TPTP Problem File: ITP122^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP122^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer Modular_Distrib_Lattice problem prob_265__3262952_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : Modular_Distrib_Lattice/prob_265__3262952_1 [Des21]

% Status   : Theorem
% Rating   : 0.38 v9.0.0, 0.60 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0
% Syntax   : Number of formulae    :  294 ( 126 unt;  38 typ;   0 def)
%            Number of atoms       :  639 ( 205 equ;   0 cnn)
%            Maximal formula atoms :    7 (   2 avg)
%            Number of connectives : 2161 (  35   ~;   0   |;  29   &;1841   @)
%                                         (   0 <=>; 256  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   6 avg)
%            Number of types       :    3 (   2 usr)
%            Number of type conns  :  188 ( 188   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   37 (  36 usr;   4 con; 0-5 aty)
%            Number of variables   :  615 (  22   ^; 585   !;   8   ?; 615   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:44:43.847
%------------------------------------------------------------------------------
% Could-be-implicit typings (2)
thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (36)
thf(sy_c_Conditionally__Complete__Lattices_Opreorder_Obdd__above_001tf__a,type,
    condit1627435690bove_a: ( a > a > $o ) > set_a > $o ).

thf(sy_c_Conditionally__Complete__Lattices_Opreorder_Obdd__below_001tf__a,type,
    condit1001553558elow_a: ( a > a > $o ) > set_a > $o ).

thf(sy_c_Finite__Set_Ocomp__fun__idem_001tf__a_001tf__a,type,
    finite40241356em_a_a: ( a > a > a ) > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Groups_Oabel__semigroup_001tf__a,type,
    abel_semigroup_a: ( a > a > a ) > $o ).

thf(sy_c_Groups_Osemigroup_001tf__a,type,
    semigroup_a: ( a > a > a ) > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osemilattice_001tf__a,type,
    semilattice_a: ( a > a > a ) > $o ).

thf(sy_c_Lattices__Big_Osemilattice__inf_OInf__fin_001tf__a,type,
    lattic247676691_fin_a: ( a > a > a ) > set_a > a ).

thf(sy_c_Lattices__Big_Osemilattice__set_001tf__a,type,
    lattic1885654924_set_a: ( a > a > a ) > $o ).

thf(sy_c_Lattices__Big_Osemilattice__sup_OSup__fin_001tf__a,type,
    lattic1781219155_fin_a: ( a > a > a ) > set_a > a ).

thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oa__aux_001tf__a,type,
    modula17988509_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).

thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Ob__aux_001tf__a,type,
    modula1373251614_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).

thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oc__aux_001tf__a,type,
    modula581031071_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).

thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Od__aux_001tf__a,type,
    modula1936294176_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).

thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oe__aux_001tf__a,type,
    modula1144073633_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).

thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oincomp_001tf__a,type,
    modula1727524044comp_a: ( a > a > $o ) > a > a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord_OLeast_001tf__a,type,
    least_a: ( a > a > $o ) > ( a > $o ) > a ).

thf(sy_c_Orderings_Oord_Omax_001tf__a,type,
    max_a: ( a > a > $o ) > a > a > a ).

thf(sy_c_Orderings_Oord_Omin_001tf__a,type,
    min_a: ( a > a > $o ) > a > a > a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oorder_OGreatest_001tf__a,type,
    greatest_a: ( a > a > $o ) > ( a > $o ) > a ).

thf(sy_c_Orderings_Oorder_Oantimono_001tf__a_001t__Set__Oset_Itf__a_J,type,
    antimono_a_set_a: ( a > a > $o ) > ( a > set_a ) > $o ).

thf(sy_c_Orderings_Oorder_Omono_001tf__a_001t__Set__Oset_Itf__a_J,type,
    mono_a_set_a: ( a > a > $o ) > ( a > set_a ) > $o ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set__Interval_Oord_OatLeast_001tf__a,type,
    set_atLeast_a: ( a > a > $o ) > a > set_a ).

thf(sy_c_Set__Interval_Oord_OatMost_001tf__a,type,
    set_atMost_a: ( a > a > $o ) > a > set_a ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_a,type,
    a2: a ).

thf(sy_v_b,type,
    b: a ).

thf(sy_v_c,type,
    c: a ).

thf(sy_v_inf,type,
    inf: a > a > a ).

thf(sy_v_less__eq,type,
    less_eq: a > a > $o ).

thf(sy_v_sup,type,
    sup: a > a > a ).

% Relevant facts (254)
thf(fact_0_local_Oantisym,axiom,
    ! [X: a,Y: a] :
      ( ( less_eq @ X @ Y )
     => ( ( less_eq @ Y @ X )
       => ( X = Y ) ) ) ).

% local.antisym
thf(fact_1_local_Oantisym__conv,axiom,
    ! [Y: a,X: a] :
      ( ( less_eq @ Y @ X )
     => ( ( less_eq @ X @ Y )
        = ( X = Y ) ) ) ).

% local.antisym_conv
thf(fact_2_local_Odual__order_Oantisym,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
     => ( ( less_eq @ A @ B )
       => ( A = B ) ) ) ).

% local.dual_order.antisym
thf(fact_3_local_Odual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: a,Z: a] : ( Y2 = Z ) )
    = ( ^ [A2: a,B2: a] :
          ( ( less_eq @ B2 @ A2 )
          & ( less_eq @ A2 @ B2 ) ) ) ) ).

% local.dual_order.eq_iff
thf(fact_4_local_Odual__order_Otrans,axiom,
    ! [B: a,A: a,C: a] :
      ( ( less_eq @ B @ A )
     => ( ( less_eq @ C @ B )
       => ( less_eq @ C @ A ) ) ) ).

% local.dual_order.trans
thf(fact_5_local_Oeq__iff,axiom,
    ( ( ^ [Y2: a,Z: a] : ( Y2 = Z ) )
    = ( ^ [X2: a,Y3: a] :
          ( ( less_eq @ X2 @ Y3 )
          & ( less_eq @ Y3 @ X2 ) ) ) ) ).

% local.eq_iff
thf(fact_6_local_Oeq__refl,axiom,
    ! [X: a,Y: a] :
      ( ( X = Y )
     => ( less_eq @ X @ Y ) ) ).

% local.eq_refl
thf(fact_7_local_Oord__eq__le__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A = B )
     => ( ( less_eq @ B @ C )
       => ( less_eq @ A @ C ) ) ) ).

% local.ord_eq_le_trans
thf(fact_8_local_Oord__le__eq__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ A @ B )
     => ( ( B = C )
       => ( less_eq @ A @ C ) ) ) ).

% local.ord_le_eq_trans
thf(fact_9_local_Oorder_Oantisym,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
     => ( ( less_eq @ B @ A )
       => ( A = B ) ) ) ).

% local.order.antisym
thf(fact_10_local_Oorder_Oeq__iff,axiom,
    ( ( ^ [Y2: a,Z: a] : ( Y2 = Z ) )
    = ( ^ [A2: a,B2: a] :
          ( ( less_eq @ A2 @ B2 )
          & ( less_eq @ B2 @ A2 ) ) ) ) ).

% local.order.eq_iff
thf(fact_11_local_Oorder_Otrans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ A @ B )
     => ( ( less_eq @ B @ C )
       => ( less_eq @ A @ C ) ) ) ).

% local.order.trans
thf(fact_12_local_Oorder__trans,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( less_eq @ X @ Y )
     => ( ( less_eq @ Y @ Z2 )
       => ( less_eq @ X @ Z2 ) ) ) ).

% local.order_trans
thf(fact_13_local_Oinf_Oassoc,axiom,
    ! [A: a,B: a,C: a] :
      ( ( inf @ ( inf @ A @ B ) @ C )
      = ( inf @ A @ ( inf @ B @ C ) ) ) ).

