TPTP Problem File: ITP132^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP132^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer Number_Partition problem prob_191__5326608_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : Number_Partition/prob_191__5326608_1 [Des21]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.40 v8.2.0, 0.31 v8.1.0, 0.45 v7.5.0
% Syntax   : Number of formulae    :  269 ( 120 unt;  24 typ;   0 def)
%            Number of atoms       :  672 ( 258 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 1911 (  62   ~;  17   |;  29   &;1502   @)
%                                         (   0 <=>; 301  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   6 avg)
%            Number of types       :    4 (   3 usr)
%            Number of type conns  :  116 ( 116   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   24 (  21 usr;   6 con; 0-4 aty)
%            Number of variables   :  675 (  63   ^; 606   !;   6   ?; 675   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:43:17.279
%------------------------------------------------------------------------------
% Could-be-implicit typings (3)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (21)
thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001t__Nat__Onat,type,
    fun_upd_nat_nat: ( nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups1842438620at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Number__Partition__Mirabelle__zerdlymyoj_Opartitions,type,
    number1551313001itions: ( nat > nat ) > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le1613022364et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or1086813439et_nat: set_nat > set_set_nat ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_v_k,type,
    k: nat ).

thf(sy_v_n,type,
    n: nat ).

thf(sy_v_p,type,
    p: nat > nat ).

% Relevant facts (241)
thf(fact_0_partitions,axiom,
    number1551313001itions @ p @ n ).

% partitions
thf(fact_1__092_060open_062k_A_092_060le_062_An_092_060close_062,axiom,
    ord_less_eq_nat @ k @ n ).

% \<open>k \<le> n\<close>
thf(fact_2_atMost__eq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( set_ord_atMost_nat @ X )
        = ( set_ord_atMost_nat @ Y ) )
      = ( X = Y ) ) ).

% atMost_eq_iff
thf(fact_3__092_060open_062_I_092_060Sum_062i_092_060le_062n_A_N_Ak_O_A_Ip_Ik_A_058_061_Ap_Ak_A_N_A1_J_J_Ai_A_K_Ai_J_A_061_A_I_092_060Sum_062i_092_060le_062n_O_A_Ip_Ik_A_058_061_Ap_Ak_A_N_A1_J_J_Ai_A_K_Ai_J_092_060close_062,axiom,
    ( ( groups1842438620at_nat
      @ ^ [I: nat] : ( times_times_nat @ ( fun_upd_nat_nat @ p @ k @ ( minus_minus_nat @ ( p @ k ) @ one_one_nat ) @ I ) @ I )
      @ ( set_ord_atMost_nat @ ( minus_minus_nat @ n @ k ) ) )
    = ( groups1842438620at_nat
      @ ^ [I: nat] : ( times_times_nat @ ( fun_upd_nat_nat @ p @ k @ ( minus_minus_nat @ ( p @ k ) @ one_one_nat ) @ I ) @ I )
      @ ( set_ord_atMost_nat @ n ) ) ) ).

% \<open>(\<Sum>i\<le>n - k. (p(k := p k - 1)) i * i) = (\<Sum>i\<le>n. (p(k := p k - 1)) i * i)\<close>
thf(fact_4_calculation,axiom,
    ( ( groups1842438620at_nat
      @ ^ [I: nat] : ( times_times_nat @ ( fun_upd_nat_nat @ p @ k @ ( minus_minus_nat @ ( p @ k ) @ one_one_nat ) @ I ) @ I )
      @ ( set_ord_atMost_nat @ ( minus_minus_nat @ n @ k ) ) )
    = ( minus_minus_nat
      @ ( groups1842438620at_nat
        @ ^ [I: nat] : ( times_times_nat @ ( p @ I ) @ I )
        @ ( set_ord_atMost_nat @ n ) )
      @ k ) ) ).

% calculation
thf(fact_5_sum__product,axiom,
    ! [F: nat > nat,A: set_nat,G: nat > nat,B: set_nat] :
      ( ( times_times_nat @ ( groups1842438620at_nat @ F @ A ) @ ( groups1842438620at_nat @ G @ B ) )
      = ( groups1842438620at_nat
        @ ^ [I: nat] :
            ( groups1842438620at_nat
            @ ^ [J: nat] : ( times_times_nat @ ( F @ I ) @ ( G @ J ) )
            @ B )
        @ A ) ) ).

