TPTP Problem File: ITP179^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP179^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer StandardRules problem prob_555__5392816_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : StandardRules/prob_555__5392816_1 [Des21]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.30 v8.2.0, 0.15 v8.1.0, 0.18 v7.5.0
% Syntax   : Number of formulae    :  554 ( 231 unt; 201 typ;   0 def)
%            Number of atoms       :  847 ( 345 equ;   0 cnn)
%            Maximal formula atoms :    6 (   2 avg)
%            Number of connectives : 2464 ( 112   ~;   9   |;  56   &;2064   @)
%                                         (   0 <=>; 223  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   5 avg)
%            Number of types       :   55 (  54 usr)
%            Number of type conns  :  262 ( 262   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  148 ( 147 usr;  27 con; 0-3 aty)
%            Number of variables   :  835 (  20   ^; 788   !;  27   ?; 835   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:38:59.416
%------------------------------------------------------------------------------
% Could-be-implicit typings (54)
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J_J,type,
    set_Pr1355257963at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J_J,type,
    set_Pr1429673827um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J_J,type,
    set_Pr2065572323um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J_J,type,
    set_Pr1558970842um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr1121389018um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    produc1733247354um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1681803642um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Nat__Onat_J_Mt__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Nat__Onat_J_J,type,
    produc1871334759_a_nat: $tType ).

thf(ty_n_t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    labele498606060at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr304595758um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr409224873um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr45173959um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J_J,type,
    set_Pr689416536at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_Pr1134469976at_nat: $tType ).

thf(ty_n_t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    labele1191284958um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc1963079155um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc1918750183um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr55236280um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr326391507um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr386468381um_a_b: $tType ).

thf(ty_n_t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    labele261019144um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc1003469085um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc1546082365um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr1783309276um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Nat__Onat_J_J,type,
    set_Pr507214050_b_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr653770722um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr1155046920um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_Pr1647387645at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc323101606um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc585753260um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc1032616263at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr1994339542um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Nat__Onat_J_J,type,
    set_Pr1902304780_b_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr195945996um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    set_Pr1618094130um_a_b: $tType ).

thf(ty_n_t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    labele431970251um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1394389750um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1798470614um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc204140796um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr1916610317um_a_b: $tType ).

thf(ty_n_t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Nat__Onat_J,type,
    labele935650037_a_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1548871597um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Nat__Onat_J_J,type,
    set_Pr375490359_b_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    set_Pr1174980151um_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Nat__Onat_J,type,
    produc1978941143_b_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1124793815um_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_J,type,
    set_St761939237tant_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1986765409at_nat: $tType ).

thf(ty_n_t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    standard_Constant_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    set_Sum_sum_a_b: $tType ).

thf(ty_n_t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    sum_sum_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (147)
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_LabeledGraphSemantics_OStandard__Constant_OS__Bot_001tf__a,type,
    standard_S_Bot_a: standard_Constant_a ).

thf(sy_c_LabeledGraphSemantics_OStandard__Constant_OS__Idt_001tf__a,type,
    standard_S_Idt_a: standard_Constant_a ).

thf(sy_c_LabeledGraphSemantics_OgetRel_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    getRel1465196352um_a_b: standard_Constant_a > labele431970251um_a_b > set_Pr1916610317um_a_b ).

thf(sy_c_LabeledGraphs_Oedge__preserving_001t__Nat__Onat_001t__Nat__Onat_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    edge_p170421892tant_a: set_Pr1986765409at_nat > set_Pr1647387645at_nat > set_Pr1647387645at_nat > $o ).

thf(sy_c_LabeledGraphs_Oedge__preserving_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    edge_p1382426714tant_a: set_Pr1174980151um_a_b > set_Pr1647387645at_nat > set_Pr409224873um_a_b > $o ).

thf(sy_c_LabeledGraphs_Oedge__preserving_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Nat__Onat_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    edge_p749155930tant_a: set_Pr375490359_b_nat > set_Pr409224873um_a_b > set_Pr1647387645at_nat > $o ).

thf(sy_c_LabeledGraphs_Oedge__preserving_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    edge_p1871801392tant_a: set_Pr1916610317um_a_b > set_Pr409224873um_a_b > set_Pr409224873um_a_b > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat_001t__Nat__Onat,type,
    graph_2130075512at_nat: labele935650037_a_nat > labele935650037_a_nat > set_Pr1986765409at_nat > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    graph_1452133198um_a_b: labele935650037_a_nat > labele431970251um_a_b > set_Pr1174980151um_a_b > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    graph_149544303at_nat: labele498606060at_nat > labele935650037_a_nat > set_Pr689416536at_nat > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    graph_166346565um_a_b: labele498606060at_nat > labele431970251um_a_b > set_Pr304595758um_a_b > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Nat__Onat,type,
    graph_1203757137_b_nat: labele261019144um_a_b > labele935650037_a_nat > set_Pr1902304780_b_nat > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    graph_502887975um_a_b: labele261019144um_a_b > labele431970251um_a_b > set_Pr653770722um_a_b > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Nat__Onat,type,
    graph_1815313447_b_nat: labele1191284958um_a_b > labele935650037_a_nat > set_Pr507214050_b_nat > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    graph_1763806717um_a_b: labele1191284958um_a_b > labele431970251um_a_b > set_Pr55236280um_a_b > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    graph_165730638_b_nat: labele431970251um_a_b > labele935650037_a_nat > set_Pr375490359_b_nat > $o ).

thf(sy_c_LabeledGraphs_Ograph__homomorphism_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    graph_611893540um_a_b: labele431970251um_a_b > labele431970251um_a_b > set_Pr1916610317um_a_b > $o ).

thf(sy_c_LabeledGraphs_Olabeled__graph_OLG_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat,type,
    labele16114835_a_nat: set_Pr1647387645at_nat > set_nat > labele935650037_a_nat ).

thf(sy_c_LabeledGraphs_Olabeled__graph_OLG_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    labele1813985418at_nat: set_Pr1355257963at_nat > set_Pr1647387645at_nat > labele498606060at_nat ).

thf(sy_c_LabeledGraphs_Olabeled__graph_OLG_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    labele2034032468um_a_b: set_Pr2065572323um_a_b > set_Pr1174980151um_a_b > labele261019144um_a_b ).

thf(sy_c_LabeledGraphs_Olabeled__graph_OLG_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    labele989994um_a_b: set_Pr1429673827um_a_b > set_Pr1916610317um_a_b > labele1191284958um_a_b ).

thf(sy_c_LabeledGraphs_Olabeled__graph_OLG_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    labele1729654377um_a_b: set_Pr409224873um_a_b > set_Sum_sum_a_b > labele431970251um_a_b ).

thf(sy_c_LabeledGraphs_Olabeled__graph_Oedges_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat,type,
    labele195203296_a_nat: labele935650037_a_nat > set_Pr1647387645at_nat ).

thf(sy_c_LabeledGraphs_Olabeled__graph_Oedges_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    labele1939049654um_a_b: labele431970251um_a_b > set_Pr409224873um_a_b ).

thf(sy_c_LabeledGraphs_Olabeled__graph_Overtices_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat,type,
    labele1810595089_a_nat: labele935650037_a_nat > set_nat ).

thf(sy_c_LabeledGraphs_Olabeled__graph_Overtices_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    labele577278695um_a_b: labele431970251um_a_b > set_Sum_sum_a_b ).

thf(sy_c_LabeledGraphs_Orestrict_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat,type,
    restri572569417_a_nat: labele935650037_a_nat > labele935650037_a_nat ).

thf(sy_c_LabeledGraphs_Orestrict_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    restri1162247455um_a_b: labele431970251um_a_b > labele431970251um_a_b ).

thf(sy_c_MissingRelation_Ounivalent_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    unival860567212at_nat: set_Pr1647387645at_nat > $o ).

thf(sy_c_MissingRelation_Ounivalent_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    unival1487587672um_a_b: set_Pr409224873um_a_b > $o ).

thf(sy_c_MissingRelation_Ounivalent_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    unival2092813468um_a_b: set_Pr1174980151um_a_b > $o ).

thf(sy_c_MissingRelation_Ounivalent_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    unival118648434um_a_b: set_Pr1916610317um_a_b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_J,type,
    bot_bo1160111033tant_a: set_St761939237tant_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo810816657at_nat: set_Pr1647387645at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J_J,type,
    bot_bo1524397311at_nat: set_Pr1355257963at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J_J,type,
    bot_bo1208513655um_a_b: set_Pr2065572323um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J_J,type,
    bot_bo1262778871um_a_b: set_Pr1429673827um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    bot_bo1262634813um_a_b: set_Pr409224873um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bot_bo2130386637at_nat: set_Pr1986765409at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    bot_bo575978147um_a_b: set_Pr1174980151um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J_J,type,
    bot_bo1582968772at_nat: set_Pr689416536at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    bot_bo627753370um_a_b: set_Pr304595758um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Nat__Onat_J_J,type,
    bot_bo949957280_b_nat: set_Pr1902304780_b_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    bot_bo1892785270um_a_b: set_Pr653770722um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Nat__Onat_J_J,type,
    bot_bo1746228598_b_nat: set_Pr507214050_b_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    bot_bo1217542988um_a_b: set_Pr55236280um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Nat__Onat_J_J,type,
    bot_bo1923972003_b_nat: set_Pr375490359_b_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    bot_bo225809273um_a_b: set_Pr1916610317um_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    bot_bo1491243248um_a_b: set_Sum_sum_a_b ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_J,type,
    ord_le1739761029tant_a: set_St761939237tant_a > set_St761939237tant_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le1909159005at_nat: set_Pr1647387645at_nat > set_Pr1647387645at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    ord_le615126793um_a_b: set_Pr409224873um_a_b > set_Pr409224873um_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le841296385at_nat: set_Pr1986765409at_nat > set_Pr1986765409at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    ord_le823954903um_a_b: set_Pr1174980151um_a_b > set_Pr1174980151um_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    ord_le1059794605um_a_b: set_Pr1916610317um_a_b > set_Pr1916610317um_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    ord_le192794300um_a_b: set_Sum_sum_a_b > set_Sum_sum_a_b > $o ).

thf(sy_c_Product__Type_OPair_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc407553657at_nat: standard_Constant_a > product_prod_nat_nat > produc1032616263at_nat ).

thf(sy_c_Product__Type_OPair_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc414524239um_a_b: standard_Constant_a > produc1124793815um_a_b > produc1003469085um_a_b ).

thf(sy_c_Product__Type_OPair_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1697725733um_a_b: standard_Constant_a > produc1548871597um_a_b > produc1963079155um_a_b ).

thf(sy_c_Product__Type_OPair_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    produc584843310um_a_b: standard_Constant_a > sum_sum_a_b > produc1394389750um_a_b ).

thf(sy_c_Product__Type_OPair_001t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Nat__Onat_J_001t__LabeledGraphs__Olabeled____graph_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Nat__Onat_J,type,
    produc1676969687_a_nat: labele935650037_a_nat > labele935650037_a_nat > produc1871334759_a_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1346373166um_a_b: nat > produc1124793815um_a_b > produc204140796um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    produc1808556047um_a_b: nat > sum_sum_a_b > produc1124793815um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    produc522766386um_a_b: produc1963079155um_a_b > sum_sum_a_b > produc1681803642um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc335036333um_a_b: product_prod_nat_nat > produc1124793815um_a_b > produc1546082365um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    produc1872245072um_a_b: product_prod_nat_nat > sum_sum_a_b > produc1798470614um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc27163479um_a_b: produc1124793815um_a_b > produc1124793815um_a_b > produc1918750183um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    produc831476262um_a_b: produc1124793815um_a_b > sum_sum_a_b > produc585753260um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    produc522153487_b_nat: sum_sum_a_b > nat > produc1978941143_b_nat ).

thf(sy_c_Product__Type_OPair_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    produc230853810um_a_b: sum_sum_a_b > produc1963079155um_a_b > produc1733247354um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    produc1637282520um_a_b: sum_sum_a_b > produc1124793815um_a_b > produc323101606um_a_b ).

thf(sy_c_Product__Type_OPair_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    produc176426981um_a_b: sum_sum_a_b > sum_sum_a_b > produc1548871597um_a_b ).

thf(sy_c_Relation_ODomain_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    domain1060562500at_nat: set_Pr1647387645at_nat > set_St761939237tant_a ).

thf(sy_c_Relation_ODomain_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    domain1362581744um_a_b: set_Pr409224873um_a_b > set_St761939237tant_a ).

thf(sy_c_Relation_ODomain_001t__Nat__Onat_001t__Nat__Onat,type,
    domain_nat_nat: set_Pr1986765409at_nat > set_nat ).

thf(sy_c_Relation_ODomain_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    domain1368163076um_a_b: set_Pr1174980151um_a_b > set_nat ).

thf(sy_c_Relation_ODomain_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    domain2069673178um_a_b: set_Pr1916610317um_a_b > set_Sum_sum_a_b ).

thf(sy_c_Relation_OId__on_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    id_on_Sum_sum_a_b: set_Sum_sum_a_b > set_Pr1916610317um_a_b ).

thf(sy_c_Relation_OImage_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    image_127502653at_nat: set_Pr1647387645at_nat > set_St761939237tant_a > set_Pr1986765409at_nat ).

thf(sy_c_Relation_OImage_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_1179143699um_a_b: set_Pr326391507um_a_b > set_St761939237tant_a > set_Pr1174980151um_a_b ).

thf(sy_c_Relation_OImage_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_2023280617um_a_b: set_Pr409224873um_a_b > set_St761939237tant_a > set_Pr1916610317um_a_b ).

thf(sy_c_Relation_OImage_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    image_2129435242um_a_b: set_Pr1994339542um_a_b > set_St761939237tant_a > set_Sum_sum_a_b ).

thf(sy_c_Relation_OImage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: set_Pr1986765409at_nat > set_nat > set_nat ).

thf(sy_c_Relation_OImage_001t__Nat__Onat_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_489788268at_nat: set_Pr1134469976at_nat > set_nat > set_Pr1647387645at_nat ).

thf(sy_c_Relation_OImage_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_1228479730um_a_b: set_Pr1618094130um_a_b > set_nat > set_Pr1174980151um_a_b ).

thf(sy_c_Relation_OImage_001t__Nat__Onat_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_166667464um_a_b: set_Pr1155046920um_a_b > set_nat > set_Pr1916610317um_a_b ).

thf(sy_c_Relation_OImage_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    image_256773707um_a_b: set_Pr1174980151um_a_b > set_nat > set_Sum_sum_a_b ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    image_452296684at_nat: set_Pr689416536at_nat > set_Pr1647387645at_nat > set_nat ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    image_1774897262um_a_b: set_Pr1121389018um_a_b > set_Pr409224873um_a_b > set_Sum_sum_a_b ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_320480233um_a_b: set_Pr386468381um_a_b > set_Pr1986765409at_nat > set_Pr1174980151um_a_b ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    image_1754351636um_a_b: set_Pr195945996um_a_b > set_Pr1986765409at_nat > set_Sum_sum_a_b ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Nat__Onat,type,
    image_128716052_b_nat: set_Pr1902304780_b_nat > set_Pr1174980151um_a_b > set_nat ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_1464989587um_a_b: set_Pr45173959um_a_b > set_Pr1174980151um_a_b > set_Pr1174980151um_a_b ).

thf(sy_c_Relation_OImage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    image_869585130um_a_b: set_Pr653770722um_a_b > set_Pr1174980151um_a_b > set_Sum_sum_a_b ).

thf(sy_c_Relation_OImage_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    image_1117854795_b_nat: set_Pr375490359_b_nat > set_Sum_sum_a_b > set_nat ).

thf(sy_c_Relation_OImage_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    image_1482984686um_a_b: set_Pr1558970842um_a_b > set_Sum_sum_a_b > set_Pr409224873um_a_b ).

thf(sy_c_Relation_OImage_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    image_1675391388um_a_b: set_Pr1783309276um_a_b > set_Sum_sum_a_b > set_Pr1174980151um_a_b ).

thf(sy_c_Relation_OImage_001t__Sum____Type__Osum_Itf__a_Mtf__b_J_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    image_1918588449um_a_b: set_Pr1916610317um_a_b > set_Sum_sum_a_b > set_Sum_sum_a_b ).

thf(sy_c_RulesAndChains_Omaintained_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_001t__Nat__Onat_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    mainta522127984um_a_b: produc1871334759_a_nat > labele431970251um_a_b > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    collec52779676at_nat: ( produc1032616263at_nat > $o ) > set_Pr1647387645at_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    collec1254333256um_a_b: ( produc1963079155um_a_b > $o ) > set_Pr409224873um_a_b ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    collec492052930um_a_b: ( produc1124793815um_a_b > $o ) > set_Pr1174980151um_a_b ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    collec1769032088um_a_b: ( produc1548871597um_a_b > $o ) > set_Pr1916610317um_a_b ).

thf(sy_c_Set_OCollect_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    collect_Sum_sum_a_b: ( sum_sum_a_b > $o ) > set_Sum_sum_a_b ).

