_nat_of_char
thf(fact_9393_integer__of__char__code,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
      ( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).

% integer_of_char_code
thf(fact_9394_char_Osize__gen,axiom,
    ! [X1: $o,X2: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
      ( ( size_char @ ( char2 @ X1 @ X2 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
      = zero_zero_nat ) ).

% char.size_gen
thf(fact_9395_String_Ochar__of__ascii__of,axiom,
    ! [C: char] :
      ( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
      = ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).

% String.char_of_ascii_of
thf(fact_9396_DERIV__real__root__generic,axiom,
    ! [N: nat,X: real,D3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( X != zero_zero_real )
       => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
           => ( ( ord_less_real @ zero_zero_real @ X )
             => ( D3
                = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
         => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
             => ( ( ord_less_real @ X @ zero_zero_real )
               => ( D3
                  = ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
           => ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
               => ( D3
                  = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
             => ( has_fi5821293074295781190e_real @ ( root @ N ) @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).

% DERIV_real_root_generic
thf(fact_9397_has__real__derivative__neg__dec__left,axiom,
    ! [F: real > real,L: real,X: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S2 ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( member_real @ ( minus_minus_real @ X @ H2 ) @ S2 )
                 => ( ( ord_less_real @ H2 @ D2 )
                   => ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H2 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_left
thf(fact_9398_has__real__derivative__pos__inc__left,axiom,
    ! [F: real > real,L: real,X: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S2 ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( member_real @ ( minus_minus_real @ X @ H2 ) @ S2 )
                 => ( ( ord_less_real @ H2 @ D2 )
                   => ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_left
thf(fact_9399_has__real__derivative__pos__inc__right,axiom,
    ! [F: real > real,L: real,X: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S2 ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( member_real @ ( plus_plus_real @ X @ H2 ) @ S2 )
                 => ( ( ord_less_real @ H2 @ D2 )
                   => ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H2 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_right
thf(fact_9400_has__real__derivative__neg__dec__right,axiom,
    ! [F: real > real,L: real,X: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S2 ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( member_real @ ( plus_plus_real @ X @ H2 ) @ S2 )
                 => ( ( ord_less_real @ H2 @ D2 )
                   => ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_right
thf(fact_9401_DERIV__const__ratio__const2,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
          = K ) ) ) ).

% DERIV_const_ratio_const2
thf(fact_9402_DERIV__const__ratio__const,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
          = ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).

% DERIV_const_ratio_const
thf(fact_9403_DERIV__neg__dec__right,axiom,
    ! [F: real > real,L: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( ord_less_real @ H2 @ D2 )
                 => ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ).

% DERIV_neg_dec_right
thf(fact_9404_DERIV__pos__inc__right,axiom,
    ! [F: real > real,L: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( ord_less_real @ H2 @ D2 )
                 => ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H2 ) ) ) ) ) ) ) ) ).

% DERIV_pos_inc_right
thf(fact_9405_DERIV__neg__dec__left,axiom,
    ! [F: real > real,L: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( ord_less_real @ H2 @ D2 )
                 => ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H2 ) ) ) ) ) ) ) ) ).

% DERIV_neg_dec_left
thf(fact_9406_DERIV__pos__inc__left,axiom,
    ! [F: real > real,L: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [H2: real] :
                ( ( ord_less_real @ zero_zero_real @ H2 )
               => ( ( ord_less_real @ H2 @ D2 )
                 => ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ).

% DERIV_pos_inc_left
thf(fact_9407_MVT2,axiom,
    ! [A: real,B: real,F: real > real,F3: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ( has_fi5821293074295781190e_real @ F @ ( F3 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
       => ? [Z4: real] :
            ( ( ord_less_real @ A @ Z4 )
            & ( ord_less_real @ Z4 @ B )
            & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
              = ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F3 @ Z4 ) ) ) ) ) ) ).

% MVT2
thf(fact_9408_DERIV__local__const,axiom,
    ! [F: real > real,L: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y4: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ D )
             => ( ( F @ X )
                = ( F @ Y4 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_const
thf(fact_9409_DERIV__const__average,axiom,
    ! [A: real,B: real,V: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% DERIV_const_average
thf(fact_9410_DERIV__local__max,axiom,
    ! [F: real > real,L: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y4: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ Y4 ) @ ( F @ X ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_max
thf(fact_9411_DERIV__local__min,axiom,
    ! [F: real > real,L: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y4: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_min
thf(fact_9412_DERIV__ln__divide,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_ln_divide
thf(fact_9413_DERIV__pow,axiom,
    ! [N: nat,X: real,S: set_real] :
      ( has_fi5821293074295781190e_real
      @ ^ [X3: real] : ( power_power_real @ X3 @ N )
      @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
      @ ( topolo2177554685111907308n_real @ X @ S ) ) ).

% DERIV_pow
thf(fact_9414_DERIV__fun__pow,axiom,
    ! [G: real > real,M: real,X: real,N: nat] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( has_fi5821293074295781190e_real
        @ ^ [X3: real] : ( power_power_real @ ( G @ X3 ) @ N )
        @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_fun_pow
thf(fact_9415_has__real__derivative__powr,axiom,
    ! [Z2: real,R: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( has_fi5821293074295781190e_real
        @ ^ [Z5: real] : ( powr_real @ Z5 @ R )
        @ ( times_times_real @ R @ ( powr_real @ Z2 @ ( minus_minus_real @ R @ one_one_real ) ) )
        @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) ).

% has_real_derivative_powr
thf(fact_9416_DERIV__log,axiom,
    ! [X: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ ( log2 @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_log
thf(fact_9417_DERIV__fun__powr,axiom,
    ! [G: real > real,M: real,X: real,R: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
       => ( has_fi5821293074295781190e_real
          @ ^ [X3: real] : ( powr_real @ ( G @ X3 ) @ R )
          @ ( times_times_real @ ( times_times_real @ R @ ( powr_real @ ( G @ X ) @ ( minus_minus_real @ R @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
          @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_fun_powr
thf(fact_9418_DERIV__powr,axiom,
    ! [G: real > real,M: real,X: real,F: real > real,R: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
       => ( ( has_fi5821293074295781190e_real @ F @ R @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( has_fi5821293074295781190e_real
            @ ^ [X3: real] : ( powr_real @ ( G @ X3 ) @ ( F @ X3 ) )
            @ ( times_times_real @ ( powr_real @ ( G @ X ) @ ( F @ X ) ) @ ( plus_plus_real @ ( times_times_real @ R @ ( ln_ln_real @ ( G @ X ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X ) ) @ ( G @ X ) ) ) )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_powr
thf(fact_9419_DERIV__real__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_real_sqrt
thf(fact_9420_DERIV__series_H,axiom,
    ! [F: real > nat > real,F3: real > nat > real,X0: real,A: real,B: real,L4: nat > real] :
      ( ! [N2: nat] :
          ( has_fi5821293074295781190e_real
          @ ^ [X3: real] : ( F @ X3 @ N2 )
          @ ( F3 @ X0 @ N2 )
          @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
           => ( summable_real @ ( F @ X4 ) ) )
       => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ( summable_real @ ( F3 @ X0 ) )
           => ( ( summable_real @ L4 )
             => ( ! [N2: nat,X4: real,Y4: real] :
                    ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
                   => ( ( member_real @ Y4 @ ( set_or1633881224788618240n_real @ A @ B ) )
                     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X4 @ N2 ) @ ( F @ Y4 @ N2 ) ) ) @ ( times_times_real @ ( L4 @ N2 ) @ ( abs_abs_real @ ( minus_minus_real @ X4 @ Y4 ) ) ) ) ) )
               => ( has_fi5821293074295781190e_real
                  @ ^ [X3: real] : ( suminf_real @ ( F @ X3 ) )
                  @ ( suminf_real @ ( F3 @ X0 ) )
                  @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_series'
thf(fact_9421_DERIV__arctan,axiom,
    ! [X: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ).

% DERIV_arctan
thf(fact_9422_arsinh__real__has__field__derivative,axiom,
    ! [X: real,A3: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A3 ) ) ).

% arsinh_real_has_field_derivative
thf(fact_9423_DERIV__real__sqrt__generic,axiom,
    ! [X: real,D3: real] :
      ( ( X != zero_zero_real )
     => ( ( ( ord_less_real @ zero_zero_real @ X )
         => ( D3
            = ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( ( ord_less_real @ X @ zero_zero_real )
           => ( D3
              = ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
         => ( has_fi5821293074295781190e_real @ sqrt @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_real_sqrt_generic
thf(fact_9424_arcosh__real__has__field__derivative,axiom,
    ! [X: real,A3: set_real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A3 ) ) ) ).

% arcosh_real_has_field_derivative
thf(fact_9425_artanh__real__has__field__derivative,axiom,
    ! [X: real,A3: set_real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ A3 ) ) ) ).

% artanh_real_has_field_derivative
thf(fact_9426_DERIV__power__series_H,axiom,
    ! [R3: real,F: nat > real,X0: real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R3 ) @ R3 ) )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X4 @ N3 ) ) ) )
     => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R3 ) @ R3 ) )
       => ( ( ord_less_real @ zero_zero_real @ R3 )
         => ( has_fi5821293074295781190e_real
            @ ^ [X3: real] :
                ( suminf_real
                @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X3 @ ( suc @ N3 ) ) ) )
            @ ( suminf_real
              @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X0 @ N3 ) ) )
            @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).

% DERIV_power_series'
thf(fact_9427_DERIV__real__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_real_root
thf(fact_9428_DERIV__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_arccos
thf(fact_9429_DERIV__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_arcsin
thf(fact_9430_Maclaurin__all__le__objl,axiom,
    ! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
      ( ( ( ( Diff @ zero_zero_nat )
          = F )
        & ! [M2: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
     => ? [T3: real] :
          ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
          & ( ( F @ X )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X @ M3 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).

% Maclaurin_all_le_objl
thf(fact_9431_Maclaurin__all__le,axiom,
    ! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M2: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
            & ( ( F @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_all_le
thf(fact_9432_DERIV__odd__real__root,axiom,
    ! [N: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( X != zero_zero_real )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_odd_real_root
thf(fact_9433_Maclaurin__minus,axiom,
    ! [H: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ H @ zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M2: nat,T3: real] :
                ( ( ( ord_less_nat @ M2 @ N )
                  & ( ord_less_eq_real @ H @ T3 )
                  & ( ord_less_eq_real @ T3 @ zero_zero_real ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
           => ? [T3: real] :
                ( ( ord_less_real @ H @ T3 )
                & ( ord_less_real @ T3 @ zero_zero_real )
                & ( ( F @ H )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_minus
thf(fact_9434_Maclaurin2,axiom,
    ! [H: real,Diff: nat > real > real,F: real > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T3: real] :
              ( ( ( ord_less_nat @ M2 @ N )
                & ( ord_less_eq_real @ zero_zero_real @ T3 )
                & ( ord_less_eq_real @ T3 @ H ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ? [T3: real] :
              ( ( ord_less_real @ zero_zero_real @ T3 )
              & ( ord_less_eq_real @ T3 @ H )
              & ( ( F @ H )
                = ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H @ M3 ) )
                    @ ( set_ord_lessThan_nat @ N ) )
                  @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H @ N ) ) ) ) ) ) ) ) ).

% Maclaurin2
thf(fact_9435_Maclaurin,axiom,
    ! [H: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ H )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M2: nat,T3: real] :
                ( ( ( ord_less_nat @ M2 @ N )
                  & ( ord_less_eq_real @ zero_zero_real @ T3 )
                  & ( ord_less_eq_real @ T3 @ H ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
           => ? [T3: real] :
                ( ( ord_less_real @ zero_zero_real @ T3 )
                & ( ord_less_real @ T3 @ H )
                & ( ( F @ H )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin
thf(fact_9436_Maclaurin__all__lt,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( X != zero_zero_real )
         => ( ! [M2: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
           => ? [T3: real] :
                ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
                & ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
                & ( ( F @ X )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_all_lt
thf(fact_9437_Maclaurin__bi__le,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M2: nat,T3: real] :
            ( ( ( ord_less_nat @ M2 @ N )
              & ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) ) )
           => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
            & ( ( F @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).

% Maclaurin_bi_le
thf(fact_9438_Taylor__down,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T3: real] :
              ( ( ( ord_less_nat @ M2 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ? [T3: real] :
                  ( ( ord_less_real @ A @ T3 )
                  & ( ord_less_real @ T3 @ C )
                  & ( ( F @ A )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_down
thf(fact_9439_Taylor__up,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T3: real] :
              ( ( ( ord_less_nat @ M2 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_real @ C @ B )
             => ? [T3: real] :
                  ( ( ord_less_real @ C @ T3 )
                  & ( ord_less_real @ T3 @ B )
                  & ( ( F @ B )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_up
thf(fact_9440_Taylor,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T3: real] :
              ( ( ( ord_less_nat @ M2 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ( ( ord_less_eq_real @ A @ X )
               => ( ( ord_less_eq_real @ X @ B )
                 => ( ( X != C )
                   => ? [T3: real] :
                        ( ( ( ord_less_real @ X @ C )
                         => ( ( ord_less_real @ X @ T3 )
                            & ( ord_less_real @ T3 @ C ) ) )
                        & ( ~ ( ord_less_real @ X @ C )
                         => ( ( ord_less_real @ C @ T3 )
                            & ( ord_less_real @ T3 @ X ) ) )
                        & ( ( F @ X )
                          = ( plus_plus_real
                            @ ( groups6591440286371151544t_real
                              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ M3 ) )
                              @ ( set_ord_lessThan_nat @ N ) )
                            @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% Taylor
thf(fact_9441_Maclaurin__lemma2,axiom,
    ! [N: nat,H: real,Diff: nat > real > real,K: nat,B5: real] :
      ( ! [M2: nat,T3: real] :
          ( ( ( ord_less_nat @ M2 @ N )
            & ( ord_less_eq_real @ zero_zero_real @ T3 )
            & ( ord_less_eq_real @ T3 @ H ) )
         => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
     => ( ( N
          = ( suc @ K ) )
       => ! [M4: nat,T4: real] :
            ( ( ( ord_less_nat @ M4 @ N )
              & ( ord_less_eq_real @ zero_zero_real @ T4 )
              & ( ord_less_eq_real @ T4 @ H ) )
           => ( has_fi5821293074295781190e_real
              @ ^ [U3: real] :
                  ( minus_minus_real @ ( Diff @ M4 @ U3 )
                  @ ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [P3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M4 @ P3 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P3 ) ) @ ( power_power_real @ U3 @ P3 ) )
                      @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M4 ) ) )
                    @ ( times_times_real @ B5 @ ( divide_divide_real @ ( power_power_real @ U3 @ ( minus_minus_nat @ N @ M4 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M4 ) ) ) ) ) )
              @ ( minus_minus_real @ ( Diff @ ( suc @ M4 ) @ T4 )
                @ ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [P3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M4 ) @ P3 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P3 ) ) @ ( power_power_real @ T4 @ P3 ) )
                    @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M4 ) ) ) )
                  @ ( times_times_real @ B5 @ ( divide_divide_real @ ( power_power_real @ T4 @ ( minus_minus_nat @ N @ ( suc @ M4 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M4 ) ) ) ) ) ) )
              @ ( topolo2177554685111907308n_real @ T4 @ top_top_set_real ) ) ) ) ) ).

% Maclaurin_lemma2
thf(fact_9442_DERIV__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( has_fi5821293074295781190e_real
        @ ^ [X10: real] :
            ( suminf_real
            @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X10 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
        @ ( suminf_real
          @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( power_power_real @ X @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_arctan_series
thf(fact_9443_DERIV__even__real__root,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( ord_less_real @ X @ zero_zero_real )
         => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_even_real_root
thf(fact_9444_LIM__fun__gt__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ! [X5: real] :
                ( ( ( X5 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X5 ) ) @ R2 ) )
               => ( ord_less_real @ zero_zero_real @ ( F @ X5 ) ) ) ) ) ) ).

% LIM_fun_gt_zero
thf(fact_9445_LIM__fun__not__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( L != zero_zero_real )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ! [X5: real] :
                ( ( ( X5 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X5 ) ) @ R2 ) )
               => ( ( F @ X5 )
                 != zero_zero_real ) ) ) ) ) ).

% LIM_fun_not_zero
thf(fact_9446_LIM__fun__less__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ! [X5: real] :
                ( ( ( X5 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X5 ) ) @ R2 ) )
               => ( ord_less_real @ ( F @ X5 ) @ zero_zero_real ) ) ) ) ) ).

% LIM_fun_less_zero
thf(fact_9447_isCont__real__sqrt,axiom,
    ! [X: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ sqrt ) ).

% isCont_real_sqrt
thf(fact_9448_isCont__real__root,axiom,
    ! [X: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ ( root @ N ) ) ).

% isCont_real_root
thf(fact_9449_isCont__arcosh,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arcosh_real ) ) ).

% isCont_arcosh
thf(fact_9450_LIM__cos__div__sin,axiom,
    ( filterlim_real_real
    @ ^ [X3: real] : ( divide_divide_real @ ( cos_real @ X3 ) @ ( sin_real @ X3 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).

% LIM_cos_div_sin
thf(fact_9451_isCont__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arccos ) ) ) ).

% isCont_arccos
thf(fact_9452_isCont__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ arcsin ) ) ) ).

% isCont_arcsin
thf(fact_9453_isCont__artanh,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ artanh_real ) ) ) ).

% isCont_artanh
thf(fact_9454_isCont__inverse__function,axiom,
    ! [D: real,X: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ! [Z4: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z4 @ X ) ) @ D )
           => ( ( G @ ( F @ Z4 ) )
              = Z4 ) )
       => ( ! [Z4: real] :
              ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z4 @ X ) ) @ D )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ F ) )
         => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ).

% isCont_inverse_function
thf(fact_9455_GMVT_H,axiom,
    ! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F3: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [Z4: real] :
            ( ( ord_less_eq_real @ A @ Z4 )
           => ( ( ord_less_eq_real @ Z4 @ B )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ F ) ) )
       => ( ! [Z4: real] :
              ( ( ord_less_eq_real @ A @ Z4 )
             => ( ( ord_less_eq_real @ Z4 @ B )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ G ) ) )
         => ( ! [Z4: real] :
                ( ( ord_less_real @ A @ Z4 )
               => ( ( ord_less_real @ Z4 @ B )
                 => ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z4 ) @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) ) ) )
           => ( ! [Z4: real] :
                  ( ( ord_less_real @ A @ Z4 )
                 => ( ( ord_less_real @ Z4 @ B )
                   => ( has_fi5821293074295781190e_real @ F @ ( F3 @ Z4 ) @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) ) ) )
             => ? [C3: real] :
                  ( ( ord_less_real @ A @ C3 )
                  & ( ord_less_real @ C3 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C3 ) )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F3 @ C3 ) ) ) ) ) ) ) ) ) ).

% GMVT'
thf(fact_9456_summable__Leibniz_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
         => ! [N6: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) ) ) ) ) ) ) ).

% summable_Leibniz(3)
thf(fact_9457_summable__Leibniz_I2_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
         => ! [N6: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) ) ) ) ) ) ) ).

% summable_Leibniz(2)
thf(fact_9458_mult__nat__right__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat
        @ ^ [X3: nat] : ( times_times_nat @ X3 @ C )
        @ at_top_nat
        @ at_top_nat ) ) ).

% mult_nat_right_at_top
thf(fact_9459_mult__nat__left__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).

% mult_nat_left_at_top
thf(fact_9460_LIMSEQ__root,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( root @ N3 @ ( semiri5074537144036343181t_real @ N3 ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_root
thf(fact_9461_nested__sequence__unique,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N2 ) ) @ ( G @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
         => ( ( filterlim_nat_real
              @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L3: real] :
                ( ! [N6: nat] : ( ord_less_eq_real @ ( F @ N6 ) @ L3 )
                & ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L3 ) @ at_top_nat )
                & ! [N6: nat] : ( ord_less_eq_real @ L3 @ ( G @ N6 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L3 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_9462_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N3 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_9463_LIMSEQ__root__const,axiom,
    ! [C: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( root @ N3 @ C )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat ) ) ).

% LIMSEQ_root_const
thf(fact_9464_LIMSEQ__inverse__real__of__nat,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat
thf(fact_9465_LIMSEQ__inverse__real__of__nat__add,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( plus_plus_real @ R @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add
thf(fact_9466_increasing__LIMSEQ,axiom,
    ! [F: nat > real,L: real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ L )
       => ( ! [E2: real] :
              ( ( ord_less_real @ zero_zero_real @ E2 )
             => ? [N6: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N6 ) @ E2 ) ) )
         => ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_9467_LIMSEQ__realpow__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_9468_LIMSEQ__divide__realpow__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( divide_divide_real @ A @ ( power_power_real @ X @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_9469_LIMSEQ__abs__realpow__zero2,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero2
thf(fact_9470_LIMSEQ__abs__realpow__zero,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero
thf(fact_9471_LIMSEQ__inverse__realpow__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( inverse_inverse_real @ ( power_power_real @ X @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_realpow_zero
thf(fact_9472_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( plus_plus_real @ R @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_9473_tendsto__exp__limit__sequentially,axiom,
    ! [X: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ) @ N3 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ at_top_nat ) ).

% tendsto_exp_limit_sequentially
thf(fact_9474_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
    ! [R: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( times_times_real @ R @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_9475_summable__Leibniz_I1_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ).

% summable_Leibniz(1)
thf(fact_9476_summable,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ) ).

% summable
thf(fact_9477_cos__diff__limit__1,axiom,
    ! [Theta: nat > real,Theta2: real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ~ ! [K3: nat > int] :
            ~ ( filterlim_nat_real
              @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
              @ ( topolo2815343760600316023s_real @ Theta2 )
              @ at_top_nat ) ) ).

% cos_diff_limit_1
thf(fact_9478_cos__limit__1,axiom,
    ! [Theta: nat > real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ? [K3: nat > int] :
          ( filterlim_nat_real
          @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat ) ) ).

% cos_limit_1
thf(fact_9479_summable__Leibniz_I4_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(4)
thf(fact_9480_zeroseq__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% zeroseq_arctan_series
thf(fact_9481_summable__Leibniz_H_I2_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( ord_less_eq_real
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) ) ) ) ) ).

% summable_Leibniz'(2)
thf(fact_9482_summable__Leibniz_H_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( filterlim_nat_real
            @ ^ [N3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(3)
thf(fact_9483_sums__alternating__upper__lower,axiom,
    ! [A: nat > real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
         => ? [L3: real] :
              ( ! [N6: nat] :
                  ( ord_less_eq_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) )
                  @ L3 )
              & ( filterlim_nat_real
                @ ^ [N3: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
                @ ( topolo2815343760600316023s_real @ L3 )
                @ at_top_nat )
              & ! [N6: nat] :
                  ( ord_less_eq_real @ L3
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) ) )
              & ( filterlim_nat_real
                @ ^ [N3: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
                @ ( topolo2815343760600316023s_real @ L3 )
                @ at_top_nat ) ) ) ) ) ).

% sums_alternating_upper_lower
thf(fact_9484_summable__Leibniz_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(5)
thf(fact_9485_summable__Leibniz_H_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( filterlim_nat_real
            @ ^ [N3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(5)
thf(fact_9486_summable__Leibniz_H_I4_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( ord_less_eq_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).

% summable_Leibniz'(4)
thf(fact_9487_real__bounded__linear,axiom,
    ( real_V5970128139526366754l_real
    = ( ^ [F2: real > real] :
        ? [C4: real] :
          ( F2
          = ( ^ [X3: real] : ( times_times_real @ X3 @ C4 ) ) ) ) ) ).

% real_bounded_linear
thf(fact_9488_filterlim__Suc,axiom,
    filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).

% filterlim_Suc
thf(fact_9489_tendsto__arctan__at__bot,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).

% tendsto_arctan_at_bot
thf(fact_9490_tendsto__exp__limit__at__right,axiom,
    ! [X: real] :
      ( filterlim_real_real
      @ ^ [Y6: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X @ Y6 ) ) @ ( divide_divide_real @ one_one_real @ Y6 ) )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% tendsto_exp_limit_at_right
thf(fact_9491_artanh__real__at__right__1,axiom,
    filterlim_real_real @ artanh_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ one_one_real ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% artanh_real_at_right_1
thf(fact_9492_filterlim__tan__at__right,axiom,
    filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% filterlim_tan_at_right
thf(fact_9493_tanh__real__at__bot,axiom,
    filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ one_one_real ) ) @ at_bot_real ).

% tanh_real_at_bot
thf(fact_9494_tendsto__arcosh__at__left__1,axiom,
    filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).

% tendsto_arcosh_at_left_1
thf(fact_9495_filterlim__pow__at__bot__odd,axiom,
    ! [N: nat,F: real > real,F4: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F4 )
       => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X3: real] : ( power_power_real @ ( F @ X3 ) @ N )
            @ at_bot_real
            @ F4 ) ) ) ) ).

% filterlim_pow_at_bot_odd
thf(fact_9496_filterlim__pow__at__bot__even,axiom,
    ! [N: nat,F: real > real,F4: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F4 )
       => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X3: real] : ( power_power_real @ ( F @ X3 ) @ N )
            @ at_top_real
            @ F4 ) ) ) ) ).

% filterlim_pow_at_bot_even
thf(fact_9497_sqrt__at__top,axiom,
    filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).

% sqrt_at_top
thf(fact_9498_filterlim__real__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).

% filterlim_real_sequentially
thf(fact_9499_filterlim__real__at__infinity__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_infinity_real @ at_top_nat ).

% filterlim_real_at_infinity_sequentially
thf(fact_9500_greaterThan__0,axiom,
    ( ( set_or1210151606488870762an_nat @ zero_zero_nat )
    = ( image_nat_nat @ suc @ top_top_set_nat ) ) ).

% greaterThan_0
thf(fact_9501_tanh__real__at__top,axiom,
    filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ one_one_real ) @ at_top_real ).

% tanh_real_at_top
thf(fact_9502_artanh__real__at__left__1,axiom,
    filterlim_real_real @ artanh_real @ at_top_real @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5984915006950818249n_real @ one_one_real ) ) ).