% local.inf.assoc
thf(fact_14_local_Oinf_Ocommute,axiom,
    ! [A: a,B: a] :
      ( ( inf @ A @ B )
      = ( inf @ B @ A ) ) ).

% local.inf.commute
thf(fact_15_local_Oinf_Oleft__commute,axiom,
    ! [B: a,A: a,C: a] :
      ( ( inf @ B @ ( inf @ A @ C ) )
      = ( inf @ A @ ( inf @ B @ C ) ) ) ).

% local.inf.left_commute
thf(fact_16_local_Oinf__assoc,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( inf @ ( inf @ X @ Y ) @ Z2 )
      = ( inf @ X @ ( inf @ Y @ Z2 ) ) ) ).

% local.inf_assoc
thf(fact_17_local_Oinf__commute,axiom,
    ! [X: a,Y: a] :
      ( ( inf @ X @ Y )
      = ( inf @ Y @ X ) ) ).

% local.inf_commute
thf(fact_18_local_Oinf__left__commute,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( inf @ X @ ( inf @ Y @ Z2 ) )
      = ( inf @ Y @ ( inf @ X @ Z2 ) ) ) ).

% local.inf_left_commute
thf(fact_19_local_Osup_Oassoc,axiom,
    ! [A: a,B: a,C: a] :
      ( ( sup @ ( sup @ A @ B ) @ C )
      = ( sup @ A @ ( sup @ B @ C ) ) ) ).

% local.sup.assoc
thf(fact_20_local_Osup_Ocommute,axiom,
    ! [A: a,B: a] :
      ( ( sup @ A @ B )
      = ( sup @ B @ A ) ) ).

% local.sup.commute
thf(fact_21_local_Osup_Oleft__commute,axiom,
    ! [B: a,A: a,C: a] :
      ( ( sup @ B @ ( sup @ A @ C ) )
      = ( sup @ A @ ( sup @ B @ C ) ) ) ).

% local.sup.left_commute
thf(fact_22_local_Osup__assoc,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( sup @ ( sup @ X @ Y ) @ Z2 )
      = ( sup @ X @ ( sup @ Y @ Z2 ) ) ) ).

% local.sup_assoc
thf(fact_23_local_Osup__commute,axiom,
    ! [X: a,Y: a] :
      ( ( sup @ X @ Y )
      = ( sup @ Y @ X ) ) ).

% local.sup_commute
thf(fact_24_local_Osup__left__commute,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( sup @ X @ ( sup @ Y @ Z2 ) )
      = ( sup @ Y @ ( sup @ X @ Z2 ) ) ) ).

% local.sup_left_commute
thf(fact_25_local_Oinf_Oabsorb1,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
     => ( ( inf @ A @ B )
        = A ) ) ).

% local.inf.absorb1
thf(fact_26_local_Oinf_Oabsorb2,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
     => ( ( inf @ A @ B )
        = B ) ) ).

% local.inf.absorb2
thf(fact_27_local_Oinf_Oabsorb__iff1,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
      = ( ( inf @ A @ B )
        = A ) ) ).

% local.inf.absorb_iff1
thf(fact_28_local_Oinf_Oabsorb__iff2,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
      = ( ( inf @ A @ B )
        = B ) ) ).

% local.inf.absorb_iff2
thf(fact_29_local_Oinf_OboundedE,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ A @ ( inf @ B @ C ) )
     => ~ ( ( less_eq @ A @ B )
         => ~ ( less_eq @ A @ C ) ) ) ).

% local.inf.boundedE
thf(fact_30_local_Oinf_OboundedI,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ A @ B )
     => ( ( less_eq @ A @ C )
       => ( less_eq @ A @ ( inf @ B @ C ) ) ) ) ).

% local.inf.boundedI
thf(fact_31_local_Oinf_Ocobounded1,axiom,
    ! [A: a,B: a] : ( less_eq @ ( inf @ A @ B ) @ A ) ).

% local.inf.cobounded1
thf(fact_32_local_Oinf_Ocobounded2,axiom,
    ! [A: a,B: a] : ( less_eq @ ( inf @ A @ B ) @ B ) ).

% local.inf.cobounded2
thf(fact_33_local_Oinf_OcoboundedI1,axiom,
    ! [A: a,C: a,B: a] :
      ( ( less_eq @ A @ C )
     => ( less_eq @ ( inf @ A @ B ) @ C ) ) ).

% local.inf.coboundedI1
thf(fact_34_local_Oinf_OcoboundedI2,axiom,
    ! [B: a,C: a,A: a] :
      ( ( less_eq @ B @ C )
     => ( less_eq @ ( inf @ A @ B ) @ C ) ) ).

% local.inf.coboundedI2
thf(fact_35_local_Oinf_OorderE,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
     => ( A
        = ( inf @ A @ B ) ) ) ).

% local.inf.orderE
thf(fact_36_local_Oinf_OorderI,axiom,
    ! [A: a,B: a] :
      ( ( A
        = ( inf @ A @ B ) )
     => ( less_eq @ A @ B ) ) ).

% local.inf.orderI
thf(fact_37_local_Oinf_Oorder__iff,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
      = ( A
        = ( inf @ A @ B ) ) ) ).

% local.inf.order_iff
thf(fact_38_local_Oinf__absorb1,axiom,
    ! [X: a,Y: a] :
      ( ( less_eq @ X @ Y )
     => ( ( inf @ X @ Y )
        = X ) ) ).

% local.inf_absorb1
thf(fact_39_local_Oinf__absorb2,axiom,
    ! [Y: a,X: a] :
      ( ( less_eq @ Y @ X )
     => ( ( inf @ X @ Y )
        = Y ) ) ).

% local.inf_absorb2
thf(fact_40_local_Oinf__greatest,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( less_eq @ X @ Y )
     => ( ( less_eq @ X @ Z2 )
       => ( less_eq @ X @ ( inf @ Y @ Z2 ) ) ) ) ).

% local.inf_greatest
thf(fact_41_local_Oinf__le1,axiom,
    ! [X: a,Y: a] : ( less_eq @ ( inf @ X @ Y ) @ X ) ).

% local.inf_le1
thf(fact_42_local_Oinf__le2,axiom,
    ! [X: a,Y: a] : ( less_eq @ ( inf @ X @ Y ) @ Y ) ).

% local.inf_le2
thf(fact_43_local_Oinf__mono,axiom,
    ! [A: a,C: a,B: a,D: a] :
      ( ( less_eq @ A @ C )
     => ( ( less_eq @ B @ D )
       => ( less_eq @ ( inf @ A @ B ) @ ( inf @ C @ D ) ) ) ) ).

% local.inf_mono
thf(fact_44_local_Oinf__unique,axiom,
    ! [F: a > a > a,X: a,Y: a] :
      ( ! [X3: a,Y4: a] : ( less_eq @ ( F @ X3 @ Y4 ) @ X3 )
     => ( ! [X3: a,Y4: a] : ( less_eq @ ( F @ X3 @ Y4 ) @ Y4 )
       => ( ! [X3: a,Y4: a,Z3: a] :
              ( ( less_eq @ X3 @ Y4 )
             => ( ( less_eq @ X3 @ Z3 )
               => ( less_eq @ X3 @ ( F @ Y4 @ Z3 ) ) ) )
         => ( ( inf @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% local.inf_unique
thf(fact_45_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X2: a] : ( member_a @ X2 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_47_Collect__cong,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_a @ P )
        = ( collect_a @ Q ) ) ) ).