thf(sy_c_Set_Oinsert_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    insert1909710879tant_a: standard_Constant_a > set_St761939237tant_a > set_St761939237tant_a ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    insert1625259895at_nat: produc1032616263at_nat > set_Pr1647387645at_nat > set_Pr1647387645at_nat ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    insert323157027um_a_b: produc1963079155um_a_b > set_Pr409224873um_a_b > set_Pr409224873um_a_b ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    insert271595217at_nat: product_prod_nat_nat > set_Pr1986765409at_nat > set_Pr1986765409at_nat ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    insert983991207um_a_b: produc1124793815um_a_b > set_Pr1174980151um_a_b > set_Pr1174980151um_a_b ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    insert1435405693um_a_b: produc1548871597um_a_b > set_Pr1916610317um_a_b > set_Pr1916610317um_a_b ).

thf(sy_c_Set_Oinsert_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    insert_Sum_sum_a_b: sum_sum_a_b > set_Sum_sum_a_b > set_Sum_sum_a_b ).

thf(sy_c_StandardRules__Mirabelle__iljqcenreq_Ocongruence__rule_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    standa1343274079tant_a: standard_Constant_a > standard_Constant_a > produc1871334759_a_nat ).

thf(sy_c_StandardRules__Mirabelle__iljqcenreq_Ononempty__rule_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    standa1410829644tant_a: produc1871334759_a_nat ).

thf(sy_c_StandardRules__Mirabelle__iljqcenreq_Oreflexivity__rule_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    standa63370785tant_a: standard_Constant_a > produc1871334759_a_nat ).

thf(sy_c_StandardRules__Mirabelle__iljqcenreq_Osymmetry__rule_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    standa997693288tant_a: standard_Constant_a > produc1871334759_a_nat ).

thf(sy_c_StandardRules__Mirabelle__iljqcenreq_Otransitive__rule_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    standa1795879409tant_a: standard_Constant_a > produc1871334759_a_nat ).

thf(sy_c_member_001t__LabeledGraphSemantics__OStandard____Constant_Itf__a_J,type,
    member1632892294tant_a: standard_Constant_a > set_St761939237tant_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member1696759390at_nat: produc1032616263at_nat > set_Pr1647387645at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    member1502344244um_a_b: produc1003469085um_a_b > set_Pr326391507um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    member1998628618um_a_b: produc1963079155um_a_b > set_Pr409224873um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    member1641046175um_a_b: produc1394389750um_a_b > set_Pr1994339542um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member701585322at_nat: product_prod_nat_nat > set_Pr1986765409at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    member1139034387um_a_b: produc204140796um_a_b > set_Pr1618094130um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    member1294585472um_a_b: produc1124793815um_a_b > set_Pr1174980151um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    member1590479267um_a_b: produc1681803642um_a_b > set_Pr1121389018um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    member834135910um_a_b: produc1546082365um_a_b > set_Pr386468381um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    member585880557um_a_b: produc1798470614um_a_b > set_Pr195945996um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    member429827856um_a_b: produc1918750183um_a_b > set_Pr45173959um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    member748122307um_a_b: produc585753260um_a_b > set_Pr653770722um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Nat__Onat_J,type,
    member1249152_b_nat: produc1978941143_b_nat > set_Pr375490359_b_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__LabeledGraphSemantics__OStandard____Constant_Itf__a_J_Mt__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J_J,type,
    member1641922979um_a_b: produc1733247354um_a_b > set_Pr1558970842um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J_J,type,
    member485470653um_a_b: produc323101606um_a_b > set_Pr1783309276um_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Sum____Type__Osum_Itf__a_Mtf__b_J_Mt__Sum____Type__Osum_Itf__a_Mtf__b_J_J,type,
    member947389014um_a_b: produc1548871597um_a_b > set_Pr1916610317um_a_b > $o ).

thf(sy_c_member_001t__Sum____Type__Osum_Itf__a_Mtf__b_J,type,
    member_Sum_sum_a_b: sum_sum_a_b > set_Sum_sum_a_b > $o ).

thf(sy_v_G,type,
    g: labele431970251um_a_b ).

thf(sy_v_f____,type,
    f: set_Pr1174980151um_a_b ).

thf(sy_v_l,type,
    l: standard_Constant_a ).

thf(sy_v_v____,type,
    v: sum_sum_a_b ).

% Relevant facts (352)
thf(fact_0_g,axiom,
    ( g
    = ( restri1162247455um_a_b @ g ) ) ).

% g
thf(fact_1_v,axiom,
    member_Sum_sum_a_b @ v @ ( labele577278695um_a_b @ g ) ).

% v
thf(fact_2__092_060open_062edge__preserving_A_123_I0_058_058_063_Hc1_M_Av_J_125_A_123_IS__Idt_M_A0_058_058_063_Hc1_M_A0_058_058_063_Hc1_J_125_A_Iedges_AG_J_092_060close_062,axiom,
    edge_p1382426714tant_a @ ( insert983991207um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ v ) @ bot_bo575978147um_a_b ) @ ( insert1625259895at_nat @ ( produc407553657at_nat @ standard_S_Idt_a @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( labele1939049654um_a_b @ g ) ).

% \<open>edge_preserving {(0::?'c1, v)} {(S_Idt, 0::?'c1, 0::?'c1)} (edges G)\<close>
thf(fact_3_r,axiom,
    ord_le192794300um_a_b @ ( image_256773707um_a_b @ f @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) @ ( labele577278695um_a_b @ g ) ).

% r
thf(fact_4_f,axiom,
    ( f
    = ( insert983991207um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ v ) @ bot_bo575978147um_a_b ) ) ).

% f
thf(fact_5_d,axiom,
    ( ( domain1368163076um_a_b @ f )
    = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% d
thf(fact_6_graph__single,axiom,
    ! [A: standard_Constant_a,B: sum_sum_a_b,C: sum_sum_a_b] :
      ( ( labele1729654377um_a_b @ ( insert323157027um_a_b @ ( produc1697725733um_a_b @ A @ ( produc176426981um_a_b @ B @ C ) ) @ bot_bo1262634813um_a_b ) @ ( insert_Sum_sum_a_b @ B @ ( insert_Sum_sum_a_b @ C @ bot_bo1491243248um_a_b ) ) )
      = ( restri1162247455um_a_b @ ( labele1729654377um_a_b @ ( insert323157027um_a_b @ ( produc1697725733um_a_b @ A @ ( produc176426981um_a_b @ B @ C ) ) @ bot_bo1262634813um_a_b ) @ ( insert_Sum_sum_a_b @ B @ ( insert_Sum_sum_a_b @ C @ bot_bo1491243248um_a_b ) ) ) ) ) ).

% graph_single
thf(fact_7_graph__single,axiom,
    ! [A: standard_Constant_a,B: nat,C: nat] :
      ( ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ A @ ( product_Pair_nat_nat @ B @ C ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ B @ ( insert_nat @ C @ bot_bot_set_nat ) ) )
      = ( restri572569417_a_nat @ ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ A @ ( product_Pair_nat_nat @ B @ C ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ B @ ( insert_nat @ C @ bot_bot_set_nat ) ) ) ) ) ).

% graph_single
thf(fact_8__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062v_O_A_I0_M_Av_J_A_092_060in_062_Af_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [V: sum_sum_a_b] :
        ~ ( member1294585472um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ V ) @ f ) ).

% \<open>\<And>thesis. (\<And>v. (0, v) \<in> f \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_9_u,axiom,
    unival2092813468um_a_b @ f ).

% u
thf(fact_10_Domain__insert,axiom,
    ! [A: standard_Constant_a,B: product_prod_nat_nat,R: set_Pr1647387645at_nat] :
      ( ( domain1060562500at_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ A @ B ) @ R ) )
      = ( insert1909710879tant_a @ A @ ( domain1060562500at_nat @ R ) ) ) ).

% Domain_insert
thf(fact_11_Domain__insert,axiom,
    ! [A: nat,B: nat,R: set_Pr1986765409at_nat] :
      ( ( domain_nat_nat @ ( insert271595217at_nat @ ( product_Pair_nat_nat @ A @ B ) @ R ) )
      = ( insert_nat @ A @ ( domain_nat_nat @ R ) ) ) ).

% Domain_insert
thf(fact_12_Domain__insert,axiom,
    ! [A: nat,B: sum_sum_a_b,R: set_Pr1174980151um_a_b] :
      ( ( domain1368163076um_a_b @ ( insert983991207um_a_b @ ( produc1808556047um_a_b @ A @ B ) @ R ) )
      = ( insert_nat @ A @ ( domain1368163076um_a_b @ R ) ) ) ).

% Domain_insert
thf(fact_13_Domain__insert,axiom,
    ! [A: standard_Constant_a,B: produc1548871597um_a_b,R: set_Pr409224873um_a_b] :
      ( ( domain1362581744um_a_b @ ( insert323157027um_a_b @ ( produc1697725733um_a_b @ A @ B ) @ R ) )
      = ( insert1909710879tant_a @ A @ ( domain1362581744um_a_b @ R ) ) ) ).

% Domain_insert
thf(fact_14_Domain__insert,axiom,
    ! [A: sum_sum_a_b,B: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( domain2069673178um_a_b @ ( insert1435405693um_a_b @ ( produc176426981um_a_b @ A @ B ) @ R ) )
      = ( insert_Sum_sum_a_b @ A @ ( domain2069673178um_a_b @ R ) ) ) ).

% Domain_insert
thf(fact_15_Image__singleton__iff,axiom,
    ! [B: nat,R: set_Pr1986765409at_nat,A: nat] :
      ( ( member_nat @ B @ ( image_nat_nat @ R @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
      = ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_16_Image__singleton__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1174980151um_a_b,A: nat] :
      ( ( member_Sum_sum_a_b @ B @ ( image_256773707um_a_b @ R @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
      = ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_17_Image__singleton__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1994339542um_a_b,A: standard_Constant_a] :
      ( ( member_Sum_sum_a_b @ B @ ( image_2129435242um_a_b @ R @ ( insert1909710879tant_a @ A @ bot_bo1160111033tant_a ) ) )
      = ( member1641046175um_a_b @ ( produc584843310um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_18_Image__singleton__iff,axiom,
    ! [B: product_prod_nat_nat,R: set_Pr1647387645at_nat,A: standard_Constant_a] :
      ( ( member701585322at_nat @ B @ ( image_127502653at_nat @ R @ ( insert1909710879tant_a @ A @ bot_bo1160111033tant_a ) ) )
      = ( member1696759390at_nat @ ( produc407553657at_nat @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_19_Image__singleton__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr195945996um_a_b,A: product_prod_nat_nat] :
      ( ( member_Sum_sum_a_b @ B @ ( image_1754351636um_a_b @ R @ ( insert271595217at_nat @ A @ bot_bo2130386637at_nat ) ) )
      = ( member585880557um_a_b @ ( produc1872245072um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_20_Image__singleton__iff,axiom,
    ! [B: produc1124793815um_a_b,R: set_Pr1618094130um_a_b,A: nat] :
      ( ( member1294585472um_a_b @ B @ ( image_1228479730um_a_b @ R @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
      = ( member1139034387um_a_b @ ( produc1346373166um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_21_Image__singleton__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1916610317um_a_b,A: sum_sum_a_b] :
      ( ( member_Sum_sum_a_b @ B @ ( image_1918588449um_a_b @ R @ ( insert_Sum_sum_a_b @ A @ bot_bo1491243248um_a_b ) ) )
      = ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_22_Image__singleton__iff,axiom,
    ! [B: produc1124793815um_a_b,R: set_Pr326391507um_a_b,A: standard_Constant_a] :
      ( ( member1294585472um_a_b @ B @ ( image_1179143699um_a_b @ R @ ( insert1909710879tant_a @ A @ bot_bo1160111033tant_a ) ) )
      = ( member1502344244um_a_b @ ( produc414524239um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_23_Image__singleton__iff,axiom,
    ! [B: produc1124793815um_a_b,R: set_Pr386468381um_a_b,A: product_prod_nat_nat] :
      ( ( member1294585472um_a_b @ B @ ( image_320480233um_a_b @ R @ ( insert271595217at_nat @ A @ bot_bo2130386637at_nat ) ) )
      = ( member834135910um_a_b @ ( produc335036333um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_24_Image__singleton__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr653770722um_a_b,A: produc1124793815um_a_b] :
      ( ( member_Sum_sum_a_b @ B @ ( image_869585130um_a_b @ R @ ( insert983991207um_a_b @ A @ bot_bo575978147um_a_b ) ) )
      = ( member748122307um_a_b @ ( produc831476262um_a_b @ A @ B ) @ R ) ) ).

% Image_singleton_iff
thf(fact_25_graph__empty__e,axiom,
    ! [V2: set_nat] :
      ( ( labele16114835_a_nat @ bot_bo810816657at_nat @ V2 )
      = ( restri572569417_a_nat @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ V2 ) ) ) ).

% graph_empty_e
thf(fact_26_graph__empty__e,axiom,
    ! [V2: set_Sum_sum_a_b] :
      ( ( labele1729654377um_a_b @ bot_bo1262634813um_a_b @ V2 )
      = ( restri1162247455um_a_b @ ( labele1729654377um_a_b @ bot_bo1262634813um_a_b @ V2 ) ) ) ).

% graph_empty_e
thf(fact_27_labeled__graph_Ocollapse,axiom,
    ! [Labeled_graph: labele935650037_a_nat] :
      ( ( labele16114835_a_nat @ ( labele195203296_a_nat @ Labeled_graph ) @ ( labele1810595089_a_nat @ Labeled_graph ) )
      = Labeled_graph ) ).

% labeled_graph.collapse
thf(fact_28_labeled__graph_Ocollapse,axiom,
    ! [Labeled_graph: labele431970251um_a_b] :
      ( ( labele1729654377um_a_b @ ( labele1939049654um_a_b @ Labeled_graph ) @ ( labele577278695um_a_b @ Labeled_graph ) )
      = Labeled_graph ) ).

% labeled_graph.collapse
thf(fact_29_Domain__empty,axiom,
    ( ( domain_nat_nat @ bot_bo2130386637at_nat )
    = bot_bot_set_nat ) ).

% Domain_empty
thf(fact_30_Domain__empty,axiom,
    ( ( domain1060562500at_nat @ bot_bo810816657at_nat )
    = bot_bo1160111033tant_a ) ).

% Domain_empty
thf(fact_31_Domain__empty,axiom,
    ( ( domain1368163076um_a_b @ bot_bo575978147um_a_b )
    = bot_bot_set_nat ) ).

% Domain_empty
thf(fact_32_Domain__empty,axiom,
    ( ( domain2069673178um_a_b @ bot_bo225809273um_a_b )
    = bot_bo1491243248um_a_b ) ).

% Domain_empty
thf(fact_33_Domain__empty,axiom,
    ( ( domain1362581744um_a_b @ bot_bo1262634813um_a_b )
    = bot_bo1160111033tant_a ) ).

% Domain_empty
thf(fact_34_Image__empty1,axiom,
    ! [X: set_St761939237tant_a] :
      ( ( image_127502653at_nat @ bot_bo810816657at_nat @ X )
      = bot_bo2130386637at_nat ) ).

% Image_empty1
thf(fact_35_Image__empty1,axiom,
    ! [X: set_nat] :
      ( ( image_256773707um_a_b @ bot_bo575978147um_a_b @ X )
      = bot_bo1491243248um_a_b ) ).

% Image_empty1
thf(fact_36_Image__empty1,axiom,
    ! [X: set_Sum_sum_a_b] :
      ( ( image_1918588449um_a_b @ bot_bo225809273um_a_b @ X )
      = bot_bo1491243248um_a_b ) ).

% Image_empty1
thf(fact_37_Image__empty1,axiom,
    ! [X: set_St761939237tant_a] :
      ( ( image_2023280617um_a_b @ bot_bo1262634813um_a_b @ X )
      = bot_bo225809273um_a_b ) ).

% Image_empty1
thf(fact_38_restrict__idemp,axiom,
    ! [X2: labele935650037_a_nat] :
      ( ( restri572569417_a_nat @ ( restri572569417_a_nat @ X2 ) )
      = ( restri572569417_a_nat @ X2 ) ) ).

% restrict_idemp
thf(fact_39_restrict__idemp,axiom,
    ! [X2: labele431970251um_a_b] :
      ( ( restri1162247455um_a_b @ ( restri1162247455um_a_b @ X2 ) )
      = ( restri1162247455um_a_b @ X2 ) ) ).

% restrict_idemp
thf(fact_40_labeled__graph_Oinject,axiom,
    ! [X1: set_Pr1647387645at_nat,X22: set_nat,Y1: set_Pr1647387645at_nat,Y2: set_nat] :
      ( ( ( labele16114835_a_nat @ X1 @ X22 )
        = ( labele16114835_a_nat @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y2 ) ) ) ).