% artanh_real_at_left_1
thf(fact_9503_greaterThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).

% greaterThan_Suc
thf(fact_9504_ln__x__over__x__tendsto__0,axiom,
    ( filterlim_real_real
    @ ^ [X3: real] : ( divide_divide_real @ ( ln_ln_real @ X3 ) @ X3 )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_real ) ).

% ln_x_over_x_tendsto_0
thf(fact_9505_tendsto__at__topI__sequentially__real,axiom,
    ! [F: real > real,Y: real] :
      ( ( order_mono_real_real @ F )
     => ( ( filterlim_nat_real
          @ ^ [N3: nat] : ( F @ ( semiri5074537144036343181t_real @ N3 ) )
          @ ( topolo2815343760600316023s_real @ Y )
          @ at_top_nat )
       => ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Y ) @ at_top_real ) ) ) ).

% tendsto_at_topI_sequentially_real
thf(fact_9506_tendsto__power__div__exp__0,axiom,
    ! [K: nat] :
      ( filterlim_real_real
      @ ^ [X3: real] : ( divide_divide_real @ ( power_power_real @ X3 @ K ) @ ( exp_real @ X3 ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_real ) ).

% tendsto_power_div_exp_0
thf(fact_9507_tendsto__exp__limit__at__top,axiom,
    ! [X: real] :
      ( filterlim_real_real
      @ ^ [Y6: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ Y6 ) ) @ Y6 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ at_top_real ) ).

% tendsto_exp_limit_at_top
thf(fact_9508_filterlim__tan__at__left,axiom,
    filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% filterlim_tan_at_left
thf(fact_9509_tendsto__arctan__at__top,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).

% tendsto_arctan_at_top
thf(fact_9510_lhopital__right__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F3: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top
thf(fact_9511_eventually__sequentially__Suc,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat
        @ ^ [I4: nat] : ( P @ ( suc @ I4 ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_Suc
thf(fact_9512_eventually__sequentially__seg,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat
        @ ^ [N3: nat] : ( P @ ( plus_plus_nat @ N3 @ K ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_seg
thf(fact_9513_sequentially__offset,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat @ P @ at_top_nat )
     => ( eventually_nat
        @ ^ [I4: nat] : ( P @ ( plus_plus_nat @ I4 @ K ) )
        @ at_top_nat ) ) ).

% sequentially_offset
thf(fact_9514_eventually__at__right__to__0,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X3: real] : ( P @ ( plus_plus_real @ X3 @ A ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_right_to_0
thf(fact_9515_lhopital__left__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F3: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_top
thf(fact_9516_lhopital__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F3: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_top
thf(fact_9517_lhopital,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F3: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ) ) ).

% lhopital
thf(fact_9518_lhopital__left,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F3: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ) ) ).

% lhopital_left
thf(fact_9519_lhopital__right__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F3: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_top
thf(fact_9520_lhopital__left__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F3: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_bot
thf(fact_9521_lhopital__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F3: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_bot
thf(fact_9522_lhopital__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F3: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top
thf(fact_9523_lhospital__at__top__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F3: real > real,X: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ at_top_real )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ at_top_real )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ at_top_real )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ at_top_real )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ at_top_real ) ) ) ) ) ) ).

% lhospital_at_top_at_top
thf(fact_9524_lhopital__left__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F3: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top
thf(fact_9525_lhopital__right,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F3: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right
thf(fact_9526_lhopital__right__0,axiom,
    ! [F0: real > real,G0: real > real,G2: real > real,F3: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G0 @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F0 @ X3 ) @ ( G0 @ X3 ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right_0
thf(fact_9527_lhopital__right__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F3: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_bot
thf(fact_9528_lhopital__right__0__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F3: real > real,X: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F3 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F3 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).

% lhopital_right_0_at_top
thf(fact_9529_GMVT,axiom,
    ! [A: real,B: real,F: real > real,G: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ( ord_less_eq_real @ A @ X4 )
              & ( ord_less_eq_real @ X4 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
       => ( ! [X4: real] :
              ( ( ( ord_less_real @ A @ X4 )
                & ( ord_less_real @ X4 @ B ) )
             => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
         => ( ! [X4: real] :
                ( ( ( ord_less_eq_real @ A @ X4 )
                  & ( ord_less_eq_real @ X4 @ B ) )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ G ) )
           => ( ! [X4: real] :
                  ( ( ( ord_less_real @ A @ X4 )
                    & ( ord_less_real @ X4 @ B ) )
                 => ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
             => ? [G_c: real,F_c: real,C3: real] :
                  ( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
                  & ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
                  & ( ord_less_real @ A @ C3 )
                  & ( ord_less_real @ C3 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).

% GMVT
thf(fact_9530_Bseq__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( bfun_nat_real @ ( power_power_real @ X ) @ at_top_nat ) ) ) ).

% Bseq_realpow
thf(fact_9531_MVT,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ? [L3: real,Z4: real] :
              ( ( ord_less_real @ A @ Z4 )
              & ( ord_less_real @ Z4 @ B )
              & ( has_fi5821293074295781190e_real @ F @ L3 @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) )
              & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                = ( times_times_real @ ( minus_minus_real @ B @ A ) @ L3 ) ) ) ) ) ) ).

% MVT
thf(fact_9532_continuous__on__arcosh_H,axiom,
    ! [A3: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A3 @ F )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A3 )
           => ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
       => ( topolo5044208981011980120l_real @ A3
          @ ^ [X3: real] : ( arcosh_real @ ( F @ X3 ) ) ) ) ) ).

% continuous_on_arcosh'
thf(fact_9533_continuous__on__arccos_H,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arccos ).

% continuous_on_arccos'
thf(fact_9534_continuous__on__arcsin_H,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arcsin ).

% continuous_on_arcsin'
thf(fact_9535_continuous__on__artanh,axiom,
    ! [A3: set_real] :
      ( ( ord_less_eq_set_real @ A3 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A3 @ artanh_real ) ) ).

% continuous_on_artanh
thf(fact_9536_continuous__on__artanh_H,axiom,
    ! [A3: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A3 @ F )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A3 )
           => ( member_real @ ( F @ X4 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) )
       => ( topolo5044208981011980120l_real @ A3
          @ ^ [X3: real] : ( artanh_real @ ( F @ X3 ) ) ) ) ) ).

% continuous_on_artanh'
thf(fact_9537_mvt,axiom,
    ! [A: real,B: real,F: real > real,F3: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_de1759254742604945161l_real @ F @ ( F3 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ~ ! [Xi: real] :
                ( ( ord_less_real @ A @ Xi )
               => ( ( ord_less_real @ Xi @ B )
                 => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                   != ( F3 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).

% mvt
thf(fact_9538_card__length__sum__list__rec,axiom,
    ! [M: nat,N5: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( finite_card_list_nat
          @ ( collect_list_nat
            @ ^ [L2: list_nat] :
                ( ( ( size_size_list_nat @ L2 )
                  = M )
                & ( ( groups4561878855575611511st_nat @ L2 )
                  = N5 ) ) ) )
        = ( plus_plus_nat
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L2: list_nat] :
                  ( ( ( size_size_list_nat @ L2 )
                    = ( minus_minus_nat @ M @ one_one_nat ) )
                  & ( ( groups4561878855575611511st_nat @ L2 )
                    = N5 ) ) ) )
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L2: list_nat] :
                  ( ( ( size_size_list_nat @ L2 )
                    = M )
                  & ( ( plus_plus_nat @ ( groups4561878855575611511st_nat @ L2 ) @ one_one_nat )
                    = N5 ) ) ) ) ) ) ) ).

% card_length_sum_list_rec
thf(fact_9539_card__length__sum__list,axiom,
    ! [M: nat,N5: nat] :
      ( ( finite_card_list_nat
        @ ( collect_list_nat
          @ ^ [L2: list_nat] :
              ( ( ( size_size_list_nat @ L2 )
                = M )
              & ( ( groups4561878855575611511st_nat @ L2 )
                = N5 ) ) ) )
      = ( binomial @ ( minus_minus_nat @ ( plus_plus_nat @ N5 @ M ) @ one_one_nat ) @ N5 ) ) ).

% card_length_sum_list
thf(fact_9540_surj__int__encode,axiom,
    ( ( image_int_nat @ nat_int_encode @ top_top_set_int )
    = top_top_set_nat ) ).

% surj_int_encode
thf(fact_9541_int__encode__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ( nat_int_encode @ X )
        = ( nat_int_encode @ Y ) )
      = ( X = Y ) ) ).

% int_encode_eq
thf(fact_9542_bij__int__encode,axiom,
    bij_betw_int_nat @ nat_int_encode @ top_top_set_int @ top_top_set_nat ).

% bij_int_encode
thf(fact_9543_Sup__nat__empty,axiom,
    ( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% Sup_nat_empty
thf(fact_9544_Inf__real__def,axiom,
    ( comple4887499456419720421f_real
    = ( ^ [X8: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X8 ) ) ) ) ) ).

% Inf_real_def
thf(fact_9545_binomial__def,axiom,
    ( binomial
    = ( ^ [N3: nat,K2: nat] :
          ( finite_card_set_nat
          @ ( collect_set_nat
            @ ^ [K7: set_nat] :
                ( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N3 ) ) )
                & ( ( finite_card_nat @ K7 )
                  = K2 ) ) ) ) ) ) ).

% binomial_def
thf(fact_9546_inj__sgn__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( inj_on_real_real
        @ ^ [Y6: real] : ( times_times_real @ ( sgn_sgn_real @ Y6 ) @ ( power_power_real @ ( abs_abs_real @ Y6 ) @ N ) )
        @ top_top_set_real ) ) ).

% inj_sgn_power
thf(fact_9547_surj__int__decode,axiom,
    ( ( image_nat_int @ nat_int_decode @ top_top_set_nat )
    = top_top_set_int ) ).

% surj_int_decode
thf(fact_9548_int__encode__inverse,axiom,
    ! [X: int] :
      ( ( nat_int_decode @ ( nat_int_encode @ X ) )
      = X ) ).

% int_encode_inverse
thf(fact_9549_int__decode__inverse,axiom,
    ! [N: nat] :
      ( ( nat_int_encode @ ( nat_int_decode @ N ) )
      = N ) ).

% int_decode_inverse
thf(fact_9550_int__decode__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( nat_int_decode @ X )
        = ( nat_int_decode @ Y ) )
      = ( X = Y ) ) ).

% int_decode_eq
thf(fact_9551_bij__int__decode,axiom,
    bij_betw_nat_int @ nat_int_decode @ top_top_set_nat @ top_top_set_int ).

% bij_int_decode
thf(fact_9552_log__inj,axiom,
    ! [B: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( inj_on_real_real @ ( log2 @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% log_inj
thf(fact_9553_inj__int__decode,axiom,
    ! [A3: set_nat] : ( inj_on_nat_int @ nat_int_decode @ A3 ) ).

% inj_int_decode
thf(fact_9554_inj__Suc,axiom,
    ! [N5: set_nat] : ( inj_on_nat_nat @ suc @ N5 ) ).

% inj_Suc
thf(fact_9555_inj__prod__encode,axiom,
    ! [A3: set_Pr1261947904930325089at_nat] : ( inj_on2178005380612969504at_nat @ nat_prod_encode @ A3 ) ).

% inj_prod_encode
thf(fact_9556_inj__list__encode,axiom,
    ! [A3: set_list_nat] : ( inj_on_list_nat_nat @ nat_list_encode @ A3 ) ).

% inj_list_encode
thf(fact_9557_inj__int__encode,axiom,
    ! [A3: set_int] : ( inj_on_int_nat @ nat_int_encode @ A3 ) ).

% inj_int_encode
thf(fact_9558_inj__on__set__encode,axiom,
    inj_on_set_nat_nat @ nat_set_encode @ ( collect_set_nat @ finite_finite_nat ) ).

% inj_on_set_encode
thf(fact_9559_inj__on__diff__nat,axiom,
    ! [N5: set_nat,K: nat] :
      ( ! [N2: nat] :
          ( ( member_nat @ N2 @ N5 )
         => ( ord_less_eq_nat @ K @ N2 ) )
     => ( inj_on_nat_nat
        @ ^ [N3: nat] : ( minus_minus_nat @ N3 @ K )
        @ N5 ) ) ).

% inj_on_diff_nat
thf(fact_9560_inj__on__char__of__nat,axiom,
    inj_on_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% inj_on_char_of_nat
thf(fact_9561_Max__divisors__self__nat,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ N ) ) )
        = N ) ) ).

% Max_divisors_self_nat
thf(fact_9562_atLeastLessThan__add__Un,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( set_or4665077453230672383an_nat @ I @ ( plus_plus_nat @ J @ K ) )
        = ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% atLeastLessThan_add_Un
thf(fact_9563_card__le__Suc__Max,axiom,
    ! [S2: set_nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ S2 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S2 ) ) ) ) ).

% card_le_Suc_Max
thf(fact_9564_Sup__nat__def,axiom,
    ( complete_Sup_Sup_nat
    = ( ^ [X8: set_nat] : ( if_nat @ ( X8 = bot_bot_set_nat ) @ zero_zero_nat @ ( lattic8265883725875713057ax_nat @ X8 ) ) ) ) ).

% Sup_nat_def
thf(fact_9565_divide__nat__def,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat
          @ ( lattic8265883725875713057ax_nat
            @ ( collect_nat
              @ ^ [K2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K2 @ N3 ) @ M3 ) ) ) ) ) ) ).

% divide_nat_def
thf(fact_9566_gcd__is__Max__divisors__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( gcd_gcd_nat @ M @ N )
        = ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D4: nat] :
                ( ( dvd_dvd_nat @ D4 @ M )
                & ( dvd_dvd_nat @ D4 @ N ) ) ) ) ) ) ).

% gcd_is_Max_divisors_nat
thf(fact_9567_Gcd__eq__Max,axiom,
    ! [M10: set_nat] :
      ( ( finite_finite_nat @ M10 )
     => ( ( M10 != bot_bot_set_nat )
       => ( ~ ( member_nat @ zero_zero_nat @ M10 )
         => ( ( gcd_Gcd_nat @ M10 )
            = ( lattic8265883725875713057ax_nat
              @ ( comple7806235888213564991et_nat
                @ ( image_nat_set_nat
                  @ ^ [M3: nat] :
                      ( collect_nat
                      @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M3 ) )
                  @ M10 ) ) ) ) ) ) ) ).

% Gcd_eq_Max
thf(fact_9568_quotient__of__def,axiom,
    ( quotient_of
    = ( ^ [X3: rat] :
          ( the_Pr4378521158711661632nt_int
          @ ^ [Pair: product_prod_int_int] :
              ( ( X3
                = ( fract @ ( product_fst_int_int @ Pair ) @ ( product_snd_int_int @ Pair ) ) )
              & ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ Pair ) )
              & ( algebr932160517623751201me_int @ ( product_fst_int_int @ Pair ) @ ( product_snd_int_int @ Pair ) ) ) ) ) ) ).

% quotient_of_def
thf(fact_9569_coprime__abs__left__iff,axiom,
    ! [K: int,L: int] :
      ( ( algebr932160517623751201me_int @ ( abs_abs_int @ K ) @ L )
      = ( algebr932160517623751201me_int @ K @ L ) ) ).

% coprime_abs_left_iff
thf(fact_9570_coprime__abs__right__iff,axiom,
    ! [K: int,L: int] :
      ( ( algebr932160517623751201me_int @ K @ ( abs_abs_int @ L ) )
      = ( algebr932160517623751201me_int @ K @ L ) ) ).

% coprime_abs_right_iff
thf(fact_9571_Max__divisors__self__int,axiom,
    ! [N: int] :
      ( ( N != zero_zero_int )
     => ( ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D4: int] : ( dvd_dvd_int @ D4 @ N ) ) )
        = ( abs_abs_int @ N ) ) ) ).

% Max_divisors_self_int
thf(fact_9572_normalize__stable,axiom,
    ! [Q2: int,P2: int] :
      ( ( ord_less_int @ zero_zero_int @ Q2 )
     => ( ( algebr932160517623751201me_int @ P2 @ Q2 )
       => ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
          = ( product_Pair_int_int @ P2 @ Q2 ) ) ) ) ).

% normalize_stable
thf(fact_9573_sup__nat__def,axiom,
    sup_sup_nat = ord_max_nat ).

% sup_nat_def
thf(fact_9574_sup__int__def,axiom,
    sup_sup_int = ord_max_int ).

% sup_int_def
thf(fact_9575_coprime__crossproduct__int,axiom,
    ! [A: int,D: int,B: int,C: int] :
      ( ( algebr932160517623751201me_int @ A @ D )
     => ( ( algebr932160517623751201me_int @ B @ C )
       => ( ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ C ) )
            = ( times_times_int @ ( abs_abs_int @ B ) @ ( abs_abs_int @ D ) ) )
          = ( ( ( abs_abs_int @ A )
              = ( abs_abs_int @ B ) )
            & ( ( abs_abs_int @ C )
              = ( abs_abs_int @ D ) ) ) ) ) ) ).

% coprime_crossproduct_int
thf(fact_9576_Rat__cases,axiom,
    ! [Q2: rat] :
      ~ ! [A4: int,B4: int] :
          ( ( Q2
            = ( fract @ A4 @ B4 ) )
         => ( ( ord_less_int @ zero_zero_int @ B4 )
           => ~ ( algebr932160517623751201me_int @ A4 @ B4 ) ) ) ).

% Rat_cases
thf(fact_9577_Rat__induct,axiom,
    ! [P: rat > $o,Q2: rat] :
      ( ! [A4: int,B4: int] :
          ( ( ord_less_int @ zero_zero_int @ B4 )
         => ( ( algebr932160517623751201me_int @ A4 @ B4 )
           => ( P @ ( fract @ A4 @ B4 ) ) ) )
     => ( P @ Q2 ) ) ).

% Rat_induct
thf(fact_9578_coprime__common__divisor__int,axiom,
    ! [A: int,B: int,X: int] :
      ( ( algebr932160517623751201me_int @ A @ B )
     => ( ( dvd_dvd_int @ X @ A )
       => ( ( dvd_dvd_int @ X @ B )
         => ( ( abs_abs_int @ X )
            = one_one_int ) ) ) ) ).

% coprime_common_divisor_int
thf(fact_9579_gcd__is__Max__divisors__int,axiom,
    ! [N: int,M: int] :
      ( ( N != zero_zero_int )
     => ( ( gcd_gcd_int @ M @ N )
        = ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D4: int] :
                ( ( dvd_dvd_int @ D4 @ M )
                & ( dvd_dvd_int @ D4 @ N ) ) ) ) ) ) ).

% gcd_is_Max_divisors_int
thf(fact_9580_Rat__cases__nonzero,axiom,
    ! [Q2: rat] :
      ( ! [A4: int,B4: int] :
          ( ( Q2
            = ( fract @ A4 @ B4 ) )
         => ( ( ord_less_int @ zero_zero_int @ B4 )
           => ( ( A4 != zero_zero_int )
             => ~ ( algebr932160517623751201me_int @ A4 @ B4 ) ) ) )
     => ( Q2 = zero_zero_rat ) ) ).

% Rat_cases_nonzero
thf(fact_9581_quotient__of__unique,axiom,
    ! [R: rat] :
    ? [X4: product_prod_int_int] :
      ( ( R
        = ( fract @ ( product_fst_int_int @ X4 ) @ ( product_snd_int_int @ X4 ) ) )
      & ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ X4 ) )
      & ( algebr932160517623751201me_int @ ( product_fst_int_int @ X4 ) @ ( product_snd_int_int @ X4 ) )
      & ! [Y5: product_prod_int_int] :
          ( ( ( R
              = ( fract @ ( product_fst_int_int @ Y5 ) @ ( product_snd_int_int @ Y5 ) ) )
            & ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ Y5 ) )
            & ( algebr932160517623751201me_int @ ( product_fst_int_int @ Y5 ) @ ( product_snd_int_int @ Y5 ) ) )
         => ( Y5 = X4 ) ) ) ).

% quotient_of_unique
thf(fact_9582_Rat_Opositive_Orsp,axiom,
    ( bNF_re8699439704749558557nt_o_o @ ratrel
    @ ^ [Y3: $o,Z: $o] : ( Y3 = Z )
    @ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) )
    @ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) ) ) ).

% Rat.positive.rsp
thf(fact_9583_Rats__abs__iff,axiom,
    ! [X: real] :
      ( ( member_real @ ( abs_abs_real @ X ) @ field_5140801741446780682s_real )
      = ( member_real @ X @ field_5140801741446780682s_real ) ) ).

% Rats_abs_iff
thf(fact_9584_coprime__int__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( algebr932160517623751201me_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( algebr934650988132801477me_nat @ M @ N ) ) ).

% coprime_int_iff
thf(fact_9585_coprime__nat__abs__right__iff,axiom,
    ! [N: nat,K: int] :
      ( ( algebr934650988132801477me_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( algebr932160517623751201me_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).

% coprime_nat_abs_right_iff
thf(fact_9586_coprime__nat__abs__left__iff,axiom,
    ! [K: int,N: nat] :
      ( ( algebr934650988132801477me_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( algebr932160517623751201me_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% coprime_nat_abs_left_iff
thf(fact_9587_coprime__crossproduct__nat,axiom,
    ! [A: nat,D: nat,B: nat,C: nat] :
      ( ( algebr934650988132801477me_nat @ A @ D )
     => ( ( algebr934650988132801477me_nat @ B @ C )
       => ( ( ( times_times_nat @ A @ C )
            = ( times_times_nat @ B @ D ) )
          = ( ( A = B )
            & ( C = D ) ) ) ) ) ).

% coprime_crossproduct_nat
thf(fact_9588_coprime__Suc__right__nat,axiom,
    ! [N: nat] : ( algebr934650988132801477me_nat @ N @ ( suc @ N ) ) ).

% coprime_Suc_right_nat
thf(fact_9589_coprime__Suc__left__nat,axiom,
    ! [N: nat] : ( algebr934650988132801477me_nat @ ( suc @ N ) @ N ) ).

% coprime_Suc_left_nat
thf(fact_9590_coprime__Suc__0__right,axiom,
    ! [N: nat] : ( algebr934650988132801477me_nat @ N @ ( suc @ zero_zero_nat ) ) ).

% coprime_Suc_0_right
thf(fact_9591_coprime__Suc__0__left,axiom,
    ! [N: nat] : ( algebr934650988132801477me_nat @ ( suc @ zero_zero_nat ) @ N ) ).

% coprime_Suc_0_left
thf(fact_9592_coprime__common__divisor__nat,axiom,
    ! [A: nat,B: nat,X: nat] :
      ( ( algebr934650988132801477me_nat @ A @ B )
     => ( ( dvd_dvd_nat @ X @ A )
       => ( ( dvd_dvd_nat @ X @ B )
         => ( X = one_one_nat ) ) ) ) ).

% coprime_common_divisor_nat
thf(fact_9593_Rats__abs__nat__div__natE,axiom,
    ! [X: real] :
      ( ( member_real @ X @ field_5140801741446780682s_real )
     => ~ ! [M2: nat,N2: nat] :
            ( ( N2 != zero_zero_nat )
           => ( ( ( abs_abs_real @ X )
                = ( divide_divide_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
             => ~ ( algebr934650988132801477me_nat @ M2 @ N2 ) ) ) ) ).

% Rats_abs_nat_div_natE
thf(fact_9594_Rats__no__bot__less,axiom,
    ! [X: real] :
    ? [X4: real] :
      ( ( member_real @ X4 @ field_5140801741446780682s_real )
      & ( ord_less_real @ X4 @ X ) ) ).

% Rats_no_bot_less
thf(fact_9595_Rats__dense__in__real,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [X4: real] :
          ( ( member_real @ X4 @ field_5140801741446780682s_real )
          & ( ord_less_real @ X @ X4 )
          & ( ord_less_real @ X4 @ Y ) ) ) ).

% Rats_dense_in_real
thf(fact_9596_Rats__no__top__le,axiom,
    ! [X: real] :
    ? [X4: real] :
      ( ( member_real @ X4 @ field_5140801741446780682s_real )
      & ( ord_less_eq_real @ X @ X4 ) ) ).

% Rats_no_top_le
thf(fact_9597_coprime__diff__one__right__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( algebr934650988132801477me_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% coprime_diff_one_right_nat
thf(fact_9598_coprime__diff__one__left__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( algebr934650988132801477me_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ N ) ) ).

% coprime_diff_one_left_nat
thf(fact_9599_and__not__num_Opelims,axiom,
    ! [X: num,Xa: num,Y: option_num] :
      ( ( ( bit_and_not_num @ X @ Xa )
        = Y )
     => ( ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ X @ Xa ) )
       => ( ( ( X = one )
           => ( ( Xa = one )
             => ( ( Y = none_num )
               => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y
                      = ( some_num @ one ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y = none_num )
                     => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ( ( Xa = one )
                     => ( ( Y
                          = ( some_num @ ( bit0 @ M2 ) ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ one ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y
                              = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M2 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit0 @ M2 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y
                                = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M2 @ N2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ( ( Xa = one )
                           => ( ( Y
                                = ( some_num @ ( bit0 @ M2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ one ) ) ) ) )
                     => ( ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y
                                    = ( case_o6005452278849405969um_num @ ( some_num @ one )
                                      @ ^ [N7: num] : ( some_num @ ( bit1 @ N7 ) )
                                      @ ( bit_and_not_num @ M2 @ N2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M2: num] :
                              ( ( X
                                = ( bit1 @ M2 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y
                                      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M2 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_not_num.pelims
thf(fact_9600_times__rat_Orsp,axiom,
    ( bNF_re5228765855967844073nt_int @ ratrel @ ( bNF_re7145576690424134365nt_int @ ratrel @ ratrel )
    @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
    @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ).

% times_rat.rsp
thf(fact_9601_integer__of__natural_Orsp,axiom,
    ( bNF_re6650684261131312217nt_int
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ semiri1314217659103216013at_int
    @ semiri1314217659103216013at_int ) ).