% Collect_cong
thf(fact_48_local_Ole__iff__inf,axiom,
    ! [X: a,Y: a] :
      ( ( less_eq @ X @ Y )
      = ( ( inf @ X @ Y )
        = X ) ) ).

% local.le_iff_inf
thf(fact_49_local_Ole__infE,axiom,
    ! [X: a,A: a,B: a] :
      ( ( less_eq @ X @ ( inf @ A @ B ) )
     => ~ ( ( less_eq @ X @ A )
         => ~ ( less_eq @ X @ B ) ) ) ).

% local.le_infE
thf(fact_50_local_Ole__infI,axiom,
    ! [X: a,A: a,B: a] :
      ( ( less_eq @ X @ A )
     => ( ( less_eq @ X @ B )
       => ( less_eq @ X @ ( inf @ A @ B ) ) ) ) ).

% local.le_infI
thf(fact_51_local_Ole__infI1,axiom,
    ! [A: a,X: a,B: a] :
      ( ( less_eq @ A @ X )
     => ( less_eq @ ( inf @ A @ B ) @ X ) ) ).

% local.le_infI1
thf(fact_52_local_Ole__infI2,axiom,
    ! [B: a,X: a,A: a] :
      ( ( less_eq @ B @ X )
     => ( less_eq @ ( inf @ A @ B ) @ X ) ) ).

% local.le_infI2
thf(fact_53_local_Ole__iff__sup,axiom,
    ! [X: a,Y: a] :
      ( ( less_eq @ X @ Y )
      = ( ( sup @ X @ Y )
        = Y ) ) ).

% local.le_iff_sup
thf(fact_54_local_Ole__supE,axiom,
    ! [A: a,B: a,X: a] :
      ( ( less_eq @ ( sup @ A @ B ) @ X )
     => ~ ( ( less_eq @ A @ X )
         => ~ ( less_eq @ B @ X ) ) ) ).

% local.le_supE
thf(fact_55_local_Ole__supI,axiom,
    ! [A: a,X: a,B: a] :
      ( ( less_eq @ A @ X )
     => ( ( less_eq @ B @ X )
       => ( less_eq @ ( sup @ A @ B ) @ X ) ) ) ).

% local.le_supI
thf(fact_56_local_Ole__supI1,axiom,
    ! [X: a,A: a,B: a] :
      ( ( less_eq @ X @ A )
     => ( less_eq @ X @ ( sup @ A @ B ) ) ) ).

% local.le_supI1
thf(fact_57_local_Ole__supI2,axiom,
    ! [X: a,B: a,A: a] :
      ( ( less_eq @ X @ B )
     => ( less_eq @ X @ ( sup @ A @ B ) ) ) ).

% local.le_supI2
thf(fact_58_local_Osup_Oabsorb1,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
     => ( ( sup @ A @ B )
        = A ) ) ).

% local.sup.absorb1
thf(fact_59_local_Osup_Oabsorb2,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
     => ( ( sup @ A @ B )
        = B ) ) ).

% local.sup.absorb2
thf(fact_60_local_Osup_Oabsorb__iff1,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
      = ( ( sup @ A @ B )
        = A ) ) ).

% local.sup.absorb_iff1
thf(fact_61_local_Osup_Oabsorb__iff2,axiom,
    ! [A: a,B: a] :
      ( ( less_eq @ A @ B )
      = ( ( sup @ A @ B )
        = B ) ) ).

% local.sup.absorb_iff2
thf(fact_62_local_Osup_OboundedE,axiom,
    ! [B: a,C: a,A: a] :
      ( ( less_eq @ ( sup @ B @ C ) @ A )
     => ~ ( ( less_eq @ B @ A )
         => ~ ( less_eq @ C @ A ) ) ) ).

% local.sup.boundedE
thf(fact_63_local_Osup_OboundedI,axiom,
    ! [B: a,A: a,C: a] :
      ( ( less_eq @ B @ A )
     => ( ( less_eq @ C @ A )
       => ( less_eq @ ( sup @ B @ C ) @ A ) ) ) ).

% local.sup.boundedI
thf(fact_64_local_Osup_Ocobounded1,axiom,
    ! [A: a,B: a] : ( less_eq @ A @ ( sup @ A @ B ) ) ).

% local.sup.cobounded1
thf(fact_65_local_Osup_Ocobounded2,axiom,
    ! [B: a,A: a] : ( less_eq @ B @ ( sup @ A @ B ) ) ).

% local.sup.cobounded2
thf(fact_66_local_Osup_OcoboundedI1,axiom,
    ! [C: a,A: a,B: a] :
      ( ( less_eq @ C @ A )
     => ( less_eq @ C @ ( sup @ A @ B ) ) ) ).

% local.sup.coboundedI1
thf(fact_67_local_Osup_OcoboundedI2,axiom,
    ! [C: a,B: a,A: a] :
      ( ( less_eq @ C @ B )
     => ( less_eq @ C @ ( sup @ A @ B ) ) ) ).

% local.sup.coboundedI2
thf(fact_68_local_Osup_Omono,axiom,
    ! [C: a,A: a,D: a,B: a] :
      ( ( less_eq @ C @ A )
     => ( ( less_eq @ D @ B )
       => ( less_eq @ ( sup @ C @ D ) @ ( sup @ A @ B ) ) ) ) ).

% local.sup.mono
thf(fact_69_local_Osup_OorderE,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
     => ( A
        = ( sup @ A @ B ) ) ) ).

% local.sup.orderE
thf(fact_70_local_Osup_OorderI,axiom,
    ! [A: a,B: a] :
      ( ( A
        = ( sup @ A @ B ) )
     => ( less_eq @ B @ A ) ) ).

% local.sup.orderI
thf(fact_71_local_Osup_Oorder__iff,axiom,
    ! [B: a,A: a] :
      ( ( less_eq @ B @ A )
      = ( A
        = ( sup @ A @ B ) ) ) ).

% local.sup.order_iff
thf(fact_72_local_Osup__absorb1,axiom,
    ! [Y: a,X: a] :
      ( ( less_eq @ Y @ X )
     => ( ( sup @ X @ Y )
        = X ) ) ).

% local.sup_absorb1
thf(fact_73_local_Osup__absorb2,axiom,
    ! [X: a,Y: a] :
      ( ( less_eq @ X @ Y )
     => ( ( sup @ X @ Y )
        = Y ) ) ).

% local.sup_absorb2
thf(fact_74_local_Osup__ge1,axiom,
    ! [X: a,Y: a] : ( less_eq @ X @ ( sup @ X @ Y ) ) ).

% local.sup_ge1
thf(fact_75_local_Osup__ge2,axiom,
    ! [Y: a,X: a] : ( less_eq @ Y @ ( sup @ X @ Y ) ) ).

% local.sup_ge2
thf(fact_76_local_Osup__least,axiom,
    ! [Y: a,X: a,Z2: a] :
      ( ( less_eq @ Y @ X )
     => ( ( less_eq @ Z2 @ X )
       => ( less_eq @ ( sup @ Y @ Z2 ) @ X ) ) ) ).

% local.sup_least
thf(fact_77_local_Osup__mono,axiom,
    ! [A: a,C: a,B: a,D: a] :
      ( ( less_eq @ A @ C )
     => ( ( less_eq @ B @ D )
       => ( less_eq @ ( sup @ A @ B ) @ ( sup @ C @ D ) ) ) ) ).