% sum_product
thf(fact_6_sum__distrib__left,axiom,
    ! [R: nat,F: nat > nat,A: set_nat] :
      ( ( times_times_nat @ R @ ( groups1842438620at_nat @ F @ A ) )
      = ( groups1842438620at_nat
        @ ^ [N: nat] : ( times_times_nat @ R @ ( F @ N ) )
        @ A ) ) ).

% sum_distrib_left
thf(fact_7_sum__distrib__right,axiom,
    ! [F: nat > nat,A: set_nat,R: nat] :
      ( ( times_times_nat @ ( groups1842438620at_nat @ F @ A ) @ R )
      = ( groups1842438620at_nat
        @ ^ [N: nat] : ( times_times_nat @ ( F @ N ) @ R )
        @ A ) ) ).

% sum_distrib_right
thf(fact_8_diff__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% diff_mult_distrib
thf(fact_9_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% diff_mult_distrib2
thf(fact_10_atMost__subset__iff,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ord_le1613022364et_nat @ ( set_or1086813439et_nat @ X ) @ ( set_or1086813439et_nat @ Y ) )
      = ( ord_less_eq_set_nat @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_11_atMost__subset__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X ) @ ( set_ord_atMost_nat @ Y ) )
      = ( ord_less_eq_nat @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_12_atMost__iff,axiom,
    ! [I2: set_nat,K: set_nat] :
      ( ( member_set_nat @ I2 @ ( set_or1086813439et_nat @ K ) )
      = ( ord_less_eq_set_nat @ I2 @ K ) ) ).

% atMost_iff
thf(fact_13_atMost__iff,axiom,
    ! [I2: nat,K: nat] :
      ( ( member_nat @ I2 @ ( set_ord_atMost_nat @ K ) )
      = ( ord_less_eq_nat @ I2 @ K ) ) ).

% atMost_iff
thf(fact_14_diff__diff__cancel,axiom,
    ! [I2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I2 @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_15_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_16_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_17_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_18_le__trans,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_19_eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( M = N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% eq_imp_le
thf(fact_20_le__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% le_antisym
thf(fact_21_nat__le__linear,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
      | ( ord_less_eq_nat @ N2 @ M ) ) ).

% nat_le_linear
thf(fact_22_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B2: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B2 ) )
       => ? [X2: nat] :
            ( ( P @ X2 )
            & ! [Y3: nat] :
                ( ( P @ Y3 )
               => ( ord_less_eq_nat @ Y3 @ X2 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_23_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M2: nat] :
      ( ( P @ X )
     => ( ! [X2: nat] :
            ( ( P @ X2 )
           => ( ord_less_eq_nat @ X2 @ M2 ) )
       => ~ ! [M3: nat] :
              ( ( P @ M3 )
             => ~ ! [X3: nat] :
                    ( ( P @ X3 )
                   => ( ord_less_eq_nat @ X3 @ M3 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_24_partitions__bounds,axiom,
    ! [P2: nat > nat,N2: nat,I2: nat] :
      ( ( number1551313001itions @ P2 @ N2 )
     => ( ord_less_eq_nat @ ( P2 @ I2 ) @ N2 ) ) ).

% partitions_bounds
thf(fact_25_diff__le__mono2,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_26_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B2 ) )
          = ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_27_diff__le__self,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ).

% diff_le_self
thf(fact_28_diff__le__mono,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).

% diff_le_mono
thf(fact_29_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_30_le__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_31_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_32_mult__le__mono2,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J2 ) ) ) ).

% mult_le_mono2
thf(fact_33_mult__le__mono1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ).

% mult_le_mono1
thf(fact_34_mult__le__mono,axiom,
    ! [I2: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J2 )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ L ) ) ) ) ).

% mult_le_mono
thf(fact_35_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_36_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_37_nat__mult__1__right,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ N2 @ one_one_nat )
      = N2 ) ).

% nat_mult_1_right
thf(fact_38_nat__mult__1,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ one_one_nat @ N2 )
      = N2 ) ).

% nat_mult_1
thf(fact_39_sum__mono,axiom,
    ! [K2: set_nat,F: nat > nat,G: nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K2 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups1842438620at_nat @ F @ K2 ) @ ( groups1842438620at_nat @ G @ K2 ) ) ) ).

% sum_mono
thf(fact_40_atMost__def,axiom,
    ( set_or1086813439et_nat
    = ( ^ [U: set_nat] :
          ( collect_set_nat
          @ ^ [X4: set_nat] : ( ord_less_eq_set_nat @ X4 @ U ) ) ) ) ).