% integer_of_natural.rsp
thf(fact_9602_sub_Orsp,axiom,
    ( bNF_re8402795839162346335um_int
    @ ^ [Y3: num,Z: num] : ( Y3 = Z )
    @ ( bNF_re1822329894187522285nt_int
      @ ^ [Y3: num,Z: num] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) )
    @ ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) ) ).

% sub.rsp
thf(fact_9603_dup_Orsp,axiom,
    ( bNF_re4712519889275205905nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ^ [K2: int] : ( plus_plus_int @ K2 @ K2 )
    @ ^ [K2: int] : ( plus_plus_int @ K2 @ K2 ) ) ).

% dup.rsp
thf(fact_9604_plus__integer_Orsp,axiom,
    ( bNF_re711492959462206631nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ plus_plus_int
    @ plus_plus_int ) ).

% plus_integer.rsp
thf(fact_9605_plus__natural_Orsp,axiom,
    ( bNF_re1345281282404953727at_nat
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re5653821019739307937at_nat
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    @ plus_plus_nat
    @ plus_plus_nat ) ).

% plus_natural.rsp
thf(fact_9606_Suc_Orsp,axiom,
    ( bNF_re5653821019739307937at_nat
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ suc
    @ suc ) ).

% Suc.rsp
thf(fact_9607_times__integer_Orsp,axiom,
    ( bNF_re711492959462206631nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ times_times_int
    @ times_times_int ) ).

% times_integer.rsp
thf(fact_9608_times__natural_Orsp,axiom,
    ( bNF_re1345281282404953727at_nat
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re5653821019739307937at_nat
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    @ times_times_nat
    @ times_times_nat ) ).

% times_natural.rsp
thf(fact_9609_minus__natural_Orsp,axiom,
    ( bNF_re1345281282404953727at_nat
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re5653821019739307937at_nat
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    @ minus_minus_nat
    @ minus_minus_nat ) ).

% minus_natural.rsp
thf(fact_9610_minus__integer_Orsp,axiom,
    ( bNF_re711492959462206631nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ minus_minus_int
    @ minus_minus_int ) ).

% minus_integer.rsp
thf(fact_9611_push__bit__natural_Orsp,axiom,
    ( bNF_re1345281282404953727at_nat
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re5653821019739307937at_nat
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    @ bit_se547839408752420682it_nat
    @ bit_se547839408752420682it_nat ) ).

% push_bit_natural.rsp
thf(fact_9612_push__bit__integer_Orsp,axiom,
    ( bNF_re4785983289428654063nt_int
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ bit_se545348938243370406it_int
    @ bit_se545348938243370406it_int ) ).

% push_bit_integer.rsp
thf(fact_9613_divide__natural_Orsp,axiom,
    ( bNF_re1345281282404953727at_nat
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re5653821019739307937at_nat
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
      @ ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    @ divide_divide_nat
    @ divide_divide_nat ) ).

% divide_natural.rsp
thf(fact_9614_divide__integer_Orsp,axiom,
    ( bNF_re711492959462206631nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ divide_divide_int
    @ divide_divide_int ) ).

% divide_integer.rsp
thf(fact_9615_gcd__integer_Orsp,axiom,
    ( bNF_re711492959462206631nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ gcd_gcd_int
    @ gcd_gcd_int ) ).

% gcd_integer.rsp
thf(fact_9616_Fract_Orsp,axiom,
    ( bNF_re157797125943740599nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re6250860962936578807nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ratrel )
    @ ^ [A2: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( B2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A2 @ B2 ) )
    @ ^ [A2: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( B2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A2 @ B2 ) ) ) ).

% Fract.rsp
thf(fact_9617_plus__rat_Orsp,axiom,
    ( bNF_re5228765855967844073nt_int @ ratrel @ ( bNF_re7145576690424134365nt_int @ ratrel @ ratrel )
    @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
    @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ).

% plus_rat.rsp
thf(fact_9618_inverse__rat_Orsp,axiom,
    ( bNF_re7145576690424134365nt_int @ ratrel @ ratrel
    @ ^ [X3: product_prod_int_int] :
        ( if_Pro3027730157355071871nt_int
        @ ( ( product_fst_int_int @ X3 )
          = zero_zero_int )
        @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
        @ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) )
    @ ^ [X3: product_prod_int_int] :
        ( if_Pro3027730157355071871nt_int
        @ ( ( product_fst_int_int @ X3 )
          = zero_zero_int )
        @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
        @ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) ) ) ).

% inverse_rat.rsp
thf(fact_9619_and__num_Opelims,axiom,
    ! [X: num,Xa: num,Y: option_num] :
      ( ( ( bit_un7362597486090784418nd_num @ X @ Xa )
        = Y )
     => ( ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ X @ Xa ) )
       => ( ( ( X = one )
           => ( ( Xa = one )
             => ( ( Y
                  = ( some_num @ one ) )
               => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y = none_num )
                   => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y
                        = ( some_num @ one ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ( ( Xa = one )
                     => ( ( Y = none_num )
                       => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ one ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y
                              = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit0 @ M2 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y
                                = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ( ( Xa = one )
                           => ( ( Y
                                = ( some_num @ one ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ one ) ) ) ) )
                     => ( ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y
                                    = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M2: num] :
                              ( ( X
                                = ( bit1 @ M2 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y
                                      = ( case_o6005452278849405969um_num @ ( some_num @ one )
                                        @ ^ [N7: num] : ( some_num @ ( bit1 @ N7 ) )
                                        @ ( bit_un7362597486090784418nd_num @ M2 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_num.pelims
thf(fact_9620_xor__num_Opelims,axiom,
    ! [X: num,Xa: num,Y: option_num] :
      ( ( ( bit_un2480387367778600638or_num @ X @ Xa )
        = Y )
     => ( ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ X @ Xa ) )
       => ( ( ( X = one )
           => ( ( Xa = one )
             => ( ( Y = none_num )
               => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y
                      = ( some_num @ ( bit1 @ N2 ) ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y
                        = ( some_num @ ( bit0 @ N2 ) ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ( ( Xa = one )
                     => ( ( Y
                          = ( some_num @ ( bit1 @ M2 ) ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ one ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y
                              = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit0 @ M2 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y
                                = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ( ( Xa = one )
                           => ( ( Y
                                = ( some_num @ ( bit0 @ M2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ one ) ) ) ) )
                     => ( ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y
                                    = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M2: num] :
                              ( ( X
                                = ( bit1 @ M2 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y
                                      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M2 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.pelims
thf(fact_9621_or__not__num__neg_Opelims,axiom,
    ! [X: num,Xa: num,Y: num] :
      ( ( ( bit_or_not_num_neg @ X @ Xa )
        = Y )
     => ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X @ Xa ) )
       => ( ( ( X = one )
           => ( ( Xa = one )
             => ( ( Y = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [M2: num] :
                  ( ( Xa
                    = ( bit0 @ M2 ) )
                 => ( ( Y
                      = ( bit1 @ M2 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M2 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [M2: num] :
                    ( ( Xa
                      = ( bit1 @ M2 ) )
                   => ( ( Y
                        = ( bit1 @ M2 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M2 ) ) ) ) ) )
             => ( ! [N2: num] :
                    ( ( X
                      = ( bit0 @ N2 ) )
                   => ( ( Xa = one )
                     => ( ( Y
                          = ( bit0 @ one ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ one ) ) ) ) )
               => ( ! [N2: num] :
                      ( ( X
                        = ( bit0 @ N2 ) )
                     => ! [M2: num] :
                          ( ( Xa
                            = ( bit0 @ M2 ) )
                         => ( ( Y
                              = ( bitM @ ( bit_or_not_num_neg @ N2 @ M2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ ( bit0 @ M2 ) ) ) ) ) )
                 => ( ! [N2: num] :
                        ( ( X
                          = ( bit0 @ N2 ) )
                       => ! [M2: num] :
                            ( ( Xa
                              = ( bit1 @ M2 ) )
                           => ( ( Y
                                = ( bit0 @ ( bit_or_not_num_neg @ N2 @ M2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ ( bit1 @ M2 ) ) ) ) ) )
                   => ( ! [N2: num] :
                          ( ( X
                            = ( bit1 @ N2 ) )
                         => ( ( Xa = one )
                           => ( ( Y = one )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ one ) ) ) ) )
                     => ( ! [N2: num] :
                            ( ( X
                              = ( bit1 @ N2 ) )
                           => ! [M2: num] :
                                ( ( Xa
                                  = ( bit0 @ M2 ) )
                               => ( ( Y
                                    = ( bitM @ ( bit_or_not_num_neg @ N2 @ M2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ ( bit0 @ M2 ) ) ) ) ) )
                       => ~ ! [N2: num] :
                              ( ( X
                                = ( bit1 @ N2 ) )
                             => ! [M2: num] :
                                  ( ( Xa
                                    = ( bit1 @ M2 ) )
                                 => ( ( Y
                                      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ ( bit1 @ M2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.pelims
thf(fact_9622_xor__num__rel__dict,axiom,
    bit_un2901131394128224187um_rel = bit_un3595099601533988841um_rel ).

% xor_num_rel_dict
thf(fact_9623_and__num__rel__dict,axiom,
    bit_un4731106466462545111um_rel = bit_un5425074673868309765um_rel ).

% and_num_rel_dict
thf(fact_9624_plus__rat_Otransfer,axiom,
    ( bNF_re7627151682743391978at_rat @ pcr_rat @ ( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat )
    @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
    @ plus_plus_rat ) ).

% plus_rat.transfer
thf(fact_9625_one__rat_Otransfer,axiom,
    pcr_rat @ ( product_Pair_int_int @ one_one_int @ one_one_int ) @ one_one_rat ).

% one_rat.transfer
thf(fact_9626_zero__rat_Otransfer,axiom,
    pcr_rat @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ zero_zero_rat ).

% zero_rat.transfer
thf(fact_9627_Fract_Otransfer,axiom,
    ( bNF_re3461391660133120880nt_rat
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re2214769303045360666nt_rat
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ pcr_rat )
    @ ^ [A2: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( B2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A2 @ B2 ) )
    @ fract ) ).

% Fract.transfer
thf(fact_9628_times__rat_Otransfer,axiom,
    ( bNF_re7627151682743391978at_rat @ pcr_rat @ ( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat )
    @ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
    @ times_times_rat ) ).

% times_rat.transfer
thf(fact_9629_Rat_Opositive_Otransfer,axiom,
    ( bNF_re1494630372529172596at_o_o @ pcr_rat
    @ ^ [Y3: $o,Z: $o] : ( Y3 = Z )
    @ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) )
    @ positive ) ).

% Rat.positive.transfer
thf(fact_9630_inverse__rat_Otransfer,axiom,
    ( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat
    @ ^ [X3: product_prod_int_int] :
        ( if_Pro3027730157355071871nt_int
        @ ( ( product_fst_int_int @ X3 )
          = zero_zero_int )
        @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
        @ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) )
    @ inverse_inverse_rat ) ).

% inverse_rat.transfer
thf(fact_9631_times__int_Otransfer,axiom,
    ( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) )
    @ times_times_int ) ).

% times_int.transfer
thf(fact_9632_zero__int_Otransfer,axiom,
    pcr_int @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) @ zero_zero_int ).

% zero_int.transfer
thf(fact_9633_int__transfer,axiom,
    ( bNF_re6830278522597306478at_int
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ pcr_int
    @ ^ [N3: nat] : ( product_Pair_nat_nat @ N3 @ zero_zero_nat )
    @ semiri1314217659103216013at_int ) ).

% int_transfer
thf(fact_9634_uminus__int_Otransfer,axiom,
    ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int
    @ ( produc2626176000494625587at_nat
      @ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) )
    @ uminus_uminus_int ) ).

% uminus_int.transfer
thf(fact_9635_nat_Otransfer,axiom,
    ( bNF_re4555766996558763186at_nat @ pcr_int
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( produc6842872674320459806at_nat @ minus_minus_nat )
    @ nat2 ) ).

% nat.transfer
thf(fact_9636_one__int_Otransfer,axiom,
    pcr_int @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) @ one_one_int ).

% one_int.transfer
thf(fact_9637_less__int_Otransfer,axiom,
    ( bNF_re717283939379294677_int_o @ pcr_int
    @ ( bNF_re6644619430987730960nt_o_o @ pcr_int
      @ ^ [Y3: $o,Z: $o] : ( Y3 = Z ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
    @ ord_less_int ) ).

% less_int.transfer
thf(fact_9638_less__eq__int_Otransfer,axiom,
    ( bNF_re717283939379294677_int_o @ pcr_int
    @ ( bNF_re6644619430987730960nt_o_o @ pcr_int
      @ ^ [Y3: $o,Z: $o] : ( Y3 = Z ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
    @ ord_less_eq_int ) ).

% less_eq_int.transfer
thf(fact_9639_plus__int_Otransfer,axiom,
    ( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) )
    @ plus_plus_int ) ).

% plus_int.transfer
thf(fact_9640_minus__int_Otransfer,axiom,
    ( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) )
    @ minus_minus_int ) ).

% minus_int.transfer
thf(fact_9641_times__int_Orsp,axiom,
    ( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) ) ) ).

% times_int.rsp
thf(fact_9642_intrel__iff,axiom,
    ! [X: nat,Y: nat,U: nat,V: nat] :
      ( ( intrel @ ( product_Pair_nat_nat @ X @ Y ) @ ( product_Pair_nat_nat @ U @ V ) )
      = ( ( plus_plus_nat @ X @ V )
        = ( plus_plus_nat @ U @ Y ) ) ) ).

% intrel_iff
thf(fact_9643_int_Orel__eq__transfer,axiom,
    ( bNF_re717283939379294677_int_o @ pcr_int
    @ ( bNF_re6644619430987730960nt_o_o @ pcr_int
      @ ^ [Y3: $o,Z: $o] : ( Y3 = Z ) )
    @ intrel
    @ ^ [Y3: int,Z: int] : ( Y3 = Z ) ) ).

% int.rel_eq_transfer
thf(fact_9644_int_Oabs__eq__iff,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( ( abs_Integ @ X )
        = ( abs_Integ @ Y ) )
      = ( intrel @ X @ Y ) ) ).

% int.abs_eq_iff
thf(fact_9645_zero__int_Orsp,axiom,
    intrel @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ).

% zero_int.rsp
thf(fact_9646_uminus__int_Orsp,axiom,
    ( bNF_re2241393799969408733at_nat @ intrel @ intrel
    @ ( produc2626176000494625587at_nat
      @ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) )
    @ ( produc2626176000494625587at_nat
      @ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) ) ) ).

% uminus_int.rsp
thf(fact_9647_nat_Orsp,axiom,
    ( bNF_re8246922863344978751at_nat @ intrel
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( produc6842872674320459806at_nat @ minus_minus_nat )
    @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ).

% nat.rsp
thf(fact_9648_one__int_Orsp,axiom,
    intrel @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ).

% one_int.rsp
thf(fact_9649_product__atMost__eq__Un,axiom,
    ! [A3: set_nat,M: nat] :
      ( ( produc457027306803732586at_nat @ A3
        @ ^ [Uu3: nat] : ( set_ord_atMost_nat @ M ) )
      = ( sup_su6327502436637775413at_nat
        @ ( produc457027306803732586at_nat @ A3
          @ ^ [I4: nat] : ( set_ord_atMost_nat @ ( minus_minus_nat @ M @ I4 ) ) )
        @ ( produc457027306803732586at_nat @ A3
          @ ^ [I4: nat] : ( set_or6659071591806873216st_nat @ ( minus_minus_nat @ M @ I4 ) @ M ) ) ) ) ).

% product_atMost_eq_Un
thf(fact_9650_intrel__def,axiom,
    ( intrel
    = ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] :
              ( ( plus_plus_nat @ X3 @ V4 )
              = ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ).

% intrel_def
thf(fact_9651_pairs__le__eq__Sigma,axiom,
    ! [M: nat] :
      ( ( collec3392354462482085612at_nat
        @ ( produc6081775807080527818_nat_o
          @ ^ [I4: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ J3 ) @ M ) ) )
      = ( produc457027306803732586at_nat @ ( set_ord_atMost_nat @ M )
        @ ^ [R5: nat] : ( set_ord_atMost_nat @ ( minus_minus_nat @ M @ R5 ) ) ) ) ).

% pairs_le_eq_Sigma
thf(fact_9652_less__int_Orsp,axiom,
    ( bNF_re4202695980764964119_nat_o @ intrel
    @ ( bNF_re3666534408544137501at_o_o @ intrel
      @ ^ [Y3: $o,Z: $o] : ( Y3 = Z ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ).

% less_int.rsp
thf(fact_9653_less__eq__int_Orsp,axiom,
    ( bNF_re4202695980764964119_nat_o @ intrel
    @ ( bNF_re3666534408544137501at_o_o @ intrel
      @ ^ [Y3: $o,Z: $o] : ( Y3 = Z ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X3: nat,Y6: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ).

% less_eq_int.rsp
thf(fact_9654_minus__int_Orsp,axiom,
    ( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) ) ) ).

% minus_int.rsp
thf(fact_9655_plus__int_Orsp,axiom,
    ( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) )
    @ ( produc27273713700761075at_nat
      @ ^ [X3: nat,Y6: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) ) ) ).

% plus_int.rsp
thf(fact_9656_Rats__eq__int__div__nat,axiom,
    ( field_5140801741446780682s_real
    = ( collect_real
      @ ^ [Uu3: real] :
        ? [I4: int,N3: nat] :
          ( ( Uu3
            = ( divide_divide_real @ ( ring_1_of_int_real @ I4 ) @ ( semiri5074537144036343181t_real @ N3 ) ) )
          & ( N3 != zero_zero_nat ) ) ) ) ).

% Rats_eq_int_div_nat
thf(fact_9657_rat__less__code,axiom,
    ( ord_less_rat
    = ( ^ [P3: rat,Q5: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A2: int,C4: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B2: int,D4: int] : ( ord_less_int @ ( times_times_int @ A2 @ D4 ) @ ( times_times_int @ C4 @ B2 ) )
              @ ( quotient_of @ Q5 ) )
          @ ( quotient_of @ P3 ) ) ) ) ).

% rat_less_code
thf(fact_9658_rat__floor__code,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [P3: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P3 ) ) ) ) ).

% rat_floor_code
thf(fact_9659_rat__less__eq__code,axiom,
    ( ord_less_eq_rat
    = ( ^ [P3: rat,Q5: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A2: int,C4: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B2: int,D4: int] : ( ord_less_eq_int @ ( times_times_int @ A2 @ D4 ) @ ( times_times_int @ C4 @ B2 ) )
              @ ( quotient_of @ Q5 ) )
          @ ( quotient_of @ P3 ) ) ) ) ).

% rat_less_eq_code
thf(fact_9660_Rats__eq__int__div__int,axiom,
    ( field_5140801741446780682s_real
    = ( collect_real
      @ ^ [Uu3: real] :
        ? [I4: int,J3: int] :
          ( ( Uu3
            = ( divide_divide_real @ ( ring_1_of_int_real @ I4 ) @ ( ring_1_of_int_real @ J3 ) ) )
          & ( J3 != zero_zero_int ) ) ) ) ).

% Rats_eq_int_div_int
thf(fact_9661_Divides_Oadjust__div__def,axiom,
    ( adjust_div
    = ( produc8211389475949308722nt_int
      @ ^ [Q5: int,R5: int] : ( plus_plus_int @ Q5 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).

% Divides.adjust_div_def
thf(fact_9662_int__ge__less__than__def,axiom,
    ( int_ge_less_than
    = ( ^ [D4: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z7: int,Z5: int] :
                ( ( ord_less_eq_int @ D4 @ Z7 )
                & ( ord_less_int @ Z7 @ Z5 ) ) ) ) ) ) ).

% int_ge_less_than_def
thf(fact_9663_int__ge__less__than2__def,axiom,
    ( int_ge_less_than2
    = ( ^ [D4: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z7: int,Z5: int] :
                ( ( ord_less_eq_int @ D4 @ Z5 )
                & ( ord_less_int @ Z7 @ Z5 ) ) ) ) ) ) ).

% int_ge_less_than2_def
thf(fact_9664_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa = one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) )
             => ( ( Deg = Xa )
                & ! [X4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                  = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                & ( case_o184042715313410164at_nat
                  @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
                    & ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                  @ ( produc6081775807080527818_nat_o
                    @ ^ [Mi3: nat,Ma3: nat] :
                        ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                        & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                        & ! [I4: nat] :
                            ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                           => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                              = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                        & ( ( Mi3 = Ma3 )
                         => ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                        & ( ( Mi3 != Ma3 )
                         => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                            & ! [X3: nat] :
                                ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X3 )
                                 => ( ( ord_less_nat @ Mi3 @ X3 )
                                    & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                  @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(3)
thf(fact_9665_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa != one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) )
             => ~ ( ( Deg = Xa )
                  & ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( case_o184042715313410164at_nat
                    @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
                      & ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                    @ ( produc6081775807080527818_nat_o
                      @ ^ [Mi3: nat,Ma3: nat] :
                          ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                          & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                          & ! [I4: nat] :
                              ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                             => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                          & ( ( Mi3 = Ma3 )
                           => ! [X3: vEBT_VEBT] :
                                ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                               => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                          & ( ( Mi3 != Ma3 )
                           => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                              & ! [X3: nat] :
                                  ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X3 )
                                   => ( ( ord_less_nat @ Mi3 @ X3 )
                                      & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                    @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(2)
thf(fact_9666_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
    ! [Mima2: option4927543243414619207at_nat,Deg3: nat,TreeList2: list_VEBT_VEBT,Summary3: vEBT_VEBT,Deg4: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg3 @ TreeList2 @ Summary3 ) @ Deg4 )
      = ( ( Deg3 = Deg4 )
        & ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
           => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( vEBT_VEBT_valid @ Summary3 @ ( minus_minus_nat @ Deg3 @ ( divide_divide_nat @ Deg3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg3 @ ( divide_divide_nat @ Deg3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( case_o184042715313410164at_nat
          @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X8 )
            & ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
               => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
          @ ( produc6081775807080527818_nat_o
            @ ^ [Mi3: nat,Ma3: nat] :
                ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg3 ) )
                & ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg3 @ ( divide_divide_nat @ Deg3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X8 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
                & ( ( Mi3 = Ma3 )
                 => ! [X3: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                & ( ( Mi3 != Ma3 )
                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                    & ! [X3: nat] :
                        ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg3 ) )
                       => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                         => ( ( ord_less_nat @ Mi3 @ X3 )
                            & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
          @ Mima2 ) ) ) ).

% VEBT_internal.valid'.simps(2)
thf(fact_9667_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y: $o] :
      ( ( ( vEBT_VEBT_valid @ X @ Xa )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Y
            = ( Xa != one_one_nat ) ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) )
             => ( Y
                = ( ~ ( ( Deg = Xa )
                      & ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
                          & ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X3: nat] :
                                      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X3 )
                                       => ( ( ord_less_nat @ Mi3 @ X3 )
                                          & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.elims(1)
thf(fact_9668_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat,Y: $o] :
      ( ( ( vEBT_VEBT_valid @ X @ Xa )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( Y
                  = ( Xa = one_one_nat ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) )
               => ( ( Y
                    = ( ( Deg = Xa )
                      & ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
                          & ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X3: nat] :
                                      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X3 )
                                       => ( ( ord_less_nat @ Mi3 @ X3 )
                                          & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) @ Xa ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(1)
thf(fact_9669_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) )
               => ( Xa != one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) @ Xa ) )
                 => ~ ( ( Deg = Xa )
                      & ! [X5: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
                          & ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X3: nat] :
                                      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X3 )
                                       => ( ( ord_less_nat @ Mi3 @ X3 )
                                          & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(2)
thf(fact_9670_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_valid @ X @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) )
               => ( Xa = one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg: nat,TreeList3: list_VEBT_VEBT,Summary: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg @ TreeList3 @ Summary ) @ Xa ) )
                 => ( ( Deg = Xa )
                    & ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( case_o184042715313410164at_nat
                      @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
                        & ! [X3: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                      @ ( produc6081775807080527818_nat_o
                        @ ^ [Mi3: nat,Ma3: nat] :
                            ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                            & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                            & ! [I4: nat] :
                                ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                               => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                  = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                            & ( ( Mi3 = Ma3 )
                             => ! [X3: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
                            & ( ( Mi3 != Ma3 )
                             => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                & ! [X3: nat] :
                                    ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                                   => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X3 )
                                     => ( ( ord_less_nat @ Mi3 @ X3 )
                                        & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                      @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(3)
thf(fact_9671_Real_Opositive_Orsp,axiom,
    ( bNF_re728719798268516973at_o_o @ realrel
    @ ^ [Y3: $o,Z: $o] : ( Y3 = Z )
    @ ^ [X8: nat > rat] :
      ? [R5: rat] :
        ( ( ord_less_rat @ zero_zero_rat @ R5 )
        & ? [K2: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ K2 @ N3 )
           => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) )
    @ ^ [X8: nat > rat] :
      ? [R5: rat] :
        ( ( ord_less_rat @ zero_zero_rat @ R5 )
        & ? [K2: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ K2 @ N3 )
           => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) ) ) ).

% Real.positive.rsp
thf(fact_9672_zero__real_Orsp,axiom,
    ( realrel
    @ ^ [N3: nat] : zero_zero_rat
    @ ^ [N3: nat] : zero_zero_rat ) ).

% zero_real.rsp
thf(fact_9673_one__real_Orsp,axiom,
    ( realrel
    @ ^ [N3: nat] : one_one_rat
    @ ^ [N3: nat] : one_one_rat ) ).

% one_real.rsp
thf(fact_9674_plus__real_Orsp,axiom,
    ( bNF_re1962705104956426057at_rat @ realrel @ ( bNF_re895249473297799549at_rat @ realrel @ realrel )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ).

% plus_real.rsp
thf(fact_9675_times__real_Orsp,axiom,
    ( bNF_re1962705104956426057at_rat @ realrel @ ( bNF_re895249473297799549at_rat @ realrel @ realrel )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ).

% times_real.rsp
thf(fact_9676_uminus__real_Orsp,axiom,
    ( bNF_re895249473297799549at_rat @ realrel @ realrel
    @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) )
    @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) ) ) ).