% local.sup_mono
thf(fact_78_local_Osup__unique,axiom,
    ! [F: a > a > a,X: a,Y: a] :
      ( ! [X3: a,Y4: a] : ( less_eq @ X3 @ ( F @ X3 @ Y4 ) )
     => ( ! [X3: a,Y4: a] : ( less_eq @ Y4 @ ( F @ X3 @ Y4 ) )
       => ( ! [X3: a,Y4: a,Z3: a] :
              ( ( less_eq @ Y4 @ X3 )
             => ( ( less_eq @ Z3 @ X3 )
               => ( less_eq @ ( F @ Y4 @ Z3 ) @ X3 ) ) )
         => ( ( sup @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% local.sup_unique
thf(fact_79_local_Odistrib__imp1,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ! [X3: a,Y4: a,Z3: a] :
          ( ( inf @ X3 @ ( sup @ Y4 @ Z3 ) )
          = ( sup @ ( inf @ X3 @ Y4 ) @ ( inf @ X3 @ Z3 ) ) )
     => ( ( sup @ X @ ( inf @ Y @ Z2 ) )
        = ( inf @ ( sup @ X @ Y ) @ ( sup @ X @ Z2 ) ) ) ) ).

% local.distrib_imp1
thf(fact_80_local_Odistrib__imp2,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ! [X3: a,Y4: a,Z3: a] :
          ( ( sup @ X3 @ ( inf @ Y4 @ Z3 ) )
          = ( inf @ ( sup @ X3 @ Y4 ) @ ( sup @ X3 @ Z3 ) ) )
     => ( ( inf @ X @ ( sup @ Y @ Z2 ) )
        = ( sup @ ( inf @ X @ Y ) @ ( inf @ X @ Z2 ) ) ) ) ).

% local.distrib_imp2
thf(fact_81_local_Oa__join__d,axiom,
    ! [A: a,B: a,C: a] :
      ( ( sup @ A @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( sup @ A @ ( inf @ B @ C ) ) ) ).

% local.a_join_d
thf(fact_82_a__meet__d,axiom,
    ! [A: a,B: a,C: a] :
      ( ( inf @ A @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( sup @ ( inf @ A @ B ) @ ( inf @ C @ A ) ) ) ).

% a_meet_d
thf(fact_83_local_Ob__join__d,axiom,
    ! [B: a,A: a,C: a] :
      ( ( sup @ B @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( sup @ B @ ( inf @ C @ A ) ) ) ).

% local.b_join_d
thf(fact_84_b__meet__d,axiom,
    ! [B: a,A: a,C: a] :
      ( ( inf @ B @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( sup @ ( inf @ B @ C ) @ ( inf @ A @ B ) ) ) ).

% b_meet_d
thf(fact_85_c__meet__d,axiom,
    ! [C: a,A: a,B: a] :
      ( ( inf @ C @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( sup @ ( inf @ C @ A ) @ ( inf @ B @ C ) ) ) ).

% c_meet_d
thf(fact_86_local_Od__aux__def,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C )
      = ( sup @ ( sup @ ( inf @ A @ B ) @ ( inf @ B @ C ) ) @ ( inf @ C @ A ) ) ) ).

% local.d_aux_def
thf(fact_87_local_Od__b__c__a,axiom,
    ! [B: a,C: a,A: a] :
      ( ( modula1936294176_aux_a @ inf @ sup @ B @ C @ A )
      = ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ).

% local.d_b_c_a
thf(fact_88_local_Od__c__a__b,axiom,
    ! [C: a,A: a,B: a] :
      ( ( modula1936294176_aux_a @ inf @ sup @ C @ A @ B )
      = ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ).

% local.d_c_a_b
thf(fact_89_local_Oa__meet__e,axiom,
    ! [A: a,B: a,C: a] :
      ( ( inf @ A @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( inf @ A @ ( sup @ B @ C ) ) ) ).

% local.a_meet_e
thf(fact_90_local_Ob__meet__e,axiom,
    ! [B: a,A: a,C: a] :
      ( ( inf @ B @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( inf @ B @ ( sup @ C @ A ) ) ) ).

% local.b_meet_e
thf(fact_91_local_Oc__meet__e,axiom,
    ! [C: a,A: a,B: a] :
      ( ( inf @ C @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
      = ( inf @ C @ ( sup @ A @ B ) ) ) ).

% local.c_meet_e
thf(fact_92_local_Oe__aux__def,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C )
      = ( inf @ ( inf @ ( sup @ A @ B ) @ ( sup @ B @ C ) ) @ ( sup @ C @ A ) ) ) ).

% local.e_aux_def
thf(fact_93_local_Oe__b__c__a,axiom,
    ! [B: a,C: a,A: a] :
      ( ( modula1144073633_aux_a @ inf @ sup @ B @ C @ A )
      = ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ).

% local.e_b_c_a
thf(fact_94_local_Oe__c__a__b,axiom,
    ! [C: a,A: a,B: a] :
      ( ( modula1144073633_aux_a @ inf @ sup @ C @ A @ B )
      = ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ).

% local.e_c_a_b
thf(fact_95_local_Odistrib__inf__le,axiom,
    ! [X: a,Y: a,Z2: a] : ( less_eq @ ( sup @ ( inf @ X @ Y ) @ ( inf @ X @ Z2 ) ) @ ( inf @ X @ ( sup @ Y @ Z2 ) ) ) ).

% local.distrib_inf_le
thf(fact_96_local_Odistrib__sup__le,axiom,
    ! [X: a,Y: a,Z2: a] : ( less_eq @ ( sup @ X @ ( inf @ Y @ Z2 ) ) @ ( inf @ ( sup @ X @ Y ) @ ( sup @ X @ Z2 ) ) ) ).

% local.distrib_sup_le
thf(fact_97_local_Omodular,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( less_eq @ X @ Y )
     => ( ( sup @ X @ ( inf @ Y @ Z2 ) )
        = ( inf @ Y @ ( sup @ X @ Z2 ) ) ) ) ).

% local.modular
thf(fact_98_local_Oincomp__def,axiom,
    ! [X: a,Y: a] :
      ( ( modula1727524044comp_a @ less_eq @ X @ Y )
      = ( ~ ( less_eq @ X @ Y )
        & ~ ( less_eq @ Y @ X ) ) ) ).

% local.incomp_def
thf(fact_99_local_Oorder_Orefl,axiom,
    ! [A: a] : ( less_eq @ A @ A ) ).

% local.order.refl
thf(fact_100_local_Oorder__refl,axiom,
    ! [X: a] : ( less_eq @ X @ X ) ).

% local.order_refl
thf(fact_101_local_Oinf_Oidem,axiom,
    ! [A: a] :
      ( ( inf @ A @ A )
      = A ) ).

% local.inf.idem
thf(fact_102_local_Oinf_Oleft__idem,axiom,
    ! [A: a,B: a] :
      ( ( inf @ A @ ( inf @ A @ B ) )
      = ( inf @ A @ B ) ) ).

% local.inf.left_idem
thf(fact_103_local_Oinf_Oright__idem,axiom,
    ! [A: a,B: a] :
      ( ( inf @ ( inf @ A @ B ) @ B )
      = ( inf @ A @ B ) ) ).

% local.inf.right_idem
thf(fact_104_local_Oinf__idem,axiom,
    ! [X: a] :
      ( ( inf @ X @ X )
      = X ) ).

% local.inf_idem
thf(fact_105_local_Oinf__left__idem,axiom,
    ! [X: a,Y: a] :
      ( ( inf @ X @ ( inf @ X @ Y ) )
      = ( inf @ X @ Y ) ) ).

% local.inf_left_idem
thf(fact_106_local_Oinf__right__idem,axiom,
    ! [X: a,Y: a] :
      ( ( inf @ ( inf @ X @ Y ) @ Y )
      = ( inf @ X @ Y ) ) ).

% local.inf_right_idem
thf(fact_107_local_Osup_Oidem,axiom,
    ! [A: a] :
      ( ( sup @ A @ A )
      = A ) ).