% labeled_graph.inject
thf(fact_41_labeled__graph_Oinject,axiom,
    ! [X1: set_Pr409224873um_a_b,X22: set_Sum_sum_a_b,Y1: set_Pr409224873um_a_b,Y2: set_Sum_sum_a_b] :
      ( ( ( labele1729654377um_a_b @ X1 @ X22 )
        = ( labele1729654377um_a_b @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y2 ) ) ) ).

% labeled_graph.inject
thf(fact_42_v__gr,axiom,
    ! [A2: sum_sum_a_b,B2: sum_sum_a_b] :
      ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ standard_S_Idt_a @ ( produc176426981um_a_b @ A2 @ B2 ) ) @ ( labele1939049654um_a_b @ g ) )
      = ( ( member_Sum_sum_a_b @ A2 @ ( labele577278695um_a_b @ g ) )
        & ( B2 = A2 ) ) ) ).

% v_gr
thf(fact_43__092_060open_062_IS__Idt_M_Av_M_Av_J_A_092_060in_062_Aedges_AG_092_060close_062,axiom,
    member1998628618um_a_b @ ( produc1697725733um_a_b @ standard_S_Idt_a @ ( produc176426981um_a_b @ v @ v ) ) @ ( labele1939049654um_a_b @ g ) ).

% \<open>(S_Idt, v, v) \<in> edges G\<close>
thf(fact_44_ImageI,axiom,
    ! [A: nat,B: nat,R: set_Pr1986765409at_nat,A3: set_nat] :
      ( ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ B ) @ R )
     => ( ( member_nat @ A @ A3 )
       => ( member_nat @ B @ ( image_nat_nat @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_45_ImageI,axiom,
    ! [A: nat,B: sum_sum_a_b,R: set_Pr1174980151um_a_b,A3: set_nat] :
      ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ B ) @ R )
     => ( ( member_nat @ A @ A3 )
       => ( member_Sum_sum_a_b @ B @ ( image_256773707um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_46_ImageI,axiom,
    ! [A: standard_Constant_a,B: product_prod_nat_nat,R: set_Pr1647387645at_nat,A3: set_St761939237tant_a] :
      ( ( member1696759390at_nat @ ( produc407553657at_nat @ A @ B ) @ R )
     => ( ( member1632892294tant_a @ A @ A3 )
       => ( member701585322at_nat @ B @ ( image_127502653at_nat @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_47_ImageI,axiom,
    ! [A: sum_sum_a_b,B: sum_sum_a_b,R: set_Pr1916610317um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ B ) @ R )
     => ( ( member_Sum_sum_a_b @ A @ A3 )
       => ( member_Sum_sum_a_b @ B @ ( image_1918588449um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_48_ImageI,axiom,
    ! [A: sum_sum_a_b,B: produc1124793815um_a_b,R: set_Pr1783309276um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member485470653um_a_b @ ( produc1637282520um_a_b @ A @ B ) @ R )
     => ( ( member_Sum_sum_a_b @ A @ A3 )
       => ( member1294585472um_a_b @ B @ ( image_1675391388um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_49_ImageI,axiom,
    ! [A: produc1124793815um_a_b,B: sum_sum_a_b,R: set_Pr653770722um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( member748122307um_a_b @ ( produc831476262um_a_b @ A @ B ) @ R )
     => ( ( member1294585472um_a_b @ A @ A3 )
       => ( member_Sum_sum_a_b @ B @ ( image_869585130um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_50_ImageI,axiom,
    ! [A: standard_Constant_a,B: produc1548871597um_a_b,R: set_Pr409224873um_a_b,A3: set_St761939237tant_a] :
      ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A @ B ) @ R )
     => ( ( member1632892294tant_a @ A @ A3 )
       => ( member947389014um_a_b @ B @ ( image_2023280617um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_51_ImageI,axiom,
    ! [A: produc1124793815um_a_b,B: produc1124793815um_a_b,R: set_Pr45173959um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( member429827856um_a_b @ ( produc27163479um_a_b @ A @ B ) @ R )
     => ( ( member1294585472um_a_b @ A @ A3 )
       => ( member1294585472um_a_b @ B @ ( image_1464989587um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_52_ImageI,axiom,
    ! [A: sum_sum_a_b,B: produc1963079155um_a_b,R: set_Pr1558970842um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member1641922979um_a_b @ ( produc230853810um_a_b @ A @ B ) @ R )
     => ( ( member_Sum_sum_a_b @ A @ A3 )
       => ( member1998628618um_a_b @ B @ ( image_1482984686um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_53_ImageI,axiom,
    ! [A: produc1963079155um_a_b,B: sum_sum_a_b,R: set_Pr1121389018um_a_b,A3: set_Pr409224873um_a_b] :
      ( ( member1590479267um_a_b @ ( produc522766386um_a_b @ A @ B ) @ R )
     => ( ( member1998628618um_a_b @ A @ A3 )
       => ( member_Sum_sum_a_b @ B @ ( image_1774897262um_a_b @ R @ A3 ) ) ) ) ).

% ImageI
thf(fact_54_Image__empty2,axiom,
    ! [R2: set_Pr1986765409at_nat] :
      ( ( image_nat_nat @ R2 @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% Image_empty2
thf(fact_55_Image__empty2,axiom,
    ! [R2: set_Pr1174980151um_a_b] :
      ( ( image_256773707um_a_b @ R2 @ bot_bot_set_nat )
      = bot_bo1491243248um_a_b ) ).

% Image_empty2
thf(fact_56_Image__empty2,axiom,
    ! [R2: set_Pr375490359_b_nat] :
      ( ( image_1117854795_b_nat @ R2 @ bot_bo1491243248um_a_b )
      = bot_bot_set_nat ) ).

% Image_empty2
thf(fact_57_Image__empty2,axiom,
    ! [R2: set_Pr1618094130um_a_b] :
      ( ( image_1228479730um_a_b @ R2 @ bot_bot_set_nat )
      = bot_bo575978147um_a_b ) ).

% Image_empty2
thf(fact_58_Image__empty2,axiom,
    ! [R2: set_Pr1902304780_b_nat] :
      ( ( image_128716052_b_nat @ R2 @ bot_bo575978147um_a_b )
      = bot_bot_set_nat ) ).

% Image_empty2
thf(fact_59_Image__empty2,axiom,
    ! [R2: set_Pr1916610317um_a_b] :
      ( ( image_1918588449um_a_b @ R2 @ bot_bo1491243248um_a_b )
      = bot_bo1491243248um_a_b ) ).

% Image_empty2
thf(fact_60_Image__empty2,axiom,
    ! [R2: set_Pr689416536at_nat] :
      ( ( image_452296684at_nat @ R2 @ bot_bo810816657at_nat )
      = bot_bot_set_nat ) ).

% Image_empty2
thf(fact_61_Image__empty2,axiom,
    ! [R2: set_Pr1134469976at_nat] :
      ( ( image_489788268at_nat @ R2 @ bot_bot_set_nat )
      = bot_bo810816657at_nat ) ).

% Image_empty2
thf(fact_62_Image__empty2,axiom,
    ! [R2: set_Pr1155046920um_a_b] :
      ( ( image_166667464um_a_b @ R2 @ bot_bot_set_nat )
      = bot_bo225809273um_a_b ) ).

% Image_empty2
thf(fact_63_Image__empty2,axiom,
    ! [R2: set_Pr653770722um_a_b] :
      ( ( image_869585130um_a_b @ R2 @ bot_bo575978147um_a_b )
      = bot_bo1491243248um_a_b ) ).

% Image_empty2
thf(fact_64_vertices__restrict,axiom,
    ! [G: labele935650037_a_nat] :
      ( ( labele1810595089_a_nat @ ( restri572569417_a_nat @ G ) )
      = ( labele1810595089_a_nat @ G ) ) ).

% vertices_restrict
thf(fact_65_vertices__restrict,axiom,
    ! [G: labele431970251um_a_b] :
      ( ( labele577278695um_a_b @ ( restri1162247455um_a_b @ G ) )
      = ( labele577278695um_a_b @ G ) ) ).

% vertices_restrict
thf(fact_66__092_060open_062graph__homomorphism_A_ILG_A_123_125_A_1230_125_J_AG_Af_092_060close_062,axiom,
    graph_1452133198um_a_b @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) @ g @ f ).

% \<open>graph_homomorphism (LG {} {0}) G f\<close>
thf(fact_67_labeled__graph_Oexhaust,axiom,
    ! [Y: labele935650037_a_nat] :
      ~ ! [X12: set_Pr1647387645at_nat,X23: set_nat] :
          ( Y
         != ( labele16114835_a_nat @ X12 @ X23 ) ) ).

% labeled_graph.exhaust
thf(fact_68_labeled__graph_Oexhaust,axiom,
    ! [Y: labele431970251um_a_b] :
      ~ ! [X12: set_Pr409224873um_a_b,X23: set_Sum_sum_a_b] :
          ( Y
         != ( labele1729654377um_a_b @ X12 @ X23 ) ) ).

% labeled_graph.exhaust
thf(fact_69_labeled__graph_Oinduct,axiom,
    ! [P: labele935650037_a_nat > $o,Labeled_graph: labele935650037_a_nat] :
      ( ! [X1a: set_Pr1647387645at_nat,X2a: set_nat] : ( P @ ( labele16114835_a_nat @ X1a @ X2a ) )
     => ( P @ Labeled_graph ) ) ).

% labeled_graph.induct
thf(fact_70_labeled__graph_Oinduct,axiom,
    ! [P: labele431970251um_a_b > $o,Labeled_graph: labele431970251um_a_b] :
      ( ! [X1a: set_Pr409224873um_a_b,X2a: set_Sum_sum_a_b] : ( P @ ( labele1729654377um_a_b @ X1a @ X2a ) )
     => ( P @ Labeled_graph ) ) ).

% labeled_graph.induct
thf(fact_71_rev__ImageI,axiom,
    ! [A: nat,A3: set_nat,B: nat,R: set_Pr1986765409at_nat] :
      ( ( member_nat @ A @ A3 )
     => ( ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ B ) @ R )
       => ( member_nat @ B @ ( image_nat_nat @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_72_rev__ImageI,axiom,
    ! [A: nat,A3: set_nat,B: sum_sum_a_b,R: set_Pr1174980151um_a_b] :
      ( ( member_nat @ A @ A3 )
     => ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ B ) @ R )
       => ( member_Sum_sum_a_b @ B @ ( image_256773707um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_73_rev__ImageI,axiom,
    ! [A: standard_Constant_a,A3: set_St761939237tant_a,B: product_prod_nat_nat,R: set_Pr1647387645at_nat] :
      ( ( member1632892294tant_a @ A @ A3 )
     => ( ( member1696759390at_nat @ ( produc407553657at_nat @ A @ B ) @ R )
       => ( member701585322at_nat @ B @ ( image_127502653at_nat @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_74_rev__ImageI,axiom,
    ! [A: sum_sum_a_b,A3: set_Sum_sum_a_b,B: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ A3 )
     => ( ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ B ) @ R )
       => ( member_Sum_sum_a_b @ B @ ( image_1918588449um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_75_rev__ImageI,axiom,
    ! [A: sum_sum_a_b,A3: set_Sum_sum_a_b,B: produc1124793815um_a_b,R: set_Pr1783309276um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ A3 )
     => ( ( member485470653um_a_b @ ( produc1637282520um_a_b @ A @ B ) @ R )
       => ( member1294585472um_a_b @ B @ ( image_1675391388um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_76_rev__ImageI,axiom,
    ! [A: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b,B: sum_sum_a_b,R: set_Pr653770722um_a_b] :
      ( ( member1294585472um_a_b @ A @ A3 )
     => ( ( member748122307um_a_b @ ( produc831476262um_a_b @ A @ B ) @ R )
       => ( member_Sum_sum_a_b @ B @ ( image_869585130um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_77_rev__ImageI,axiom,
    ! [A: standard_Constant_a,A3: set_St761939237tant_a,B: produc1548871597um_a_b,R: set_Pr409224873um_a_b] :
      ( ( member1632892294tant_a @ A @ A3 )
     => ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A @ B ) @ R )
       => ( member947389014um_a_b @ B @ ( image_2023280617um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_78_rev__ImageI,axiom,
    ! [A: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b,B: produc1124793815um_a_b,R: set_Pr45173959um_a_b] :
      ( ( member1294585472um_a_b @ A @ A3 )
     => ( ( member429827856um_a_b @ ( produc27163479um_a_b @ A @ B ) @ R )
       => ( member1294585472um_a_b @ B @ ( image_1464989587um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_79_rev__ImageI,axiom,
    ! [A: sum_sum_a_b,A3: set_Sum_sum_a_b,B: produc1963079155um_a_b,R: set_Pr1558970842um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ A3 )
     => ( ( member1641922979um_a_b @ ( produc230853810um_a_b @ A @ B ) @ R )
       => ( member1998628618um_a_b @ B @ ( image_1482984686um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_80_rev__ImageI,axiom,
    ! [A: produc1963079155um_a_b,A3: set_Pr409224873um_a_b,B: sum_sum_a_b,R: set_Pr1121389018um_a_b] :
      ( ( member1998628618um_a_b @ A @ A3 )
     => ( ( member1590479267um_a_b @ ( produc522766386um_a_b @ A @ B ) @ R )
       => ( member_Sum_sum_a_b @ B @ ( image_1774897262um_a_b @ R @ A3 ) ) ) ) ).

% rev_ImageI
thf(fact_81_Image__iff,axiom,
    ! [B: product_prod_nat_nat,R: set_Pr1647387645at_nat,A3: set_St761939237tant_a] :
      ( ( member701585322at_nat @ B @ ( image_127502653at_nat @ R @ A3 ) )
      = ( ? [X3: standard_Constant_a] :
            ( ( member1632892294tant_a @ X3 @ A3 )
            & ( member1696759390at_nat @ ( produc407553657at_nat @ X3 @ B ) @ R ) ) ) ) ).

% Image_iff
thf(fact_82_Image__iff,axiom,
    ! [B: nat,R: set_Pr1986765409at_nat,A3: set_nat] :
      ( ( member_nat @ B @ ( image_nat_nat @ R @ A3 ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ A3 )
            & ( member701585322at_nat @ ( product_Pair_nat_nat @ X3 @ B ) @ R ) ) ) ) ).

% Image_iff
thf(fact_83_Image__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1174980151um_a_b,A3: set_nat] :
      ( ( member_Sum_sum_a_b @ B @ ( image_256773707um_a_b @ R @ A3 ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ A3 )
            & ( member1294585472um_a_b @ ( produc1808556047um_a_b @ X3 @ B ) @ R ) ) ) ) ).

% Image_iff
thf(fact_84_Image__iff,axiom,
    ! [B: produc1548871597um_a_b,R: set_Pr409224873um_a_b,A3: set_St761939237tant_a] :
      ( ( member947389014um_a_b @ B @ ( image_2023280617um_a_b @ R @ A3 ) )
      = ( ? [X3: standard_Constant_a] :
            ( ( member1632892294tant_a @ X3 @ A3 )
            & ( member1998628618um_a_b @ ( produc1697725733um_a_b @ X3 @ B ) @ R ) ) ) ) ).

% Image_iff
thf(fact_85_Image__iff,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1916610317um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member_Sum_sum_a_b @ B @ ( image_1918588449um_a_b @ R @ A3 ) )
      = ( ? [X3: sum_sum_a_b] :
            ( ( member_Sum_sum_a_b @ X3 @ A3 )
            & ( member947389014um_a_b @ ( produc176426981um_a_b @ X3 @ B ) @ R ) ) ) ) ).