% uminus_real.rsp
thf(fact_9677_continuous__on__arcosh,axiom,
    ! [A3: set_real] :
      ( ( ord_less_eq_set_real @ A3 @ ( set_ord_atLeast_real @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A3 @ arcosh_real ) ) ).

% continuous_on_arcosh
thf(fact_9678_inverse__real_Orsp,axiom,
    ( bNF_re895249473297799549at_rat @ realrel @ realrel
    @ ^ [X8: nat > rat] :
        ( if_nat_rat @ ( vanishes @ X8 )
        @ ^ [N3: nat] : zero_zero_rat
        @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) )
    @ ^ [X8: nat > rat] :
        ( if_nat_rat @ ( vanishes @ X8 )
        @ ^ [N3: nat] : zero_zero_rat
        @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) ) ) ).

% inverse_real.rsp
thf(fact_9679_atLeast__0,axiom,
    ( ( set_ord_atLeast_nat @ zero_zero_nat )
    = top_top_set_nat ) ).

% atLeast_0
thf(fact_9680_vanishes__const,axiom,
    ! [C: rat] :
      ( ( vanishes
        @ ^ [N3: nat] : C )
      = ( C = zero_zero_rat ) ) ).

% vanishes_const
thf(fact_9681_last__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( last_nat @ ( upt @ I @ J ) )
        = ( minus_minus_nat @ J @ one_one_nat ) ) ) ).

% last_upt
thf(fact_9682_atLeast__Suc__greaterThan,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( set_or1210151606488870762an_nat @ K ) ) ).

% atLeast_Suc_greaterThan
thf(fact_9683_vanishes__minus,axiom,
    ! [X9: nat > rat] :
      ( ( vanishes @ X9 )
     => ( vanishes
        @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X9 @ N3 ) ) ) ) ).

% vanishes_minus
thf(fact_9684_vanishes__add,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( vanishes @ X9 )
     => ( ( vanishes @ Y8 )
       => ( vanishes
          @ ^ [N3: nat] : ( plus_plus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% vanishes_add
thf(fact_9685_vanishes__diff,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( vanishes @ X9 )
     => ( ( vanishes @ Y8 )
       => ( vanishes
          @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% vanishes_diff
thf(fact_9686_vanishes__def,axiom,
    ( vanishes
    = ( ^ [X8: nat > rat] :
        ! [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
         => ? [K2: nat] :
            ! [N3: nat] :
              ( ( ord_less_eq_nat @ K2 @ N3 )
             => ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N3 ) ) @ R5 ) ) ) ) ) ).

% vanishes_def
thf(fact_9687_vanishesI,axiom,
    ! [X9: nat > rat] :
      ( ! [R2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R2 )
         => ? [K4: nat] :
            ! [N2: nat] :
              ( ( ord_less_eq_nat @ K4 @ N2 )
             => ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N2 ) ) @ R2 ) ) )
     => ( vanishes @ X9 ) ) ).

% vanishesI
thf(fact_9688_vanishesD,axiom,
    ! [X9: nat > rat,R: rat] :
      ( ( vanishes @ X9 )
     => ( ( ord_less_rat @ zero_zero_rat @ R )
       => ? [K3: nat] :
          ! [N6: nat] :
            ( ( ord_less_eq_nat @ K3 @ N6 )
           => ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N6 ) ) @ R ) ) ) ) ).

% vanishesD
thf(fact_9689_vanishes__mult__bounded,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ? [A6: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ A6 )
          & ! [N2: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N2 ) ) @ A6 ) )
     => ( ( vanishes @ Y8 )
       => ( vanishes
          @ ^ [N3: nat] : ( times_times_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% vanishes_mult_bounded
thf(fact_9690_atLeast__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).

% atLeast_Suc
thf(fact_9691_inverse__real_Otransfer,axiom,
    ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real
    @ ^ [X8: nat > rat] :
        ( if_nat_rat @ ( vanishes @ X8 )
        @ ^ [N3: nat] : zero_zero_rat
        @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) )
    @ inverse_inverse_real ) ).

% inverse_real.transfer
thf(fact_9692_inverse__real_Oabs__eq,axiom,
    ! [X: nat > rat] :
      ( ( realrel @ X @ X )
     => ( ( inverse_inverse_real @ ( real2 @ X ) )
        = ( real2
          @ ( if_nat_rat @ ( vanishes @ X )
            @ ^ [N3: nat] : zero_zero_rat
            @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X @ N3 ) ) ) ) ) ) ).

% inverse_real.abs_eq
thf(fact_9693_one__real__def,axiom,
    ( one_one_real
    = ( real2
      @ ^ [N3: nat] : one_one_rat ) ) ).

% one_real_def
thf(fact_9694_real_Oabs__induct,axiom,
    ! [P: real > $o,X: real] :
      ( ! [Y4: nat > rat] :
          ( ( realrel @ Y4 @ Y4 )
         => ( P @ ( real2 @ Y4 ) ) )
     => ( P @ X ) ) ).

% real.abs_induct
thf(fact_9695_of__rat__Real,axiom,
    ( field_7254667332652039916t_real
    = ( ^ [X3: rat] :
          ( real2
          @ ^ [N3: nat] : X3 ) ) ) ).

% of_rat_Real
thf(fact_9696_zero__real__def,axiom,
    ( zero_zero_real
    = ( real2
      @ ^ [N3: nat] : zero_zero_rat ) ) ).

% zero_real_def
thf(fact_9697_real_Orel__eq__transfer,axiom,
    ( bNF_re4521903465945308077real_o @ pcr_real
    @ ( bNF_re4297313714947099218al_o_o @ pcr_real
      @ ^ [Y3: $o,Z: $o] : ( Y3 = Z ) )
    @ realrel
    @ ^ [Y3: real,Z: real] : ( Y3 = Z ) ) ).

% real.rel_eq_transfer
thf(fact_9698_of__int__Real,axiom,
    ( ring_1_of_int_real
    = ( ^ [X3: int] :
          ( real2
          @ ^ [N3: nat] : ( ring_1_of_int_rat @ X3 ) ) ) ) ).

% of_int_Real
thf(fact_9699_zero__real_Otransfer,axiom,
    ( pcr_real
    @ ^ [N3: nat] : zero_zero_rat
    @ zero_zero_real ) ).

% zero_real.transfer
thf(fact_9700_one__real_Otransfer,axiom,
    ( pcr_real
    @ ^ [N3: nat] : one_one_rat
    @ one_one_real ) ).

% one_real.transfer
thf(fact_9701_of__nat__Real,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [X3: nat] :
          ( real2
          @ ^ [N3: nat] : ( semiri681578069525770553at_rat @ X3 ) ) ) ) ).

% of_nat_Real
thf(fact_9702_uminus__real_Otransfer,axiom,
    ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real
    @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) )
    @ uminus_uminus_real ) ).

% uminus_real.transfer
thf(fact_9703_plus__real_Otransfer,axiom,
    ( bNF_re4695409256820837752l_real @ pcr_real @ ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ plus_plus_real ) ).

% plus_real.transfer
thf(fact_9704_uminus__real_Oabs__eq,axiom,
    ! [X: nat > rat] :
      ( ( realrel @ X @ X )
     => ( ( uminus_uminus_real @ ( real2 @ X ) )
        = ( real2
          @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X @ N3 ) ) ) ) ) ).

% uminus_real.abs_eq
thf(fact_9705_times__real_Otransfer,axiom,
    ( bNF_re4695409256820837752l_real @ pcr_real @ ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ times_times_real ) ).

% times_real.transfer
thf(fact_9706_plus__real_Oabs__eq,axiom,
    ! [Xa: nat > rat,X: nat > rat] :
      ( ( realrel @ Xa @ Xa )
     => ( ( realrel @ X @ X )
       => ( ( plus_plus_real @ ( real2 @ Xa ) @ ( real2 @ X ) )
          = ( real2
            @ ^ [N3: nat] : ( plus_plus_rat @ ( Xa @ N3 ) @ ( X @ N3 ) ) ) ) ) ) ).

% plus_real.abs_eq
thf(fact_9707_times__real_Oabs__eq,axiom,
    ! [Xa: nat > rat,X: nat > rat] :
      ( ( realrel @ Xa @ Xa )
     => ( ( realrel @ X @ X )
       => ( ( times_times_real @ ( real2 @ Xa ) @ ( real2 @ X ) )
          = ( real2
            @ ^ [N3: nat] : ( times_times_rat @ ( Xa @ N3 ) @ ( X @ N3 ) ) ) ) ) ) ).

% times_real.abs_eq
thf(fact_9708_Real_Opositive_Otransfer,axiom,
    ( bNF_re4297313714947099218al_o_o @ pcr_real
    @ ^ [Y3: $o,Z: $o] : ( Y3 = Z )
    @ ^ [X8: nat > rat] :
      ? [R5: rat] :
        ( ( ord_less_rat @ zero_zero_rat @ R5 )
        & ? [K2: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ K2 @ N3 )
           => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) )
    @ positive2 ) ).

% Real.positive.transfer
thf(fact_9709_Real_Opositive_Oabs__eq,axiom,
    ! [X: nat > rat] :
      ( ( realrel @ X @ X )
     => ( ( positive2 @ ( real2 @ X ) )
        = ( ? [R5: rat] :
              ( ( ord_less_rat @ zero_zero_rat @ R5 )
              & ? [K2: nat] :
                ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K2 @ N3 )
                 => ( ord_less_rat @ R5 @ ( X @ N3 ) ) ) ) ) ) ) ).

% Real.positive.abs_eq
thf(fact_9710_Real_Opositive__mult,axiom,
    ! [X: real,Y: real] :
      ( ( positive2 @ X )
     => ( ( positive2 @ Y )
       => ( positive2 @ ( times_times_real @ X @ Y ) ) ) ) ).

% Real.positive_mult
thf(fact_9711_Real_Opositive__add,axiom,
    ! [X: real,Y: real] :
      ( ( positive2 @ X )
     => ( ( positive2 @ Y )
       => ( positive2 @ ( plus_plus_real @ X @ Y ) ) ) ) ).

% Real.positive_add
thf(fact_9712_Real_Opositive__zero,axiom,
    ~ ( positive2 @ zero_zero_real ) ).

% Real.positive_zero
thf(fact_9713_Real_Opositive__minus,axiom,
    ! [X: real] :
      ( ~ ( positive2 @ X )
     => ( ( X != zero_zero_real )
       => ( positive2 @ ( uminus_uminus_real @ X ) ) ) ) ).

% Real.positive_minus
thf(fact_9714_less__real__def,axiom,
    ( ord_less_real
    = ( ^ [X3: real,Y6: real] : ( positive2 @ ( minus_minus_real @ Y6 @ X3 ) ) ) ) ).

% less_real_def
thf(fact_9715_le__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( ord_less_eq_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( ! [R5: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ R5 )
               => ? [K2: nat] :
                  ! [N3: nat] :
                    ( ( ord_less_eq_nat @ K2 @ N3 )
                   => ( ord_less_eq_rat @ ( X9 @ N3 ) @ ( plus_plus_rat @ ( Y8 @ N3 ) @ R5 ) ) ) ) ) ) ) ) ).

% le_Real
thf(fact_9716_Real_Opositive_Orep__eq,axiom,
    ( positive2
    = ( ^ [X3: real] :
        ? [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
          & ? [K2: nat] :
            ! [N3: nat] :
              ( ( ord_less_eq_nat @ K2 @ N3 )
             => ( ord_less_rat @ R5 @ ( rep_real @ X3 @ N3 ) ) ) ) ) ) ).

% Real.positive.rep_eq
thf(fact_9717_realrel__refl,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( realrel @ X9 @ X9 ) ) ).

% realrel_refl
thf(fact_9718_cauchy__diff,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( cauchy
          @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% cauchy_diff
thf(fact_9719_cauchy__mult,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( cauchy
          @ ^ [N3: nat] : ( times_times_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% cauchy_mult
thf(fact_9720_cauchy__add,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( cauchy
          @ ^ [N3: nat] : ( plus_plus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% cauchy_add
thf(fact_9721_cauchy__minus,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( cauchy
        @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X9 @ N3 ) ) ) ) ).

% cauchy_minus
thf(fact_9722_cauchy__const,axiom,
    ! [X: rat] :
      ( cauchy
      @ ^ [N3: nat] : X ) ).

% cauchy_const
thf(fact_9723_Real__induct,axiom,
    ! [P: real > $o,X: real] :
      ( ! [X15: nat > rat] :
          ( ( cauchy @ X15 )
         => ( P @ ( real2 @ X15 ) ) )
     => ( P @ X ) ) ).

% Real_induct
thf(fact_9724_cr__real__eq,axiom,
    ( pcr_real
    = ( ^ [X3: nat > rat,Y6: real] :
          ( ( cauchy @ X3 )
          & ( ( real2 @ X3 )
            = Y6 ) ) ) ) ).

% cr_real_eq
thf(fact_9725_cauchy__inverse,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ( cauchy
          @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X9 @ N3 ) ) ) ) ) ).

% cauchy_inverse
thf(fact_9726_cauchy__imp__bounded,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ? [B4: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ B4 )
          & ! [N6: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N6 ) ) @ B4 ) ) ) ).

% cauchy_imp_bounded
thf(fact_9727_less__RealD,axiom,
    ! [Y8: nat > rat,X: real] :
      ( ( cauchy @ Y8 )
     => ( ( ord_less_real @ X @ ( real2 @ Y8 ) )
       => ? [N2: nat] : ( ord_less_real @ X @ ( field_7254667332652039916t_real @ ( Y8 @ N2 ) ) ) ) ) ).

% less_RealD
thf(fact_9728_le__RealI,axiom,
    ! [Y8: nat > rat,X: real] :
      ( ( cauchy @ Y8 )
     => ( ! [N2: nat] : ( ord_less_eq_real @ X @ ( field_7254667332652039916t_real @ ( Y8 @ N2 ) ) )
       => ( ord_less_eq_real @ X @ ( real2 @ Y8 ) ) ) ) ).

% le_RealI
thf(fact_9729_Real__leI,axiom,
    ! [X9: nat > rat,Y: real] :
      ( ( cauchy @ X9 )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( field_7254667332652039916t_real @ ( X9 @ N2 ) ) @ Y )
       => ( ord_less_eq_real @ ( real2 @ X9 ) @ Y ) ) ) ).

% Real_leI
thf(fact_9730_minus__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( uminus_uminus_real @ ( real2 @ X9 ) )
        = ( real2
          @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X9 @ N3 ) ) ) ) ) ).

% minus_Real
thf(fact_9731_add__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( plus_plus_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( real2
            @ ^ [N3: nat] : ( plus_plus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% add_Real
thf(fact_9732_mult__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( times_times_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( real2
            @ ^ [N3: nat] : ( times_times_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% mult_Real
thf(fact_9733_diff__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( minus_minus_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( real2
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% diff_Real
thf(fact_9734_realrelI,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( vanishes
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) )
         => ( realrel @ X9 @ Y8 ) ) ) ) ).

% realrelI
thf(fact_9735_eq__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( ( real2 @ X9 )
            = ( real2 @ Y8 ) )
          = ( vanishes
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% eq_Real
thf(fact_9736_vanishes__diff__inverse,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ( ( cauchy @ Y8 )
         => ( ~ ( vanishes @ Y8 )
           => ( ( vanishes
                @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) )
             => ( vanishes
                @ ^ [N3: nat] : ( minus_minus_rat @ ( inverse_inverse_rat @ ( X9 @ N3 ) ) @ ( inverse_inverse_rat @ ( Y8 @ N3 ) ) ) ) ) ) ) ) ) ).

% vanishes_diff_inverse
thf(fact_9737_realrel__def,axiom,
    ( realrel
    = ( ^ [X8: nat > rat,Y7: nat > rat] :
          ( ( cauchy @ X8 )
          & ( cauchy @ Y7 )
          & ( vanishes
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ) ) ) ).

% realrel_def
thf(fact_9738_cauchy__not__vanishes__cases,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ? [B4: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ B4 )
            & ? [K3: nat] :
                ( ! [N6: nat] :
                    ( ( ord_less_eq_nat @ K3 @ N6 )
                   => ( ord_less_rat @ B4 @ ( uminus_uminus_rat @ ( X9 @ N6 ) ) ) )
                | ! [N6: nat] :
                    ( ( ord_less_eq_nat @ K3 @ N6 )
                   => ( ord_less_rat @ B4 @ ( X9 @ N6 ) ) ) ) ) ) ) ).

% cauchy_not_vanishes_cases
thf(fact_9739_positive__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( positive2 @ ( real2 @ X9 ) )
        = ( ? [R5: rat] :
              ( ( ord_less_rat @ zero_zero_rat @ R5 )
              & ? [K2: nat] :
                ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K2 @ N3 )
                 => ( ord_less_rat @ R5 @ ( X9 @ N3 ) ) ) ) ) ) ) ).

% positive_Real
thf(fact_9740_cauchy__not__vanishes,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ? [B4: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ B4 )
            & ? [K3: nat] :
              ! [N6: nat] :
                ( ( ord_less_eq_nat @ K3 @ N6 )
               => ( ord_less_rat @ B4 @ ( abs_abs_rat @ ( X9 @ N6 ) ) ) ) ) ) ) ).

% cauchy_not_vanishes
thf(fact_9741_cauchyD,axiom,
    ! [X9: nat > rat,R: rat] :
      ( ( cauchy @ X9 )
     => ( ( ord_less_rat @ zero_zero_rat @ R )
       => ? [K3: nat] :
          ! [M4: nat] :
            ( ( ord_less_eq_nat @ K3 @ M4 )
           => ! [N6: nat] :
                ( ( ord_less_eq_nat @ K3 @ N6 )
               => ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X9 @ M4 ) @ ( X9 @ N6 ) ) ) @ R ) ) ) ) ) ).

% cauchyD
thf(fact_9742_cauchyI,axiom,
    ! [X9: nat > rat] :
      ( ! [R2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R2 )
         => ? [K4: nat] :
            ! [M2: nat] :
              ( ( ord_less_eq_nat @ K4 @ M2 )
             => ! [N2: nat] :
                  ( ( ord_less_eq_nat @ K4 @ N2 )
                 => ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X9 @ M2 ) @ ( X9 @ N2 ) ) ) @ R2 ) ) ) )
     => ( cauchy @ X9 ) ) ).

% cauchyI
thf(fact_9743_cauchy__def,axiom,
    ( cauchy
    = ( ^ [X8: nat > rat] :
        ! [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
         => ? [K2: nat] :
            ! [M3: nat] :
              ( ( ord_less_eq_nat @ K2 @ M3 )
             => ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K2 @ N3 )
                 => ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X8 @ M3 ) @ ( X8 @ N3 ) ) ) @ R5 ) ) ) ) ) ) ).

% cauchy_def
thf(fact_9744_inverse__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( ( vanishes @ X9 )
         => ( ( inverse_inverse_real @ ( real2 @ X9 ) )
            = zero_zero_real ) )
        & ( ~ ( vanishes @ X9 )
         => ( ( inverse_inverse_real @ ( real2 @ X9 ) )
            = ( real2
              @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X9 @ N3 ) ) ) ) ) ) ) ).

% inverse_Real
thf(fact_9745_not__positive__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( ~ ( positive2 @ ( real2 @ X9 ) ) )
        = ( ! [R5: rat] :
              ( ( ord_less_rat @ zero_zero_rat @ R5 )
             => ? [K2: nat] :
                ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K2 @ N3 )
                 => ( ord_less_eq_rat @ ( X9 @ N3 ) @ R5 ) ) ) ) ) ) ).

% not_positive_Real
thf(fact_9746_Real_Opositive__def,axiom,
    ( positive2
    = ( map_fu1856342031159181835at_o_o @ rep_real @ id_o
      @ ^ [X8: nat > rat] :
        ? [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
          & ? [K2: nat] :
            ! [N3: nat] :
              ( ( ord_less_eq_nat @ K2 @ N3 )
             => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) ) ) ) ).

% Real.positive_def
thf(fact_9747_inverse__real__def,axiom,
    ( inverse_inverse_real
    = ( map_fu7146612038024189824t_real @ rep_real @ real2
      @ ^ [X8: nat > rat] :
          ( if_nat_rat @ ( vanishes @ X8 )
          @ ^ [N3: nat] : zero_zero_rat
          @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) ) ) ) ).

% inverse_real_def
thf(fact_9748_uminus__real__def,axiom,
    ( uminus_uminus_real
    = ( map_fu7146612038024189824t_real @ rep_real @ real2
      @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) ) ) ) ).

% uminus_real_def
thf(fact_9749_times__real__def,axiom,
    ( times_times_real
    = ( map_fu1532550112467129777l_real @ rep_real @ ( map_fu7146612038024189824t_real @ rep_real @ real2 )
      @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ) ).

% times_real_def
thf(fact_9750_plus__real__def,axiom,
    ( plus_plus_real
    = ( map_fu1532550112467129777l_real @ rep_real @ ( map_fu7146612038024189824t_real @ rep_real @ real2 )
      @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ) ).

% plus_real_def
thf(fact_9751_cr__real__def,axiom,
    ( cr_real
    = ( ^ [X3: nat > rat,Y6: real] :
          ( ( realrel @ X3 @ X3 )
          & ( ( real2 @ X3 )
            = Y6 ) ) ) ) ).

% cr_real_def
thf(fact_9752_real_Opcr__cr__eq,axiom,
    pcr_real = cr_real ).

% real.pcr_cr_eq
thf(fact_9753_Bseq__monoseq__convergent_H__dec,axiom,
    ! [F: nat > real,M10: nat] :
      ( ( bfun_nat_real
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ M10 ) )
        @ at_top_nat )
     => ( ! [M2: nat,N2: nat] :
            ( ( ord_less_eq_nat @ M10 @ M2 )
           => ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ M2 ) ) ) )
       => ( topolo7531315842566124627t_real @ F ) ) ) ).

% Bseq_monoseq_convergent'_dec
thf(fact_9754_Bseq__monoseq__convergent_H__inc,axiom,
    ! [F: nat > real,M10: nat] :
      ( ( bfun_nat_real
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ M10 ) )
        @ at_top_nat )
     => ( ! [M2: nat,N2: nat] :
            ( ( ord_less_eq_nat @ M10 @ M2 )
           => ( ( ord_less_eq_nat @ M2 @ N2 )
             => ( ord_less_eq_real @ ( F @ M2 ) @ ( F @ N2 ) ) ) )
       => ( topolo7531315842566124627t_real @ F ) ) ) ).

% Bseq_monoseq_convergent'_inc
thf(fact_9755_convergent__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( topolo7531315842566124627t_real @ ( power_power_real @ X ) ) ) ) ).

% convergent_realpow
thf(fact_9756_set__encode__vimage__Suc,axiom,
    ! [A3: set_nat] :
      ( ( nat_set_encode @ ( vimage_nat_nat @ suc @ A3 ) )
      = ( divide_divide_nat @ ( nat_set_encode @ A3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% set_encode_vimage_Suc
thf(fact_9757_vimage__Suc__insert__0,axiom,
    ! [A3: set_nat] :
      ( ( vimage_nat_nat @ suc @ ( insert_nat @ zero_zero_nat @ A3 ) )
      = ( vimage_nat_nat @ suc @ A3 ) ) ).

% vimage_Suc_insert_0
thf(fact_9758_vimage__Suc__insert__Suc,axiom,
    ! [N: nat,A3: set_nat] :
      ( ( vimage_nat_nat @ suc @ ( insert_nat @ ( suc @ N ) @ A3 ) )
      = ( insert_nat @ N @ ( vimage_nat_nat @ suc @ A3 ) ) ) ).

% vimage_Suc_insert_Suc
thf(fact_9759_finite__vimage__Suc__iff,axiom,
    ! [F4: set_nat] :
      ( ( finite_finite_nat @ ( vimage_nat_nat @ suc @ F4 ) )
      = ( finite_finite_nat @ F4 ) ) ).

% finite_vimage_Suc_iff
thf(fact_9760_set__decode__div__2,axiom,
    ! [X: nat] :
      ( ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( vimage_nat_nat @ suc @ ( nat_set_decode @ X ) ) ) ).

% set_decode_div_2
thf(fact_9761_euclidean__size__nat__def,axiom,
    euclid4777050414544973029ze_nat = id_nat ).

% euclidean_size_nat_def
thf(fact_9762_euclidean__size__int__def,axiom,
    ( euclid4774559944035922753ze_int
    = ( comp_int_nat_int @ nat2 @ abs_abs_int ) ) ).

% euclidean_size_int_def
thf(fact_9763_abs__division__segment,axiom,
    ! [K: int] :
      ( ( abs_abs_int @ ( euclid3395696857347342551nt_int @ K ) )
      = one_one_int ) ).

% abs_division_segment
thf(fact_9764_division__segment__eq__sgn,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ( euclid3395696857347342551nt_int @ K )
        = ( sgn_sgn_int @ K ) ) ) ).

% division_segment_eq_sgn
thf(fact_9765_division__segment__nat__def,axiom,
    ( euclid3398187327856392827nt_nat
    = ( ^ [N3: nat] : one_one_nat ) ) ).

% division_segment_nat_def
thf(fact_9766_division__segment__int__def,axiom,
    ( euclid3395696857347342551nt_int
    = ( ^ [K2: int] : ( if_int @ ( ord_less_eq_int @ zero_zero_int @ K2 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% division_segment_int_def
thf(fact_9767_transp__realrel,axiom,
    transp_nat_rat @ realrel ).

% transp_realrel
thf(fact_9768_bot__nat__0_Oordering__top__axioms,axiom,
    ( ordering_top_nat
    @ ^ [X3: nat,Y6: nat] : ( ord_less_eq_nat @ Y6 @ X3 )
    @ ^ [X3: nat,Y6: nat] : ( ord_less_nat @ Y6 @ X3 )
    @ zero_zero_nat ) ).

% bot_nat_0.ordering_top_axioms
thf(fact_9769_strict__mono__imp__increasing,axiom,
    ! [F: nat > nat,N: nat] :
      ( ( order_5726023648592871131at_nat @ F )
     => ( ord_less_eq_nat @ N @ ( F @ N ) ) ) ).