% local.sup.idem
thf(fact_108_local_Osup_Oleft__idem,axiom,
    ! [A: a,B: a] :
      ( ( sup @ A @ ( sup @ A @ B ) )
      = ( sup @ A @ B ) ) ).

% local.sup.left_idem
thf(fact_109_local_Osup_Oright__idem,axiom,
    ! [A: a,B: a] :
      ( ( sup @ ( sup @ A @ B ) @ B )
      = ( sup @ A @ B ) ) ).

% local.sup.right_idem
thf(fact_110_local_Osup__idem,axiom,
    ! [X: a] :
      ( ( sup @ X @ X )
      = X ) ).

% local.sup_idem
thf(fact_111_local_Osup__left__idem,axiom,
    ! [X: a,Y: a] :
      ( ( sup @ X @ ( sup @ X @ Y ) )
      = ( sup @ X @ Y ) ) ).

% local.sup_left_idem
thf(fact_112_local_OGreatestI2__order,axiom,
    ! [P: a > $o,X: a,Q: a > $o] :
      ( ( P @ X )
     => ( ! [Y4: a] :
            ( ( P @ Y4 )
           => ( less_eq @ Y4 @ X ) )
       => ( ! [X3: a] :
              ( ( P @ X3 )
             => ( ! [Y5: a] :
                    ( ( P @ Y5 )
                   => ( less_eq @ Y5 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( greatest_a @ less_eq @ P ) ) ) ) ) ).

% local.GreatestI2_order
thf(fact_113_local_OGreatest__equality,axiom,
    ! [P: a > $o,X: a] :
      ( ( P @ X )
     => ( ! [Y4: a] :
            ( ( P @ Y4 )
           => ( less_eq @ Y4 @ X ) )
       => ( ( greatest_a @ less_eq @ P )
          = X ) ) ) ).

% local.Greatest_equality
thf(fact_114_local_Omax__def,axiom,
    ! [A: a,B: a] :
      ( ( ( less_eq @ A @ B )
       => ( ( max_a @ less_eq @ A @ B )
          = B ) )
      & ( ~ ( less_eq @ A @ B )
       => ( ( max_a @ less_eq @ A @ B )
          = A ) ) ) ).

% local.max_def
thf(fact_115_local_Omin__def,axiom,
    ! [A: a,B: a] :
      ( ( ( less_eq @ A @ B )
       => ( ( min_a @ less_eq @ A @ B )
          = A ) )
      & ( ~ ( less_eq @ A @ B )
       => ( ( min_a @ less_eq @ A @ B )
          = B ) ) ) ).

% local.min_def
thf(fact_116_local_Oa__aux__def,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula17988509_aux_a @ inf @ sup @ A @ B @ C )
      = ( sup @ ( inf @ A @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% local.a_aux_def
thf(fact_117_a__def__equiv,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( modula17988509_aux_a @ inf @ sup @ A @ B @ C )
        = ( inf @ ( sup @ A @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ) ) ).

% a_def_equiv
thf(fact_118_local_Oinf_Obounded__iff,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ A @ ( inf @ B @ C ) )
      = ( ( less_eq @ A @ B )
        & ( less_eq @ A @ C ) ) ) ).

% local.inf.bounded_iff
thf(fact_119_local_Ole__inf__iff,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( less_eq @ X @ ( inf @ Y @ Z2 ) )
      = ( ( less_eq @ X @ Y )
        & ( less_eq @ X @ Z2 ) ) ) ).

% local.le_inf_iff
thf(fact_120_local_Ole__sup__iff,axiom,
    ! [X: a,Y: a,Z2: a] :
      ( ( less_eq @ ( sup @ X @ Y ) @ Z2 )
      = ( ( less_eq @ X @ Z2 )
        & ( less_eq @ Y @ Z2 ) ) ) ).

% local.le_sup_iff
thf(fact_121_local_Osup_Obounded__iff,axiom,
    ! [B: a,C: a,A: a] :
      ( ( less_eq @ ( sup @ B @ C ) @ A )
      = ( ( less_eq @ B @ A )
        & ( less_eq @ C @ A ) ) ) ).

% local.sup.bounded_iff
thf(fact_122_local_Oinf__sup__absorb,axiom,
    ! [X: a,Y: a] :
      ( ( inf @ X @ ( sup @ X @ Y ) )
      = X ) ).

% local.inf_sup_absorb
thf(fact_123_local_Osup__inf__absorb,axiom,
    ! [X: a,Y: a] :
      ( ( sup @ X @ ( inf @ X @ Y ) )
      = X ) ).

% local.sup_inf_absorb
thf(fact_124_local_OLeast1I,axiom,
    ! [P: a > $o] :
      ( ? [X4: a] :
          ( ( P @ X4 )
          & ! [Y4: a] :
              ( ( P @ Y4 )
             => ( less_eq @ X4 @ Y4 ) )
          & ! [Y4: a] :
              ( ( ( P @ Y4 )
                & ! [Ya: a] :
                    ( ( P @ Ya )
                   => ( less_eq @ Y4 @ Ya ) ) )
             => ( Y4 = X4 ) ) )
     => ( P @ ( least_a @ less_eq @ P ) ) ) ).

% local.Least1I
thf(fact_125_local_OLeast1__le,axiom,
    ! [P: a > $o,Z2: a] :
      ( ? [X4: a] :
          ( ( P @ X4 )
          & ! [Y4: a] :
              ( ( P @ Y4 )
             => ( less_eq @ X4 @ Y4 ) )
          & ! [Y4: a] :
              ( ( ( P @ Y4 )
                & ! [Ya: a] :
                    ( ( P @ Ya )
                   => ( less_eq @ Y4 @ Ya ) ) )
             => ( Y4 = X4 ) ) )
     => ( ( P @ Z2 )
       => ( less_eq @ ( least_a @ less_eq @ P ) @ Z2 ) ) ) ).

% local.Least1_le
thf(fact_126_local_OLeastI2__order,axiom,
    ! [P: a > $o,X: a,Q: a > $o] :
      ( ( P @ X )
     => ( ! [Y4: a] :
            ( ( P @ Y4 )
           => ( less_eq @ X @ Y4 ) )
       => ( ! [X3: a] :
              ( ( P @ X3 )
             => ( ! [Y5: a] :
                    ( ( P @ Y5 )
                   => ( less_eq @ X3 @ Y5 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( least_a @ less_eq @ P ) ) ) ) ) ).

% local.LeastI2_order
thf(fact_127_local_OLeast__equality,axiom,
    ! [P: a > $o,X: a] :
      ( ( P @ X )
     => ( ! [Y4: a] :
            ( ( P @ Y4 )
           => ( less_eq @ X @ Y4 ) )
       => ( ( least_a @ less_eq @ P )
          = X ) ) ) ).

% local.Least_equality
thf(fact_128_local_Oc__a,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula581031071_aux_a @ inf @ sup @ A @ B @ C )
      = ( modula17988509_aux_a @ inf @ sup @ C @ A @ B ) ) ).

% local.c_a
thf(fact_129_local_Oc__aux__def,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula581031071_aux_a @ inf @ sup @ A @ B @ C )
      = ( sup @ ( inf @ C @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% local.c_aux_def
thf(fact_130_c__def__equiv,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( modula581031071_aux_a @ inf @ sup @ A @ B @ C )
        = ( inf @ ( sup @ C @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ) ) ).

% c_def_equiv
thf(fact_131_c__meet__a__eq__d,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( inf @ ( modula581031071_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula17988509_aux_a @ inf @ sup @ A @ B @ C ) )
        = ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% c_meet_a_eq_d
thf(fact_132_local_Ob__a,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C )
      = ( modula17988509_aux_a @ inf @ sup @ B @ C @ A ) ) ).