% atMost_def
thf(fact_41_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U: nat] :
          ( collect_nat
          @ ^ [X4: nat] : ( ord_less_eq_nat @ X4 @ U ) ) ) ) ).

% atMost_def
thf(fact_42_sum__subtractf__nat,axiom,
    ! [A: set_nat,G: nat > nat,F: nat > nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A )
         => ( ord_less_eq_nat @ ( G @ X2 ) @ ( F @ X2 ) ) )
     => ( ( groups1842438620at_nat
          @ ^ [X4: nat] : ( minus_minus_nat @ ( F @ X4 ) @ ( G @ X4 ) )
          @ A )
        = ( minus_minus_nat @ ( groups1842438620at_nat @ F @ A ) @ ( groups1842438620at_nat @ G @ A ) ) ) ) ).

% sum_subtractf_nat
thf(fact_43_partitions__parts__bounded,axiom,
    ! [P2: nat > nat,N2: nat] :
      ( ( number1551313001itions @ P2 @ N2 )
     => ( ord_less_eq_nat @ ( groups1842438620at_nat @ P2 @ ( set_ord_atMost_nat @ N2 ) ) @ N2 ) ) ).

% partitions_parts_bounded
thf(fact_44_mem__Collect__eq,axiom,
    ! [A2: nat,P: nat > $o] :
      ( ( member_nat @ A2 @ ( collect_nat @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X4: nat] : ( member_nat @ X4 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_46_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X2: nat] :
          ( ( P @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_47_sum_Oreindex__bij__witness,axiom,
    ! [S: set_nat,I2: nat > nat,J2: nat > nat,T: set_nat,H: nat > nat,G: nat > nat] :
      ( ! [A3: nat] :
          ( ( member_nat @ A3 @ S )
         => ( ( I2 @ ( J2 @ A3 ) )
            = A3 ) )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ S )
           => ( member_nat @ ( J2 @ A3 ) @ T ) )
       => ( ! [B3: nat] :
              ( ( member_nat @ B3 @ T )
             => ( ( J2 @ ( I2 @ B3 ) )
                = B3 ) )
         => ( ! [B3: nat] :
                ( ( member_nat @ B3 @ T )
               => ( member_nat @ ( I2 @ B3 ) @ S ) )
           => ( ! [A3: nat] :
                  ( ( member_nat @ A3 @ S )
                 => ( ( H @ ( J2 @ A3 ) )
                    = ( G @ A3 ) ) )
             => ( ( groups1842438620at_nat @ G @ S )
                = ( groups1842438620at_nat @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_48_sum_Oeq__general__inverses,axiom,
    ! [B: set_nat,K: nat > nat,A: set_nat,H: nat > nat,Gamma: nat > nat,Phi: nat > nat] :
      ( ! [Y2: nat] :
          ( ( member_nat @ Y2 @ B )
         => ( ( member_nat @ ( K @ Y2 ) @ A )
            & ( ( H @ ( K @ Y2 ) )
              = Y2 ) ) )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( member_nat @ ( H @ X2 ) @ B )
              & ( ( K @ ( H @ X2 ) )
                = X2 )
              & ( ( Gamma @ ( H @ X2 ) )
                = ( Phi @ X2 ) ) ) )
       => ( ( groups1842438620at_nat @ Phi @ A )
          = ( groups1842438620at_nat @ Gamma @ B ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_49_sum_Oeq__general,axiom,
    ! [B: set_nat,A: set_nat,H: nat > nat,Gamma: nat > nat,Phi: nat > nat] :
      ( ! [Y2: nat] :
          ( ( member_nat @ Y2 @ B )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ A )
              & ( ( H @ X3 )
                = Y2 )
              & ! [Ya: nat] :
                  ( ( ( member_nat @ Ya @ A )
                    & ( ( H @ Ya )
                      = Y2 ) )
                 => ( Ya = X3 ) ) ) )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( member_nat @ ( H @ X2 ) @ B )
              & ( ( Gamma @ ( H @ X2 ) )
                = ( Phi @ X2 ) ) ) )
       => ( ( groups1842438620at_nat @ Phi @ A )
          = ( groups1842438620at_nat @ Gamma @ B ) ) ) ) ).