% strict_mono_imp_increasing
thf(fact_9770_gcd__nat_Oordering__top__axioms,axiom,
    ( ordering_top_nat @ dvd_dvd_nat
    @ ^ [M3: nat,N3: nat] :
        ( ( dvd_dvd_nat @ M3 @ N3 )
        & ( M3 != N3 ) )
    @ zero_zero_nat ) ).

% gcd_nat.ordering_top_axioms
thf(fact_9771_prod__decode__triangle__add,axiom,
    ! [K: nat,M: nat] :
      ( ( nat_prod_decode @ ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) )
      = ( nat_prod_decode_aux @ K @ M ) ) ).

% prod_decode_triangle_add
thf(fact_9772_prod__decode__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( nat_prod_decode @ X )
        = ( nat_prod_decode @ Y ) )
      = ( X = Y ) ) ).

% prod_decode_eq
thf(fact_9773_prod__encode__inverse,axiom,
    ! [X: product_prod_nat_nat] :
      ( ( nat_prod_decode @ ( nat_prod_encode @ X ) )
      = X ) ).

% prod_encode_inverse
thf(fact_9774_prod__decode__inverse,axiom,
    ! [N: nat] :
      ( ( nat_prod_encode @ ( nat_prod_decode @ N ) )
      = N ) ).

% prod_decode_inverse
thf(fact_9775_inj__prod__decode,axiom,
    ! [A3: set_nat] : ( inj_on5538052773655684606at_nat @ nat_prod_decode @ A3 ) ).

% inj_prod_decode
thf(fact_9776_prod__decode__def,axiom,
    ( nat_prod_decode
    = ( nat_prod_decode_aux @ zero_zero_nat ) ) ).

% prod_decode_def
thf(fact_9777_surj__prod__decode,axiom,
    ( ( image_5846123807819985514at_nat @ nat_prod_decode @ top_top_set_nat )
    = top_to4669805908274784177at_nat ) ).

% surj_prod_decode
thf(fact_9778_bij__prod__decode,axiom,
    bij_be8693218025023041337at_nat @ nat_prod_decode @ top_top_set_nat @ top_to4669805908274784177at_nat ).

% bij_prod_decode
thf(fact_9779_list__decode_Opinduct,axiom,
    ! [A0: nat,P: nat > $o] :
      ( ( accp_nat @ nat_list_decode_rel @ A0 )
     => ( ( ( accp_nat @ nat_list_decode_rel @ zero_zero_nat )
         => ( P @ zero_zero_nat ) )
       => ( ! [N2: nat] :
              ( ( accp_nat @ nat_list_decode_rel @ ( suc @ N2 ) )
             => ( ! [X5: nat,Y5: nat] :
                    ( ( ( product_Pair_nat_nat @ X5 @ Y5 )
                      = ( nat_prod_decode @ N2 ) )
                   => ( P @ Y5 ) )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ A0 ) ) ) ) ).

% list_decode.pinduct
thf(fact_9780_list__decode_Oelims,axiom,
    ! [X: nat,Y: list_nat] :
      ( ( ( nat_list_decode @ X )
        = Y )
     => ( ( ( X = zero_zero_nat )
         => ( Y != nil_nat ) )
       => ~ ! [N2: nat] :
              ( ( X
                = ( suc @ N2 ) )
             => ( Y
               != ( produc2761476792215241774st_nat
                  @ ^ [X3: nat,Y6: nat] : ( cons_nat @ X3 @ ( nat_list_decode @ Y6 ) )
                  @ ( nat_prod_decode @ N2 ) ) ) ) ) ) ).

% list_decode.elims
thf(fact_9781_list__encode__inverse,axiom,
    ! [X: list_nat] :
      ( ( nat_list_decode @ ( nat_list_encode @ X ) )
      = X ) ).

% list_encode_inverse
thf(fact_9782_list__decode__inverse,axiom,
    ! [N: nat] :
      ( ( nat_list_encode @ ( nat_list_decode @ N ) )
      = N ) ).

% list_decode_inverse
thf(fact_9783_list__decode__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( nat_list_decode @ X )
        = ( nat_list_decode @ Y ) )
      = ( X = Y ) ) ).

% list_decode_eq
thf(fact_9784_inj__list__decode,axiom,
    ! [A3: set_nat] : ( inj_on_nat_list_nat @ nat_list_decode @ A3 ) ).

% inj_list_decode
thf(fact_9785_list__decode_Opsimps_I1_J,axiom,
    ( ( accp_nat @ nat_list_decode_rel @ zero_zero_nat )
   => ( ( nat_list_decode @ zero_zero_nat )
      = nil_nat ) ) ).

% list_decode.psimps(1)
thf(fact_9786_list__decode_Osimps_I1_J,axiom,
    ( ( nat_list_decode @ zero_zero_nat )
    = nil_nat ) ).

% list_decode.simps(1)
thf(fact_9787_list__decode_Opsimps_I2_J,axiom,
    ! [N: nat] :
      ( ( accp_nat @ nat_list_decode_rel @ ( suc @ N ) )
     => ( ( nat_list_decode @ ( suc @ N ) )
        = ( produc2761476792215241774st_nat
          @ ^ [X3: nat,Y6: nat] : ( cons_nat @ X3 @ ( nat_list_decode @ Y6 ) )
          @ ( nat_prod_decode @ N ) ) ) ) ).

% list_decode.psimps(2)
thf(fact_9788_bij__list__decode,axiom,
    bij_be6293887246118711976st_nat @ nat_list_decode @ top_top_set_nat @ top_top_set_list_nat ).

% bij_list_decode
thf(fact_9789_surj__list__decode,axiom,
    ( ( image_nat_list_nat @ nat_list_decode @ top_top_set_nat )
    = top_top_set_list_nat ) ).

% surj_list_decode
thf(fact_9790_list__decode_Osimps_I2_J,axiom,
    ! [N: nat] :
      ( ( nat_list_decode @ ( suc @ N ) )
      = ( produc2761476792215241774st_nat
        @ ^ [X3: nat,Y6: nat] : ( cons_nat @ X3 @ ( nat_list_decode @ Y6 ) )
        @ ( nat_prod_decode @ N ) ) ) ).

% list_decode.simps(2)
thf(fact_9791_list__decode_Opelims,axiom,
    ! [X: nat,Y: list_nat] :
      ( ( ( nat_list_decode @ X )
        = Y )
     => ( ( accp_nat @ nat_list_decode_rel @ X )
       => ( ( ( X = zero_zero_nat )
           => ( ( Y = nil_nat )
             => ~ ( accp_nat @ nat_list_decode_rel @ zero_zero_nat ) ) )
         => ~ ! [N2: nat] :
                ( ( X
                  = ( suc @ N2 ) )
               => ( ( Y
                    = ( produc2761476792215241774st_nat
                      @ ^ [X3: nat,Y6: nat] : ( cons_nat @ X3 @ ( nat_list_decode @ Y6 ) )
                      @ ( nat_prod_decode @ N2 ) ) )
                 => ~ ( accp_nat @ nat_list_decode_rel @ ( suc @ N2 ) ) ) ) ) ) ) ).

% list_decode.pelims
thf(fact_9792_compute__powr__real,axiom,
    ( powr_real2
    = ( ^ [B2: real,I4: real] :
          ( if_real @ ( ord_less_eq_real @ B2 @ zero_zero_real )
          @ ( abort_real @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $true @ $false @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ zero_zero_literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
            @ ^ [Uu3: product_unit] : ( powr_real2 @ B2 @ I4 ) )
          @ ( if_real
            @ ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ I4 ) )
              = I4 )
            @ ( if_real @ ( ord_less_eq_real @ zero_zero_real @ I4 ) @ ( power_power_real @ B2 @ ( nat2 @ ( archim6058952711729229775r_real @ I4 ) ) ) @ ( divide_divide_real @ one_one_real @ ( power_power_real @ B2 @ ( nat2 @ ( archim6058952711729229775r_real @ ( uminus_uminus_real @ I4 ) ) ) ) ) )
            @ ( abort_real @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $true @ $false @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $true @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ zero_zero_literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
              @ ^ [Uu3: product_unit] : ( powr_real2 @ B2 @ I4 ) ) ) ) ) ) ).

% compute_powr_real
thf(fact_9793_int__of__integer__integer__of__nat,axiom,
    ! [N: nat] :
      ( ( code_int_of_integer @ ( code_integer_of_nat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% int_of_integer_integer_of_nat
thf(fact_9794_integer__of__nat_Orep__eq,axiom,
    ! [X: nat] :
      ( ( code_int_of_integer @ ( code_integer_of_nat @ X ) )
      = ( semiri1314217659103216013at_int @ X ) ) ).

% integer_of_nat.rep_eq
thf(fact_9795_integer__of__nat__0,axiom,
    ( ( code_integer_of_nat @ zero_zero_nat )
    = zero_z3403309356797280102nteger ) ).

% integer_of_nat_0
thf(fact_9796_integer__of__nat_Oabs__eq,axiom,
    ( code_integer_of_nat
    = ( ^ [X3: nat] : ( code_integer_of_int @ ( semiri1314217659103216013at_int @ X3 ) ) ) ) ).

% integer_of_nat.abs_eq
thf(fact_9797_integer__of__nat__numeral,axiom,
    ! [N: num] :
      ( ( code_integer_of_nat @ ( numeral_numeral_nat @ N ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% integer_of_nat_numeral
thf(fact_9798_integer__of__nat__1,axiom,
    ( ( code_integer_of_nat @ one_one_nat )
    = one_one_Code_integer ) ).

% integer_of_nat_1
thf(fact_9799_integer__of__nat__def,axiom,
    ( code_integer_of_nat
    = ( map_fu6290471996055670595nteger @ id_nat @ code_integer_of_int @ semiri1314217659103216013at_int ) ) ).

% integer_of_nat_def
thf(fact_9800_Gcd__int__set__eq__fold,axiom,
    ! [Xs: list_int] :
      ( ( gcd_Gcd_int @ ( set_int2 @ Xs ) )
      = ( fold_int_int @ gcd_gcd_int @ Xs @ zero_zero_int ) ) ).

% Gcd_int_set_eq_fold
thf(fact_9801_numeral__le__enat__iff,axiom,
    ! [M: num,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% numeral_le_enat_iff
thf(fact_9802_plus__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_p3455044024723400733d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( plus_plus_nat @ M @ N ) ) ) ).

% plus_enat_simps(1)
thf(fact_9803_idiff__enat__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ zero_zero_nat ) @ N )
      = ( extended_enat2 @ zero_zero_nat ) ) ).

% idiff_enat_0
thf(fact_9804_idiff__enat__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ ( extended_enat2 @ zero_zero_nat ) )
      = N ) ).

% idiff_enat_0_right
thf(fact_9805_idiff__enat__enat,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ A ) @ ( extended_enat2 @ B ) )
      = ( extended_enat2 @ ( minus_minus_nat @ A @ B ) ) ) ).

% idiff_enat_enat
thf(fact_9806_times__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( times_times_nat @ M @ N ) ) ) ).

% times_enat_simps(1)
thf(fact_9807_numeral__less__enat__iff,axiom,
    ! [M: num,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% numeral_less_enat_iff
thf(fact_9808_enat__0__iff_I2_J,axiom,
    ! [X: nat] :
      ( ( zero_z5237406670263579293d_enat
        = ( extended_enat2 @ X ) )
      = ( X = zero_zero_nat ) ) ).

% enat_0_iff(2)
thf(fact_9809_enat__0__iff_I1_J,axiom,
    ! [X: nat] :
      ( ( ( extended_enat2 @ X )
        = zero_z5237406670263579293d_enat )
      = ( X = zero_zero_nat ) ) ).

% enat_0_iff(1)
thf(fact_9810_zero__enat__def,axiom,
    ( zero_z5237406670263579293d_enat
    = ( extended_enat2 @ zero_zero_nat ) ) ).

% zero_enat_def
thf(fact_9811_numeral__eq__enat,axiom,
    ( numera1916890842035813515d_enat
    = ( ^ [K2: num] : ( extended_enat2 @ ( numeral_numeral_nat @ K2 ) ) ) ) ).

% numeral_eq_enat
thf(fact_9812_one__enat__def,axiom,
    ( one_on7984719198319812577d_enat
    = ( extended_enat2 @ one_one_nat ) ) ).

% one_enat_def
thf(fact_9813_enat__1__iff_I1_J,axiom,
    ! [X: nat] :
      ( ( ( extended_enat2 @ X )
        = one_on7984719198319812577d_enat )
      = ( X = one_one_nat ) ) ).

% enat_1_iff(1)
thf(fact_9814_enat__1__iff_I2_J,axiom,
    ! [X: nat] :
      ( ( one_on7984719198319812577d_enat
        = ( extended_enat2 @ X ) )
      = ( X = one_one_nat ) ) ).

% enat_1_iff(2)
thf(fact_9815_Suc__ile__eq,axiom,
    ! [M: nat,N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ ( suc @ M ) ) @ N )
      = ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ N ) ) ).

% Suc_ile_eq
thf(fact_9816_filtermap__at__right__shift,axiom,
    ! [D: real,A: real] :
      ( ( filtermap_real_real
        @ ^ [X3: real] : ( minus_minus_real @ X3 @ D )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( topolo2177554685111907308n_real @ ( minus_minus_real @ A @ D ) @ ( set_or5849166863359141190n_real @ ( minus_minus_real @ A @ D ) ) ) ) ).

% filtermap_at_right_shift
thf(fact_9817_iadd__le__enat__iff,axiom,
    ! [X: extended_enat,Y: extended_enat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ ( extended_enat2 @ N ) )
      = ( ? [Y9: nat,X10: nat] :
            ( ( X
              = ( extended_enat2 @ X10 ) )
            & ( Y
              = ( extended_enat2 @ Y9 ) )
            & ( ord_less_eq_nat @ ( plus_plus_nat @ X10 @ Y9 ) @ N ) ) ) ) ).

% iadd_le_enat_iff
thf(fact_9818_at__right__to__0,axiom,
    ! [A: real] :
      ( ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) )
      = ( filtermap_real_real
        @ ^ [X3: real] : ( plus_plus_real @ X3 @ A )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% at_right_to_0
thf(fact_9819_Gcd__nat__set__eq__fold,axiom,
    ! [Xs: list_nat] :
      ( ( gcd_Gcd_nat @ ( set_nat2 @ Xs ) )
      = ( fold_nat_nat @ gcd_gcd_nat @ Xs @ zero_zero_nat ) ) ).

% Gcd_nat_set_eq_fold
thf(fact_9820_times__enat__simps_I4_J,axiom,
    ! [M: nat] :
      ( ( ( M = zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat )
          = zero_z5237406670263579293d_enat ) )
      & ( ( M != zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat )
          = extend5688581933313929465d_enat ) ) ) ).

% times_enat_simps(4)
thf(fact_9821_times__enat__simps_I3_J,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) )
          = zero_z5237406670263579293d_enat ) )
      & ( ( N != zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) )
          = extend5688581933313929465d_enat ) ) ) ).

% times_enat_simps(3)
thf(fact_9822_plus__enat__simps_I2_J,axiom,
    ! [Q2: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ extend5688581933313929465d_enat @ Q2 )
      = extend5688581933313929465d_enat ) ).

% plus_enat_simps(2)
thf(fact_9823_plus__enat__simps_I3_J,axiom,
    ! [Q2: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ Q2 @ extend5688581933313929465d_enat )
      = extend5688581933313929465d_enat ) ).

% plus_enat_simps(3)
thf(fact_9824_idiff__infinity,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ extend5688581933313929465d_enat @ N )
      = extend5688581933313929465d_enat ) ).

% idiff_infinity
thf(fact_9825_times__enat__simps_I2_J,axiom,
    ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ extend5688581933313929465d_enat )
    = extend5688581933313929465d_enat ) ).

% times_enat_simps(2)
thf(fact_9826_idiff__self,axiom,
    ! [N: extended_enat] :
      ( ( N != extend5688581933313929465d_enat )
     => ( ( minus_3235023915231533773d_enat @ N @ N )
        = zero_z5237406670263579293d_enat ) ) ).

% idiff_self
thf(fact_9827_add__diff__cancel__enat,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( X != extend5688581933313929465d_enat )
     => ( ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ X )
        = Y ) ) ).

% add_diff_cancel_enat
thf(fact_9828_idiff__infinity__right,axiom,
    ! [A: nat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ A ) @ extend5688581933313929465d_enat )
      = zero_z5237406670263579293d_enat ) ).

% idiff_infinity_right
thf(fact_9829_enat__add__left__cancel__le,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A = extend5688581933313929465d_enat )
        | ( ord_le2932123472753598470d_enat @ B @ C ) ) ) ).

% enat_add_left_cancel_le
thf(fact_9830_enat__add__left__cancel__less,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A != extend5688581933313929465d_enat )
        & ( ord_le72135733267957522d_enat @ B @ C ) ) ) ).

% enat_add_left_cancel_less
thf(fact_9831_infinity__ne__i1,axiom,
    extend5688581933313929465d_enat != one_on7984719198319812577d_enat ).

% infinity_ne_i1
thf(fact_9832_enat__add__left__cancel,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ A @ B )
        = ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A = extend5688581933313929465d_enat )
        | ( B = C ) ) ) ).

% enat_add_left_cancel
thf(fact_9833_plus__eq__infty__iff__enat,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = extend5688581933313929465d_enat )
      = ( ( M = extend5688581933313929465d_enat )
        | ( N = extend5688581933313929465d_enat ) ) ) ).

% plus_eq_infty_iff_enat
thf(fact_9834_imult__is__infinity,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ A @ B )
        = extend5688581933313929465d_enat )
      = ( ( ( A = extend5688581933313929465d_enat )
          & ( B != zero_z5237406670263579293d_enat ) )
        | ( ( B = extend5688581933313929465d_enat )
          & ( A != zero_z5237406670263579293d_enat ) ) ) ) ).

% imult_is_infinity
thf(fact_9835_imult__infinity__right,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
     => ( ( times_7803423173614009249d_enat @ N @ extend5688581933313929465d_enat )
        = extend5688581933313929465d_enat ) ) ).

% imult_infinity_right
thf(fact_9836_imult__infinity,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
     => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ N )
        = extend5688581933313929465d_enat ) ) ).

% imult_infinity
thf(fact_9837_times__enat__def,axiom,
    ( times_7803423173614009249d_enat
    = ( ^ [M3: extended_enat,N3: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [O: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [P3: nat] : ( extended_enat2 @ ( times_times_nat @ O @ P3 ) )
              @ ( if_Extended_enat @ ( O = zero_zero_nat ) @ zero_z5237406670263579293d_enat @ extend5688581933313929465d_enat )
              @ N3 )
          @ ( if_Extended_enat @ ( N3 = zero_z5237406670263579293d_enat ) @ zero_z5237406670263579293d_enat @ extend5688581933313929465d_enat )
          @ M3 ) ) ) ).

% times_enat_def
thf(fact_9838_diff__enat__def,axiom,
    ( minus_3235023915231533773d_enat
    = ( ^ [A2: extended_enat,B2: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [X3: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [Y6: nat] : ( extended_enat2 @ ( minus_minus_nat @ X3 @ Y6 ) )
              @ zero_z5237406670263579293d_enat
              @ B2 )
          @ extend5688581933313929465d_enat
          @ A2 ) ) ) ).

% diff_enat_def
thf(fact_9839_plus__enat__def,axiom,
    ( plus_p3455044024723400733d_enat
    = ( ^ [M3: extended_enat,N3: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [O: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [P3: nat] : ( extended_enat2 @ ( plus_plus_nat @ O @ P3 ) )
              @ extend5688581933313929465d_enat
              @ N3 )
          @ extend5688581933313929465d_enat
          @ M3 ) ) ) ).

% plus_enat_def
thf(fact_9840_eSuc__def,axiom,
    ( extended_eSuc
    = ( extend3600170679010898289d_enat
      @ ^ [N3: nat] : ( extended_enat2 @ ( suc @ N3 ) )
      @ extend5688581933313929465d_enat ) ) ).

% eSuc_def
thf(fact_9841_eSuc__numeral,axiom,
    ! [K: num] :
      ( ( extended_eSuc @ ( numera1916890842035813515d_enat @ K ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ K @ one ) ) ) ).

% eSuc_numeral
thf(fact_9842_eSuc__minus__eSuc,axiom,
    ! [N: extended_enat,M: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_eSuc @ N ) @ ( extended_eSuc @ M ) )
      = ( minus_3235023915231533773d_enat @ N @ M ) ) ).

% eSuc_minus_eSuc
thf(fact_9843_eSuc__minus__1,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_eSuc @ N ) @ one_on7984719198319812577d_enat )
      = N ) ).

% eSuc_minus_1
thf(fact_9844_eSuc__enat,axiom,
    ! [N: nat] :
      ( ( extended_eSuc @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( suc @ N ) ) ) ).

% eSuc_enat
thf(fact_9845_eSuc__enat__iff,axiom,
    ! [X: extended_enat,Y: nat] :
      ( ( ( extended_eSuc @ X )
        = ( extended_enat2 @ Y ) )
      = ( ? [N3: nat] :
            ( ( Y
              = ( suc @ N3 ) )
            & ( X
              = ( extended_enat2 @ N3 ) ) ) ) ) ).

% eSuc_enat_iff
thf(fact_9846_enat__eSuc__iff,axiom,
    ! [Y: nat,X: extended_enat] :
      ( ( ( extended_enat2 @ Y )
        = ( extended_eSuc @ X ) )
      = ( ? [N3: nat] :
            ( ( Y
              = ( suc @ N3 ) )
            & ( ( extended_enat2 @ N3 )
              = X ) ) ) ) ).

% enat_eSuc_iff
thf(fact_9847_iadd__Suc,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( extended_eSuc @ M ) @ N )
      = ( extended_eSuc @ ( plus_p3455044024723400733d_enat @ M @ N ) ) ) ).

% iadd_Suc
thf(fact_9848_iadd__Suc__right,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ M @ ( extended_eSuc @ N ) )
      = ( extended_eSuc @ ( plus_p3455044024723400733d_enat @ M @ N ) ) ) ).

% iadd_Suc_right
thf(fact_9849_one__eSuc,axiom,
    ( one_on7984719198319812577d_enat
    = ( extended_eSuc @ zero_z5237406670263579293d_enat ) ) ).

% one_eSuc
thf(fact_9850_mult__eSuc,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( extended_eSuc @ M ) @ N )
      = ( plus_p3455044024723400733d_enat @ N @ ( times_7803423173614009249d_enat @ M @ N ) ) ) ).

% mult_eSuc
thf(fact_9851_mult__eSuc__right,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( times_7803423173614009249d_enat @ M @ ( extended_eSuc @ N ) )
      = ( plus_p3455044024723400733d_enat @ M @ ( times_7803423173614009249d_enat @ M @ N ) ) ) ).

% mult_eSuc_right
thf(fact_9852_eSuc__plus__1,axiom,
    ( extended_eSuc
    = ( ^ [N3: extended_enat] : ( plus_p3455044024723400733d_enat @ N3 @ one_on7984719198319812577d_enat ) ) ) ).

% eSuc_plus_1
thf(fact_9853_plus__1__eSuc_I1_J,axiom,
    ! [Q2: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ Q2 )
      = ( extended_eSuc @ Q2 ) ) ).

% plus_1_eSuc(1)
thf(fact_9854_plus__1__eSuc_I2_J,axiom,
    ! [Q2: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ Q2 @ one_on7984719198319812577d_enat )
      = ( extended_eSuc @ Q2 ) ) ).

% plus_1_eSuc(2)
thf(fact_9855_Quotient__real,axiom,
    quotie3684837364556693515t_real @ realrel @ real2 @ rep_real @ cr_real ).

% Quotient_real
thf(fact_9856_has__vector__derivative__id,axiom,
    ! [Net: filter_real] :
      ( has_ve631408500373753343e_real
      @ ^ [X3: real] : X3
      @ one_one_real
      @ Net ) ).

% has_vector_derivative_id
thf(fact_9857_lcm__code__integer,axiom,
    ( gcd_lcm_Code_integer
    = ( ^ [A2: code_integer,B2: code_integer] : ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A2 ) @ ( abs_abs_Code_integer @ B2 ) ) @ ( gcd_gcd_Code_integer @ A2 @ B2 ) ) ) ) ).

% lcm_code_integer
thf(fact_9858_lcm__0__iff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ( gcd_lcm_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% lcm_0_iff_nat
thf(fact_9859_lcm__0__iff__int,axiom,
    ! [M: int,N: int] :
      ( ( ( gcd_lcm_int @ M @ N )
        = zero_zero_int )
      = ( ( M = zero_zero_int )
        | ( N = zero_zero_int ) ) ) ).

% lcm_0_iff_int
thf(fact_9860_lcm__proj1__iff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ( gcd_lcm_nat @ M @ N )
        = M )
      = ( dvd_dvd_nat @ N @ M ) ) ).

% lcm_proj1_iff_nat
thf(fact_9861_lcm__proj2__iff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ( gcd_lcm_nat @ M @ N )
        = N )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% lcm_proj2_iff_nat
thf(fact_9862_lcm__proj1__if__dvd__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( gcd_lcm_nat @ Y @ X )
        = Y ) ) ).

% lcm_proj1_if_dvd_nat
thf(fact_9863_lcm__proj2__if__dvd__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( gcd_lcm_nat @ X @ Y )
        = Y ) ) ).

% lcm_proj2_if_dvd_nat
thf(fact_9864_lcm__int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( gcd_lcm_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ ( gcd_lcm_nat @ M @ N ) ) ) ).

% lcm_int_int_eq
thf(fact_9865_abs__lcm__int,axiom,
    ! [I: int,J: int] :
      ( ( abs_abs_int @ ( gcd_lcm_int @ I @ J ) )
      = ( gcd_lcm_int @ I @ J ) ) ).

% abs_lcm_int
thf(fact_9866_lcm__abs1__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_lcm_int @ ( abs_abs_int @ X ) @ Y )
      = ( gcd_lcm_int @ X @ Y ) ) ).