% Image_iff
thf(fact_86_ImageE,axiom,
    ! [B: nat,R: set_Pr1986765409at_nat,A3: set_nat] :
      ( ( member_nat @ B @ ( image_nat_nat @ R @ A3 ) )
     => ~ ! [X4: nat] :
            ( ( member701585322at_nat @ ( product_Pair_nat_nat @ X4 @ B ) @ R )
           => ~ ( member_nat @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_87_ImageE,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1174980151um_a_b,A3: set_nat] :
      ( ( member_Sum_sum_a_b @ B @ ( image_256773707um_a_b @ R @ A3 ) )
     => ~ ! [X4: nat] :
            ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ X4 @ B ) @ R )
           => ~ ( member_nat @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_88_ImageE,axiom,
    ! [B: product_prod_nat_nat,R: set_Pr1647387645at_nat,A3: set_St761939237tant_a] :
      ( ( member701585322at_nat @ B @ ( image_127502653at_nat @ R @ A3 ) )
     => ~ ! [X4: standard_Constant_a] :
            ( ( member1696759390at_nat @ ( produc407553657at_nat @ X4 @ B ) @ R )
           => ~ ( member1632892294tant_a @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_89_ImageE,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1916610317um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member_Sum_sum_a_b @ B @ ( image_1918588449um_a_b @ R @ A3 ) )
     => ~ ! [X4: sum_sum_a_b] :
            ( ( member947389014um_a_b @ ( produc176426981um_a_b @ X4 @ B ) @ R )
           => ~ ( member_Sum_sum_a_b @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_90_ImageE,axiom,
    ! [B: sum_sum_a_b,R: set_Pr653770722um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( member_Sum_sum_a_b @ B @ ( image_869585130um_a_b @ R @ A3 ) )
     => ~ ! [X4: produc1124793815um_a_b] :
            ( ( member748122307um_a_b @ ( produc831476262um_a_b @ X4 @ B ) @ R )
           => ~ ( member1294585472um_a_b @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_91_ImageE,axiom,
    ! [B: produc1124793815um_a_b,R: set_Pr1783309276um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member1294585472um_a_b @ B @ ( image_1675391388um_a_b @ R @ A3 ) )
     => ~ ! [X4: sum_sum_a_b] :
            ( ( member485470653um_a_b @ ( produc1637282520um_a_b @ X4 @ B ) @ R )
           => ~ ( member_Sum_sum_a_b @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_92_ImageE,axiom,
    ! [B: produc1548871597um_a_b,R: set_Pr409224873um_a_b,A3: set_St761939237tant_a] :
      ( ( member947389014um_a_b @ B @ ( image_2023280617um_a_b @ R @ A3 ) )
     => ~ ! [X4: standard_Constant_a] :
            ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ X4 @ B ) @ R )
           => ~ ( member1632892294tant_a @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_93_ImageE,axiom,
    ! [B: produc1124793815um_a_b,R: set_Pr45173959um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( member1294585472um_a_b @ B @ ( image_1464989587um_a_b @ R @ A3 ) )
     => ~ ! [X4: produc1124793815um_a_b] :
            ( ( member429827856um_a_b @ ( produc27163479um_a_b @ X4 @ B ) @ R )
           => ~ ( member1294585472um_a_b @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_94_ImageE,axiom,
    ! [B: sum_sum_a_b,R: set_Pr1121389018um_a_b,A3: set_Pr409224873um_a_b] :
      ( ( member_Sum_sum_a_b @ B @ ( image_1774897262um_a_b @ R @ A3 ) )
     => ~ ! [X4: produc1963079155um_a_b] :
            ( ( member1590479267um_a_b @ ( produc522766386um_a_b @ X4 @ B ) @ R )
           => ~ ( member1998628618um_a_b @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_95_ImageE,axiom,
    ! [B: produc1963079155um_a_b,R: set_Pr1558970842um_a_b,A3: set_Sum_sum_a_b] :
      ( ( member1998628618um_a_b @ B @ ( image_1482984686um_a_b @ R @ A3 ) )
     => ~ ! [X4: sum_sum_a_b] :
            ( ( member1641922979um_a_b @ ( produc230853810um_a_b @ X4 @ B ) @ R )
           => ~ ( member_Sum_sum_a_b @ X4 @ A3 ) ) ) ).

% ImageE
thf(fact_96_Image__mono,axiom,
    ! [R3: set_Pr1174980151um_a_b,R: set_Pr1174980151um_a_b,A4: set_nat,A3: set_nat] :
      ( ( ord_le823954903um_a_b @ R3 @ R )
     => ( ( ord_less_eq_set_nat @ A4 @ A3 )
       => ( ord_le192794300um_a_b @ ( image_256773707um_a_b @ R3 @ A4 ) @ ( image_256773707um_a_b @ R @ A3 ) ) ) ) ).

% Image_mono
thf(fact_97_Image__mono,axiom,
    ! [R3: set_Pr1916610317um_a_b,R: set_Pr1916610317um_a_b,A4: set_Sum_sum_a_b,A3: set_Sum_sum_a_b] :
      ( ( ord_le1059794605um_a_b @ R3 @ R )
     => ( ( ord_le192794300um_a_b @ A4 @ A3 )
       => ( ord_le192794300um_a_b @ ( image_1918588449um_a_b @ R3 @ A4 ) @ ( image_1918588449um_a_b @ R @ A3 ) ) ) ) ).

% Image_mono
thf(fact_98_Domain_Oinducts,axiom,
    ! [X2: standard_Constant_a,R: set_Pr1647387645at_nat,P: standard_Constant_a > $o] :
      ( ( member1632892294tant_a @ X2 @ ( domain1060562500at_nat @ R ) )
     => ( ! [A5: standard_Constant_a,B3: product_prod_nat_nat] :
            ( ( member1696759390at_nat @ ( produc407553657at_nat @ A5 @ B3 ) @ R )
           => ( P @ A5 ) )
       => ( P @ X2 ) ) ) ).

% Domain.inducts
thf(fact_99_Domain_Oinducts,axiom,
    ! [X2: nat,R: set_Pr1986765409at_nat,P: nat > $o] :
      ( ( member_nat @ X2 @ ( domain_nat_nat @ R ) )
     => ( ! [A5: nat,B3: nat] :
            ( ( member701585322at_nat @ ( product_Pair_nat_nat @ A5 @ B3 ) @ R )
           => ( P @ A5 ) )
       => ( P @ X2 ) ) ) ).

% Domain.inducts
thf(fact_100_Domain_Oinducts,axiom,
    ! [X2: nat,R: set_Pr1174980151um_a_b,P: nat > $o] :
      ( ( member_nat @ X2 @ ( domain1368163076um_a_b @ R ) )
     => ( ! [A5: nat,B3: sum_sum_a_b] :
            ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A5 @ B3 ) @ R )
           => ( P @ A5 ) )
       => ( P @ X2 ) ) ) ).

% Domain.inducts
thf(fact_101_Domain_Oinducts,axiom,
    ! [X2: standard_Constant_a,R: set_Pr409224873um_a_b,P: standard_Constant_a > $o] :
      ( ( member1632892294tant_a @ X2 @ ( domain1362581744um_a_b @ R ) )
     => ( ! [A5: standard_Constant_a,B3: produc1548871597um_a_b] :
            ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A5 @ B3 ) @ R )
           => ( P @ A5 ) )
       => ( P @ X2 ) ) ) ).

% Domain.inducts
thf(fact_102_Domain_Oinducts,axiom,
    ! [X2: sum_sum_a_b,R: set_Pr1916610317um_a_b,P: sum_sum_a_b > $o] :
      ( ( member_Sum_sum_a_b @ X2 @ ( domain2069673178um_a_b @ R ) )
     => ( ! [A5: sum_sum_a_b,B3: sum_sum_a_b] :
            ( ( member947389014um_a_b @ ( produc176426981um_a_b @ A5 @ B3 ) @ R )
           => ( P @ A5 ) )
       => ( P @ X2 ) ) ) ).

% Domain.inducts
thf(fact_103_Domain_ODomainI,axiom,
    ! [A: standard_Constant_a,B: product_prod_nat_nat,R: set_Pr1647387645at_nat] :
      ( ( member1696759390at_nat @ ( produc407553657at_nat @ A @ B ) @ R )
     => ( member1632892294tant_a @ A @ ( domain1060562500at_nat @ R ) ) ) ).

% Domain.DomainI
thf(fact_104_Domain_ODomainI,axiom,
    ! [A: nat,B: nat,R: set_Pr1986765409at_nat] :
      ( ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ B ) @ R )
     => ( member_nat @ A @ ( domain_nat_nat @ R ) ) ) ).

% Domain.DomainI
thf(fact_105_Domain_ODomainI,axiom,
    ! [A: nat,B: sum_sum_a_b,R: set_Pr1174980151um_a_b] :
      ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ B ) @ R )
     => ( member_nat @ A @ ( domain1368163076um_a_b @ R ) ) ) ).

% Domain.DomainI
thf(fact_106_Domain_ODomainI,axiom,
    ! [A: standard_Constant_a,B: produc1548871597um_a_b,R: set_Pr409224873um_a_b] :
      ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A @ B ) @ R )
     => ( member1632892294tant_a @ A @ ( domain1362581744um_a_b @ R ) ) ) ).

% Domain.DomainI
thf(fact_107_Domain_ODomainI,axiom,
    ! [A: sum_sum_a_b,B: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ B ) @ R )
     => ( member_Sum_sum_a_b @ A @ ( domain2069673178um_a_b @ R ) ) ) ).

% Domain.DomainI
thf(fact_108_Domain_Osimps,axiom,
    ! [A: standard_Constant_a,R: set_Pr1647387645at_nat] :
      ( ( member1632892294tant_a @ A @ ( domain1060562500at_nat @ R ) )
      = ( ? [A6: standard_Constant_a,B4: product_prod_nat_nat] :
            ( ( A = A6 )
            & ( member1696759390at_nat @ ( produc407553657at_nat @ A6 @ B4 ) @ R ) ) ) ) ).

% Domain.simps
thf(fact_109_Domain_Osimps,axiom,
    ! [A: nat,R: set_Pr1986765409at_nat] :
      ( ( member_nat @ A @ ( domain_nat_nat @ R ) )
      = ( ? [A6: nat,B4: nat] :
            ( ( A = A6 )
            & ( member701585322at_nat @ ( product_Pair_nat_nat @ A6 @ B4 ) @ R ) ) ) ) ).

% Domain.simps
thf(fact_110_Domain_Osimps,axiom,
    ! [A: nat,R: set_Pr1174980151um_a_b] :
      ( ( member_nat @ A @ ( domain1368163076um_a_b @ R ) )
      = ( ? [A6: nat,B4: sum_sum_a_b] :
            ( ( A = A6 )
            & ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A6 @ B4 ) @ R ) ) ) ) ).

% Domain.simps
thf(fact_111_Domain_Osimps,axiom,
    ! [A: standard_Constant_a,R: set_Pr409224873um_a_b] :
      ( ( member1632892294tant_a @ A @ ( domain1362581744um_a_b @ R ) )
      = ( ? [A6: standard_Constant_a,B4: produc1548871597um_a_b] :
            ( ( A = A6 )
            & ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A6 @ B4 ) @ R ) ) ) ) ).

% Domain.simps
thf(fact_112_Domain_Osimps,axiom,
    ! [A: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ ( domain2069673178um_a_b @ R ) )
      = ( ? [A6: sum_sum_a_b,B4: sum_sum_a_b] :
            ( ( A = A6 )
            & ( member947389014um_a_b @ ( produc176426981um_a_b @ A6 @ B4 ) @ R ) ) ) ) ).

% Domain.simps
thf(fact_113_Domain_Ocases,axiom,
    ! [A: standard_Constant_a,R: set_Pr1647387645at_nat] :
      ( ( member1632892294tant_a @ A @ ( domain1060562500at_nat @ R ) )
     => ~ ! [B3: product_prod_nat_nat] :
            ~ ( member1696759390at_nat @ ( produc407553657at_nat @ A @ B3 ) @ R ) ) ).

% Domain.cases
thf(fact_114_Domain_Ocases,axiom,
    ! [A: nat,R: set_Pr1986765409at_nat] :
      ( ( member_nat @ A @ ( domain_nat_nat @ R ) )
     => ~ ! [B3: nat] :
            ~ ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ B3 ) @ R ) ) ).

% Domain.cases
thf(fact_115_Domain_Ocases,axiom,
    ! [A: nat,R: set_Pr1174980151um_a_b] :
      ( ( member_nat @ A @ ( domain1368163076um_a_b @ R ) )
     => ~ ! [B3: sum_sum_a_b] :
            ~ ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ B3 ) @ R ) ) ).

% Domain.cases
thf(fact_116_Domain_Ocases,axiom,
    ! [A: standard_Constant_a,R: set_Pr409224873um_a_b] :
      ( ( member1632892294tant_a @ A @ ( domain1362581744um_a_b @ R ) )
     => ~ ! [B3: produc1548871597um_a_b] :
            ~ ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A @ B3 ) @ R ) ) ).

% Domain.cases
thf(fact_117_Domain_Ocases,axiom,
    ! [A: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ ( domain2069673178um_a_b @ R ) )
     => ~ ! [B3: sum_sum_a_b] :
            ~ ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ B3 ) @ R ) ) ).

% Domain.cases
thf(fact_118_Domain__iff,axiom,
    ! [A: standard_Constant_a,R: set_Pr1647387645at_nat] :
      ( ( member1632892294tant_a @ A @ ( domain1060562500at_nat @ R ) )
      = ( ? [Y3: product_prod_nat_nat] : ( member1696759390at_nat @ ( produc407553657at_nat @ A @ Y3 ) @ R ) ) ) ).

% Domain_iff
thf(fact_119_Domain__iff,axiom,
    ! [A: nat,R: set_Pr1986765409at_nat] :
      ( ( member_nat @ A @ ( domain_nat_nat @ R ) )
      = ( ? [Y3: nat] : ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ Y3 ) @ R ) ) ) ).

% Domain_iff
thf(fact_120_Domain__iff,axiom,
    ! [A: nat,R: set_Pr1174980151um_a_b] :
      ( ( member_nat @ A @ ( domain1368163076um_a_b @ R ) )
      = ( ? [Y3: sum_sum_a_b] : ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ Y3 ) @ R ) ) ) ).

% Domain_iff
thf(fact_121_Domain__iff,axiom,
    ! [A: standard_Constant_a,R: set_Pr409224873um_a_b] :
      ( ( member1632892294tant_a @ A @ ( domain1362581744um_a_b @ R ) )
      = ( ? [Y3: produc1548871597um_a_b] : ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A @ Y3 ) @ R ) ) ) ).

% Domain_iff
thf(fact_122_Domain__iff,axiom,
    ! [A: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ ( domain2069673178um_a_b @ R ) )
      = ( ? [Y3: sum_sum_a_b] : ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ Y3 ) @ R ) ) ) ).

% Domain_iff
thf(fact_123_DomainE,axiom,
    ! [A: standard_Constant_a,R: set_Pr1647387645at_nat] :
      ( ( member1632892294tant_a @ A @ ( domain1060562500at_nat @ R ) )
     => ~ ! [B3: product_prod_nat_nat] :
            ~ ( member1696759390at_nat @ ( produc407553657at_nat @ A @ B3 ) @ R ) ) ).

% DomainE
thf(fact_124_DomainE,axiom,
    ! [A: nat,R: set_Pr1986765409at_nat] :
      ( ( member_nat @ A @ ( domain_nat_nat @ R ) )
     => ~ ! [B3: nat] :
            ~ ( member701585322at_nat @ ( product_Pair_nat_nat @ A @ B3 ) @ R ) ) ).

% DomainE
thf(fact_125_DomainE,axiom,
    ! [A: nat,R: set_Pr1174980151um_a_b] :
      ( ( member_nat @ A @ ( domain1368163076um_a_b @ R ) )
     => ~ ! [B3: sum_sum_a_b] :
            ~ ( member1294585472um_a_b @ ( produc1808556047um_a_b @ A @ B3 ) @ R ) ) ).

% DomainE
thf(fact_126_DomainE,axiom,
    ! [A: standard_Constant_a,R: set_Pr409224873um_a_b] :
      ( ( member1632892294tant_a @ A @ ( domain1362581744um_a_b @ R ) )
     => ~ ! [B3: produc1548871597um_a_b] :
            ~ ( member1998628618um_a_b @ ( produc1697725733um_a_b @ A @ B3 ) @ R ) ) ).

% DomainE
thf(fact_127_DomainE,axiom,
    ! [A: sum_sum_a_b,R: set_Pr1916610317um_a_b] :
      ( ( member_Sum_sum_a_b @ A @ ( domain2069673178um_a_b @ R ) )
     => ~ ! [B3: sum_sum_a_b] :
            ~ ( member947389014um_a_b @ ( produc176426981um_a_b @ A @ B3 ) @ R ) ) ).

% DomainE
thf(fact_128_Domain__mono,axiom,
    ! [R: set_Pr1174980151um_a_b,S: set_Pr1174980151um_a_b] :
      ( ( ord_le823954903um_a_b @ R @ S )
     => ( ord_less_eq_set_nat @ ( domain1368163076um_a_b @ R ) @ ( domain1368163076um_a_b @ S ) ) ) ).

% Domain_mono
thf(fact_129_Domain__mono,axiom,
    ! [R: set_Pr409224873um_a_b,S: set_Pr409224873um_a_b] :
      ( ( ord_le615126793um_a_b @ R @ S )
     => ( ord_le1739761029tant_a @ ( domain1362581744um_a_b @ R ) @ ( domain1362581744um_a_b @ S ) ) ) ).

% Domain_mono
thf(fact_130_Domain__mono,axiom,
    ! [R: set_Pr1986765409at_nat,S: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ R @ S )
     => ( ord_less_eq_set_nat @ ( domain_nat_nat @ R ) @ ( domain_nat_nat @ S ) ) ) ).

% Domain_mono
thf(fact_131_Domain__mono,axiom,
    ! [R: set_Pr1647387645at_nat,S: set_Pr1647387645at_nat] :
      ( ( ord_le1909159005at_nat @ R @ S )
     => ( ord_le1739761029tant_a @ ( domain1060562500at_nat @ R ) @ ( domain1060562500at_nat @ S ) ) ) ).

% Domain_mono
thf(fact_132_Domain__mono,axiom,
    ! [R: set_Pr1916610317um_a_b,S: set_Pr1916610317um_a_b] :
      ( ( ord_le1059794605um_a_b @ R @ S )
     => ( ord_le192794300um_a_b @ ( domain2069673178um_a_b @ R ) @ ( domain2069673178um_a_b @ S ) ) ) ).