% local.b_a
thf(fact_133_local_Ob__aux__def,axiom,
    ! [A: a,B: a,C: a] :
      ( ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C )
      = ( sup @ ( inf @ B @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% local.b_aux_def
thf(fact_134_b__def__equiv,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C )
        = ( inf @ ( sup @ B @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ) ) ).

% b_def_equiv
thf(fact_135_a__join__b__eq__e,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( sup @ ( modula17988509_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C ) )
        = ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% a_join_b_eq_e
thf(fact_136_a__meet__b__eq__d,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( inf @ ( modula17988509_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C ) )
        = ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% a_meet_b_eq_d
thf(fact_137_lattice_Oa__aux_Ocong,axiom,
    modula17988509_aux_a = modula17988509_aux_a ).

% lattice.a_aux.cong
thf(fact_138_lattice_Od__aux_Ocong,axiom,
    modula1936294176_aux_a = modula1936294176_aux_a ).

% lattice.d_aux.cong
thf(fact_139_lattice_Oe__aux_Ocong,axiom,
    modula1144073633_aux_a = modula1144073633_aux_a ).

% lattice.e_aux.cong
thf(fact_140_local_Ocomp__fun__idem__sup,axiom,
    finite40241356em_a_a @ sup ).

% local.comp_fun_idem_sup
thf(fact_141_local_Ocomp__fun__idem__inf,axiom,
    finite40241356em_a_a @ inf ).

% local.comp_fun_idem_inf
thf(fact_142_b__join__c__eq__e,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( sup @ ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula581031071_aux_a @ inf @ sup @ A @ B @ C ) )
        = ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% b_join_c_eq_e
thf(fact_143_b__meet__c__eq__d,axiom,
    ! [A: a,B: a,C: a] :
      ( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
     => ( ( inf @ ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula581031071_aux_a @ inf @ sup @ A @ B @ C ) )
        = ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).

% b_meet_c_eq_d
thf(fact_144_local_Osup_Osemigroup__axioms,axiom,
    semigroup_a @ sup ).

% local.sup.semigroup_axioms
thf(fact_145_local_Oinf_Osemigroup__axioms,axiom,
    semigroup_a @ inf ).

% local.inf.semigroup_axioms
thf(fact_146_local_Osup_Osemilattice__axioms,axiom,
    semilattice_a @ sup ).

% local.sup.semilattice_axioms
thf(fact_147_local_Oinf_Osemilattice__axioms,axiom,
    semilattice_a @ inf ).

% local.inf.semilattice_axioms
thf(fact_148_local_Osup_Oabel__semigroup__axioms,axiom,
    abel_semigroup_a @ sup ).

% local.sup.abel_semigroup_axioms
thf(fact_149_local_Oinf_Oabel__semigroup__axioms,axiom,
    abel_semigroup_a @ inf ).

% local.inf.abel_semigroup_axioms
thf(fact_150_local_OSup__fin_Osemilattice__set__axioms,axiom,
    lattic1885654924_set_a @ sup ).

% local.Sup_fin.semilattice_set_axioms
thf(fact_151_local_OInf__fin_Osemilattice__set__axioms,axiom,
    lattic1885654924_set_a @ inf ).

% local.Inf_fin.semilattice_set_axioms
thf(fact_152_lattice_Oincomp_Ocong,axiom,
    modula1727524044comp_a = modula1727524044comp_a ).

% lattice.incomp.cong
thf(fact_153_lattice_Oc__aux_Ocong,axiom,
    modula581031071_aux_a = modula581031071_aux_a ).

% lattice.c_aux.cong
thf(fact_154_lattice_Ob__aux_Ocong,axiom,
    modula1373251614_aux_a = modula1373251614_aux_a ).

% lattice.b_aux.cong
thf(fact_155_abel__semigroup_Oaxioms_I1_J,axiom,
    ! [F: a > a > a] :
      ( ( abel_semigroup_a @ F )
     => ( semigroup_a @ F ) ) ).

% abel_semigroup.axioms(1)
thf(fact_156_semilattice__set__def,axiom,
    lattic1885654924_set_a = semilattice_a ).

% semilattice_set_def
thf(fact_157_semilattice__set_Ointro,axiom,
    ! [F: a > a > a] :
      ( ( semilattice_a @ F )
     => ( lattic1885654924_set_a @ F ) ) ).

% semilattice_set.intro
thf(fact_158_abel__semigroup_Oleft__commute,axiom,
    ! [F: a > a > a,B: a,A: a,C: a] :
      ( ( abel_semigroup_a @ F )
     => ( ( F @ B @ ( F @ A @ C ) )
        = ( F @ A @ ( F @ B @ C ) ) ) ) ).

% abel_semigroup.left_commute
thf(fact_159_abel__semigroup_Ocommute,axiom,
    ! [F: a > a > a,A: a,B: a] :
      ( ( abel_semigroup_a @ F )
     => ( ( F @ A @ B )
        = ( F @ B @ A ) ) ) ).

% abel_semigroup.commute
thf(fact_160_semigroup_Ointro,axiom,
    ! [F: a > a > a] :
      ( ! [A4: a,B3: a,C2: a] :
          ( ( F @ ( F @ A4 @ B3 ) @ C2 )
          = ( F @ A4 @ ( F @ B3 @ C2 ) ) )
     => ( semigroup_a @ F ) ) ).

% semigroup.intro
thf(fact_161_semigroup_Oassoc,axiom,
    ! [F: a > a > a,A: a,B: a,C: a] :
      ( ( semigroup_a @ F )
     => ( ( F @ ( F @ A @ B ) @ C )
        = ( F @ A @ ( F @ B @ C ) ) ) ) ).

% semigroup.assoc
thf(fact_162_semigroup__def,axiom,
    ( semigroup_a
    = ( ^ [F2: a > a > a] :
        ! [A2: a,B2: a,C3: a] :
          ( ( F2 @ ( F2 @ A2 @ B2 ) @ C3 )
          = ( F2 @ A2 @ ( F2 @ B2 @ C3 ) ) ) ) ) ).

% semigroup_def
thf(fact_163_semilattice__set_Oaxioms,axiom,
    ! [F: a > a > a] :
      ( ( lattic1885654924_set_a @ F )
     => ( semilattice_a @ F ) ) ).

% semilattice_set.axioms
thf(fact_164_semilattice_Oaxioms_I1_J,axiom,
    ! [F: a > a > a] :
      ( ( semilattice_a @ F )
     => ( abel_semigroup_a @ F ) ) ).

% semilattice.axioms(1)
thf(fact_165_local_Obdd__above__def,axiom,
    ! [A3: set_a] :
      ( ( condit1627435690bove_a @ less_eq @ A3 )
      = ( ? [M: a] :
          ! [X2: a] :
            ( ( member_a @ X2 @ A3 )
           => ( less_eq @ X2 @ M ) ) ) ) ).

% local.bdd_above_def
thf(fact_166_local_Obdd__below__def,axiom,
    ! [A3: set_a] :
      ( ( condit1001553558elow_a @ less_eq @ A3 )
      = ( ? [M2: a] :
          ! [X2: a] :
            ( ( member_a @ X2 @ A3 )
           => ( less_eq @ M2 @ X2 ) ) ) ) ).

% local.bdd_below_def
thf(fact_167_local_Obdd__belowI,axiom,
    ! [A3: set_a,M3: a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A3 )
         => ( less_eq @ M3 @ X3 ) )
     => ( condit1001553558elow_a @ less_eq @ A3 ) ) ).