% lcm_abs1_int
thf(fact_9867_lcm__abs2__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_lcm_int @ X @ ( abs_abs_int @ Y ) )
      = ( gcd_lcm_int @ X @ Y ) ) ).

% lcm_abs2_int
thf(fact_9868_lcm__1__iff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ( gcd_lcm_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% lcm_1_iff_nat
thf(fact_9869_lcm__1__iff__int,axiom,
    ! [M: int,N: int] :
      ( ( ( gcd_lcm_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          | ( M
            = ( uminus_uminus_int @ one_one_int ) ) )
        & ( ( N = one_one_int )
          | ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% lcm_1_iff_int
thf(fact_9870_lcm__proj2__if__dvd__int,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( gcd_lcm_int @ X @ Y )
        = ( abs_abs_int @ Y ) ) ) ).

% lcm_proj2_if_dvd_int
thf(fact_9871_lcm__proj1__if__dvd__int,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( gcd_lcm_int @ Y @ X )
        = ( abs_abs_int @ Y ) ) ) ).

% lcm_proj1_if_dvd_int
thf(fact_9872_lcm__proj2__iff__int,axiom,
    ! [M: int,N: int] :
      ( ( ( gcd_lcm_int @ M @ N )
        = ( abs_abs_int @ N ) )
      = ( dvd_dvd_int @ M @ N ) ) ).

% lcm_proj2_iff_int
thf(fact_9873_lcm__proj1__iff__int,axiom,
    ! [M: int,N: int] :
      ( ( ( gcd_lcm_int @ M @ N )
        = ( abs_abs_int @ M ) )
      = ( dvd_dvd_int @ N @ M ) ) ).

% lcm_proj1_iff_int
thf(fact_9874_lcm__nat__abs__left__eq,axiom,
    ! [K: int,N: nat] :
      ( ( gcd_lcm_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( nat2 @ ( gcd_lcm_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% lcm_nat_abs_left_eq
thf(fact_9875_lcm__nat__abs__right__eq,axiom,
    ! [N: nat,K: int] :
      ( ( gcd_lcm_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( nat2 @ ( gcd_lcm_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% lcm_nat_abs_right_eq
thf(fact_9876_lcm__unique__int,axiom,
    ! [D: int,A: int,B: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ D )
        & ( dvd_dvd_int @ A @ D )
        & ( dvd_dvd_int @ B @ D )
        & ! [E3: int] :
            ( ( ( dvd_dvd_int @ A @ E3 )
              & ( dvd_dvd_int @ B @ E3 ) )
           => ( dvd_dvd_int @ D @ E3 ) ) )
      = ( D
        = ( gcd_lcm_int @ A @ B ) ) ) ).

% lcm_unique_int
thf(fact_9877_prod__gcd__lcm__nat,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N3: nat] : ( times_times_nat @ ( gcd_gcd_nat @ M3 @ N3 ) @ ( gcd_lcm_nat @ M3 @ N3 ) ) ) ) ).

% prod_gcd_lcm_nat
thf(fact_9878_lcm__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa: code_integer] :
      ( ( code_int_of_integer @ ( gcd_lcm_Code_integer @ X @ Xa ) )
      = ( gcd_lcm_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).

% lcm_integer.rep_eq
thf(fact_9879_dvd__lcm__I1__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( dvd_dvd_nat @ K @ ( gcd_lcm_nat @ M @ N ) ) ) ).

% dvd_lcm_I1_nat
thf(fact_9880_dvd__lcm__I2__nat,axiom,
    ! [K: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ K @ N )
     => ( dvd_dvd_nat @ K @ ( gcd_lcm_nat @ M @ N ) ) ) ).

% dvd_lcm_I2_nat
thf(fact_9881_lcm__unique__nat,axiom,
    ! [A: nat,D: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ D )
        & ( dvd_dvd_nat @ B @ D )
        & ! [E3: nat] :
            ( ( ( dvd_dvd_nat @ A @ E3 )
              & ( dvd_dvd_nat @ B @ E3 ) )
           => ( dvd_dvd_nat @ D @ E3 ) ) )
      = ( D
        = ( gcd_lcm_nat @ A @ B ) ) ) ).

% lcm_unique_nat
thf(fact_9882_dvd__lcm__I1__int,axiom,
    ! [I: int,M: int,N: int] :
      ( ( dvd_dvd_int @ I @ M )
     => ( dvd_dvd_int @ I @ ( gcd_lcm_int @ M @ N ) ) ) ).

% dvd_lcm_I1_int
thf(fact_9883_dvd__lcm__I2__int,axiom,
    ! [I: int,N: int,M: int] :
      ( ( dvd_dvd_int @ I @ N )
     => ( dvd_dvd_int @ I @ ( gcd_lcm_int @ M @ N ) ) ) ).

% dvd_lcm_I2_int
thf(fact_9884_lcm__neg2__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_lcm_int @ X @ ( uminus_uminus_int @ Y ) )
      = ( gcd_lcm_int @ X @ Y ) ) ).

% lcm_neg2_int
thf(fact_9885_lcm__neg1__int,axiom,
    ! [X: int,Y: int] :
      ( ( gcd_lcm_int @ ( uminus_uminus_int @ X ) @ Y )
      = ( gcd_lcm_int @ X @ Y ) ) ).

% lcm_neg1_int
thf(fact_9886_lcm__integer_Oabs__eq,axiom,
    ! [Xa: int,X: int] :
      ( ( gcd_lcm_Code_integer @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( gcd_lcm_int @ Xa @ X ) ) ) ).

% lcm_integer.abs_eq
thf(fact_9887_lcm__int__def,axiom,
    ( gcd_lcm_int
    = ( ^ [X3: int,Y6: int] : ( semiri1314217659103216013at_int @ ( gcd_lcm_nat @ ( nat2 @ ( abs_abs_int @ X3 ) ) @ ( nat2 @ ( abs_abs_int @ Y6 ) ) ) ) ) ) ).

% lcm_int_def
thf(fact_9888_lcm__integer_Orsp,axiom,
    ( bNF_re711492959462206631nt_int
    @ ^ [Y3: int,Z: int] : ( Y3 = Z )
    @ ( bNF_re4712519889275205905nt_int
      @ ^ [Y3: int,Z: int] : ( Y3 = Z )
      @ ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    @ gcd_lcm_int
    @ gcd_lcm_int ) ).

% lcm_integer.rsp
thf(fact_9889_lcm__pos__int,axiom,
    ! [M: int,N: int] :
      ( ( M != zero_zero_int )
     => ( ( N != zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( gcd_lcm_int @ M @ N ) ) ) ) ).

% lcm_pos_int
thf(fact_9890_lcm__pos__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ zero_zero_nat @ ( gcd_lcm_nat @ M @ N ) ) ) ) ).

% lcm_pos_nat
thf(fact_9891_lcm__ge__0__int,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_lcm_int @ X @ Y ) ) ).

% lcm_ge_0_int
thf(fact_9892_lcm__cases__int,axiom,
    ! [X: int,Y: int,P: int > $o] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( P @ ( gcd_lcm_int @ X @ Y ) ) ) )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( ( ord_less_eq_int @ Y @ zero_zero_int )
           => ( P @ ( gcd_lcm_int @ X @ ( uminus_uminus_int @ Y ) ) ) ) )
       => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
           => ( ( ord_less_eq_int @ zero_zero_int @ Y )
             => ( P @ ( gcd_lcm_int @ ( uminus_uminus_int @ X ) @ Y ) ) ) )
         => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
             => ( ( ord_less_eq_int @ Y @ zero_zero_int )
               => ( P @ ( gcd_lcm_int @ ( uminus_uminus_int @ X ) @ ( uminus_uminus_int @ Y ) ) ) ) )
           => ( P @ ( gcd_lcm_int @ X @ Y ) ) ) ) ) ) ).

% lcm_cases_int
thf(fact_9893_lcm__nat__def,axiom,
    ( gcd_lcm_nat
    = ( ^ [X3: nat,Y6: nat] : ( divide_divide_nat @ ( times_times_nat @ X3 @ Y6 ) @ ( gcd_gcd_nat @ X3 @ Y6 ) ) ) ) ).

% lcm_nat_def
thf(fact_9894_prod__gcd__lcm__int,axiom,
    ! [M: int,N: int] :
      ( ( times_times_int @ ( abs_abs_int @ M ) @ ( abs_abs_int @ N ) )
      = ( times_times_int @ ( gcd_gcd_int @ M @ N ) @ ( gcd_lcm_int @ M @ N ) ) ) ).

% prod_gcd_lcm_int
thf(fact_9895_lcm__altdef__int,axiom,
    ( gcd_lcm_int
    = ( ^ [A2: int,B2: int] : ( divide_divide_int @ ( times_times_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) @ ( gcd_gcd_int @ A2 @ B2 ) ) ) ) ).

% lcm_altdef_int
thf(fact_9896_Lcm__eq__Max__nat,axiom,
    ! [M10: set_nat] :
      ( ( finite_finite_nat @ M10 )
     => ( ( M10 != bot_bot_set_nat )
       => ( ~ ( member_nat @ zero_zero_nat @ M10 )
         => ( ! [M2: nat,N2: nat] :
                ( ( member_nat @ M2 @ M10 )
               => ( ( member_nat @ N2 @ M10 )
                 => ( member_nat @ ( gcd_lcm_nat @ M2 @ N2 ) @ M10 ) ) )
           => ( ( gcd_Lcm_nat @ M10 )
              = ( lattic8265883725875713057ax_nat @ M10 ) ) ) ) ) ) ).

% Lcm_eq_Max_nat
thf(fact_9897_Lcm__int__set__eq__fold,axiom,
    ! [Xs: list_int] :
      ( ( gcd_Lcm_int @ ( set_int2 @ Xs ) )
      = ( fold_int_int @ gcd_lcm_int @ Xs @ one_one_int ) ) ).

% Lcm_int_set_eq_fold
thf(fact_9898_Lcm__eq__0__I__nat,axiom,
    ! [A3: set_nat] :
      ( ( member_nat @ zero_zero_nat @ A3 )
     => ( ( gcd_Lcm_nat @ A3 )
        = zero_zero_nat ) ) ).

% Lcm_eq_0_I_nat
thf(fact_9899_abs__Lcm__eq,axiom,
    ! [K5: set_int] :
      ( ( abs_abs_int @ ( gcd_Lcm_int @ K5 ) )
      = ( gcd_Lcm_int @ K5 ) ) ).

% abs_Lcm_eq
thf(fact_9900_Lcm__0__iff__nat,axiom,
    ! [A3: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( gcd_Lcm_nat @ A3 )
          = zero_zero_nat )
        = ( member_nat @ zero_zero_nat @ A3 ) ) ) ).

% Lcm_0_iff_nat
thf(fact_9901_Lcm__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Lcm_int @ ( image_int_int @ abs_abs_int @ K5 ) )
      = ( gcd_Lcm_int @ K5 ) ) ).

% Lcm_abs_eq
thf(fact_9902_Lcm__int__eq,axiom,
    ! [N5: set_nat] :
      ( ( gcd_Lcm_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N5 ) )
      = ( semiri1314217659103216013at_int @ ( gcd_Lcm_nat @ N5 ) ) ) ).

% Lcm_int_eq
thf(fact_9903_Lcm__nat__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Lcm_nat
        @ ( image_int_nat
          @ ^ [K2: int] : ( nat2 @ ( abs_abs_int @ K2 ) )
          @ K5 ) )
      = ( nat2 @ ( gcd_Lcm_int @ K5 ) ) ) ).

% Lcm_nat_abs_eq
thf(fact_9904_Lcm__in__lcm__closed__set__nat,axiom,
    ! [M10: set_nat] :
      ( ( finite_finite_nat @ M10 )
     => ( ( M10 != bot_bot_set_nat )
       => ( ! [M2: nat,N2: nat] :
              ( ( member_nat @ M2 @ M10 )
             => ( ( member_nat @ N2 @ M10 )
               => ( member_nat @ ( gcd_lcm_nat @ M2 @ N2 ) @ M10 ) ) )
         => ( member_nat @ ( gcd_Lcm_nat @ M10 ) @ M10 ) ) ) ) ).

% Lcm_in_lcm_closed_set_nat
thf(fact_9905_Lcm__nat__insert,axiom,
    ! [N: nat,M10: set_nat] :
      ( ( gcd_Lcm_nat @ ( insert_nat @ N @ M10 ) )
      = ( gcd_lcm_nat @ N @ ( gcd_Lcm_nat @ M10 ) ) ) ).

% Lcm_nat_insert
thf(fact_9906_Lcm__nat__empty,axiom,
    ( ( gcd_Lcm_nat @ bot_bot_set_nat )
    = one_one_nat ) ).

% Lcm_nat_empty
thf(fact_9907_Lcm__dvd__nat,axiom,
    ! [M10: set_nat,N: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ M10 )
         => ( dvd_dvd_nat @ X4 @ N ) )
     => ( dvd_dvd_nat @ ( gcd_Lcm_nat @ M10 ) @ N ) ) ).

% Lcm_dvd_nat
thf(fact_9908_dvd__Lcm__nat,axiom,
    ! [M: nat,M10: set_nat] :
      ( ( member_nat @ M @ M10 )
     => ( dvd_dvd_nat @ M @ ( gcd_Lcm_nat @ M10 ) ) ) ).

% dvd_Lcm_nat
thf(fact_9909_dvd__Lcm__int,axiom,
    ! [M: int,M10: set_int] :
      ( ( member_int @ M @ M10 )
     => ( dvd_dvd_int @ M @ ( gcd_Lcm_int @ M10 ) ) ) ).

% dvd_Lcm_int
thf(fact_9910_Lcm__least__int,axiom,
    ! [A3: set_int,A: int] :
      ( ! [B4: int] :
          ( ( member_int @ B4 @ A3 )
         => ( dvd_dvd_int @ B4 @ A ) )
     => ( dvd_dvd_int @ ( gcd_Lcm_int @ A3 ) @ A ) ) ).

% Lcm_least_int
thf(fact_9911_Lcm__nat__infinite,axiom,
    ! [M10: set_nat] :
      ( ~ ( finite_finite_nat @ M10 )
     => ( ( gcd_Lcm_nat @ M10 )
        = zero_zero_nat ) ) ).

% Lcm_nat_infinite
thf(fact_9912_Lcm__int__greater__eq__0,axiom,
    ! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Lcm_int @ K5 ) ) ).

% Lcm_int_greater_eq_0
thf(fact_9913_Gcd__nat__def,axiom,
    ( gcd_Gcd_nat
    = ( ^ [M7: set_nat] :
          ( gcd_Lcm_nat
          @ ( collect_nat
            @ ^ [D4: nat] :
              ! [X3: nat] :
                ( ( member_nat @ X3 @ M7 )
               => ( dvd_dvd_nat @ D4 @ X3 ) ) ) ) ) ) ).

% Gcd_nat_def
thf(fact_9914_Lcm__int__def,axiom,
    ( gcd_Lcm_int
    = ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Lcm_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).

% Lcm_int_def
thf(fact_9915_Lcm__nat__set__eq__fold,axiom,
    ! [Xs: list_nat] :
      ( ( gcd_Lcm_nat @ ( set_nat2 @ Xs ) )
      = ( fold_nat_nat @ gcd_lcm_nat @ Xs @ one_one_nat ) ) ).

% Lcm_nat_set_eq_fold
thf(fact_9916_Lcm__nat__def,axiom,
    ( gcd_Lcm_nat
    = ( ^ [M7: set_nat] : ( if_nat @ ( finite_finite_nat @ M7 ) @ ( lattic7826324295020591184_F_nat @ gcd_lcm_nat @ one_one_nat @ M7 ) @ zero_zero_nat ) ) ) ).

% Lcm_nat_def
thf(fact_9917_normalize__int__def,axiom,
    normal571682499473568032ze_int = abs_abs_int ).

% normalize_int_def
thf(fact_9918_normalize__nat__def,axiom,
    normal574172969982618308ze_nat = id_nat ).

% normalize_nat_def
thf(fact_9919_cr__int__def,axiom,
    ( cr_int
    = ( ^ [X3: product_prod_nat_nat] :
          ( ^ [Y3: int,Z: int] : ( Y3 = Z )
          @ ( abs_Integ @ X3 ) ) ) ) ).

% cr_int_def
thf(fact_9920_int_Opcr__cr__eq,axiom,
    pcr_int = cr_int ).

% int.pcr_cr_eq
thf(fact_9921_Quotient__int,axiom,
    quotie1194848508323700631at_int @ intrel @ abs_Integ @ rep_Integ @ cr_int ).

% Quotient_int
thf(fact_9922_gcd__nat_Osemilattice__neutr__axioms,axiom,
    semila9081495762789891438tr_nat @ gcd_gcd_nat @ zero_zero_nat ).

% gcd_nat.semilattice_neutr_axioms
thf(fact_9923_max__nat_Osemilattice__neutr__axioms,axiom,
    semila9081495762789891438tr_nat @ ord_max_nat @ zero_zero_nat ).

% max_nat.semilattice_neutr_axioms
thf(fact_9924_linear__scale__real,axiom,
    ! [F: real > real,R: real,B: real] :
      ( ( real_V4572627801940501177l_real @ F )
     => ( ( F @ ( times_times_real @ R @ B ) )
        = ( times_times_real @ R @ ( F @ B ) ) ) ) ).

% linear_scale_real
thf(fact_9925_real__linearD,axiom,
    ! [F: real > real] :
      ( ( real_V4572627801940501177l_real @ F )
     => ~ ! [C3: real] :
            ( F
           != ( times_times_real @ C3 ) ) ) ).

% real_linearD
thf(fact_9926_filterlim__int__sequentially,axiom,
    filterlim_nat_int @ semiri1314217659103216013at_int @ at_top_int @ at_top_nat ).

% filterlim_int_sequentially
thf(fact_9927_sub_Oabs__eq,axiom,
    ( code_sub
    = ( ^ [Xa4: num,X3: num] : ( code_integer_of_int @ ( minus_minus_int @ ( numeral_numeral_int @ Xa4 ) @ ( numeral_numeral_int @ X3 ) ) ) ) ) ).

% sub.abs_eq
thf(fact_9928_sub_Orep__eq,axiom,
    ! [X: num,Xa: num] :
      ( ( code_int_of_integer @ ( code_sub @ X @ Xa ) )
      = ( minus_minus_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Xa ) ) ) ).

% sub.rep_eq
thf(fact_9929_Code__Numeral_Osub__code_I1_J,axiom,
    ( ( code_sub @ one @ one )
    = zero_z3403309356797280102nteger ) ).

% Code_Numeral.sub_code(1)
thf(fact_9930_Code__Numeral_Osub__code_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( code_sub @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( minus_8373710615458151222nteger @ ( code_dup @ ( code_sub @ M @ N ) ) @ one_one_Code_integer ) ) ).

% Code_Numeral.sub_code(9)
thf(fact_9931_Code__Numeral_Osub__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( code_sub @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( code_dup @ ( code_sub @ M @ N ) ) @ one_one_Code_integer ) ) ).

% Code_Numeral.sub_code(8)
thf(fact_9932_dup_Orep__eq,axiom,
    ! [X: code_integer] :
      ( ( code_int_of_integer @ ( code_dup @ X ) )
      = ( plus_plus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ X ) ) ) ).

% dup.rep_eq
thf(fact_9933_dup_Oabs__eq,axiom,
    ! [X: int] :
      ( ( code_dup @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( plus_plus_int @ X @ X ) ) ) ).

% dup.abs_eq
thf(fact_9934_Code__Numeral_Osub__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( code_sub @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( code_dup @ ( code_sub @ M @ N ) ) ) ).

% Code_Numeral.sub_code(6)
thf(fact_9935_Code__Numeral_Osub__code_I4_J,axiom,
    ! [N: num] :
      ( ( code_sub @ one @ ( bit0 @ N ) )
      = ( code_Neg @ ( bitM @ N ) ) ) ).

% Code_Numeral.sub_code(4)
thf(fact_9936_Code__Numeral_Odup__def,axiom,
    ( code_dup
    = ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int
      @ ^ [K2: int] : ( plus_plus_int @ K2 @ K2 ) ) ) ).

% Code_Numeral.dup_def
thf(fact_9937_Code__Numeral_Odup__code_I3_J,axiom,
    ! [N: num] :
      ( ( code_dup @ ( code_Neg @ N ) )
      = ( code_Neg @ ( bit0 @ N ) ) ) ).

% Code_Numeral.dup_code(3)
thf(fact_9938_plus__integer__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( code_Neg @ M ) @ ( code_Neg @ N ) )
      = ( code_Neg @ ( plus_plus_num @ M @ N ) ) ) ).

% plus_integer_code(6)
thf(fact_9939_minus__integer__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( code_Neg @ M ) @ ( code_Neg @ N ) )
      = ( code_sub @ N @ M ) ) ).

% minus_integer_code(6)
thf(fact_9940_Code__Numeral_Osub__code_I5_J,axiom,
    ! [N: num] :
      ( ( code_sub @ one @ ( bit1 @ N ) )
      = ( code_Neg @ ( bit0 @ N ) ) ) ).

% Code_Numeral.sub_code(5)
thf(fact_9941_push__bit__integer__def,axiom,
    ( bit_se7788150548672797655nteger
    = ( map_fu8224359078269604234nteger @ id_nat @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ bit_se545348938243370406it_int ) ) ).

% push_bit_integer_def
thf(fact_9942_lcm__integer__def,axiom,
    ( gcd_lcm_Code_integer
    = ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ gcd_lcm_int ) ) ).

% lcm_integer_def
thf(fact_9943_plus__integer__def,axiom,
    ( plus_p5714425477246183910nteger
    = ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ plus_plus_int ) ) ).

% plus_integer_def
thf(fact_9944_times__integer__def,axiom,
    ( times_3573771949741848930nteger
    = ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ times_times_int ) ) ).

% times_integer_def
thf(fact_9945_minus__integer__def,axiom,
    ( minus_8373710615458151222nteger
    = ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ minus_minus_int ) ) ).

% minus_integer_def
thf(fact_9946_divide__integer__def,axiom,
    ( divide6298287555418463151nteger
    = ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ divide_divide_int ) ) ).

% divide_integer_def
thf(fact_9947_gcd__integer__def,axiom,
    ( gcd_gcd_Code_integer
    = ( map_fu8272188784021352819nteger @ code_int_of_integer @ ( map_fu2599414010547811884nteger @ code_int_of_integer @ code_integer_of_int ) @ gcd_gcd_int ) ) ).

% gcd_integer_def
thf(fact_9948_Code__Numeral_Osub__code_I2_J,axiom,
    ! [M: num] :
      ( ( code_sub @ ( bit0 @ M ) @ one )
      = ( code_Pos @ ( bitM @ M ) ) ) ).

% Code_Numeral.sub_code(2)
thf(fact_9949_Code__Numeral_Osub__code_I3_J,axiom,
    ! [M: num] :
      ( ( code_sub @ ( bit1 @ M ) @ one )
      = ( code_Pos @ ( bit0 @ M ) ) ) ).

% Code_Numeral.sub_code(3)
thf(fact_9950_Code__Numeral_Odup__code_I2_J,axiom,
    ! [N: num] :
      ( ( code_dup @ ( code_Pos @ N ) )
      = ( code_Pos @ ( bit0 @ N ) ) ) ).

% Code_Numeral.dup_code(2)
thf(fact_9951_times__integer__code_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( code_Pos @ M ) @ ( code_Pos @ N ) )
      = ( code_Pos @ ( times_times_num @ M @ N ) ) ) ).

% times_integer_code(3)
thf(fact_9952_one__integer__code,axiom,
    ( one_one_Code_integer
    = ( code_Pos @ one ) ) ).

% one_integer_code
thf(fact_9953_Pos__fold_I1_J,axiom,
    ( ( numera6620942414471956472nteger @ one )
    = ( code_Pos @ one ) ) ).

% Pos_fold(1)
thf(fact_9954_Pos__fold_I2_J,axiom,
    ! [K: num] :
      ( ( numera6620942414471956472nteger @ ( bit0 @ K ) )
      = ( code_Pos @ ( bit0 @ K ) ) ) ).

% Pos_fold(2)
thf(fact_9955_plus__integer__code_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( code_Pos @ M ) @ ( code_Pos @ N ) )
      = ( code_Pos @ ( plus_plus_num @ M @ N ) ) ) ).

% plus_integer_code(3)
thf(fact_9956_minus__integer__code_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( code_Pos @ M ) @ ( code_Pos @ N ) )
      = ( code_sub @ M @ N ) ) ).

% minus_integer_code(3)
thf(fact_9957_minus__integer__code_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( code_Pos @ M ) @ ( code_Neg @ N ) )
      = ( code_Pos @ ( plus_plus_num @ M @ N ) ) ) ).

% minus_integer_code(4)
thf(fact_9958_minus__integer__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( code_Neg @ M ) @ ( code_Pos @ N ) )
      = ( code_Neg @ ( plus_plus_num @ M @ N ) ) ) ).

% minus_integer_code(5)
thf(fact_9959_times__integer__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( code_Neg @ M ) @ ( code_Neg @ N ) )
      = ( code_Pos @ ( times_times_num @ M @ N ) ) ) ).

% times_integer_code(6)
thf(fact_9960_times__integer__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( code_Neg @ M ) @ ( code_Pos @ N ) )
      = ( code_Neg @ ( times_times_num @ M @ N ) ) ) ).

% times_integer_code(5)
thf(fact_9961_times__integer__code_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( code_Pos @ M ) @ ( code_Neg @ N ) )
      = ( code_Neg @ ( times_times_num @ M @ N ) ) ) ).

% times_integer_code(4)
thf(fact_9962_plus__integer__code_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( code_Pos @ M ) @ ( code_Neg @ N ) )
      = ( code_sub @ M @ N ) ) ).

% plus_integer_code(4)
thf(fact_9963_plus__integer__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( code_Neg @ M ) @ ( code_Pos @ N ) )
      = ( code_sub @ N @ M ) ) ).

% plus_integer_code(5)
thf(fact_9964_max__nat_Omonoid__axioms,axiom,
    monoid_nat @ ord_max_nat @ zero_zero_nat ).