% Domain_mono
thf(fact_133_labeled__graph_Oexpand,axiom,
    ! [Labeled_graph: labele935650037_a_nat,Labeled_graph2: labele935650037_a_nat] :
      ( ( ( ( labele195203296_a_nat @ Labeled_graph )
          = ( labele195203296_a_nat @ Labeled_graph2 ) )
        & ( ( labele1810595089_a_nat @ Labeled_graph )
          = ( labele1810595089_a_nat @ Labeled_graph2 ) ) )
     => ( Labeled_graph = Labeled_graph2 ) ) ).

% labeled_graph.expand
thf(fact_134_labeled__graph_Oexpand,axiom,
    ! [Labeled_graph: labele431970251um_a_b,Labeled_graph2: labele431970251um_a_b] :
      ( ( ( ( labele1939049654um_a_b @ Labeled_graph )
          = ( labele1939049654um_a_b @ Labeled_graph2 ) )
        & ( ( labele577278695um_a_b @ Labeled_graph )
          = ( labele577278695um_a_b @ Labeled_graph2 ) ) )
     => ( Labeled_graph = Labeled_graph2 ) ) ).

% labeled_graph.expand
thf(fact_135_labeled__graph_Osel_I2_J,axiom,
    ! [X1: set_Pr1647387645at_nat,X22: set_nat] :
      ( ( labele1810595089_a_nat @ ( labele16114835_a_nat @ X1 @ X22 ) )
      = X22 ) ).

% labeled_graph.sel(2)
thf(fact_136_labeled__graph_Osel_I2_J,axiom,
    ! [X1: set_Pr409224873um_a_b,X22: set_Sum_sum_a_b] :
      ( ( labele577278695um_a_b @ ( labele1729654377um_a_b @ X1 @ X22 ) )
      = X22 ) ).

% labeled_graph.sel(2)
thf(fact_137_labeled__graph_Osel_I1_J,axiom,
    ! [X1: set_Pr1647387645at_nat,X22: set_nat] :
      ( ( labele195203296_a_nat @ ( labele16114835_a_nat @ X1 @ X22 ) )
      = X1 ) ).

% labeled_graph.sel(1)
thf(fact_138_labeled__graph_Osel_I1_J,axiom,
    ! [X1: set_Pr409224873um_a_b,X22: set_Sum_sum_a_b] :
      ( ( labele1939049654um_a_b @ ( labele1729654377um_a_b @ X1 @ X22 ) )
      = X1 ) ).

% labeled_graph.sel(1)
thf(fact_139_Domain__empty__iff,axiom,
    ! [R: set_Pr1647387645at_nat] :
      ( ( ( domain1060562500at_nat @ R )
        = bot_bo1160111033tant_a )
      = ( R = bot_bo810816657at_nat ) ) ).

% Domain_empty_iff
thf(fact_140_Domain__empty__iff,axiom,
    ! [R: set_Pr409224873um_a_b] :
      ( ( ( domain1362581744um_a_b @ R )
        = bot_bo1160111033tant_a )
      = ( R = bot_bo1262634813um_a_b ) ) ).

% Domain_empty_iff
thf(fact_141_Domain__empty__iff,axiom,
    ! [R: set_Pr1986765409at_nat] :
      ( ( ( domain_nat_nat @ R )
        = bot_bot_set_nat )
      = ( R = bot_bo2130386637at_nat ) ) ).

% Domain_empty_iff
thf(fact_142_Domain__empty__iff,axiom,
    ! [R: set_Pr1174980151um_a_b] :
      ( ( ( domain1368163076um_a_b @ R )
        = bot_bot_set_nat )
      = ( R = bot_bo575978147um_a_b ) ) ).

% Domain_empty_iff
thf(fact_143_Domain__empty__iff,axiom,
    ! [R: set_Pr1916610317um_a_b] :
      ( ( ( domain2069673178um_a_b @ R )
        = bot_bo1491243248um_a_b )
      = ( R = bot_bo225809273um_a_b ) ) ).

% Domain_empty_iff
thf(fact_144_edge__preserving__atomic,axiom,
    ! [H1: set_Pr375490359_b_nat,E1: set_Pr409224873um_a_b,E2: set_Pr1647387645at_nat,V1: sum_sum_a_b,V12: nat,V22: sum_sum_a_b,V23: nat,K: standard_Constant_a] :
      ( ( edge_p749155930tant_a @ H1 @ E1 @ E2 )
     => ( ( member1249152_b_nat @ ( produc522153487_b_nat @ V1 @ V12 ) @ H1 )
       => ( ( member1249152_b_nat @ ( produc522153487_b_nat @ V22 @ V23 ) @ H1 )
         => ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ K @ ( produc176426981um_a_b @ V1 @ V22 ) ) @ E1 )
           => ( member1696759390at_nat @ ( produc407553657at_nat @ K @ ( product_Pair_nat_nat @ V12 @ V23 ) ) @ E2 ) ) ) ) ) ).

% edge_preserving_atomic
thf(fact_145_edge__preserving__atomic,axiom,
    ! [H1: set_Pr1986765409at_nat,E1: set_Pr1647387645at_nat,E2: set_Pr1647387645at_nat,V1: nat,V12: nat,V22: nat,V23: nat,K: standard_Constant_a] :
      ( ( edge_p170421892tant_a @ H1 @ E1 @ E2 )
     => ( ( member701585322at_nat @ ( product_Pair_nat_nat @ V1 @ V12 ) @ H1 )
       => ( ( member701585322at_nat @ ( product_Pair_nat_nat @ V22 @ V23 ) @ H1 )
         => ( ( member1696759390at_nat @ ( produc407553657at_nat @ K @ ( product_Pair_nat_nat @ V1 @ V22 ) ) @ E1 )
           => ( member1696759390at_nat @ ( produc407553657at_nat @ K @ ( product_Pair_nat_nat @ V12 @ V23 ) ) @ E2 ) ) ) ) ) ).

% edge_preserving_atomic
thf(fact_146_edge__preserving__atomic,axiom,
    ! [H1: set_Pr1916610317um_a_b,E1: set_Pr409224873um_a_b,E2: set_Pr409224873um_a_b,V1: sum_sum_a_b,V12: sum_sum_a_b,V22: sum_sum_a_b,V23: sum_sum_a_b,K: standard_Constant_a] :
      ( ( edge_p1871801392tant_a @ H1 @ E1 @ E2 )
     => ( ( member947389014um_a_b @ ( produc176426981um_a_b @ V1 @ V12 ) @ H1 )
       => ( ( member947389014um_a_b @ ( produc176426981um_a_b @ V22 @ V23 ) @ H1 )
         => ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ K @ ( produc176426981um_a_b @ V1 @ V22 ) ) @ E1 )
           => ( member1998628618um_a_b @ ( produc1697725733um_a_b @ K @ ( produc176426981um_a_b @ V12 @ V23 ) ) @ E2 ) ) ) ) ) ).

% edge_preserving_atomic
thf(fact_147_edge__preserving__atomic,axiom,
    ! [H1: set_Pr1174980151um_a_b,E1: set_Pr1647387645at_nat,E2: set_Pr409224873um_a_b,V1: nat,V12: sum_sum_a_b,V22: nat,V23: sum_sum_a_b,K: standard_Constant_a] :
      ( ( edge_p1382426714tant_a @ H1 @ E1 @ E2 )
     => ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ V1 @ V12 ) @ H1 )
       => ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ V22 @ V23 ) @ H1 )
         => ( ( member1696759390at_nat @ ( produc407553657at_nat @ K @ ( product_Pair_nat_nat @ V1 @ V22 ) ) @ E1 )
           => ( member1998628618um_a_b @ ( produc1697725733um_a_b @ K @ ( produc176426981um_a_b @ V12 @ V23 ) ) @ E2 ) ) ) ) ) ).

% edge_preserving_atomic
thf(fact_148_labeled__graph_Oexhaust__sel,axiom,
    ! [Labeled_graph: labele935650037_a_nat] :
      ( Labeled_graph
      = ( labele16114835_a_nat @ ( labele195203296_a_nat @ Labeled_graph ) @ ( labele1810595089_a_nat @ Labeled_graph ) ) ) ).

% labeled_graph.exhaust_sel
thf(fact_149_labeled__graph_Oexhaust__sel,axiom,
    ! [Labeled_graph: labele431970251um_a_b] :
      ( Labeled_graph
      = ( labele1729654377um_a_b @ ( labele1939049654um_a_b @ Labeled_graph ) @ ( labele577278695um_a_b @ Labeled_graph ) ) ) ).

% labeled_graph.exhaust_sel
thf(fact_150_singleton__insert__inj__eq_H,axiom,
    ! [A: standard_Constant_a,A3: set_St761939237tant_a,B: standard_Constant_a] :
      ( ( ( insert1909710879tant_a @ A @ A3 )
        = ( insert1909710879tant_a @ B @ bot_bo1160111033tant_a ) )
      = ( ( A = B )
        & ( ord_le1739761029tant_a @ A3 @ ( insert1909710879tant_a @ B @ bot_bo1160111033tant_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_151_singleton__insert__inj__eq_H,axiom,
    ! [A: product_prod_nat_nat,A3: set_Pr1986765409at_nat,B: product_prod_nat_nat] :
      ( ( ( insert271595217at_nat @ A @ A3 )
        = ( insert271595217at_nat @ B @ bot_bo2130386637at_nat ) )
      = ( ( A = B )
        & ( ord_le841296385at_nat @ A3 @ ( insert271595217at_nat @ B @ bot_bo2130386637at_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_152_singleton__insert__inj__eq_H,axiom,
    ! [A: produc1032616263at_nat,A3: set_Pr1647387645at_nat,B: produc1032616263at_nat] :
      ( ( ( insert1625259895at_nat @ A @ A3 )
        = ( insert1625259895at_nat @ B @ bot_bo810816657at_nat ) )
      = ( ( A = B )
        & ( ord_le1909159005at_nat @ A3 @ ( insert1625259895at_nat @ B @ bot_bo810816657at_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_153_singleton__insert__inj__eq_H,axiom,
    ! [A: nat,A3: set_nat,B: nat] :
      ( ( ( insert_nat @ A @ A3 )
        = ( insert_nat @ B @ bot_bot_set_nat ) )
      = ( ( A = B )
        & ( ord_less_eq_set_nat @ A3 @ ( insert_nat @ B @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_154_singleton__insert__inj__eq_H,axiom,
    ! [A: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b,B: produc1124793815um_a_b] :
      ( ( ( insert983991207um_a_b @ A @ A3 )
        = ( insert983991207um_a_b @ B @ bot_bo575978147um_a_b ) )
      = ( ( A = B )
        & ( ord_le823954903um_a_b @ A3 @ ( insert983991207um_a_b @ B @ bot_bo575978147um_a_b ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_155_singleton__insert__inj__eq_H,axiom,
    ! [A: produc1548871597um_a_b,A3: set_Pr1916610317um_a_b,B: produc1548871597um_a_b] :
      ( ( ( insert1435405693um_a_b @ A @ A3 )
        = ( insert1435405693um_a_b @ B @ bot_bo225809273um_a_b ) )
      = ( ( A = B )
        & ( ord_le1059794605um_a_b @ A3 @ ( insert1435405693um_a_b @ B @ bot_bo225809273um_a_b ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_156_singleton__insert__inj__eq_H,axiom,
    ! [A: produc1963079155um_a_b,A3: set_Pr409224873um_a_b,B: produc1963079155um_a_b] :
      ( ( ( insert323157027um_a_b @ A @ A3 )
        = ( insert323157027um_a_b @ B @ bot_bo1262634813um_a_b ) )
      = ( ( A = B )
        & ( ord_le615126793um_a_b @ A3 @ ( insert323157027um_a_b @ B @ bot_bo1262634813um_a_b ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_157_singleton__insert__inj__eq_H,axiom,
    ! [A: sum_sum_a_b,A3: set_Sum_sum_a_b,B: sum_sum_a_b] :
      ( ( ( insert_Sum_sum_a_b @ A @ A3 )
        = ( insert_Sum_sum_a_b @ B @ bot_bo1491243248um_a_b ) )
      = ( ( A = B )
        & ( ord_le192794300um_a_b @ A3 @ ( insert_Sum_sum_a_b @ B @ bot_bo1491243248um_a_b ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_158_singleton__insert__inj__eq,axiom,
    ! [B: standard_Constant_a,A: standard_Constant_a,A3: set_St761939237tant_a] :
      ( ( ( insert1909710879tant_a @ B @ bot_bo1160111033tant_a )
        = ( insert1909710879tant_a @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le1739761029tant_a @ A3 @ ( insert1909710879tant_a @ B @ bot_bo1160111033tant_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_159_singleton__insert__inj__eq,axiom,
    ! [B: product_prod_nat_nat,A: product_prod_nat_nat,A3: set_Pr1986765409at_nat] :
      ( ( ( insert271595217at_nat @ B @ bot_bo2130386637at_nat )
        = ( insert271595217at_nat @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le841296385at_nat @ A3 @ ( insert271595217at_nat @ B @ bot_bo2130386637at_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_160_singleton__insert__inj__eq,axiom,
    ! [B: produc1032616263at_nat,A: produc1032616263at_nat,A3: set_Pr1647387645at_nat] :
      ( ( ( insert1625259895at_nat @ B @ bot_bo810816657at_nat )
        = ( insert1625259895at_nat @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le1909159005at_nat @ A3 @ ( insert1625259895at_nat @ B @ bot_bo810816657at_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_161_singleton__insert__inj__eq,axiom,
    ! [B: nat,A: nat,A3: set_nat] :
      ( ( ( insert_nat @ B @ bot_bot_set_nat )
        = ( insert_nat @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_nat @ A3 @ ( insert_nat @ B @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_162_singleton__insert__inj__eq,axiom,
    ! [B: produc1124793815um_a_b,A: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( ( insert983991207um_a_b @ B @ bot_bo575978147um_a_b )
        = ( insert983991207um_a_b @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le823954903um_a_b @ A3 @ ( insert983991207um_a_b @ B @ bot_bo575978147um_a_b ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_163_singleton__insert__inj__eq,axiom,
    ! [B: produc1548871597um_a_b,A: produc1548871597um_a_b,A3: set_Pr1916610317um_a_b] :
      ( ( ( insert1435405693um_a_b @ B @ bot_bo225809273um_a_b )
        = ( insert1435405693um_a_b @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le1059794605um_a_b @ A3 @ ( insert1435405693um_a_b @ B @ bot_bo225809273um_a_b ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_164_singleton__insert__inj__eq,axiom,
    ! [B: produc1963079155um_a_b,A: produc1963079155um_a_b,A3: set_Pr409224873um_a_b] :
      ( ( ( insert323157027um_a_b @ B @ bot_bo1262634813um_a_b )
        = ( insert323157027um_a_b @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le615126793um_a_b @ A3 @ ( insert323157027um_a_b @ B @ bot_bo1262634813um_a_b ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_165_singleton__insert__inj__eq,axiom,
    ! [B: sum_sum_a_b,A: sum_sum_a_b,A3: set_Sum_sum_a_b] :
      ( ( ( insert_Sum_sum_a_b @ B @ bot_bo1491243248um_a_b )
        = ( insert_Sum_sum_a_b @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le192794300um_a_b @ A3 @ ( insert_Sum_sum_a_b @ B @ bot_bo1491243248um_a_b ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_166_univalent__empty,axiom,
    unival860567212at_nat @ bot_bo810816657at_nat ).

% univalent_empty
thf(fact_167_univalent__empty,axiom,
    unival118648434um_a_b @ bot_bo225809273um_a_b ).

% univalent_empty
thf(fact_168_univalent__empty,axiom,
    unival1487587672um_a_b @ bot_bo1262634813um_a_b ).

% univalent_empty
thf(fact_169_univalent__empty,axiom,
    unival2092813468um_a_b @ bot_bo575978147um_a_b ).