% local.bdd_belowI
thf(fact_168_local_Obdd__aboveI,axiom,
    ! [A3: set_a,M4: a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A3 )
         => ( less_eq @ X3 @ M4 ) )
     => ( condit1627435690bove_a @ less_eq @ A3 ) ) ).

% local.bdd_aboveI
thf(fact_169_semilattice_Oidem,axiom,
    ! [F: a > a > a,A: a] :
      ( ( semilattice_a @ F )
     => ( ( F @ A @ A )
        = A ) ) ).

% semilattice.idem
thf(fact_170_semilattice_Oleft__idem,axiom,
    ! [F: a > a > a,A: a,B: a] :
      ( ( semilattice_a @ F )
     => ( ( F @ A @ ( F @ A @ B ) )
        = ( F @ A @ B ) ) ) ).

% semilattice.left_idem
thf(fact_171_semilattice_Oright__idem,axiom,
    ! [F: a > a > a,A: a,B: a] :
      ( ( semilattice_a @ F )
     => ( ( F @ ( F @ A @ B ) @ B )
        = ( F @ A @ B ) ) ) ).

% semilattice.right_idem
thf(fact_172_local_Obdd__above__mono,axiom,
    ! [B4: set_a,A3: set_a] :
      ( ( condit1627435690bove_a @ less_eq @ B4 )
     => ( ( ord_less_eq_set_a @ A3 @ B4 )
       => ( condit1627435690bove_a @ less_eq @ A3 ) ) ) ).

% local.bdd_above_mono
thf(fact_173_local_Obdd__below__mono,axiom,
    ! [B4: set_a,A3: set_a] :
      ( ( condit1001553558elow_a @ less_eq @ B4 )
     => ( ( ord_less_eq_set_a @ A3 @ B4 )
       => ( condit1001553558elow_a @ less_eq @ A3 ) ) ) ).

% local.bdd_below_mono
thf(fact_174_local_Obdd__above__finite,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( condit1627435690bove_a @ less_eq @ A3 ) ) ).

% local.bdd_above_finite
thf(fact_175_local_Ofinite__has__maximal2,axiom,
    ! [A3: set_a,A: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ A @ A3 )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A3 )
            & ( less_eq @ A @ X3 )
            & ! [Xa: a] :
                ( ( member_a @ Xa @ A3 )
               => ( ( less_eq @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% local.finite_has_maximal2
thf(fact_176_local_Ofinite__has__minimal2,axiom,
    ! [A3: set_a,A: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ A @ A3 )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A3 )
            & ( less_eq @ X3 @ A )
            & ! [Xa: a] :
                ( ( member_a @ Xa @ A3 )
               => ( ( less_eq @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% local.finite_has_minimal2
thf(fact_177_local_Obdd__below__finite,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( condit1001553558elow_a @ less_eq @ A3 ) ) ).

% local.bdd_below_finite
thf(fact_178_local_OantimonoD,axiom,
    ! [F: a > set_a,X: a,Y: a] :
      ( ( antimono_a_set_a @ less_eq @ F )
     => ( ( less_eq @ X @ Y )
       => ( ord_less_eq_set_a @ ( F @ Y ) @ ( F @ X ) ) ) ) ).

% local.antimonoD
thf(fact_179_local_OantimonoE,axiom,
    ! [F: a > set_a,X: a,Y: a] :
      ( ( antimono_a_set_a @ less_eq @ F )
     => ( ( less_eq @ X @ Y )
       => ( ord_less_eq_set_a @ ( F @ Y ) @ ( F @ X ) ) ) ) ).

% local.antimonoE
thf(fact_180_local_OantimonoI,axiom,
    ! [F: a > set_a] :
      ( ! [X3: a,Y4: a] :
          ( ( less_eq @ X3 @ Y4 )
         => ( ord_less_eq_set_a @ ( F @ Y4 ) @ ( F @ X3 ) ) )
     => ( antimono_a_set_a @ less_eq @ F ) ) ).

% local.antimonoI
thf(fact_181_local_Oantimono__def,axiom,
    ! [F: a > set_a] :
      ( ( antimono_a_set_a @ less_eq @ F )
      = ( ! [X2: a,Y3: a] :
            ( ( less_eq @ X2 @ Y3 )
           => ( ord_less_eq_set_a @ ( F @ Y3 ) @ ( F @ X2 ) ) ) ) ) ).

% local.antimono_def
thf(fact_182_local_Omono__def,axiom,
    ! [F: a > set_a] :
      ( ( mono_a_set_a @ less_eq @ F )
      = ( ! [X2: a,Y3: a] :
            ( ( less_eq @ X2 @ Y3 )
           => ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y3 ) ) ) ) ) ).

% local.mono_def
thf(fact_183_local_OmonoI,axiom,
    ! [F: a > set_a] :
      ( ! [X3: a,Y4: a] :
          ( ( less_eq @ X3 @ Y4 )
         => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
     => ( mono_a_set_a @ less_eq @ F ) ) ).

% local.monoI
thf(fact_184_local_OmonoE,axiom,
    ! [F: a > set_a,X: a,Y: a] :
      ( ( mono_a_set_a @ less_eq @ F )
     => ( ( less_eq @ X @ Y )
       => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y ) ) ) ) ).

% local.monoE
thf(fact_185_local_OmonoD,axiom,
    ! [F: a > set_a,X: a,Y: a] :
      ( ( mono_a_set_a @ less_eq @ F )
     => ( ( less_eq @ X @ Y )
       => ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y ) ) ) ) ).

% local.monoD
thf(fact_186_local_OSup__fin_OcoboundedI,axiom,
    ! [A3: set_a,A: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ A @ A3 )
       => ( less_eq @ A @ ( lattic1781219155_fin_a @ sup @ A3 ) ) ) ) ).

% local.Sup_fin.coboundedI
thf(fact_187_local_OInf__fin_OcoboundedI,axiom,
    ! [A3: set_a,A: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ A @ A3 )
       => ( less_eq @ ( lattic247676691_fin_a @ inf @ A3 ) @ A ) ) ) ).

% local.Inf_fin.coboundedI
thf(fact_188_local_OSup__fin_Oin__idem,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ X @ A3 )
       => ( ( sup @ X @ ( lattic1781219155_fin_a @ sup @ A3 ) )
          = ( lattic1781219155_fin_a @ sup @ A3 ) ) ) ) ).

% local.Sup_fin.in_idem
thf(fact_189_local_OInf__fin_Oin__idem,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ X @ A3 )
       => ( ( inf @ X @ ( lattic247676691_fin_a @ inf @ A3 ) )
          = ( lattic247676691_fin_a @ inf @ A3 ) ) ) ) ).

% local.Inf_fin.in_idem
thf(fact_190_local_Oinf__Sup__absorb,axiom,
    ! [A3: set_a,A: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ A @ A3 )
       => ( ( inf @ A @ ( lattic1781219155_fin_a @ sup @ A3 ) )
          = A ) ) ) ).

% local.inf_Sup_absorb
thf(fact_191_local_Osup__Inf__absorb,axiom,
    ! [A3: set_a,A: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( member_a @ A @ A3 )
       => ( ( sup @ ( lattic247676691_fin_a @ inf @ A3 ) @ A )
          = A ) ) ) ).

% local.sup_Inf_absorb
thf(fact_192_semilattice__sup_OSup__fin_Ocong,axiom,
    lattic1781219155_fin_a = lattic1781219155_fin_a ).

% semilattice_sup.Sup_fin.cong
thf(fact_193_semilattice__inf_OInf__fin_Ocong,axiom,
    lattic247676691_fin_a = lattic247676691_fin_a ).