% sum.eq_general
thf(fact_50_sum_Ocong,axiom,
    ! [A: set_nat,B: set_nat,G: nat > nat,H: nat > nat] :
      ( ( A = B )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ B )
           => ( ( G @ X2 )
              = ( H @ X2 ) ) )
       => ( ( groups1842438620at_nat @ G @ A )
          = ( groups1842438620at_nat @ H @ B ) ) ) ) ).

% sum.cong
thf(fact_51_diff__commute,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J2 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J2 ) ) ).

% diff_commute
thf(fact_52_sum_Oswap,axiom,
    ! [G: nat > nat > nat,B: set_nat,A: set_nat] :
      ( ( groups1842438620at_nat
        @ ^ [I: nat] : ( groups1842438620at_nat @ ( G @ I ) @ B )
        @ A )
      = ( groups1842438620at_nat
        @ ^ [J: nat] :
            ( groups1842438620at_nat
            @ ^ [I: nat] : ( G @ I @ J )
            @ A )
        @ B ) ) ).

% sum.swap
thf(fact_53_mult_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.right_neutral
thf(fact_54_mult_Oleft__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% mult.left_neutral
thf(fact_55_fun__upd__upd,axiom,
    ! [F: nat > nat,X: nat,Y: nat,Z: nat] :
      ( ( fun_upd_nat_nat @ ( fun_upd_nat_nat @ F @ X @ Y ) @ X @ Z )
      = ( fun_upd_nat_nat @ F @ X @ Z ) ) ).

% fun_upd_upd
thf(fact_56_fun__upd__triv,axiom,
    ! [F: nat > nat,X: nat] :
      ( ( fun_upd_nat_nat @ F @ X @ ( F @ X ) )
      = F ) ).

% fun_upd_triv
thf(fact_57_fun__upd__apply,axiom,
    ( fun_upd_nat_nat
    = ( ^ [F2: nat > nat,X4: nat,Y4: nat,Z2: nat] : ( if_nat @ ( Z2 = X4 ) @ Y4 @ ( F2 @ Z2 ) ) ) ) ).

% fun_upd_apply
thf(fact_58_order__refl,axiom,
    ! [X: set_nat] : ( ord_less_eq_set_nat @ X @ X ) ).

% order_refl
thf(fact_59_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_60_lambda__one,axiom,
    ( ( ^ [X4: nat] : X4 )
    = ( times_times_nat @ one_one_nat ) ) ).

% lambda_one
thf(fact_61_partitions__def,axiom,
    ( number1551313001itions
    = ( ^ [P3: nat > nat,N: nat] :
          ( ! [I: nat] :
              ( ( ( P3 @ I )
               != zero_zero_nat )
             => ( ( ord_less_eq_nat @ one_one_nat @ I )
                & ( ord_less_eq_nat @ I @ N ) ) )
          & ( ( groups1842438620at_nat
              @ ^ [I: nat] : ( times_times_nat @ ( P3 @ I ) @ I )
              @ ( set_ord_atMost_nat @ N ) )
            = N ) ) ) ) ).

% partitions_def
thf(fact_62_partitionsI,axiom,
    ! [P2: nat > nat,N2: nat] :
      ( ! [I3: nat] :
          ( ( ( P2 @ I3 )
           != zero_zero_nat )
         => ( ( ord_less_eq_nat @ one_one_nat @ I3 )
            & ( ord_less_eq_nat @ I3 @ N2 ) ) )
     => ( ( ( groups1842438620at_nat
            @ ^ [I: nat] : ( times_times_nat @ ( P2 @ I ) @ I )
            @ ( set_ord_atMost_nat @ N2 ) )
          = N2 )
       => ( number1551313001itions @ P2 @ N2 ) ) ) ).

% partitionsI
thf(fact_63_partitionsE,axiom,
    ! [P2: nat > nat,N2: nat] :
      ( ( number1551313001itions @ P2 @ N2 )
     => ~ ( ! [I4: nat] :
              ( ( ( P2 @ I4 )
               != zero_zero_nat )
             => ( ( ord_less_eq_nat @ one_one_nat @ I4 )
                & ( ord_less_eq_nat @ I4 @ N2 ) ) )
         => ( ( groups1842438620at_nat
              @ ^ [I: nat] : ( times_times_nat @ ( P2 @ I ) @ I )
              @ ( set_ord_atMost_nat @ N2 ) )
           != N2 ) ) ) ).