% univalent_empty
thf(fact_170_mem__Collect__eq,axiom,
    ! [A: sum_sum_a_b,P: sum_sum_a_b > $o] :
      ( ( member_Sum_sum_a_b @ A @ ( collect_Sum_sum_a_b @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_171_mem__Collect__eq,axiom,
    ! [A: produc1124793815um_a_b,P: produc1124793815um_a_b > $o] :
      ( ( member1294585472um_a_b @ A @ ( collec492052930um_a_b @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_172_mem__Collect__eq,axiom,
    ! [A: produc1963079155um_a_b,P: produc1963079155um_a_b > $o] :
      ( ( member1998628618um_a_b @ A @ ( collec1254333256um_a_b @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_173_Collect__mem__eq,axiom,
    ! [A3: set_Sum_sum_a_b] :
      ( ( collect_Sum_sum_a_b
        @ ^ [X3: sum_sum_a_b] : ( member_Sum_sum_a_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_174_Collect__mem__eq,axiom,
    ! [A3: set_Pr1174980151um_a_b] :
      ( ( collec492052930um_a_b
        @ ^ [X3: produc1124793815um_a_b] : ( member1294585472um_a_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_175_Collect__mem__eq,axiom,
    ! [A3: set_Pr409224873um_a_b] :
      ( ( collec1254333256um_a_b
        @ ^ [X3: produc1963079155um_a_b] : ( member1998628618um_a_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_176_insert__subset,axiom,
    ! [X2: produc1032616263at_nat,A3: set_Pr1647387645at_nat,B5: set_Pr1647387645at_nat] :
      ( ( ord_le1909159005at_nat @ ( insert1625259895at_nat @ X2 @ A3 ) @ B5 )
      = ( ( member1696759390at_nat @ X2 @ B5 )
        & ( ord_le1909159005at_nat @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_177_insert__subset,axiom,
    ! [X2: nat,A3: set_nat,B5: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat @ X2 @ A3 ) @ B5 )
      = ( ( member_nat @ X2 @ B5 )
        & ( ord_less_eq_set_nat @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_178_insert__subset,axiom,
    ! [X2: produc1548871597um_a_b,A3: set_Pr1916610317um_a_b,B5: set_Pr1916610317um_a_b] :
      ( ( ord_le1059794605um_a_b @ ( insert1435405693um_a_b @ X2 @ A3 ) @ B5 )
      = ( ( member947389014um_a_b @ X2 @ B5 )
        & ( ord_le1059794605um_a_b @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_179_insert__subset,axiom,
    ! [X2: standard_Constant_a,A3: set_St761939237tant_a,B5: set_St761939237tant_a] :
      ( ( ord_le1739761029tant_a @ ( insert1909710879tant_a @ X2 @ A3 ) @ B5 )
      = ( ( member1632892294tant_a @ X2 @ B5 )
        & ( ord_le1739761029tant_a @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_180_insert__subset,axiom,
    ! [X2: product_prod_nat_nat,A3: set_Pr1986765409at_nat,B5: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ ( insert271595217at_nat @ X2 @ A3 ) @ B5 )
      = ( ( member701585322at_nat @ X2 @ B5 )
        & ( ord_le841296385at_nat @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_181_insert__subset,axiom,
    ! [X2: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b,B5: set_Pr1174980151um_a_b] :
      ( ( ord_le823954903um_a_b @ ( insert983991207um_a_b @ X2 @ A3 ) @ B5 )
      = ( ( member1294585472um_a_b @ X2 @ B5 )
        & ( ord_le823954903um_a_b @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_182_insert__subset,axiom,
    ! [X2: produc1963079155um_a_b,A3: set_Pr409224873um_a_b,B5: set_Pr409224873um_a_b] :
      ( ( ord_le615126793um_a_b @ ( insert323157027um_a_b @ X2 @ A3 ) @ B5 )
      = ( ( member1998628618um_a_b @ X2 @ B5 )
        & ( ord_le615126793um_a_b @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_183_insert__subset,axiom,
    ! [X2: sum_sum_a_b,A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b] :
      ( ( ord_le192794300um_a_b @ ( insert_Sum_sum_a_b @ X2 @ A3 ) @ B5 )
      = ( ( member_Sum_sum_a_b @ X2 @ B5 )
        & ( ord_le192794300um_a_b @ A3 @ B5 ) ) ) ).

% insert_subset
thf(fact_184_singletonI,axiom,
    ! [A: standard_Constant_a] : ( member1632892294tant_a @ A @ ( insert1909710879tant_a @ A @ bot_bo1160111033tant_a ) ) ).

% singletonI
thf(fact_185_singletonI,axiom,
    ! [A: product_prod_nat_nat] : ( member701585322at_nat @ A @ ( insert271595217at_nat @ A @ bot_bo2130386637at_nat ) ) ).

% singletonI
thf(fact_186_singletonI,axiom,
    ! [A: produc1032616263at_nat] : ( member1696759390at_nat @ A @ ( insert1625259895at_nat @ A @ bot_bo810816657at_nat ) ) ).

% singletonI
thf(fact_187_singletonI,axiom,
    ! [A: nat] : ( member_nat @ A @ ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_188_singletonI,axiom,
    ! [A: produc1124793815um_a_b] : ( member1294585472um_a_b @ A @ ( insert983991207um_a_b @ A @ bot_bo575978147um_a_b ) ) ).

% singletonI
thf(fact_189_singletonI,axiom,
    ! [A: produc1548871597um_a_b] : ( member947389014um_a_b @ A @ ( insert1435405693um_a_b @ A @ bot_bo225809273um_a_b ) ) ).

% singletonI
thf(fact_190_singletonI,axiom,
    ! [A: produc1963079155um_a_b] : ( member1998628618um_a_b @ A @ ( insert323157027um_a_b @ A @ bot_bo1262634813um_a_b ) ) ).

% singletonI
thf(fact_191_singletonI,axiom,
    ! [A: sum_sum_a_b] : ( member_Sum_sum_a_b @ A @ ( insert_Sum_sum_a_b @ A @ bot_bo1491243248um_a_b ) ) ).

% singletonI
thf(fact_192_empty__subsetI,axiom,
    ! [A3: set_Pr1647387645at_nat] : ( ord_le1909159005at_nat @ bot_bo810816657at_nat @ A3 ) ).

% empty_subsetI
thf(fact_193_empty__subsetI,axiom,
    ! [A3: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A3 ) ).

% empty_subsetI
thf(fact_194_empty__subsetI,axiom,
    ! [A3: set_Pr1174980151um_a_b] : ( ord_le823954903um_a_b @ bot_bo575978147um_a_b @ A3 ) ).

% empty_subsetI
thf(fact_195_empty__subsetI,axiom,
    ! [A3: set_Pr1916610317um_a_b] : ( ord_le1059794605um_a_b @ bot_bo225809273um_a_b @ A3 ) ).

% empty_subsetI
thf(fact_196_empty__subsetI,axiom,
    ! [A3: set_Pr409224873um_a_b] : ( ord_le615126793um_a_b @ bot_bo1262634813um_a_b @ A3 ) ).

% empty_subsetI
thf(fact_197_empty__subsetI,axiom,
    ! [A3: set_Sum_sum_a_b] : ( ord_le192794300um_a_b @ bot_bo1491243248um_a_b @ A3 ) ).

% empty_subsetI
thf(fact_198_subset__empty,axiom,
    ! [A3: set_Pr1647387645at_nat] :
      ( ( ord_le1909159005at_nat @ A3 @ bot_bo810816657at_nat )
      = ( A3 = bot_bo810816657at_nat ) ) ).

% subset_empty
thf(fact_199_subset__empty,axiom,
    ! [A3: set_nat] :
      ( ( ord_less_eq_set_nat @ A3 @ bot_bot_set_nat )
      = ( A3 = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_200_subset__empty,axiom,
    ! [A3: set_Pr1174980151um_a_b] :
      ( ( ord_le823954903um_a_b @ A3 @ bot_bo575978147um_a_b )
      = ( A3 = bot_bo575978147um_a_b ) ) ).

% subset_empty
thf(fact_201_subset__empty,axiom,
    ! [A3: set_Pr1916610317um_a_b] :
      ( ( ord_le1059794605um_a_b @ A3 @ bot_bo225809273um_a_b )
      = ( A3 = bot_bo225809273um_a_b ) ) ).

% subset_empty
thf(fact_202_subset__empty,axiom,
    ! [A3: set_Pr409224873um_a_b] :
      ( ( ord_le615126793um_a_b @ A3 @ bot_bo1262634813um_a_b )
      = ( A3 = bot_bo1262634813um_a_b ) ) ).

% subset_empty
thf(fact_203_subset__empty,axiom,
    ! [A3: set_Sum_sum_a_b] :
      ( ( ord_le192794300um_a_b @ A3 @ bot_bo1491243248um_a_b )
      = ( A3 = bot_bo1491243248um_a_b ) ) ).

% subset_empty
thf(fact_204_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_205_reflexivity__rule__def,axiom,
    ( standa63370785tant_a
    = ( ^ [T: standard_Constant_a] : ( produc1676969687_a_nat @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) @ ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ T @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).

% reflexivity_rule_def
thf(fact_206_nonempty__rule__def,axiom,
    ( standa1410829644tant_a
    = ( produc1676969687_a_nat @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ bot_bot_set_nat ) @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ).

% nonempty_rule_def
thf(fact_207_empty__iff,axiom,
    ! [C: produc1032616263at_nat] :
      ~ ( member1696759390at_nat @ C @ bot_bo810816657at_nat ) ).

% empty_iff
thf(fact_208_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_209_empty__iff,axiom,
    ! [C: produc1124793815um_a_b] :
      ~ ( member1294585472um_a_b @ C @ bot_bo575978147um_a_b ) ).

% empty_iff
thf(fact_210_empty__iff,axiom,
    ! [C: produc1548871597um_a_b] :
      ~ ( member947389014um_a_b @ C @ bot_bo225809273um_a_b ) ).

% empty_iff
thf(fact_211_empty__iff,axiom,
    ! [C: produc1963079155um_a_b] :
      ~ ( member1998628618um_a_b @ C @ bot_bo1262634813um_a_b ) ).

% empty_iff
thf(fact_212_empty__iff,axiom,
    ! [C: sum_sum_a_b] :
      ~ ( member_Sum_sum_a_b @ C @ bot_bo1491243248um_a_b ) ).

% empty_iff
thf(fact_213_all__not__in__conv,axiom,
    ! [A3: set_Pr1647387645at_nat] :
      ( ( ! [X3: produc1032616263at_nat] :
            ~ ( member1696759390at_nat @ X3 @ A3 ) )
      = ( A3 = bot_bo810816657at_nat ) ) ).

% all_not_in_conv
thf(fact_214_all__not__in__conv,axiom,
    ! [A3: set_nat] :
      ( ( ! [X3: nat] :
            ~ ( member_nat @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_215_all__not__in__conv,axiom,
    ! [A3: set_Pr1174980151um_a_b] :
      ( ( ! [X3: produc1124793815um_a_b] :
            ~ ( member1294585472um_a_b @ X3 @ A3 ) )
      = ( A3 = bot_bo575978147um_a_b ) ) ).

% all_not_in_conv
thf(fact_216_all__not__in__conv,axiom,
    ! [A3: set_Pr1916610317um_a_b] :
      ( ( ! [X3: produc1548871597um_a_b] :
            ~ ( member947389014um_a_b @ X3 @ A3 ) )
      = ( A3 = bot_bo225809273um_a_b ) ) ).

% all_not_in_conv
thf(fact_217_all__not__in__conv,axiom,
    ! [A3: set_Pr409224873um_a_b] :
      ( ( ! [X3: produc1963079155um_a_b] :
            ~ ( member1998628618um_a_b @ X3 @ A3 ) )
      = ( A3 = bot_bo1262634813um_a_b ) ) ).

% all_not_in_conv
thf(fact_218_all__not__in__conv,axiom,
    ! [A3: set_Sum_sum_a_b] :
      ( ( ! [X3: sum_sum_a_b] :
            ~ ( member_Sum_sum_a_b @ X3 @ A3 ) )
      = ( A3 = bot_bo1491243248um_a_b ) ) ).

% all_not_in_conv
thf(fact_219_Collect__empty__eq,axiom,
    ! [P: produc1032616263at_nat > $o] :
      ( ( ( collec52779676at_nat @ P )
        = bot_bo810816657at_nat )
      = ( ! [X3: produc1032616263at_nat] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_220_Collect__empty__eq,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_221_Collect__empty__eq,axiom,
    ! [P: produc1124793815um_a_b > $o] :
      ( ( ( collec492052930um_a_b @ P )
        = bot_bo575978147um_a_b )
      = ( ! [X3: produc1124793815um_a_b] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_222_Collect__empty__eq,axiom,
    ! [P: produc1548871597um_a_b > $o] :
      ( ( ( collec1769032088um_a_b @ P )
        = bot_bo225809273um_a_b )
      = ( ! [X3: produc1548871597um_a_b] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_223_Collect__empty__eq,axiom,
    ! [P: produc1963079155um_a_b > $o] :
      ( ( ( collec1254333256um_a_b @ P )
        = bot_bo1262634813um_a_b )
      = ( ! [X3: produc1963079155um_a_b] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_224_Collect__empty__eq,axiom,
    ! [P: sum_sum_a_b > $o] :
      ( ( ( collect_Sum_sum_a_b @ P )
        = bot_bo1491243248um_a_b )
      = ( ! [X3: sum_sum_a_b] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_225_empty__Collect__eq,axiom,
    ! [P: produc1032616263at_nat > $o] :
      ( ( bot_bo810816657at_nat
        = ( collec52779676at_nat @ P ) )
      = ( ! [X3: produc1032616263at_nat] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_226_empty__Collect__eq,axiom,
    ! [P: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P ) )
      = ( ! [X3: nat] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_227_empty__Collect__eq,axiom,
    ! [P: produc1124793815um_a_b > $o] :
      ( ( bot_bo575978147um_a_b
        = ( collec492052930um_a_b @ P ) )
      = ( ! [X3: produc1124793815um_a_b] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_228_empty__Collect__eq,axiom,
    ! [P: produc1548871597um_a_b > $o] :
      ( ( bot_bo225809273um_a_b
        = ( collec1769032088um_a_b @ P ) )
      = ( ! [X3: produc1548871597um_a_b] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_229_empty__Collect__eq,axiom,
    ! [P: produc1963079155um_a_b > $o] :
      ( ( bot_bo1262634813um_a_b
        = ( collec1254333256um_a_b @ P ) )
      = ( ! [X3: produc1963079155um_a_b] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_230_empty__Collect__eq,axiom,
    ! [P: sum_sum_a_b > $o] :
      ( ( bot_bo1491243248um_a_b
        = ( collect_Sum_sum_a_b @ P ) )
      = ( ! [X3: sum_sum_a_b] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_231_subsetI,axiom,
    ! [A3: set_Pr1174980151um_a_b,B5: set_Pr1174980151um_a_b] :
      ( ! [X4: produc1124793815um_a_b] :
          ( ( member1294585472um_a_b @ X4 @ A3 )
         => ( member1294585472um_a_b @ X4 @ B5 ) )
     => ( ord_le823954903um_a_b @ A3 @ B5 ) ) ).

% subsetI
thf(fact_232_subsetI,axiom,
    ! [A3: set_Pr409224873um_a_b,B5: set_Pr409224873um_a_b] :
      ( ! [X4: produc1963079155um_a_b] :
          ( ( member1998628618um_a_b @ X4 @ A3 )
         => ( member1998628618um_a_b @ X4 @ B5 ) )
     => ( ord_le615126793um_a_b @ A3 @ B5 ) ) ).

% subsetI
thf(fact_233_subsetI,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b] :
      ( ! [X4: sum_sum_a_b] :
          ( ( member_Sum_sum_a_b @ X4 @ A3 )
         => ( member_Sum_sum_a_b @ X4 @ B5 ) )
     => ( ord_le192794300um_a_b @ A3 @ B5 ) ) ).

% subsetI
thf(fact_234_subset__antisym,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b] :
      ( ( ord_le192794300um_a_b @ A3 @ B5 )
     => ( ( ord_le192794300um_a_b @ B5 @ A3 )
       => ( A3 = B5 ) ) ) ).

% subset_antisym
thf(fact_235_insertCI,axiom,
    ! [A: produc1032616263at_nat,B5: set_Pr1647387645at_nat,B: produc1032616263at_nat] :
      ( ( ~ ( member1696759390at_nat @ A @ B5 )
       => ( A = B ) )
     => ( member1696759390at_nat @ A @ ( insert1625259895at_nat @ B @ B5 ) ) ) ).

% insertCI
thf(fact_236_insertCI,axiom,
    ! [A: nat,B5: set_nat,B: nat] :
      ( ( ~ ( member_nat @ A @ B5 )
       => ( A = B ) )
     => ( member_nat @ A @ ( insert_nat @ B @ B5 ) ) ) ).

% insertCI
thf(fact_237_insertCI,axiom,
    ! [A: produc1548871597um_a_b,B5: set_Pr1916610317um_a_b,B: produc1548871597um_a_b] :
      ( ( ~ ( member947389014um_a_b @ A @ B5 )
       => ( A = B ) )
     => ( member947389014um_a_b @ A @ ( insert1435405693um_a_b @ B @ B5 ) ) ) ).

% insertCI
thf(fact_238_insertCI,axiom,
    ! [A: standard_Constant_a,B5: set_St761939237tant_a,B: standard_Constant_a] :
      ( ( ~ ( member1632892294tant_a @ A @ B5 )
       => ( A = B ) )
     => ( member1632892294tant_a @ A @ ( insert1909710879tant_a @ B @ B5 ) ) ) ).

% insertCI
thf(fact_239_insertCI,axiom,
    ! [A: product_prod_nat_nat,B5: set_Pr1986765409at_nat,B: product_prod_nat_nat] :
      ( ( ~ ( member701585322at_nat @ A @ B5 )
       => ( A = B ) )
     => ( member701585322at_nat @ A @ ( insert271595217at_nat @ B @ B5 ) ) ) ).

