TPTP Problem File: ITP209_10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP209_10 : TPTP v9.0.0. Released v8.2.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem Syntax_Match 00088_002922
% Version : ITP209_1 with the conjecture removed
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 26 ( 6 unt; 14 typ; 0 def)
% Number of atoms : 20 ( 11 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 9 ( 1 ~; 0 |; 1 &)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of types : 5 ( 4 usr)
% Number of type conns : 6 ( 4 >; 2 *; 0 +; 0 <<)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 8 usr; 6 con; 0-2 aty)
% Number of variables : 35 ( 35 !; 0 ?; 35 :)
% SPC : TF0_SAT_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-17 14:22:46.396
%------------------------------------------------------------------------------
% Could-be-implicit typings (4)
tff(ty_n_t__fun_Itf__a_Mt__fun_Itf__a_Mtf__a_J_J,type,
fun_a_fun_a_a: $tType ).
tff(ty_n_t__fun_Itf__a_Mtf__a_J,type,
fun_a_a: $tType ).
tff(ty_n_t__HOL__Obool,type,
bool: $tType ).
tff(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (10)
tff(sy_c_Syntax__Match_Oac__operator_001tf__a,type,
syntax_ac_operator_a: fun_a_fun_a_a > $o ).
tff(sy_c_aa_001tf__a_001t__fun_Itf__a_Mtf__a_J,type,
aa_a_fun_a_a: ( fun_a_fun_a_a * a ) > fun_a_a ).
tff(sy_c_aa_001tf__a_001tf__a,type,
aa_a_a: ( fun_a_a * a ) > a ).
tff(sy_c_fFalse,type,
fFalse: bool ).
tff(sy_c_fTrue,type,
fTrue: bool ).
tff(sy_c_pp,type,
pp: bool > $o ).
tff(sy_v_a,type,
a2: a ).
tff(sy_v_b,type,
b: a ).
tff(sy_v_c,type,
c: a ).
tff(sy_v_f,type,
f: fun_a_fun_a_a ).
% Relevant facts (10)
tff(fact_0_ac__operator__axioms,axiom,
syntax_ac_operator_a(f) ).
% ac_operator_axioms
tff(fact_1_commute,axiom,
! [A: a,B: a] : ( aa_a_a(aa_a_fun_a_a(f,A),B) = aa_a_a(aa_a_fun_a_a(f,B),A) ) ).
% commute
tff(fact_2_left__commute,axiom,
! [A: a,B: a,C: a] : ( aa_a_a(aa_a_fun_a_a(f,A),aa_a_a(aa_a_fun_a_a(f,B),C)) = aa_a_a(aa_a_fun_a_a(f,B),aa_a_a(aa_a_fun_a_a(f,A),C)) ) ).
% left_commute
tff(fact_3_right__assoc,axiom,
! [A: a,B: a,C: a] : ( aa_a_a(aa_a_fun_a_a(f,aa_a_a(aa_a_fun_a_a(f,A),B)),C) = aa_a_a(aa_a_fun_a_a(f,A),aa_a_a(aa_a_fun_a_a(f,B),C)) ) ).
% right_assoc
tff(fact_4_ac__operator_Ointro,axiom,
! [F: fun_a_fun_a_a] :
( ! [A2: a,B2: a,C2: a] : ( aa_a_a(aa_a_fun_a_a(F,aa_a_a(aa_a_fun_a_a(F,A2),B2)),C2) = aa_a_a(aa_a_fun_a_a(F,A2),aa_a_a(aa_a_fun_a_a(F,B2),C2)) )
=> ( ! [A2: a,B2: a] : ( aa_a_a(aa_a_fun_a_a(F,A2),B2) = aa_a_a(aa_a_fun_a_a(F,B2),A2) )
=> syntax_ac_operator_a(F) ) ) ).
% ac_operator.intro
tff(fact_5_ac__operator_Ocommute,axiom,
! [F: fun_a_fun_a_a,A: a,B: a] :
( syntax_ac_operator_a(F)
=> ( aa_a_a(aa_a_fun_a_a(F,A),B) = aa_a_a(aa_a_fun_a_a(F,B),A) ) ) ).
% ac_operator.commute
tff(fact_6_ac__operator_Oleft__assoc,axiom,
! [F: fun_a_fun_a_a,A: a,B: a,C: a] :
( syntax_ac_operator_a(F)
=> ( aa_a_a(aa_a_fun_a_a(F,A),aa_a_a(aa_a_fun_a_a(F,B),C)) = aa_a_a(aa_a_fun_a_a(F,aa_a_a(aa_a_fun_a_a(F,A),B)),C) ) ) ).
% ac_operator.left_assoc
tff(fact_7_ac__operator_Oright__assoc,axiom,
! [F: fun_a_fun_a_a,A: a,B: a,C: a] :
( syntax_ac_operator_a(F)
=> ( aa_a_a(aa_a_fun_a_a(F,aa_a_a(aa_a_fun_a_a(F,A),B)),C) = aa_a_a(aa_a_fun_a_a(F,A),aa_a_a(aa_a_fun_a_a(F,B),C)) ) ) ).
% ac_operator.right_assoc
tff(fact_8_ac__operator_Oleft__commute,axiom,
! [F: fun_a_fun_a_a,A: a,B: a,C: a] :
( syntax_ac_operator_a(F)
=> ( aa_a_a(aa_a_fun_a_a(F,A),aa_a_a(aa_a_fun_a_a(F,B),C)) = aa_a_a(aa_a_fun_a_a(F,B),aa_a_a(aa_a_fun_a_a(F,A),C)) ) ) ).
% ac_operator.left_commute
tff(fact_9_ac__operator__def,axiom,
! [F: fun_a_fun_a_a] :
( syntax_ac_operator_a(F)
<=> ( ! [A3: a,B3: a,C3: a] : ( aa_a_a(aa_a_fun_a_a(F,aa_a_a(aa_a_fun_a_a(F,A3),B3)),C3) = aa_a_a(aa_a_fun_a_a(F,A3),aa_a_a(aa_a_fun_a_a(F,B3),C3)) )
& ! [A3: a,B3: a] : ( aa_a_a(aa_a_fun_a_a(F,A3),B3) = aa_a_a(aa_a_fun_a_a(F,B3),A3) ) ) ) ).
% ac_operator_def
% Helper facts (2)
tff(help_pp_2_1_U,axiom,
pp(fTrue) ).
tff(help_pp_1_1_U,axiom,
~ pp(fFalse) ).
% Conjectures (1)
% tff(conj_0,conjecture,
% aa_a_a(aa_a_fun_a_a(f,aa_a_a(aa_a_fun_a_a(f,a2),b)),c) = aa_a_a(aa_a_fun_a_a(f,aa_a_a(aa_a_fun_a_a(f,a2),c)),b) ).
%------------------------------------------------------------------------------