% max_nat.monoid_axioms
thf(fact_9965_gcd__nat_Omonoid__axioms,axiom,
    monoid_nat @ gcd_gcd_nat @ zero_zero_nat ).

% gcd_nat.monoid_axioms
thf(fact_9966_Sup__real__def,axiom,
    ( comple1385675409528146559p_real
    = ( ^ [X8: set_real] :
          ( ord_Least_real
          @ ^ [Z5: real] :
            ! [X3: real] :
              ( ( member_real @ X3 @ X8 )
             => ( ord_less_eq_real @ X3 @ Z5 ) ) ) ) ) ).

% Sup_real_def
thf(fact_9967_Least__eq__0,axiom,
    ! [P: nat > $o] :
      ( ( P @ zero_zero_nat )
     => ( ( ord_Least_nat @ P )
        = zero_zero_nat ) ) ).

% Least_eq_0
thf(fact_9968_Least__Suc,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ( ( ord_Least_nat @ P )
          = ( suc
            @ ( ord_Least_nat
              @ ^ [M3: nat] : ( P @ ( suc @ M3 ) ) ) ) ) ) ) ).

% Least_Suc
thf(fact_9969_Least__Suc2,axiom,
    ! [P: nat > $o,N: nat,Q: nat > $o,M: nat] :
      ( ( P @ N )
     => ( ( Q @ M )
       => ( ~ ( P @ zero_zero_nat )
         => ( ! [K3: nat] :
                ( ( P @ ( suc @ K3 ) )
                = ( Q @ K3 ) )
           => ( ( ord_Least_nat @ P )
              = ( suc @ ( ord_Least_nat @ Q ) ) ) ) ) ) ) ).

% Least_Suc2
thf(fact_9970_unit__factor__simps_I1_J,axiom,
    ( ( unit_f2748546683901255202or_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% unit_factor_simps(1)
thf(fact_9971_unit__factor__simps_I2_J,axiom,
    ! [N: nat] :
      ( ( unit_f2748546683901255202or_nat @ ( suc @ N ) )
      = one_one_nat ) ).

% unit_factor_simps(2)
thf(fact_9972_unit__factor__int__def,axiom,
    unit_f2746056213392204926or_int = sgn_sgn_int ).

% unit_factor_int_def
thf(fact_9973_unit__factor__nat__def,axiom,
    ( unit_f2748546683901255202or_nat
    = ( ^ [N3: nat] : ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat @ one_one_nat ) ) ) ).

% unit_factor_nat_def
thf(fact_9974_gcd__nat_Ocomm__monoid__axioms,axiom,
    comm_monoid_nat @ gcd_gcd_nat @ zero_zero_nat ).

% gcd_nat.comm_monoid_axioms
thf(fact_9975_max__nat_Ocomm__monoid__axioms,axiom,
    comm_monoid_nat @ ord_max_nat @ zero_zero_nat ).

% max_nat.comm_monoid_axioms
thf(fact_9976_times__num__def,axiom,
    ( times_times_num
    = ( ^ [M3: num,N3: num] : ( num_of_nat @ ( times_times_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ) ).

% times_num_def
thf(fact_9977_or__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% or_num.simps(4)
thf(fact_9978_nat__of__num__sqr,axiom,
    ! [X: num] :
      ( ( nat_of_num @ ( sqr @ X ) )
      = ( times_times_nat @ ( nat_of_num @ X ) @ ( nat_of_num @ X ) ) ) ).

% nat_of_num_sqr
thf(fact_9979_nat__of__num__code_I2_J,axiom,
    ! [N: num] :
      ( ( nat_of_num @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( nat_of_num @ N ) @ ( nat_of_num @ N ) ) ) ).

% nat_of_num_code(2)
thf(fact_9980_or__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(8)
thf(fact_9981_or__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(6)
thf(fact_9982_or__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit1 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% or_num.simps(7)
thf(fact_9983_or__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_un6697907153464112080or_num @ one @ ( bit1 @ N ) )
      = ( bit1 @ N ) ) ).

% or_num.simps(3)
thf(fact_9984_less__eq__num__def,axiom,
    ( ord_less_eq_num
    = ( ^ [M3: num,N3: num] : ( ord_less_eq_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ).

% less_eq_num_def
thf(fact_9985_nat__of__num__add,axiom,
    ! [X: num,Y: num] :
      ( ( nat_of_num @ ( plus_plus_num @ X @ Y ) )
      = ( plus_plus_nat @ ( nat_of_num @ X ) @ ( nat_of_num @ Y ) ) ) ).

% nat_of_num_add
thf(fact_9986_nat__of__num_Osimps_I2_J,axiom,
    ! [X: num] :
      ( ( nat_of_num @ ( bit0 @ X ) )
      = ( plus_plus_nat @ ( nat_of_num @ X ) @ ( nat_of_num @ X ) ) ) ).

% nat_of_num.simps(2)
thf(fact_9987_nat__of__num__inverse,axiom,
    ! [X: num] :
      ( ( num_of_nat @ ( nat_of_num @ X ) )
      = X ) ).

% nat_of_num_inverse
thf(fact_9988_or__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(9)
thf(fact_9989_or__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(5)
thf(fact_9990_num__eq__iff,axiom,
    ( ( ^ [Y3: num,Z: num] : ( Y3 = Z ) )
    = ( ^ [X3: num,Y6: num] :
          ( ( nat_of_num @ X3 )
          = ( nat_of_num @ Y6 ) ) ) ) ).

% num_eq_iff
thf(fact_9991_or__num_Osimps_I1_J,axiom,
    ( ( bit_un6697907153464112080or_num @ one @ one )
    = one ) ).

% or_num.simps(1)
thf(fact_9992_nat__of__num__numeral,axiom,
    nat_of_num = numeral_numeral_nat ).

% nat_of_num_numeral
thf(fact_9993_nat__of__num__code_I1_J,axiom,
    ( ( nat_of_num @ one )
    = one_one_nat ) ).

% nat_of_num_code(1)
thf(fact_9994_less__num__def,axiom,
    ( ord_less_num
    = ( ^ [M3: num,N3: num] : ( ord_less_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ).

% less_num_def
thf(fact_9995_nat__of__num__mult,axiom,
    ! [X: num,Y: num] :
      ( ( nat_of_num @ ( times_times_num @ X @ Y ) )
      = ( times_times_nat @ ( nat_of_num @ X ) @ ( nat_of_num @ Y ) ) ) ).

% nat_of_num_mult
thf(fact_9996_nat__of__num__inc,axiom,
    ! [X: num] :
      ( ( nat_of_num @ ( inc @ X ) )
      = ( suc @ ( nat_of_num @ X ) ) ) ).

% nat_of_num_inc
thf(fact_9997_nat__of__num__pos,axiom,
    ! [X: num] : ( ord_less_nat @ zero_zero_nat @ ( nat_of_num @ X ) ) ).

% nat_of_num_pos
thf(fact_9998_nat__of__num__neq__0,axiom,
    ! [X: num] :
      ( ( nat_of_num @ X )
     != zero_zero_nat ) ).

% nat_of_num_neq_0
thf(fact_9999_nat__of__num_Osimps_I1_J,axiom,
    ( ( nat_of_num @ one )
    = ( suc @ zero_zero_nat ) ) ).

% nat_of_num.simps(1)
thf(fact_10000_nat__of__num_Osimps_I3_J,axiom,
    ! [X: num] :
      ( ( nat_of_num @ ( bit1 @ X ) )
      = ( suc @ ( plus_plus_nat @ ( nat_of_num @ X ) @ ( nat_of_num @ X ) ) ) ) ).

% nat_of_num.simps(3)
thf(fact_10001_num__of__nat__inverse,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( nat_of_num @ ( num_of_nat @ N ) )
        = N ) ) ).

% num_of_nat_inverse
thf(fact_10002_nat__of__num__code_I3_J,axiom,
    ! [N: num] :
      ( ( nat_of_num @ ( bit1 @ N ) )
      = ( suc @ ( plus_plus_nat @ ( nat_of_num @ N ) @ ( nat_of_num @ N ) ) ) ) ).

% nat_of_num_code(3)
thf(fact_10003_plus__num__def,axiom,
    ( plus_plus_num
    = ( ^ [M3: num,N3: num] : ( num_of_nat @ ( plus_plus_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ) ).

% plus_num_def
thf(fact_10004_or__num_Oelims,axiom,
    ! [X: num,Xa: num,Y: num] :
      ( ( ( bit_un6697907153464112080or_num @ X @ Xa )
        = Y )
     => ( ( ( X = one )
         => ( ( Xa = one )
           => ( Y != one ) ) )
       => ( ( ( X = one )
           => ! [N2: num] :
                ( ( Xa
                  = ( bit0 @ N2 ) )
               => ( Y
                 != ( bit1 @ N2 ) ) ) )
         => ( ( ( X = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit1 @ N2 ) )
                 => ( Y
                   != ( bit1 @ N2 ) ) ) )
           => ( ! [M2: num] :
                  ( ( X
                    = ( bit0 @ M2 ) )
                 => ( ( Xa = one )
                   => ( Y
                     != ( bit1 @ M2 ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y
                         != ( bit0 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y
                           != ( bit1 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit1 @ M2 ) )
                       => ( ( Xa = one )
                         => ( Y
                           != ( bit1 @ M2 ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y
                               != ( bit1 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) ) ) )
                     => ~ ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y
                                 != ( bit1 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_num.elims
thf(fact_10005_or__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_un6697907153464112080or_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% or_num.simps(2)
thf(fact_10006_or__num_Opelims,axiom,
    ! [X: num,Xa: num,Y: num] :
      ( ( ( bit_un6697907153464112080or_num @ X @ Xa )
        = Y )
     => ( ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ X @ Xa ) )
       => ( ( ( X = one )
           => ( ( Xa = one )
             => ( ( Y = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y
                      = ( bit1 @ N2 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y
                        = ( bit1 @ N2 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M2: num] :
                    ( ( X
                      = ( bit0 @ M2 ) )
                   => ( ( Xa = one )
                     => ( ( Y
                          = ( bit1 @ M2 ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ one ) ) ) ) )
               => ( ! [M2: num] :
                      ( ( X
                        = ( bit0 @ M2 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y
                              = ( bit0 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M2: num] :
                        ( ( X
                          = ( bit0 @ M2 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y
                                = ( bit1 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M2: num] :
                          ( ( X
                            = ( bit1 @ M2 ) )
                         => ( ( Xa = one )
                           => ( ( Y
                                = ( bit1 @ M2 ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ one ) ) ) ) )
                     => ( ! [M2: num] :
                            ( ( X
                              = ( bit1 @ M2 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y
                                    = ( bit1 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M2: num] :
                              ( ( X
                                = ( bit1 @ M2 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y
                                      = ( bit1 @ ( bit_un6697907153464112080or_num @ M2 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_num.pelims
thf(fact_10007_or__num__dict,axiom,
    bit_un6697907153464112080or_num = bit_un2785000775030745342or_num ).

% or_num_dict
thf(fact_10008_or__num__rel__dict,axiom,
    bit_un4773296044027857193um_rel = bit_un6909899581280750971um_rel ).

% or_num_rel_dict
thf(fact_10009_real__floor__code,axiom,
    ! [X: rat] :
      ( ( archim6058952711729229775r_real @ ( ratreal @ X ) )
      = ( archim3151403230148437115or_rat @ X ) ) ).

% real_floor_code
thf(fact_10010_real__minus__code,axiom,
    ! [X: rat,Y: rat] :
      ( ( minus_minus_real @ ( ratreal @ X ) @ ( ratreal @ Y ) )
      = ( ratreal @ ( minus_minus_rat @ X @ Y ) ) ) ).

% real_minus_code
thf(fact_10011_real__inverse__code,axiom,
    ! [X: rat] :
      ( ( inverse_inverse_real @ ( ratreal @ X ) )
      = ( ratreal @ ( inverse_inverse_rat @ X ) ) ) ).

% real_inverse_code
thf(fact_10012_real__plus__code,axiom,
    ! [X: rat,Y: rat] :
      ( ( plus_plus_real @ ( ratreal @ X ) @ ( ratreal @ Y ) )
      = ( ratreal @ ( plus_plus_rat @ X @ Y ) ) ) ).

% real_plus_code
thf(fact_10013_one__real__code,axiom,
    ( one_one_real
    = ( ratreal @ one_one_rat ) ) ).

% one_real_code
thf(fact_10014_zero__real__code,axiom,
    ( zero_zero_real
    = ( ratreal @ zero_zero_rat ) ) ).

% zero_real_code
thf(fact_10015_real__less__code,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_real @ ( ratreal @ X ) @ ( ratreal @ Y ) )
      = ( ord_less_rat @ X @ Y ) ) ).

% real_less_code
thf(fact_10016_Ratreal__def,axiom,
    ratreal = field_7254667332652039916t_real ).

% Ratreal_def
thf(fact_10017_real__uminus__code,axiom,
    ! [X: rat] :
      ( ( uminus_uminus_real @ ( ratreal @ X ) )
      = ( ratreal @ ( uminus_uminus_rat @ X ) ) ) ).

% real_uminus_code
thf(fact_10018_real__less__eq__code,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_real @ ( ratreal @ X ) @ ( ratreal @ Y ) )
      = ( ord_less_eq_rat @ X @ Y ) ) ).

% real_less_eq_code
thf(fact_10019_real__times__code,axiom,
    ! [X: rat,Y: rat] :
      ( ( times_times_real @ ( ratreal @ X ) @ ( ratreal @ Y ) )
      = ( ratreal @ ( times_times_rat @ X @ Y ) ) ) ).

% real_times_code
thf(fact_10020_real__divide__code,axiom,
    ! [X: rat,Y: rat] :
      ( ( divide_divide_real @ ( ratreal @ X ) @ ( ratreal @ Y ) )
      = ( ratreal @ ( divide_divide_rat @ X @ Y ) ) ) ).

% real_divide_code
thf(fact_10021_gcd__nat_Osemilattice__order__axioms,axiom,
    ( semila1248733672344298208er_nat @ gcd_gcd_nat @ dvd_dvd_nat
    @ ^ [M3: nat,N3: nat] :
        ( ( dvd_dvd_nat @ M3 @ N3 )
        & ( M3 != N3 ) ) ) ).

% gcd_nat.semilattice_order_axioms
thf(fact_10022_natural__decr,axiom,
    ! [N: code_natural] :
      ( ( N != zero_z2226904508553997617atural )
     => ( ord_less_nat @ ( minus_minus_nat @ ( code_nat_of_natural @ N ) @ ( suc @ zero_zero_nat ) ) @ ( code_nat_of_natural @ N ) ) ) ).

% natural_decr
thf(fact_10023_nat__of__natural__numeral,axiom,
    ! [K: num] :
      ( ( code_nat_of_natural @ ( numera5444537566228673987atural @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_of_natural_numeral
thf(fact_10024_plus__natural_Orep__eq,axiom,
    ! [X: code_natural,Xa: code_natural] :
      ( ( code_nat_of_natural @ ( plus_p4538020629002901425atural @ X @ Xa ) )
      = ( plus_plus_nat @ ( code_nat_of_natural @ X ) @ ( code_nat_of_natural @ Xa ) ) ) ).

% plus_natural.rep_eq
thf(fact_10025_minus__natural_Orep__eq,axiom,
    ! [X: code_natural,Xa: code_natural] :
      ( ( code_nat_of_natural @ ( minus_7197305767214868737atural @ X @ Xa ) )
      = ( minus_minus_nat @ ( code_nat_of_natural @ X ) @ ( code_nat_of_natural @ Xa ) ) ) ).

% minus_natural.rep_eq
thf(fact_10026_times__natural_Orep__eq,axiom,
    ! [X: code_natural,Xa: code_natural] :
      ( ( code_nat_of_natural @ ( times_2397367101498566445atural @ X @ Xa ) )
      = ( times_times_nat @ ( code_nat_of_natural @ X ) @ ( code_nat_of_natural @ Xa ) ) ) ).

% times_natural.rep_eq
thf(fact_10027_one__natural_Orep__eq,axiom,
    ( ( code_nat_of_natural @ one_one_Code_natural )
    = one_one_nat ) ).

% one_natural.rep_eq
thf(fact_10028_divide__natural_Orep__eq,axiom,
    ! [X: code_natural,Xa: code_natural] :
      ( ( code_nat_of_natural @ ( divide5121882707175180666atural @ X @ Xa ) )
      = ( divide_divide_nat @ ( code_nat_of_natural @ X ) @ ( code_nat_of_natural @ Xa ) ) ) ).

% divide_natural.rep_eq
thf(fact_10029_zero__natural_Orep__eq,axiom,
    ( ( code_nat_of_natural @ zero_z2226904508553997617atural )
    = zero_zero_nat ) ).

% zero_natural.rep_eq
thf(fact_10030_push__bit__natural_Orep__eq,axiom,
    ! [X: nat,Xa: code_natural] :
      ( ( code_nat_of_natural @ ( bit_se6611745700429515170atural @ X @ Xa ) )
      = ( bit_se547839408752420682it_nat @ X @ ( code_nat_of_natural @ Xa ) ) ) ).

% push_bit_natural.rep_eq
thf(fact_10031_natural__zero__minus__one,axiom,
    ( ( minus_7197305767214868737atural @ zero_z2226904508553997617atural @ one_one_Code_natural )
    = zero_z2226904508553997617atural ) ).

% natural_zero_minus_one
thf(fact_10032_integer__of__natural_Orep__eq,axiom,
    ! [X: code_natural] :
      ( ( code_int_of_integer @ ( code_i5400310926305786745atural @ X ) )
      = ( semiri1314217659103216013at_int @ ( code_nat_of_natural @ X ) ) ) ).

% integer_of_natural.rep_eq
thf(fact_10033_int__of__integer__of__natural,axiom,
    ! [N: code_natural] :
      ( ( code_int_of_integer @ ( code_i5400310926305786745atural @ N ) )
      = ( semiri1314217659103216013at_int @ ( code_nat_of_natural @ N ) ) ) ).

% int_of_integer_of_natural
thf(fact_10034_next_Osimps,axiom,
    ! [V: code_natural,W: code_natural] :
      ( ( next @ ( produc3574140220909816553atural @ V @ W ) )
      = ( produc6639722614265839536atural @ ( plus_p4538020629002901425atural @ ( minus_shift @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( minus_shift @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ V @ ( numera5444537566228673987atural @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ V @ ( numera5444537566228673987atural @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( plus_p4538020629002901425atural @ ( minus_shift @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ W @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ W @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ one_one_Code_natural ) ) @ one_one_Code_natural ) @ ( produc3574140220909816553atural @ ( minus_shift @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ V @ ( numera5444537566228673987atural @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ V @ ( numera5444537566228673987atural @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( minus_shift @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( modulo8411746178871703098atural @ W @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( times_2397367101498566445atural @ ( divide5121882707175180666atural @ W @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera5444537566228673987atural @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% next.simps
thf(fact_10035_log_Osimps,axiom,
    ( log
    = ( ^ [B2: code_natural,I4: code_natural] :
          ( if_Code_natural
          @ ( ( ord_le1926595141338095240atural @ B2 @ one_one_Code_natural )
            | ( ord_le5570908160329646204atural @ I4 @ B2 ) )
          @ one_one_Code_natural
          @ ( plus_p4538020629002901425atural @ one_one_Code_natural @ ( log @ B2 @ ( divide5121882707175180666atural @ I4 @ B2 ) ) ) ) ) ) ).

% log.simps
thf(fact_10036_minus__shift__def,axiom,
    ( minus_shift
    = ( ^ [R5: code_natural,K2: code_natural,L2: code_natural] : ( if_Code_natural @ ( ord_le5570908160329646204atural @ K2 @ L2 ) @ ( minus_7197305767214868737atural @ ( plus_p4538020629002901425atural @ R5 @ K2 ) @ L2 ) @ ( minus_7197305767214868737atural @ K2 @ L2 ) ) ) ) ).

% minus_shift_def
thf(fact_10037_log_Oelims,axiom,
    ! [X: code_natural,Xa: code_natural,Y: code_natural] :
      ( ( ( log @ X @ Xa )
        = Y )
     => ( ( ( ( ord_le1926595141338095240atural @ X @ one_one_Code_natural )
            | ( ord_le5570908160329646204atural @ Xa @ X ) )
         => ( Y = one_one_Code_natural ) )
        & ( ~ ( ( ord_le1926595141338095240atural @ X @ one_one_Code_natural )
              | ( ord_le5570908160329646204atural @ Xa @ X ) )
         => ( Y
            = ( plus_p4538020629002901425atural @ one_one_Code_natural @ ( log @ X @ ( divide5121882707175180666atural @ Xa @ X ) ) ) ) ) ) ) ).

% log.elims
thf(fact_10038_split__seed__def,axiom,
    ( split_seed
    = ( ^ [S4: produc7822875418678951345atural] :
          ( produc8282080750456430313atural
          @ ^ [V4: code_natural,W2: code_natural] :
              ( produc8282080750456430313atural
              @ ^ [V5: code_natural,W3: code_natural] : ( produc4480994950612372183atural @ ( produc3574140220909816553atural @ ( inc_shift @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ V4 ) @ W3 ) @ ( produc3574140220909816553atural @ V5 @ ( inc_shift @ ( numera5444537566228673987atural @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ W2 ) ) )
              @ ( produc6591912806276919810atural @ ( next @ S4 ) ) )
          @ S4 ) ) ) ).

% split_seed_def
thf(fact_10039_Random_Orange__def,axiom,
    ( range
    = ( ^ [K2: code_natural] :
          ( produc5538323210962509403atural
          @ ( iterat8892046348760725948atural @ ( log @ ( numera5444537566228673987atural @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ K2 )
            @ ^ [L2: code_natural] :
                ( produc5538323210962509403atural @ next
                @ ^ [V4: code_natural] : ( produc6639722614265839536atural @ ( plus_p4538020629002901425atural @ V4 @ ( times_2397367101498566445atural @ L2 @ ( numera5444537566228673987atural @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
            @ one_one_Code_natural )
          @ ^ [V4: code_natural] : ( produc6639722614265839536atural @ ( modulo8411746178871703098atural @ V4 @ K2 ) ) ) ) ) ).

% Random.range_def
thf(fact_10040_inc__shift__def,axiom,
    ( inc_shift
    = ( ^ [V4: code_natural,K2: code_natural] : ( if_Code_natural @ ( V4 = K2 ) @ one_one_Code_natural @ ( plus_p4538020629002901425atural @ K2 @ one_one_Code_natural ) ) ) ) ).

% inc_shift_def
thf(fact_10041_log_Opelims,axiom,
    ! [X: code_natural,Xa: code_natural,Y: code_natural] :
      ( ( ( log @ X @ Xa )
        = Y )
     => ( ( accp_P8126237942716283194atural @ log_rel @ ( produc3574140220909816553atural @ X @ Xa ) )
       => ~ ( ( ( ( ( ord_le1926595141338095240atural @ X @ one_one_Code_natural )
                  | ( ord_le5570908160329646204atural @ Xa @ X ) )
               => ( Y = one_one_Code_natural ) )
              & ( ~ ( ( ord_le1926595141338095240atural @ X @ one_one_Code_natural )
                    | ( ord_le5570908160329646204atural @ Xa @ X ) )
               => ( Y
                  = ( plus_p4538020629002901425atural @ one_one_Code_natural @ ( log @ X @ ( divide5121882707175180666atural @ Xa @ X ) ) ) ) ) )
           => ~ ( accp_P8126237942716283194atural @ log_rel @ ( produc3574140220909816553atural @ X @ Xa ) ) ) ) ) ).

% log.pelims
thf(fact_10042_divide__natural_Oabs__eq,axiom,
    ! [Xa: nat,X: nat] :
      ( ( divide5121882707175180666atural @ ( code_natural_of_nat @ Xa ) @ ( code_natural_of_nat @ X ) )
      = ( code_natural_of_nat @ ( divide_divide_nat @ Xa @ X ) ) ) ).

% divide_natural.abs_eq
thf(fact_10043_push__bit__natural_Oabs__eq,axiom,
    ! [Xa: nat,X: nat] :
      ( ( bit_se6611745700429515170atural @ Xa @ ( code_natural_of_nat @ X ) )
      = ( code_natural_of_nat @ ( bit_se547839408752420682it_nat @ Xa @ X ) ) ) ).

% push_bit_natural.abs_eq
thf(fact_10044_times__natural_Oabs__eq,axiom,
    ! [Xa: nat,X: nat] :
      ( ( times_2397367101498566445atural @ ( code_natural_of_nat @ Xa ) @ ( code_natural_of_nat @ X ) )
      = ( code_natural_of_nat @ ( times_times_nat @ Xa @ X ) ) ) ).

% times_natural.abs_eq
thf(fact_10045_one__natural__def,axiom,
    ( one_one_Code_natural
    = ( code_natural_of_nat @ one_one_nat ) ) ).

% one_natural_def
thf(fact_10046_plus__natural_Oabs__eq,axiom,
    ! [Xa: nat,X: nat] :
      ( ( plus_p4538020629002901425atural @ ( code_natural_of_nat @ Xa ) @ ( code_natural_of_nat @ X ) )
      = ( code_natural_of_nat @ ( plus_plus_nat @ Xa @ X ) ) ) ).

% plus_natural.abs_eq
thf(fact_10047_minus__natural_Oabs__eq,axiom,
    ! [Xa: nat,X: nat] :
      ( ( minus_7197305767214868737atural @ ( code_natural_of_nat @ Xa ) @ ( code_natural_of_nat @ X ) )
      = ( code_natural_of_nat @ ( minus_minus_nat @ Xa @ X ) ) ) ).

% minus_natural.abs_eq
thf(fact_10048_zero__natural__def,axiom,
    ( zero_z2226904508553997617atural
    = ( code_natural_of_nat @ zero_zero_nat ) ) ).

% zero_natural_def
thf(fact_10049_integer__of__natural_Oabs__eq,axiom,
    ! [X: nat] :
      ( ( code_i5400310926305786745atural @ ( code_natural_of_nat @ X ) )
      = ( code_integer_of_int @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% integer_of_natural.abs_eq
thf(fact_10050_integer__of__natural__def,axiom,
    ( code_i5400310926305786745atural
    = ( map_fu2787874002554666395nteger @ code_nat_of_natural @ code_integer_of_int @ semiri1314217659103216013at_int ) ) ).