% insertCI
thf(fact_240_insertCI,axiom,
    ! [A: sum_sum_a_b,B5: set_Sum_sum_a_b,B: sum_sum_a_b] :
      ( ( ~ ( member_Sum_sum_a_b @ A @ B5 )
       => ( A = B ) )
     => ( member_Sum_sum_a_b @ A @ ( insert_Sum_sum_a_b @ B @ B5 ) ) ) ).

% insertCI
thf(fact_241_insertCI,axiom,
    ! [A: produc1124793815um_a_b,B5: set_Pr1174980151um_a_b,B: produc1124793815um_a_b] :
      ( ( ~ ( member1294585472um_a_b @ A @ B5 )
       => ( A = B ) )
     => ( member1294585472um_a_b @ A @ ( insert983991207um_a_b @ B @ B5 ) ) ) ).

% insertCI
thf(fact_242_insertCI,axiom,
    ! [A: produc1963079155um_a_b,B5: set_Pr409224873um_a_b,B: produc1963079155um_a_b] :
      ( ( ~ ( member1998628618um_a_b @ A @ B5 )
       => ( A = B ) )
     => ( member1998628618um_a_b @ A @ ( insert323157027um_a_b @ B @ B5 ) ) ) ).

% insertCI
thf(fact_243_insert__iff,axiom,
    ! [A: produc1032616263at_nat,B: produc1032616263at_nat,A3: set_Pr1647387645at_nat] :
      ( ( member1696759390at_nat @ A @ ( insert1625259895at_nat @ B @ A3 ) )
      = ( ( A = B )
        | ( member1696759390at_nat @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_244_insert__iff,axiom,
    ! [A: nat,B: nat,A3: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A3 ) )
      = ( ( A = B )
        | ( member_nat @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_245_insert__iff,axiom,
    ! [A: produc1548871597um_a_b,B: produc1548871597um_a_b,A3: set_Pr1916610317um_a_b] :
      ( ( member947389014um_a_b @ A @ ( insert1435405693um_a_b @ B @ A3 ) )
      = ( ( A = B )
        | ( member947389014um_a_b @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_246_insert__iff,axiom,
    ! [A: standard_Constant_a,B: standard_Constant_a,A3: set_St761939237tant_a] :
      ( ( member1632892294tant_a @ A @ ( insert1909710879tant_a @ B @ A3 ) )
      = ( ( A = B )
        | ( member1632892294tant_a @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_247_insert__iff,axiom,
    ! [A: product_prod_nat_nat,B: product_prod_nat_nat,A3: set_Pr1986765409at_nat] :
      ( ( member701585322at_nat @ A @ ( insert271595217at_nat @ B @ A3 ) )
      = ( ( A = B )
        | ( member701585322at_nat @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_248_insert__iff,axiom,
    ! [A: sum_sum_a_b,B: sum_sum_a_b,A3: set_Sum_sum_a_b] :
      ( ( member_Sum_sum_a_b @ A @ ( insert_Sum_sum_a_b @ B @ A3 ) )
      = ( ( A = B )
        | ( member_Sum_sum_a_b @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_249_insert__iff,axiom,
    ! [A: produc1124793815um_a_b,B: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( member1294585472um_a_b @ A @ ( insert983991207um_a_b @ B @ A3 ) )
      = ( ( A = B )
        | ( member1294585472um_a_b @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_250_insert__iff,axiom,
    ! [A: produc1963079155um_a_b,B: produc1963079155um_a_b,A3: set_Pr409224873um_a_b] :
      ( ( member1998628618um_a_b @ A @ ( insert323157027um_a_b @ B @ A3 ) )
      = ( ( A = B )
        | ( member1998628618um_a_b @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_251_insert__absorb2,axiom,
    ! [X2: produc1032616263at_nat,A3: set_Pr1647387645at_nat] :
      ( ( insert1625259895at_nat @ X2 @ ( insert1625259895at_nat @ X2 @ A3 ) )
      = ( insert1625259895at_nat @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_252_insert__absorb2,axiom,
    ! [X2: nat,A3: set_nat] :
      ( ( insert_nat @ X2 @ ( insert_nat @ X2 @ A3 ) )
      = ( insert_nat @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_253_insert__absorb2,axiom,
    ! [X2: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( insert983991207um_a_b @ X2 @ ( insert983991207um_a_b @ X2 @ A3 ) )
      = ( insert983991207um_a_b @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_254_insert__absorb2,axiom,
    ! [X2: produc1963079155um_a_b,A3: set_Pr409224873um_a_b] :
      ( ( insert323157027um_a_b @ X2 @ ( insert323157027um_a_b @ X2 @ A3 ) )
      = ( insert323157027um_a_b @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_255_insert__absorb2,axiom,
    ! [X2: sum_sum_a_b,A3: set_Sum_sum_a_b] :
      ( ( insert_Sum_sum_a_b @ X2 @ ( insert_Sum_sum_a_b @ X2 @ A3 ) )
      = ( insert_Sum_sum_a_b @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_256_insert__absorb2,axiom,
    ! [X2: produc1548871597um_a_b,A3: set_Pr1916610317um_a_b] :
      ( ( insert1435405693um_a_b @ X2 @ ( insert1435405693um_a_b @ X2 @ A3 ) )
      = ( insert1435405693um_a_b @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_257_insert__absorb2,axiom,
    ! [X2: standard_Constant_a,A3: set_St761939237tant_a] :
      ( ( insert1909710879tant_a @ X2 @ ( insert1909710879tant_a @ X2 @ A3 ) )
      = ( insert1909710879tant_a @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_258_insert__absorb2,axiom,
    ! [X2: product_prod_nat_nat,A3: set_Pr1986765409at_nat] :
      ( ( insert271595217at_nat @ X2 @ ( insert271595217at_nat @ X2 @ A3 ) )
      = ( insert271595217at_nat @ X2 @ A3 ) ) ).

% insert_absorb2
thf(fact_259_graph__homomorphism__empty,axiom,
    ! [G: labele935650037_a_nat,F: set_Pr1986765409at_nat] :
      ( ( graph_2130075512at_nat @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ bot_bot_set_nat ) @ G @ F )
      = ( ( F = bot_bo2130386637at_nat )
        & ( G
          = ( restri572569417_a_nat @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_260_graph__homomorphism__empty,axiom,
    ! [G: labele935650037_a_nat,F: set_Pr375490359_b_nat] :
      ( ( graph_165730638_b_nat @ ( labele1729654377um_a_b @ bot_bo1262634813um_a_b @ bot_bo1491243248um_a_b ) @ G @ F )
      = ( ( F = bot_bo1923972003_b_nat )
        & ( G
          = ( restri572569417_a_nat @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_261_graph__homomorphism__empty,axiom,
    ! [G: labele431970251um_a_b,F: set_Pr1174980151um_a_b] :
      ( ( graph_1452133198um_a_b @ ( labele16114835_a_nat @ bot_bo810816657at_nat @ bot_bot_set_nat ) @ G @ F )
      = ( ( F = bot_bo575978147um_a_b )
        & ( G
          = ( restri1162247455um_a_b @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_262_graph__homomorphism__empty,axiom,
    ! [G: labele935650037_a_nat,F: set_Pr1902304780_b_nat] :
      ( ( graph_1203757137_b_nat @ ( labele2034032468um_a_b @ bot_bo1208513655um_a_b @ bot_bo575978147um_a_b ) @ G @ F )
      = ( ( F = bot_bo949957280_b_nat )
        & ( G
          = ( restri572569417_a_nat @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_263_graph__homomorphism__empty,axiom,
    ! [G: labele431970251um_a_b,F: set_Pr1916610317um_a_b] :
      ( ( graph_611893540um_a_b @ ( labele1729654377um_a_b @ bot_bo1262634813um_a_b @ bot_bo1491243248um_a_b ) @ G @ F )
      = ( ( F = bot_bo225809273um_a_b )
        & ( G
          = ( restri1162247455um_a_b @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_264_graph__homomorphism__empty,axiom,
    ! [G: labele935650037_a_nat,F: set_Pr689416536at_nat] :
      ( ( graph_149544303at_nat @ ( labele1813985418at_nat @ bot_bo1524397311at_nat @ bot_bo810816657at_nat ) @ G @ F )
      = ( ( F = bot_bo1582968772at_nat )
        & ( G
          = ( restri572569417_a_nat @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_265_graph__homomorphism__empty,axiom,
    ! [G: labele431970251um_a_b,F: set_Pr653770722um_a_b] :
      ( ( graph_502887975um_a_b @ ( labele2034032468um_a_b @ bot_bo1208513655um_a_b @ bot_bo575978147um_a_b ) @ G @ F )
      = ( ( F = bot_bo1892785270um_a_b )
        & ( G
          = ( restri1162247455um_a_b @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_266_graph__homomorphism__empty,axiom,
    ! [G: labele935650037_a_nat,F: set_Pr507214050_b_nat] :
      ( ( graph_1815313447_b_nat @ ( labele989994um_a_b @ bot_bo1262778871um_a_b @ bot_bo225809273um_a_b ) @ G @ F )
      = ( ( F = bot_bo1746228598_b_nat )
        & ( G
          = ( restri572569417_a_nat @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_267_graph__homomorphism__empty,axiom,
    ! [G: labele431970251um_a_b,F: set_Pr304595758um_a_b] :
      ( ( graph_166346565um_a_b @ ( labele1813985418at_nat @ bot_bo1524397311at_nat @ bot_bo810816657at_nat ) @ G @ F )
      = ( ( F = bot_bo627753370um_a_b )
        & ( G
          = ( restri1162247455um_a_b @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_268_graph__homomorphism__empty,axiom,
    ! [G: labele431970251um_a_b,F: set_Pr55236280um_a_b] :
      ( ( graph_1763806717um_a_b @ ( labele989994um_a_b @ bot_bo1262778871um_a_b @ bot_bo225809273um_a_b ) @ G @ F )
      = ( ( F = bot_bo1217542988um_a_b )
        & ( G
          = ( restri1162247455um_a_b @ G ) ) ) ) ).

% graph_homomorphism_empty
thf(fact_269_edge__preserving__subset,axiom,
    ! [R_1: set_Pr1174980151um_a_b,R_2: set_Pr1174980151um_a_b,E_1: set_Pr1647387645at_nat,E_2: set_Pr1647387645at_nat,G: set_Pr409224873um_a_b] :
      ( ( ord_le823954903um_a_b @ R_1 @ R_2 )
     => ( ( ord_le1909159005at_nat @ E_1 @ E_2 )
       => ( ( edge_p1382426714tant_a @ R_2 @ E_2 @ G )
         => ( edge_p1382426714tant_a @ R_1 @ E_1 @ G ) ) ) ) ).

% edge_preserving_subset
thf(fact_270_subrelI,axiom,
    ! [R: set_Pr1647387645at_nat,S: set_Pr1647387645at_nat] :
      ( ! [X4: standard_Constant_a,Y4: product_prod_nat_nat] :
          ( ( member1696759390at_nat @ ( produc407553657at_nat @ X4 @ Y4 ) @ R )
         => ( member1696759390at_nat @ ( produc407553657at_nat @ X4 @ Y4 ) @ S ) )
     => ( ord_le1909159005at_nat @ R @ S ) ) ).

% subrelI
thf(fact_271_subrelI,axiom,
    ! [R: set_Pr1986765409at_nat,S: set_Pr1986765409at_nat] :
      ( ! [X4: nat,Y4: nat] :
          ( ( member701585322at_nat @ ( product_Pair_nat_nat @ X4 @ Y4 ) @ R )
         => ( member701585322at_nat @ ( product_Pair_nat_nat @ X4 @ Y4 ) @ S ) )
     => ( ord_le841296385at_nat @ R @ S ) ) ).

% subrelI
thf(fact_272_subrelI,axiom,
    ! [R: set_Pr1174980151um_a_b,S: set_Pr1174980151um_a_b] :
      ( ! [X4: nat,Y4: sum_sum_a_b] :
          ( ( member1294585472um_a_b @ ( produc1808556047um_a_b @ X4 @ Y4 ) @ R )
         => ( member1294585472um_a_b @ ( produc1808556047um_a_b @ X4 @ Y4 ) @ S ) )
     => ( ord_le823954903um_a_b @ R @ S ) ) ).

% subrelI
thf(fact_273_subrelI,axiom,
    ! [R: set_Pr409224873um_a_b,S: set_Pr409224873um_a_b] :
      ( ! [X4: standard_Constant_a,Y4: produc1548871597um_a_b] :
          ( ( member1998628618um_a_b @ ( produc1697725733um_a_b @ X4 @ Y4 ) @ R )
         => ( member1998628618um_a_b @ ( produc1697725733um_a_b @ X4 @ Y4 ) @ S ) )
     => ( ord_le615126793um_a_b @ R @ S ) ) ).

% subrelI
thf(fact_274_subrelI,axiom,
    ! [R: set_Pr1916610317um_a_b,S: set_Pr1916610317um_a_b] :
      ( ! [X4: sum_sum_a_b,Y4: sum_sum_a_b] :
          ( ( member947389014um_a_b @ ( produc176426981um_a_b @ X4 @ Y4 ) @ R )
         => ( member947389014um_a_b @ ( produc176426981um_a_b @ X4 @ Y4 ) @ S ) )
     => ( ord_le1059794605um_a_b @ R @ S ) ) ).

% subrelI
thf(fact_275_restrict__subsD,axiom,
    ! [G: labele935650037_a_nat] :
      ( ( ord_le1909159005at_nat @ ( labele195203296_a_nat @ G ) @ ( labele195203296_a_nat @ ( restri572569417_a_nat @ G ) ) )
     => ( G
        = ( restri572569417_a_nat @ G ) ) ) ).

% restrict_subsD
thf(fact_276_restrict__subsD,axiom,
    ! [G: labele431970251um_a_b] :
      ( ( ord_le615126793um_a_b @ ( labele1939049654um_a_b @ G ) @ ( labele1939049654um_a_b @ ( restri1162247455um_a_b @ G ) ) )
     => ( G
        = ( restri1162247455um_a_b @ G ) ) ) ).

% restrict_subsD
thf(fact_277_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_278_emptyE,axiom,
    ! [A: produc1032616263at_nat] :
      ~ ( member1696759390at_nat @ A @ bot_bo810816657at_nat ) ).

% emptyE
thf(fact_279_emptyE,axiom,
    ! [A: nat] :
      ~ ( member_nat @ A @ bot_bot_set_nat ) ).

% emptyE
thf(fact_280_emptyE,axiom,
    ! [A: produc1124793815um_a_b] :
      ~ ( member1294585472um_a_b @ A @ bot_bo575978147um_a_b ) ).

% emptyE
thf(fact_281_emptyE,axiom,
    ! [A: produc1548871597um_a_b] :
      ~ ( member947389014um_a_b @ A @ bot_bo225809273um_a_b ) ).

% emptyE
thf(fact_282_emptyE,axiom,
    ! [A: produc1963079155um_a_b] :
      ~ ( member1998628618um_a_b @ A @ bot_bo1262634813um_a_b ) ).

% emptyE
thf(fact_283_emptyE,axiom,
    ! [A: sum_sum_a_b] :
      ~ ( member_Sum_sum_a_b @ A @ bot_bo1491243248um_a_b ) ).

% emptyE
thf(fact_284_equals0D,axiom,
    ! [A3: set_Pr1647387645at_nat,A: produc1032616263at_nat] :
      ( ( A3 = bot_bo810816657at_nat )
     => ~ ( member1696759390at_nat @ A @ A3 ) ) ).

% equals0D
thf(fact_285_equals0D,axiom,
    ! [A3: set_nat,A: nat] :
      ( ( A3 = bot_bot_set_nat )
     => ~ ( member_nat @ A @ A3 ) ) ).

% equals0D
thf(fact_286_equals0D,axiom,
    ! [A3: set_Pr1174980151um_a_b,A: produc1124793815um_a_b] :
      ( ( A3 = bot_bo575978147um_a_b )
     => ~ ( member1294585472um_a_b @ A @ A3 ) ) ).

% equals0D
thf(fact_287_equals0D,axiom,
    ! [A3: set_Pr1916610317um_a_b,A: produc1548871597um_a_b] :
      ( ( A3 = bot_bo225809273um_a_b )
     => ~ ( member947389014um_a_b @ A @ A3 ) ) ).

% equals0D
thf(fact_288_equals0D,axiom,
    ! [A3: set_Pr409224873um_a_b,A: produc1963079155um_a_b] :
      ( ( A3 = bot_bo1262634813um_a_b )
     => ~ ( member1998628618um_a_b @ A @ A3 ) ) ).

% equals0D
thf(fact_289_equals0D,axiom,
    ! [A3: set_Sum_sum_a_b,A: sum_sum_a_b] :
      ( ( A3 = bot_bo1491243248um_a_b )
     => ~ ( member_Sum_sum_a_b @ A @ A3 ) ) ).

% equals0D
thf(fact_290_equals0I,axiom,
    ! [A3: set_Pr1647387645at_nat] :
      ( ! [Y4: produc1032616263at_nat] :
          ~ ( member1696759390at_nat @ Y4 @ A3 )
     => ( A3 = bot_bo810816657at_nat ) ) ).