% partitionsE
thf(fact_64_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_65_mult__zero__left,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_66_mult__zero__right,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_67_mult__eq__0__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
      = ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_68_mult__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ( times_times_nat @ C @ A2 )
        = ( times_times_nat @ C @ B2 ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_69_mult__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ C )
        = ( times_times_nat @ B2 @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_70_zero__diff,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_71_diff__zero,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% diff_zero
thf(fact_72_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ A2 )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_73_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_74_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_75_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_76_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_77_mult__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_78_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_79_mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_80_mult__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N2 @ K ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_81_sum_Oneutral__const,axiom,
    ! [A: set_nat] :
      ( ( groups1842438620at_nat
        @ ^ [Uu: nat] : zero_zero_nat
        @ A )
      = zero_zero_nat ) ).

% sum.neutral_const
thf(fact_82_diff__is__0__eq_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_83_diff__is__0__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% diff_is_0_eq
thf(fact_84_gr0,axiom,
    ord_less_nat @ zero_zero_nat @ ( p @ k ) ).

% gr0
thf(fact_85_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_86_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_87_mult__not__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
       != zero_zero_nat )
     => ( ( A2 != zero_zero_nat )
        & ( B2 != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_88_divisors__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
     => ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_89_no__zero__divisors,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( B2 != zero_zero_nat )
       => ( ( times_times_nat @ A2 @ B2 )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_90_mult__left__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A2 )
          = ( times_times_nat @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_91_mult__right__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A2 @ C )
          = ( times_times_nat @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_92_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_93_lambda__zero,axiom,
    ( ( ^ [H2: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_94_sum_Oneutral,axiom,
    ! [A: set_nat,G: nat > nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A )
         => ( ( G @ X2 )
            = zero_zero_nat ) )
     => ( ( groups1842438620at_nat @ G @ A )
        = zero_zero_nat ) ) ).

% sum.neutral
thf(fact_95_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: nat > nat,A: set_nat] :
      ( ( ( groups1842438620at_nat @ G @ A )
       != zero_zero_nat )
     => ~ ! [A3: nat] :
            ( ( member_nat @ A3 @ A )
           => ( ( G @ A3 )
              = zero_zero_nat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_96_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_97_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_98_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_99_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_100_diffs0__imp__equal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M )
          = zero_zero_nat )
       => ( M = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_101_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_102_mult__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% mult_0
thf(fact_103_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_104_mult__nonneg__nonpos2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_105_mult__nonpos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_106_mult__nonneg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_107_mult__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_108_split__mult__neg__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
          & ( ord_less_eq_nat @ B2 @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_109_mult__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_110_mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_111_mult__mono_H,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_112_mult__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_113_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_114_zero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_le_one
thf(fact_115_partitions__zero,axiom,
    ! [P2: nat > nat] :
      ( ( number1551313001itions @ P2 @ zero_zero_nat )
      = ( P2
        = ( ^ [I: nat] : zero_zero_nat ) ) ) ).

% partitions_zero
thf(fact_116_mult__left__le,axiom,
    ! [C: nat,A2: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ A2 ) ) ) ).

% mult_left_le
thf(fact_117_mult__le__one,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ( ord_less_eq_nat @ B2 @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_118_sum__nonpos,axiom,
    ! [A: set_nat,F: nat > nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A )
         => ( ord_less_eq_nat @ ( F @ X2 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups1842438620at_nat @ F @ A ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_119_sum__nonneg,axiom,
    ! [A: set_nat,F: nat > nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X2 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups1842438620at_nat @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_120_mult__eq__self__implies__10,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( times_times_nat @ M @ N2 ) )
     => ( ( N2 = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_121_dual__order_Oantisym,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_122_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_123_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z3: set_nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( ( ord_less_eq_set_nat @ B4 @ A4 )
          & ( ord_less_eq_set_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_124_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_125_dual__order_Otrans,axiom,
    ! [B2: set_nat,A2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( ord_less_eq_set_nat @ C @ B2 )
       => ( ord_less_eq_set_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_126_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_127_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat,B3: nat] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_128_dual__order_Orefl,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_129_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_130_order__trans,axiom,
    ! [X: set_nat,Y: set_nat,Z: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ord_less_eq_set_nat @ Y @ Z )
       => ( ord_less_eq_set_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_131_order__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_132_order__class_Oorder_Oantisym,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% order_class.order.antisym
thf(fact_133_order__class_Oorder_Oantisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% order_class.order.antisym
thf(fact_134_ord__le__eq__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_set_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_135_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_136_ord__eq__le__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ord_less_eq_set_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_137_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_138_order__class_Oorder_Oeq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z3: set_nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B4 )
          & ( ord_less_eq_set_nat @ B4 @ A4 ) ) ) ) ).