% integer_of_natural_def
thf(fact_10051_Suc_Orep__eq,axiom,
    ! [X: code_natural] :
      ( ( code_nat_of_natural @ ( code_Suc @ X ) )
      = ( suc @ ( code_nat_of_natural @ X ) ) ) ).

% Suc.rep_eq
thf(fact_10052_Suc__natural__minus__one,axiom,
    ! [N: code_natural] :
      ( ( minus_7197305767214868737atural @ ( code_Suc @ N ) @ one_one_Code_natural )
      = N ) ).

% Suc_natural_minus_one
thf(fact_10053_Suc_Oabs__eq,axiom,
    ! [X: nat] :
      ( ( code_Suc @ ( code_natural_of_nat @ X ) )
      = ( code_natural_of_nat @ ( suc @ X ) ) ) ).

% Suc.abs_eq
thf(fact_10054_Code__Numeral_OSuc__def,axiom,
    ( code_Suc
    = ( map_fu1239815594074539274atural @ code_nat_of_natural @ code_natural_of_nat @ suc ) ) ).

% Code_Numeral.Suc_def
thf(fact_10055_Quotient3__int,axiom,
    quotie6776551016481293500at_int @ intrel @ abs_Integ @ rep_Integ ).

% Quotient3_int
thf(fact_10056_push__bit__natural__def,axiom,
    ( bit_se6611745700429515170atural
    = ( map_fu6981160461238011112atural @ id_nat @ ( map_fu1239815594074539274atural @ code_nat_of_natural @ code_natural_of_nat ) @ bit_se547839408752420682it_nat ) ) ).

% push_bit_natural_def
thf(fact_10057_divide__natural__def,axiom,
    ( divide5121882707175180666atural
    = ( map_fu6549440983881763648atural @ code_nat_of_natural @ ( map_fu1239815594074539274atural @ code_nat_of_natural @ code_natural_of_nat ) @ divide_divide_nat ) ) ).

% divide_natural_def
thf(fact_10058_plus__natural__def,axiom,
    ( plus_p4538020629002901425atural
    = ( map_fu6549440983881763648atural @ code_nat_of_natural @ ( map_fu1239815594074539274atural @ code_nat_of_natural @ code_natural_of_nat ) @ plus_plus_nat ) ) ).

% plus_natural_def
thf(fact_10059_minus__natural__def,axiom,
    ( minus_7197305767214868737atural
    = ( map_fu6549440983881763648atural @ code_nat_of_natural @ ( map_fu1239815594074539274atural @ code_nat_of_natural @ code_natural_of_nat ) @ minus_minus_nat ) ) ).

% minus_natural_def
thf(fact_10060_times__natural__def,axiom,
    ( times_2397367101498566445atural
    = ( map_fu6549440983881763648atural @ code_nat_of_natural @ ( map_fu1239815594074539274atural @ code_nat_of_natural @ code_natural_of_nat ) @ times_times_nat ) ) ).

% times_natural_def
thf(fact_10061_sub_Otransfer,axiom,
    ( bNF_re7876454716742015248nteger
    @ ^ [Y3: num,Z: num] : ( Y3 = Z )
    @ ( bNF_re6501075790457514782nteger
      @ ^ [Y3: num,Z: num] : ( Y3 = Z )
      @ code_pcr_integer )
    @ ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) )
    @ code_sub ) ).

% sub.transfer
thf(fact_10062_push__bit__integer_Otransfer,axiom,
    ( bNF_re4935368626670024657nteger
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer )
    @ bit_se545348938243370406it_int
    @ bit_se7788150548672797655nteger ) ).

% push_bit_integer.transfer
thf(fact_10063_divide__integer_Otransfer,axiom,
    bNF_re398004352372739002nteger @ code_pcr_integer @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer ) @ divide_divide_int @ divide6298287555418463151nteger ).

% divide_integer.transfer
thf(fact_10064_minus__integer_Otransfer,axiom,
    bNF_re398004352372739002nteger @ code_pcr_integer @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer ) @ minus_minus_int @ minus_8373710615458151222nteger ).

% minus_integer.transfer
thf(fact_10065_times__integer_Otransfer,axiom,
    bNF_re398004352372739002nteger @ code_pcr_integer @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer ) @ times_times_int @ times_3573771949741848930nteger ).

% times_integer.transfer
thf(fact_10066_plus__integer_Otransfer,axiom,
    bNF_re398004352372739002nteger @ code_pcr_integer @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer ) @ plus_plus_int @ plus_p5714425477246183910nteger ).

% plus_integer.transfer
thf(fact_10067_one__integer_Otransfer,axiom,
    code_pcr_integer @ one_one_int @ one_one_Code_integer ).

% one_integer.transfer
thf(fact_10068_dup_Otransfer,axiom,
    ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer
    @ ^ [K2: int] : ( plus_plus_int @ K2 @ K2 )
    @ code_dup ) ).

% dup.transfer
thf(fact_10069_integer__of__nat_Otransfer,axiom,
    ( bNF_re4153400068438556298nteger
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ code_pcr_integer
    @ semiri1314217659103216013at_int
    @ code_integer_of_nat ) ).

% integer_of_nat.transfer
thf(fact_10070_gcd__integer_Otransfer,axiom,
    bNF_re398004352372739002nteger @ code_pcr_integer @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer ) @ gcd_gcd_int @ gcd_gcd_Code_integer ).

% gcd_integer.transfer
thf(fact_10071_lcm__integer_Otransfer,axiom,
    bNF_re398004352372739002nteger @ code_pcr_integer @ ( bNF_re3379532845092657523nteger @ code_pcr_integer @ code_pcr_integer ) @ gcd_lcm_int @ gcd_lcm_Code_integer ).

% lcm_integer.transfer
thf(fact_10072_zero__integer_Otransfer,axiom,
    code_pcr_integer @ zero_zero_int @ zero_z3403309356797280102nteger ).

% zero_integer.transfer
thf(fact_10073_integer__of__natural_Otransfer,axiom,
    bNF_re5252274238750452962nteger @ code_pcr_natural @ code_pcr_integer @ semiri1314217659103216013at_int @ code_i5400310926305786745atural ).

% integer_of_natural.transfer
thf(fact_10074_Suc_Otransfer,axiom,
    bNF_re3704215830270325841atural @ code_pcr_natural @ code_pcr_natural @ suc @ code_Suc ).

% Suc.transfer
thf(fact_10075_divide__natural_Otransfer,axiom,
    bNF_re88643428490162567atural @ code_pcr_natural @ ( bNF_re3704215830270325841atural @ code_pcr_natural @ code_pcr_natural ) @ divide_divide_nat @ divide5121882707175180666atural ).

% divide_natural.transfer
thf(fact_10076_push__bit__natural_Otransfer,axiom,
    ( bNF_re3692170009638431535atural
    @ ^ [Y3: nat,Z: nat] : ( Y3 = Z )
    @ ( bNF_re3704215830270325841atural @ code_pcr_natural @ code_pcr_natural )
    @ bit_se547839408752420682it_nat
    @ bit_se6611745700429515170atural ) ).

% push_bit_natural.transfer
thf(fact_10077_minus__natural_Otransfer,axiom,
    bNF_re88643428490162567atural @ code_pcr_natural @ ( bNF_re3704215830270325841atural @ code_pcr_natural @ code_pcr_natural ) @ minus_minus_nat @ minus_7197305767214868737atural ).

% minus_natural.transfer
thf(fact_10078_times__natural_Otransfer,axiom,
    bNF_re88643428490162567atural @ code_pcr_natural @ ( bNF_re3704215830270325841atural @ code_pcr_natural @ code_pcr_natural ) @ times_times_nat @ times_2397367101498566445atural ).

% times_natural.transfer
thf(fact_10079_plus__natural_Otransfer,axiom,
    bNF_re88643428490162567atural @ code_pcr_natural @ ( bNF_re3704215830270325841atural @ code_pcr_natural @ code_pcr_natural ) @ plus_plus_nat @ plus_p4538020629002901425atural ).

% plus_natural.transfer
thf(fact_10080_less__eq__int__code_I9_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_less_eq_int @ ( neg @ K ) @ ( neg @ L ) )
      = ( ord_less_eq_num @ L @ K ) ) ).

% less_eq_int_code(9)
thf(fact_10081_less__eq__int__code_I3_J,axiom,
    ! [L: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( neg @ L ) ) ).

% less_eq_int_code(3)
thf(fact_10082_less__eq__int__code_I7_J,axiom,
    ! [K: num] : ( ord_less_eq_int @ ( neg @ K ) @ zero_zero_int ) ).

% less_eq_int_code(7)
thf(fact_10083_zero__natural_Otransfer,axiom,
    code_pcr_natural @ zero_zero_nat @ zero_z2226904508553997617atural ).

% zero_natural.transfer
thf(fact_10084_nat__code_I1_J,axiom,
    ! [K: num] :
      ( ( nat2 @ ( neg @ K ) )
      = zero_zero_nat ) ).

% nat_code(1)
thf(fact_10085_less__int__code_I9_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_less_int @ ( neg @ K ) @ ( neg @ L ) )
      = ( ord_less_num @ L @ K ) ) ).

% less_int_code(9)
thf(fact_10086_one__natural_Otransfer,axiom,
    code_pcr_natural @ one_one_nat @ one_one_Code_natural ).

% one_natural.transfer
thf(fact_10087_plus__int__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( neg @ M ) @ ( neg @ N ) )
      = ( neg @ ( plus_plus_num @ M @ N ) ) ) ).

% plus_int_code(6)
thf(fact_10088_less__int__code_I3_J,axiom,
    ! [L: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( neg @ L ) ) ).

% less_int_code(3)
thf(fact_10089_less__int__code_I7_J,axiom,
    ! [K: num] : ( ord_less_int @ ( neg @ K ) @ zero_zero_int ) ).

% less_int_code(7)
thf(fact_10090_Int_Osub__code_I4_J,axiom,
    ! [N: num] :
      ( ( sub @ one @ ( bit0 @ N ) )
      = ( neg @ ( bitM @ N ) ) ) ).

% Int.sub_code(4)
thf(fact_10091_Int_Osub__code_I5_J,axiom,
    ! [N: num] :
      ( ( sub @ one @ ( bit1 @ N ) )
      = ( neg @ ( bit0 @ N ) ) ) ).

% Int.sub_code(5)
thf(fact_10092_Int_Osub__def,axiom,
    ( sub
    = ( ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ).

% Int.sub_def
thf(fact_10093_Int_Osub__code_I1_J,axiom,
    ( ( sub @ one @ one )
    = zero_zero_int ) ).

% Int.sub_code(1)
thf(fact_10094_minus__int__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( neg @ M ) @ ( neg @ N ) )
      = ( sub @ N @ M ) ) ).

% minus_int_code(6)
thf(fact_10095_Int_Osub__code_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( sub @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( minus_minus_int @ ( dup @ ( sub @ M @ N ) ) @ one_one_int ) ) ).

% Int.sub_code(9)
thf(fact_10096_Int_Osub__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( sub @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( dup @ ( sub @ M @ N ) ) @ one_one_int ) ) ).

% Int.sub_code(8)
thf(fact_10097_Int_Odup__code_I1_J,axiom,
    ( ( dup @ zero_zero_int )
    = zero_zero_int ) ).

% Int.dup_code(1)
thf(fact_10098_Int_Odup__def,axiom,
    ( dup
    = ( ^ [K2: int] : ( plus_plus_int @ K2 @ K2 ) ) ) ).

% Int.dup_def
thf(fact_10099_Int_Odup__code_I3_J,axiom,
    ! [N: num] :
      ( ( dup @ ( neg @ N ) )
      = ( neg @ ( bit0 @ N ) ) ) ).

% Int.dup_code(3)
thf(fact_10100_Int_Osub__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( sub @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( dup @ ( sub @ M @ N ) ) ) ).

% Int.sub_code(6)
thf(fact_10101_Int_Osub__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( sub @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( dup @ ( sub @ M @ N ) ) ) ).

% Int.sub_code(7)
thf(fact_10102_Int_Osub__code_I2_J,axiom,
    ! [M: num] :
      ( ( sub @ ( bit0 @ M ) @ one )
      = ( pos @ ( bitM @ M ) ) ) ).

% Int.sub_code(2)
thf(fact_10103_Int_Osub__code_I3_J,axiom,
    ! [M: num] :
      ( ( sub @ ( bit1 @ M ) @ one )
      = ( pos @ ( bit0 @ M ) ) ) ).

% Int.sub_code(3)
thf(fact_10104_Int_Odup__code_I2_J,axiom,
    ! [N: num] :
      ( ( dup @ ( pos @ N ) )
      = ( pos @ ( bit0 @ N ) ) ) ).

% Int.dup_code(2)
thf(fact_10105_less__eq__int__code_I6_J,axiom,
    ! [K: num,L: num] :
      ~ ( ord_less_eq_int @ ( pos @ K ) @ ( neg @ L ) ) ).

% less_eq_int_code(6)
thf(fact_10106_less__eq__int__code_I8_J,axiom,
    ! [K: num,L: num] : ( ord_less_eq_int @ ( neg @ K ) @ ( pos @ L ) ) ).

% less_eq_int_code(8)
thf(fact_10107_Int_ONeg__def,axiom,
    ( neg
    = ( ^ [N3: num] : ( uminus_uminus_int @ ( pos @ N3 ) ) ) ) ).

% Int.Neg_def
thf(fact_10108_uminus__int__code_I2_J,axiom,
    ! [M: num] :
      ( ( uminus_uminus_int @ ( pos @ M ) )
      = ( neg @ M ) ) ).

% uminus_int_code(2)
thf(fact_10109_uminus__int__code_I3_J,axiom,
    ! [M: num] :
      ( ( uminus_uminus_int @ ( neg @ M ) )
      = ( pos @ M ) ) ).

% uminus_int_code(3)
thf(fact_10110_less__int__code_I8_J,axiom,
    ! [K: num,L: num] : ( ord_less_int @ ( neg @ K ) @ ( pos @ L ) ) ).

% less_int_code(8)
thf(fact_10111_less__int__code_I6_J,axiom,
    ! [K: num,L: num] :
      ~ ( ord_less_int @ ( pos @ K ) @ ( neg @ L ) ) ).

% less_int_code(6)
thf(fact_10112_less__int__code_I4_J,axiom,
    ! [K: num] :
      ~ ( ord_less_int @ ( pos @ K ) @ zero_zero_int ) ).

% less_int_code(4)
thf(fact_10113_less__int__code_I2_J,axiom,
    ! [L: num] : ( ord_less_int @ zero_zero_int @ ( pos @ L ) ) ).

% less_int_code(2)
thf(fact_10114_Int_OPos__def,axiom,
    pos = numeral_numeral_int ).

% Int.Pos_def
thf(fact_10115_one__int__code,axiom,
    ( one_one_int
    = ( pos @ one ) ) ).

% one_int_code
thf(fact_10116_plus__int__code_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( pos @ M ) @ ( pos @ N ) )
      = ( pos @ ( plus_plus_num @ M @ N ) ) ) ).

% plus_int_code(3)
thf(fact_10117_times__int__code_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( pos @ M ) @ ( pos @ N ) )
      = ( pos @ ( times_times_num @ M @ N ) ) ) ).

% times_int_code(3)
thf(fact_10118_less__int__code_I5_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_less_int @ ( pos @ K ) @ ( pos @ L ) )
      = ( ord_less_num @ K @ L ) ) ).

% less_int_code(5)
thf(fact_10119_nat__code_I3_J,axiom,
    ! [K: num] :
      ( ( nat2 @ ( pos @ K ) )
      = ( nat_of_num @ K ) ) ).

% nat_code(3)
thf(fact_10120_less__eq__int__code_I2_J,axiom,
    ! [L: num] : ( ord_less_eq_int @ zero_zero_int @ ( pos @ L ) ) ).

% less_eq_int_code(2)
thf(fact_10121_less__eq__int__code_I4_J,axiom,
    ! [K: num] :
      ~ ( ord_less_eq_int @ ( pos @ K ) @ zero_zero_int ) ).

% less_eq_int_code(4)
thf(fact_10122_less__eq__int__code_I5_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_less_eq_int @ ( pos @ K ) @ ( pos @ L ) )
      = ( ord_less_eq_num @ K @ L ) ) ).

% less_eq_int_code(5)
thf(fact_10123_minus__int__code_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( pos @ M ) @ ( pos @ N ) )
      = ( sub @ M @ N ) ) ).

% minus_int_code(3)
thf(fact_10124_minus__int__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( neg @ M ) @ ( pos @ N ) )
      = ( neg @ ( plus_plus_num @ M @ N ) ) ) ).

% minus_int_code(5)
thf(fact_10125_minus__int__code_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( pos @ M ) @ ( neg @ N ) )
      = ( pos @ ( plus_plus_num @ M @ N ) ) ) ).

% minus_int_code(4)
thf(fact_10126_times__int__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( neg @ M ) @ ( neg @ N ) )
      = ( pos @ ( times_times_num @ M @ N ) ) ) ).

% times_int_code(6)
thf(fact_10127_times__int__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( neg @ M ) @ ( pos @ N ) )
      = ( neg @ ( times_times_num @ M @ N ) ) ) ).

% times_int_code(5)
thf(fact_10128_times__int__code_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( pos @ M ) @ ( neg @ N ) )
      = ( neg @ ( times_times_num @ M @ N ) ) ) ).

% times_int_code(4)
thf(fact_10129_plus__int__code_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( pos @ M ) @ ( neg @ N ) )
      = ( sub @ M @ N ) ) ).

% plus_int_code(4)
thf(fact_10130_plus__int__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( neg @ M ) @ ( pos @ N ) )
      = ( sub @ N @ M ) ) ).

% plus_int_code(5)
thf(fact_10131_sum__encode__def,axiom,
    ( nat_sum_encode
    = ( sum_ca6763686470577984908at_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      @ ^ [B2: nat] : ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) ) ) ) ).

% sum_encode_def
thf(fact_10132_Quotient3__real,axiom,
    quotie8700032322157300518t_real @ realrel @ real2 @ rep_real ).

% Quotient3_real
thf(fact_10133_sum__encode__eq,axiom,
    ! [X: sum_sum_nat_nat,Y: sum_sum_nat_nat] :
      ( ( ( nat_sum_encode @ X )
        = ( nat_sum_encode @ Y ) )
      = ( X = Y ) ) ).

% sum_encode_eq
thf(fact_10134_bij__sum__encode,axiom,
    bij_be5432664580149595207at_nat @ nat_sum_encode @ top_to6661820994512907621at_nat @ top_top_set_nat ).

% bij_sum_encode
thf(fact_10135_surj__sum__encode,axiom,
    ( ( image_1320371278474632150at_nat @ nat_sum_encode @ top_to6661820994512907621at_nat )
    = top_top_set_nat ) ).

% surj_sum_encode
thf(fact_10136_inj__sum__encode,axiom,
    ! [A3: set_Sum_sum_nat_nat] : ( inj_on6343450744447823682at_nat @ nat_sum_encode @ A3 ) ).

% inj_sum_encode
thf(fact_10137_int__encode__def,axiom,
    ( nat_int_encode
    = ( ^ [I4: int] : ( nat_sum_encode @ ( if_Sum_sum_nat_nat @ ( ord_less_eq_int @ zero_zero_int @ I4 ) @ ( sum_Inl_nat_nat @ ( nat2 @ I4 ) ) @ ( sum_Inr_nat_nat @ ( nat2 @ ( minus_minus_int @ ( uminus_uminus_int @ I4 ) @ one_one_int ) ) ) ) ) ) ) ).

% int_encode_def
thf(fact_10138_sum__decode__def,axiom,
    ( nat_sum_decode
    = ( ^ [N3: nat] : ( if_Sum_sum_nat_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( sum_Inl_nat_nat @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( sum_Inr_nat_nat @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sum_decode_def
thf(fact_10139_sum__encode__inverse,axiom,
    ! [X: sum_sum_nat_nat] :
      ( ( nat_sum_decode @ ( nat_sum_encode @ X ) )
      = X ) ).

% sum_encode_inverse
thf(fact_10140_sum__decode__inverse,axiom,
    ! [N: nat] :
      ( ( nat_sum_encode @ ( nat_sum_decode @ N ) )
      = N ) ).

% sum_decode_inverse
thf(fact_10141_inj__sum__decode,axiom,
    ! [A3: set_nat] : ( inj_on5701776251185195458at_nat @ nat_sum_decode @ A3 ) ).

% inj_sum_decode
thf(fact_10142_surj__sum__decode,axiom,
    ( ( image_678696785212003926at_nat @ nat_sum_decode @ top_top_set_nat )
    = top_to6661820994512907621at_nat ) ).

% surj_sum_decode
thf(fact_10143_bij__sum__decode,axiom,
    bij_be4790990086886966983at_nat @ nat_sum_decode @ top_top_set_nat @ top_to6661820994512907621at_nat ).

% bij_sum_decode
thf(fact_10144_sum__decode__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( nat_sum_decode @ X )
        = ( nat_sum_decode @ Y ) )
      = ( X = Y ) ) ).

% sum_decode_eq
thf(fact_10145_nth__item_Opinduct,axiom,
    ! [A0: nat,P: nat > $o] :
      ( ( accp_nat @ nth_item_rel @ A0 )
     => ( ( ( accp_nat @ nth_item_rel @ zero_zero_nat )
         => ( P @ zero_zero_nat ) )
       => ( ! [N2: nat] :
              ( ( accp_nat @ nth_item_rel @ ( suc @ N2 ) )
             => ( ! [A6: nat,Aa: nat] :
                    ( ( ( nat_sum_decode @ N2 )
                      = ( sum_Inl_nat_nat @ A6 ) )
                   => ( ( ( nat_sum_decode @ A6 )
                        = ( sum_Inl_nat_nat @ Aa ) )
                     => ( P @ Aa ) ) )
               => ( ! [A6: nat,B8: nat] :
                      ( ( ( nat_sum_decode @ N2 )
                        = ( sum_Inl_nat_nat @ A6 ) )
                     => ( ( ( nat_sum_decode @ A6 )
                          = ( sum_Inr_nat_nat @ B8 ) )
                       => ( P @ B8 ) ) )
                 => ( ! [B8: nat,Ba: nat,X5: nat,Y5: nat] :
                        ( ( ( nat_sum_decode @ N2 )
                          = ( sum_Inr_nat_nat @ B8 ) )
                       => ( ( ( nat_sum_decode @ B8 )
                            = ( sum_Inr_nat_nat @ Ba ) )
                         => ( ( ( product_Pair_nat_nat @ X5 @ Y5 )
                              = ( nat_prod_decode @ Ba ) )
                           => ( P @ X5 ) ) ) )
                   => ( ! [B8: nat,Ba: nat,X5: nat,Y5: nat] :
                          ( ( ( nat_sum_decode @ N2 )
                            = ( sum_Inr_nat_nat @ B8 ) )
                         => ( ( ( nat_sum_decode @ B8 )
                              = ( sum_Inr_nat_nat @ Ba ) )
                           => ( ( ( product_Pair_nat_nat @ X5 @ Y5 )
                                = ( nat_prod_decode @ Ba ) )
                             => ( P @ Y5 ) ) ) )
                     => ( P @ ( suc @ N2 ) ) ) ) ) ) )
         => ( P @ A0 ) ) ) ) ).

% nth_item.pinduct
thf(fact_10146_int__decode__def,axiom,
    ( nat_int_decode
    = ( ^ [N3: nat] :
          ( sum_ca7763040182479039464nt_nat @ semiri1314217659103216013at_int
          @ ^ [B2: nat] : ( minus_minus_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ B2 ) ) @ one_one_int )
          @ ( nat_sum_decode @ N3 ) ) ) ) ).

% int_decode_def

% Helper facts (45)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
    ! [X: num,Y: num] :
      ( ( if_num @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
    ! [X: num,Y: num] :
      ( ( if_num @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
    ! [X: rat,Y: rat] :
      ( ( if_rat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
    ! [X: rat,Y: rat] :
      ( ( if_rat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y: complex] :
      ( ( if_complex @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y: complex] :
      ( ( if_complex @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( if_Extended_enat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( if_Extended_enat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( if_Code_integer @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( if_Code_integer @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Onatural_T,axiom,
    ! [X: code_natural,Y: code_natural] :
      ( ( if_Code_natural @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Onatural_T,axiom,
    ! [X: code_natural,Y: code_natural] :
      ( ( if_Code_natural @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( if_set_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( if_set_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X: list_nat,Y: list_nat] :
      ( ( if_list_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X: list_nat,Y: list_nat] :
      ( ( if_list_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: int > int,Y: int > int] :
      ( ( if_int_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: int > int,Y: int > int] :
      ( ( if_int_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J_T,axiom,
    ! [X: nat > rat,Y: nat > rat] :
      ( ( if_nat_rat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J_T,axiom,
    ! [X: nat > rat,Y: nat > rat] :
      ( ( if_nat_rat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X: option_num,Y: option_num] :
      ( ( if_option_num @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X: option_num,Y: option_num] :
      ( ( if_option_num @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: sum_sum_nat_nat,Y: sum_sum_nat_nat] :
      ( ( if_Sum_sum_nat_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: sum_sum_nat_nat,Y: sum_sum_nat_nat] :
      ( ( if_Sum_sum_nat_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: product_prod_int_int,Y: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: product_prod_int_int,Y: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J_T,axiom,
    ! [X: nat > int > int,Y: nat > int > int] :
      ( ( if_nat_int_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J_T,axiom,
    ! [X: nat > int > int,Y: nat > int > int] :
      ( ( if_nat_int_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
    ! [X: nat > nat > nat,Y: nat > nat > nat] :
      ( ( if_nat_nat_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
    ! [X: nat > nat > nat,Y: nat > nat > nat] :
      ( ( if_nat_nat_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ y ) ).

%------------------------------------------------------------------------------