% equals0I
thf(fact_291_equals0I,axiom,
    ! [A3: set_nat] :
      ( ! [Y4: nat] :
          ~ ( member_nat @ Y4 @ A3 )
     => ( A3 = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_292_equals0I,axiom,
    ! [A3: set_Pr1174980151um_a_b] :
      ( ! [Y4: produc1124793815um_a_b] :
          ~ ( member1294585472um_a_b @ Y4 @ A3 )
     => ( A3 = bot_bo575978147um_a_b ) ) ).

% equals0I
thf(fact_293_equals0I,axiom,
    ! [A3: set_Pr1916610317um_a_b] :
      ( ! [Y4: produc1548871597um_a_b] :
          ~ ( member947389014um_a_b @ Y4 @ A3 )
     => ( A3 = bot_bo225809273um_a_b ) ) ).

% equals0I
thf(fact_294_equals0I,axiom,
    ! [A3: set_Pr409224873um_a_b] :
      ( ! [Y4: produc1963079155um_a_b] :
          ~ ( member1998628618um_a_b @ Y4 @ A3 )
     => ( A3 = bot_bo1262634813um_a_b ) ) ).

% equals0I
thf(fact_295_equals0I,axiom,
    ! [A3: set_Sum_sum_a_b] :
      ( ! [Y4: sum_sum_a_b] :
          ~ ( member_Sum_sum_a_b @ Y4 @ A3 )
     => ( A3 = bot_bo1491243248um_a_b ) ) ).

% equals0I
thf(fact_296_ex__in__conv,axiom,
    ! [A3: set_Pr1647387645at_nat] :
      ( ( ? [X3: produc1032616263at_nat] : ( member1696759390at_nat @ X3 @ A3 ) )
      = ( A3 != bot_bo810816657at_nat ) ) ).

% ex_in_conv
thf(fact_297_ex__in__conv,axiom,
    ! [A3: set_nat] :
      ( ( ? [X3: nat] : ( member_nat @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_298_ex__in__conv,axiom,
    ! [A3: set_Pr1174980151um_a_b] :
      ( ( ? [X3: produc1124793815um_a_b] : ( member1294585472um_a_b @ X3 @ A3 ) )
      = ( A3 != bot_bo575978147um_a_b ) ) ).

% ex_in_conv
thf(fact_299_ex__in__conv,axiom,
    ! [A3: set_Pr1916610317um_a_b] :
      ( ( ? [X3: produc1548871597um_a_b] : ( member947389014um_a_b @ X3 @ A3 ) )
      = ( A3 != bot_bo225809273um_a_b ) ) ).

% ex_in_conv
thf(fact_300_ex__in__conv,axiom,
    ! [A3: set_Pr409224873um_a_b] :
      ( ( ? [X3: produc1963079155um_a_b] : ( member1998628618um_a_b @ X3 @ A3 ) )
      = ( A3 != bot_bo1262634813um_a_b ) ) ).

% ex_in_conv
thf(fact_301_ex__in__conv,axiom,
    ! [A3: set_Sum_sum_a_b] :
      ( ( ? [X3: sum_sum_a_b] : ( member_Sum_sum_a_b @ X3 @ A3 ) )
      = ( A3 != bot_bo1491243248um_a_b ) ) ).

% ex_in_conv
thf(fact_302_in__mono,axiom,
    ! [A3: set_Pr1174980151um_a_b,B5: set_Pr1174980151um_a_b,X2: produc1124793815um_a_b] :
      ( ( ord_le823954903um_a_b @ A3 @ B5 )
     => ( ( member1294585472um_a_b @ X2 @ A3 )
       => ( member1294585472um_a_b @ X2 @ B5 ) ) ) ).

% in_mono
thf(fact_303_in__mono,axiom,
    ! [A3: set_Pr409224873um_a_b,B5: set_Pr409224873um_a_b,X2: produc1963079155um_a_b] :
      ( ( ord_le615126793um_a_b @ A3 @ B5 )
     => ( ( member1998628618um_a_b @ X2 @ A3 )
       => ( member1998628618um_a_b @ X2 @ B5 ) ) ) ).

% in_mono
thf(fact_304_in__mono,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b,X2: sum_sum_a_b] :
      ( ( ord_le192794300um_a_b @ A3 @ B5 )
     => ( ( member_Sum_sum_a_b @ X2 @ A3 )
       => ( member_Sum_sum_a_b @ X2 @ B5 ) ) ) ).

% in_mono
thf(fact_305_subsetD,axiom,
    ! [A3: set_Pr1174980151um_a_b,B5: set_Pr1174980151um_a_b,C: produc1124793815um_a_b] :
      ( ( ord_le823954903um_a_b @ A3 @ B5 )
     => ( ( member1294585472um_a_b @ C @ A3 )
       => ( member1294585472um_a_b @ C @ B5 ) ) ) ).

% subsetD
thf(fact_306_subsetD,axiom,
    ! [A3: set_Pr409224873um_a_b,B5: set_Pr409224873um_a_b,C: produc1963079155um_a_b] :
      ( ( ord_le615126793um_a_b @ A3 @ B5 )
     => ( ( member1998628618um_a_b @ C @ A3 )
       => ( member1998628618um_a_b @ C @ B5 ) ) ) ).

% subsetD
thf(fact_307_subsetD,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b,C: sum_sum_a_b] :
      ( ( ord_le192794300um_a_b @ A3 @ B5 )
     => ( ( member_Sum_sum_a_b @ C @ A3 )
       => ( member_Sum_sum_a_b @ C @ B5 ) ) ) ).

% subsetD
thf(fact_308_equalityE,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b] :
      ( ( A3 = B5 )
     => ~ ( ( ord_le192794300um_a_b @ A3 @ B5 )
         => ~ ( ord_le192794300um_a_b @ B5 @ A3 ) ) ) ).

% equalityE
thf(fact_309_subset__eq,axiom,
    ( ord_le823954903um_a_b
    = ( ^ [A7: set_Pr1174980151um_a_b,B6: set_Pr1174980151um_a_b] :
        ! [X3: produc1124793815um_a_b] :
          ( ( member1294585472um_a_b @ X3 @ A7 )
         => ( member1294585472um_a_b @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_310_subset__eq,axiom,
    ( ord_le615126793um_a_b
    = ( ^ [A7: set_Pr409224873um_a_b,B6: set_Pr409224873um_a_b] :
        ! [X3: produc1963079155um_a_b] :
          ( ( member1998628618um_a_b @ X3 @ A7 )
         => ( member1998628618um_a_b @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_311_subset__eq,axiom,
    ( ord_le192794300um_a_b
    = ( ^ [A7: set_Sum_sum_a_b,B6: set_Sum_sum_a_b] :
        ! [X3: sum_sum_a_b] :
          ( ( member_Sum_sum_a_b @ X3 @ A7 )
         => ( member_Sum_sum_a_b @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_312_equalityD1,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b] :
      ( ( A3 = B5 )
     => ( ord_le192794300um_a_b @ A3 @ B5 ) ) ).

% equalityD1
thf(fact_313_equalityD2,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b] :
      ( ( A3 = B5 )
     => ( ord_le192794300um_a_b @ B5 @ A3 ) ) ).

% equalityD2
thf(fact_314_subset__iff,axiom,
    ( ord_le823954903um_a_b
    = ( ^ [A7: set_Pr1174980151um_a_b,B6: set_Pr1174980151um_a_b] :
        ! [T: produc1124793815um_a_b] :
          ( ( member1294585472um_a_b @ T @ A7 )
         => ( member1294585472um_a_b @ T @ B6 ) ) ) ) ).

% subset_iff
thf(fact_315_subset__iff,axiom,
    ( ord_le615126793um_a_b
    = ( ^ [A7: set_Pr409224873um_a_b,B6: set_Pr409224873um_a_b] :
        ! [T: produc1963079155um_a_b] :
          ( ( member1998628618um_a_b @ T @ A7 )
         => ( member1998628618um_a_b @ T @ B6 ) ) ) ) ).

% subset_iff
thf(fact_316_subset__iff,axiom,
    ( ord_le192794300um_a_b
    = ( ^ [A7: set_Sum_sum_a_b,B6: set_Sum_sum_a_b] :
        ! [T: sum_sum_a_b] :
          ( ( member_Sum_sum_a_b @ T @ A7 )
         => ( member_Sum_sum_a_b @ T @ B6 ) ) ) ) ).

% subset_iff
thf(fact_317_subset__refl,axiom,
    ! [A3: set_Sum_sum_a_b] : ( ord_le192794300um_a_b @ A3 @ A3 ) ).

% subset_refl
thf(fact_318_Collect__mono,axiom,
    ! [P: sum_sum_a_b > $o,Q: sum_sum_a_b > $o] :
      ( ! [X4: sum_sum_a_b] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le192794300um_a_b @ ( collect_Sum_sum_a_b @ P ) @ ( collect_Sum_sum_a_b @ Q ) ) ) ).

% Collect_mono
thf(fact_319_subset__trans,axiom,
    ! [A3: set_Sum_sum_a_b,B5: set_Sum_sum_a_b,C2: set_Sum_sum_a_b] :
      ( ( ord_le192794300um_a_b @ A3 @ B5 )
     => ( ( ord_le192794300um_a_b @ B5 @ C2 )
       => ( ord_le192794300um_a_b @ A3 @ C2 ) ) ) ).

% subset_trans
thf(fact_320_set__eq__subset,axiom,
    ( ( ^ [Y5: set_Sum_sum_a_b,Z: set_Sum_sum_a_b] : ( Y5 = Z ) )
    = ( ^ [A7: set_Sum_sum_a_b,B6: set_Sum_sum_a_b] :
          ( ( ord_le192794300um_a_b @ A7 @ B6 )
          & ( ord_le192794300um_a_b @ B6 @ A7 ) ) ) ) ).

% set_eq_subset
thf(fact_321_Collect__mono__iff,axiom,
    ! [P: sum_sum_a_b > $o,Q: sum_sum_a_b > $o] :
      ( ( ord_le192794300um_a_b @ ( collect_Sum_sum_a_b @ P ) @ ( collect_Sum_sum_a_b @ Q ) )
      = ( ! [X3: sum_sum_a_b] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_322_insertE,axiom,
    ! [A: produc1032616263at_nat,B: produc1032616263at_nat,A3: set_Pr1647387645at_nat] :
      ( ( member1696759390at_nat @ A @ ( insert1625259895at_nat @ B @ A3 ) )
     => ( ( A != B )
       => ( member1696759390at_nat @ A @ A3 ) ) ) ).

% insertE
thf(fact_323_insertE,axiom,
    ! [A: nat,B: nat,A3: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A3 ) )
     => ( ( A != B )
       => ( member_nat @ A @ A3 ) ) ) ).

% insertE
thf(fact_324_insertE,axiom,
    ! [A: produc1548871597um_a_b,B: produc1548871597um_a_b,A3: set_Pr1916610317um_a_b] :
      ( ( member947389014um_a_b @ A @ ( insert1435405693um_a_b @ B @ A3 ) )
     => ( ( A != B )
       => ( member947389014um_a_b @ A @ A3 ) ) ) ).

% insertE
thf(fact_325_insertE,axiom,
    ! [A: standard_Constant_a,B: standard_Constant_a,A3: set_St761939237tant_a] :
      ( ( member1632892294tant_a @ A @ ( insert1909710879tant_a @ B @ A3 ) )
     => ( ( A != B )
       => ( member1632892294tant_a @ A @ A3 ) ) ) ).

% insertE
thf(fact_326_insertE,axiom,
    ! [A: product_prod_nat_nat,B: product_prod_nat_nat,A3: set_Pr1986765409at_nat] :
      ( ( member701585322at_nat @ A @ ( insert271595217at_nat @ B @ A3 ) )
     => ( ( A != B )
       => ( member701585322at_nat @ A @ A3 ) ) ) ).

% insertE
thf(fact_327_insertE,axiom,
    ! [A: sum_sum_a_b,B: sum_sum_a_b,A3: set_Sum_sum_a_b] :
      ( ( member_Sum_sum_a_b @ A @ ( insert_Sum_sum_a_b @ B @ A3 ) )
     => ( ( A != B )
       => ( member_Sum_sum_a_b @ A @ A3 ) ) ) ).

% insertE
thf(fact_328_insertE,axiom,
    ! [A: produc1124793815um_a_b,B: produc1124793815um_a_b,A3: set_Pr1174980151um_a_b] :
      ( ( member1294585472um_a_b @ A @ ( insert983991207um_a_b @ B @ A3 ) )
     => ( ( A != B )
       => ( member1294585472um_a_b @ A @ A3 ) ) ) ).

% insertE
thf(fact_329_insertE,axiom,
    ! [A: produc1963079155um_a_b,B: produc1963079155um_a_b,A3: set_Pr409224873um_a_b] :
      ( ( member1998628618um_a_b @ A @ ( insert323157027um_a_b @ B @ A3 ) )
     => ( ( A != B )
       => ( member1998628618um_a_b @ A @ A3 ) ) ) ).

% insertE
thf(fact_330_insertI1,axiom,
    ! [A: product_prod_nat_nat,B5: set_Pr1986765409at_nat] : ( member701585322at_nat @ A @ ( insert271595217at_nat @ A @ B5 ) ) ).

% insertI1
thf(fact_331_insertI1,axiom,
    ! [A: sum_sum_a_b,B5: set_Sum_sum_a_b] : ( member_Sum_sum_a_b @ A @ ( insert_Sum_sum_a_b @ A @ B5 ) ) ).

% insertI1
thf(fact_332_insertI1,axiom,
    ! [A: produc1124793815um_a_b,B5: set_Pr1174980151um_a_b] : ( member1294585472um_a_b @ A @ ( insert983991207um_a_b @ A @ B5 ) ) ).

% insertI1
thf(fact_333_insertI1,axiom,
    ! [A: produc1963079155um_a_b,B5: set_Pr409224873um_a_b] : ( member1998628618um_a_b @ A @ ( insert323157027um_a_b @ A @ B5 ) ) ).

% insertI1
thf(fact_334_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_335_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_336_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y6: nat] :
                ( ( P @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_337_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_338_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_339_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_340_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_341_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_342_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_343_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_344_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_345_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_346_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_347_gr_I1_J,axiom,
    ( ( getRel1465196352um_a_b @ standard_S_Idt_a @ g )
    = ( id_on_Sum_sum_a_b @ ( labele577278695um_a_b @ g ) ) ) ).

% gr(1)
thf(fact_348_gr_I2_J,axiom,
    ( ( getRel1465196352um_a_b @ standard_S_Bot_a @ g )
    = bot_bo225809273um_a_b ) ).

% gr(2)
thf(fact_349__092_060open_062maintained_A_Isymmetry__rule_AS__Idt_J_AG_092_060close_062,axiom,
    mainta522127984um_a_b @ ( standa997693288tant_a @ standard_S_Idt_a ) @ g ).

% \<open>maintained (symmetry_rule S_Idt) G\<close>
thf(fact_350__092_060open_062maintained_A_Itransitive__rule_AS__Idt_J_AG_092_060close_062,axiom,
    mainta522127984um_a_b @ ( standa1795879409tant_a @ standard_S_Idt_a ) @ g ).

% \<open>maintained (transitive_rule S_Idt) G\<close>
thf(fact_351__092_060open_062maintained_A_Icongruence__rule_AS__Idt_Al_J_AG_092_060close_062,axiom,
    mainta522127984um_a_b @ ( standa1343274079tant_a @ standard_S_Idt_a @ l ) @ g ).

% \<open>maintained (congruence_rule S_Idt l) G\<close>

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( ( labele1810595089_a_nat @ ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ standard_S_Idt_a @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
      = ( domain1368163076um_a_b @ ( insert983991207um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ v ) @ bot_bo575978147um_a_b ) ) )
    & ( ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ standard_S_Idt_a @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) )
      = ( restri572569417_a_nat @ ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ standard_S_Idt_a @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) )
    & ( g
      = ( restri1162247455um_a_b @ g ) )
    & ( ord_le192794300um_a_b @ ( image_256773707um_a_b @ ( insert983991207um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ v ) @ bot_bo575978147um_a_b ) @ ( labele1810595089_a_nat @ ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ standard_S_Idt_a @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) @ ( labele577278695um_a_b @ g ) )
    & ( unival2092813468um_a_b @ ( insert983991207um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ v ) @ bot_bo575978147um_a_b ) )
    & ( edge_p1382426714tant_a @ ( insert983991207um_a_b @ ( produc1808556047um_a_b @ zero_zero_nat @ v ) @ bot_bo575978147um_a_b ) @ ( labele195203296_a_nat @ ( labele16114835_a_nat @ ( insert1625259895at_nat @ ( produc407553657at_nat @ standard_S_Idt_a @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) @ bot_bo810816657at_nat ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) @ ( labele1939049654um_a_b @ g ) ) ) ).

%------------------------------------------------------------------------------