% order_class.order.eq_iff
thf(fact_139_order__class_Oorder_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% order_class.order.eq_iff
thf(fact_140_antisym__conv,axiom,
    ! [Y: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y @ X )
     => ( ( ord_less_eq_set_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv
thf(fact_141_antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv
thf(fact_142_le__cases3,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_143_order_Otrans,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ord_less_eq_set_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_144_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_145_le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% le_cases
thf(fact_146_eq__refl,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( X = Y )
     => ( ord_less_eq_set_nat @ X @ Y ) ) ).

% eq_refl
thf(fact_147_eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% eq_refl
thf(fact_148_linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linear
thf(fact_149_antisym,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ord_less_eq_set_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% antisym
thf(fact_150_antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% antisym
thf(fact_151_eq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z3: set_nat] : ( Y5 = Z3 ) )
    = ( ^ [X4: set_nat,Y4: set_nat] :
          ( ( ord_less_eq_set_nat @ X4 @ Y4 )
          & ( ord_less_eq_set_nat @ Y4 @ X4 ) ) ) ) ).

% eq_iff
thf(fact_152_eq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% eq_iff
thf(fact_153_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_154_ord__le__eq__subst,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_155_ord__le__eq__subst,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_156_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_157_ord__eq__le__subst,axiom,
    ! [A2: set_nat,F: nat > set_nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_158_ord__eq__le__subst,axiom,
    ! [A2: nat,F: set_nat > nat,B2: set_nat,C: set_nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_159_ord__eq__le__subst,axiom,
    ! [A2: set_nat,F: set_nat > set_nat,B2: set_nat,C: set_nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_160_ord__eq__le__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_161_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_162_order__subst2,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_163_order__subst2,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_164_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_165_order__subst1,axiom,
    ! [A2: nat,F: set_nat > nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_166_order__subst1,axiom,
    ! [A2: set_nat,F: nat > set_nat,B2: nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_167_order__subst1,axiom,
    ! [A2: set_nat,F: set_nat > set_nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X2: set_nat,Y2: set_nat] :
              ( ( ord_less_eq_set_nat @ X2 @ Y2 )
             => ( ord_less_eq_set_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_168_order__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_169_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_170_mult_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% mult.assoc
thf(fact_171_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B4: nat] : ( times_times_nat @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_172_mult_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( times_times_nat @ B2 @ ( times_times_nat @ A2 @ C ) )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% mult.left_commute
thf(fact_173_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ C ) @ B2 )
      = ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_174_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_175_fun__upd__idem__iff,axiom,
    ! [F: nat > nat,X: nat,Y: nat] :
      ( ( ( fun_upd_nat_nat @ F @ X @ Y )
        = F )
      = ( ( F @ X )
        = Y ) ) ).

% fun_upd_idem_iff
thf(fact_176_fun__upd__twist,axiom,
    ! [A2: nat,C: nat,M: nat > nat,B2: nat,D: nat] :
      ( ( A2 != C )
     => ( ( fun_upd_nat_nat @ ( fun_upd_nat_nat @ M @ A2 @ B2 ) @ C @ D )
        = ( fun_upd_nat_nat @ ( fun_upd_nat_nat @ M @ C @ D ) @ A2 @ B2 ) ) ) ).

% fun_upd_twist
thf(fact_177_fun__upd__other,axiom,
    ! [Z: nat,X: nat,F: nat > nat,Y: nat] :
      ( ( Z != X )
     => ( ( fun_upd_nat_nat @ F @ X @ Y @ Z )
        = ( F @ Z ) ) ) ).

% fun_upd_other
thf(fact_178_fun__upd__same,axiom,
    ! [F: nat > nat,X: nat,Y: nat] :
      ( ( fun_upd_nat_nat @ F @ X @ Y @ X )
      = Y ) ).

% fun_upd_same
thf(fact_179_fun__upd__idem,axiom,
    ! [F: nat > nat,X: nat,Y: nat] :
      ( ( ( F @ X )
        = Y )
     => ( ( fun_upd_nat_nat @ F @ X @ Y )
        = F ) ) ).

% fun_upd_idem
thf(fact_180_fun__upd__eqD,axiom,
    ! [F: nat > nat,X: nat,Y: nat,G: nat > nat,Z: nat] :
      ( ( ( fun_upd_nat_nat @ F @ X @ Y )
        = ( fun_upd_nat_nat @ G @ X @ Z ) )
     => ( Y = Z ) ) ).

% fun_upd_eqD
thf(fact_181_fun__upd__def,axiom,
    ( fun_upd_nat_nat
    = ( ^ [F2: nat > nat,A4: nat,B4: nat,X4: nat] : ( if_nat @ ( X4 = A4 ) @ B4 @ ( F2 @ X4 ) ) ) ) ).

% fun_upd_def
thf(fact_182_left__diff__distrib_H,axiom,
    ! [B2: nat,C: nat,A2: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B2 @ C ) @ A2 )
      = ( minus_minus_nat @ ( times_times_nat @ B2 @ A2 ) @ ( times_times_nat @ C @ A2 ) ) ) ).

% left_diff_distrib'
thf(fact_183_right__diff__distrib_H,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ A2 @ ( minus_minus_nat @ B2 @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) ) ) ).

% right_diff_distrib'
thf(fact_184_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_185_mult_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.comm_neutral
thf(fact_186_subsetI,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A )
         => ( member_nat @ X2 @ B ) )
     => ( ord_less_eq_set_nat @ A @ B ) ) ).

% subsetI
thf(fact_187_subset__antisym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ A )
       => ( A = B ) ) ) ).

% subset_antisym
thf(fact_188_partitions__remove1__bounds,axiom,
    ! [P2: nat > nat,N2: nat,K: nat,I2: nat] :
      ( ( number1551313001itions @ P2 @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ ( P2 @ K ) )
       => ( ( ( fun_upd_nat_nat @ P2 @ K @ ( minus_minus_nat @ ( P2 @ K ) @ one_one_nat ) @ I2 )
           != zero_zero_nat )
         => ( ( ord_less_eq_nat @ one_one_nat @ I2 )
            & ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% partitions_remove1_bounds
thf(fact_189_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( M = N2 ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_190_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_191_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_192_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_193_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_194_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_195_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_196_zero__less__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% zero_less_diff
thf(fact_197_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_198_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% mult_less_cancel2
thf(fact_199_nat__0__less__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% nat_0_less_mult_iff
thf(fact_200_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_201_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_202_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% mult_le_cancel2
thf(fact_203_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_204_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_205_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_206_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_207_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B3: nat] :
              ( ( P @ B3 @ A3 )
             => ( P @ A3 @ B3 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_208_exists__least__iff,axiom,
    ( ( ^ [P4: nat > $o] :
        ? [X5: nat] : ( P4 @ X5 ) )
    = ( ^ [P5: nat > $o] :
        ? [N: nat] :
          ( ( P5 @ N )
          & ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N )
             => ~ ( P5 @ M4 ) ) ) ) ) ).

% exists_least_iff
thf(fact_209_less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% less_imp_not_less
thf(fact_210_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_211_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_212_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_213_less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% less_imp_triv
thf(fact_214_less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% less_imp_not_eq2
thf(fact_215_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_216_less__induct,axiom,
    ! [P: nat > $o,A2: nat] :
      ( ! [X2: nat] :
          ( ! [Y3: nat] :
              ( ( ord_less_nat @ Y3 @ X2 )
             => ( P @ Y3 ) )
         => ( P @ X2 ) )
     => ( P @ A2 ) ) ).

% less_induct
thf(fact_217_less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% less_not_sym
thf(fact_218_less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_not_eq
thf(fact_219_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_220_ord__less__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_221_ord__eq__less__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_222_less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% less_irrefl
thf(fact_223_less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% less_linear
thf(fact_224_less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% less_trans
thf(fact_225_less__asym_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% less_asym'
thf(fact_226_less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% less_asym
thf(fact_227_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_228_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_229_neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% neq_iff
thf(fact_230_neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% neqE
thf(fact_231_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_232_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_233_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_234_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_235_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_236_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_237_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_238_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_239_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
              & ~ ( P @ M5 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_240_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
             => ( P @ M5 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% nat_less_induct

% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( minus_minus_nat
      @ ( groups1842438620at_nat
        @ ^ [I: nat] : ( times_times_nat @ ( p @ I ) @ I )
        @ ( set_ord_atMost_nat @ n ) )
      @ k )
    = ( minus_minus_nat @ n @ k ) ) ).

%------------------------------------------------------------------------------