% semilattice_inf.Inf_fin.cong
thf(fact_194_local_OInf__fin__le__Sup__fin,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( less_eq @ ( lattic247676691_fin_a @ inf @ A3 ) @ ( lattic1781219155_fin_a @ sup @ A3 ) ) ) ) ).

% local.Inf_fin_le_Sup_fin
thf(fact_195_local_OSup__fin_Osubset__imp,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( A3 != bot_bot_set_a )
       => ( ( finite_finite_a @ B4 )
         => ( less_eq @ ( lattic1781219155_fin_a @ sup @ A3 ) @ ( lattic1781219155_fin_a @ sup @ B4 ) ) ) ) ) ).

% local.Sup_fin.subset_imp
thf(fact_196_local_Ofinite__has__minimal,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A3 )
            & ! [Xa: a] :
                ( ( member_a @ Xa @ A3 )
               => ( ( less_eq @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% local.finite_has_minimal
thf(fact_197_local_Ofinite__has__maximal,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A3 )
            & ! [Xa: a] :
                ( ( member_a @ Xa @ A3 )
               => ( ( less_eq @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% local.finite_has_maximal
thf(fact_198_local_OInf__fin_Osubset,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( B4 != bot_bot_set_a )
       => ( ( ord_less_eq_set_a @ B4 @ A3 )
         => ( ( inf @ ( lattic247676691_fin_a @ inf @ B4 ) @ ( lattic247676691_fin_a @ inf @ A3 ) )
            = ( lattic247676691_fin_a @ inf @ A3 ) ) ) ) ) ).

% local.Inf_fin.subset
thf(fact_199_local_OSup__fin_Osubset,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( B4 != bot_bot_set_a )
       => ( ( ord_less_eq_set_a @ B4 @ A3 )
         => ( ( sup @ ( lattic1781219155_fin_a @ sup @ B4 ) @ ( lattic1781219155_fin_a @ sup @ A3 ) )
            = ( lattic1781219155_fin_a @ sup @ A3 ) ) ) ) ) ).

% local.Sup_fin.subset
thf(fact_200_local_OInf__fin_Obounded__iff,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ( less_eq @ X @ ( lattic247676691_fin_a @ inf @ A3 ) )
          = ( ! [X2: a] :
                ( ( member_a @ X2 @ A3 )
               => ( less_eq @ X @ X2 ) ) ) ) ) ) ).

% local.Inf_fin.bounded_iff
thf(fact_201_local_OInf__fin_OboundedI,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ! [A4: a] :
              ( ( member_a @ A4 @ A3 )
             => ( less_eq @ X @ A4 ) )
         => ( less_eq @ X @ ( lattic247676691_fin_a @ inf @ A3 ) ) ) ) ) ).

% local.Inf_fin.boundedI
thf(fact_202_local_OInf__fin_OboundedE,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ( less_eq @ X @ ( lattic247676691_fin_a @ inf @ A3 ) )
         => ! [A5: a] :
              ( ( member_a @ A5 @ A3 )
             => ( less_eq @ X @ A5 ) ) ) ) ) ).

% local.Inf_fin.boundedE
thf(fact_203_local_OSup__fin_Obounded__iff,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ( less_eq @ ( lattic1781219155_fin_a @ sup @ A3 ) @ X )
          = ( ! [X2: a] :
                ( ( member_a @ X2 @ A3 )
               => ( less_eq @ X2 @ X ) ) ) ) ) ) ).

% local.Sup_fin.bounded_iff
thf(fact_204_local_OSup__fin_OboundedI,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ! [A4: a] :
              ( ( member_a @ A4 @ A3 )
             => ( less_eq @ A4 @ X ) )
         => ( less_eq @ ( lattic1781219155_fin_a @ sup @ A3 ) @ X ) ) ) ) ).

% local.Sup_fin.boundedI
thf(fact_205_local_OSup__fin_OboundedE,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ( less_eq @ ( lattic1781219155_fin_a @ sup @ A3 ) @ X )
         => ! [A5: a] :
              ( ( member_a @ A5 @ A3 )
             => ( less_eq @ A5 @ X ) ) ) ) ) ).

% local.Sup_fin.boundedE
thf(fact_206_local_OInf__fin_Osubset__imp,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( A3 != bot_bot_set_a )
       => ( ( finite_finite_a @ B4 )
         => ( less_eq @ ( lattic247676691_fin_a @ inf @ B4 ) @ ( lattic247676691_fin_a @ inf @ A3 ) ) ) ) ) ).

% local.Inf_fin.subset_imp
thf(fact_207_local_Obdd__below__empty,axiom,
    condit1001553558elow_a @ less_eq @ bot_bot_set_a ).

% local.bdd_below_empty
thf(fact_208_local_Obdd__above__empty,axiom,
    condit1627435690bove_a @ less_eq @ bot_bot_set_a ).

% local.bdd_above_empty
thf(fact_209_local_Onot__empty__eq__Iic__eq__empty,axiom,
    ! [H: a] :
      ( bot_bot_set_a
     != ( set_atMost_a @ less_eq @ H ) ) ).

% local.not_empty_eq_Iic_eq_empty
thf(fact_210_local_Onot__empty__eq__Ici__eq__empty,axiom,
    ! [L: a] :
      ( bot_bot_set_a
     != ( set_atLeast_a @ less_eq @ L ) ) ).

% local.not_empty_eq_Ici_eq_empty
thf(fact_211_local_OatLeast__iff,axiom,
    ! [I: a,K: a] :
      ( ( member_a @ I @ ( set_atLeast_a @ less_eq @ K ) )
      = ( less_eq @ K @ I ) ) ).

% local.atLeast_iff
thf(fact_212_local_OatMost__iff,axiom,
    ! [I: a,K: a] :
      ( ( member_a @ I @ ( set_atMost_a @ less_eq @ K ) )
      = ( less_eq @ I @ K ) ) ).

% local.atMost_iff
thf(fact_213_local_Obdd__below__Ici,axiom,
    ! [A: a] : ( condit1001553558elow_a @ less_eq @ ( set_atLeast_a @ less_eq @ A ) ) ).

% local.bdd_below_Ici
thf(fact_214_local_Obdd__above__Iic,axiom,
    ! [B: a] : ( condit1627435690bove_a @ less_eq @ ( set_atMost_a @ less_eq @ B ) ) ).

% local.bdd_above_Iic
thf(fact_215_subset__empty,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ bot_bot_set_a )
      = ( A3 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_216_empty__subsetI,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A3 ) ).

% empty_subsetI
thf(fact_217_subset__antisym,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ A3 )
       => ( A3 = B4 ) ) ) ).

% subset_antisym
thf(fact_218_subsetI,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A3 )
         => ( member_a @ X3 @ B4 ) )
     => ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% subsetI
thf(fact_219_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X2: a] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_220_set__eq__subset,axiom,
    ( ( ^ [Y2: set_a,Z: set_a] : ( Y2 = Z ) )
    = ( ^ [A6: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B5 )
          & ( ord_less_eq_set_a @ B5 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_221_subset__trans,axiom,
    ! [A3: set_a,B4: set_a,C4: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ C4 )
       => ( ord_less_eq_set_a @ A3 @ C4 ) ) ) ).

% subset_trans
thf(fact_222_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_223_subset__refl,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_224_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B5: set_a] :
        ! [T: a] :
          ( ( member_a @ T @ A6 )
         => ( member_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_225_equalityD2,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( A3 = B4 )
     => ( ord_less_eq_set_a @ B4 @ A3 ) ) ).

% equalityD2
thf(fact_226_equalityD1,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( A3 = B4 )
     => ( ord_less_eq_set_a @ A3 @ B4 ) ) ).

% equalityD1
thf(fact_227_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B5: set_a] :
        ! [X2: a] :
          ( ( member_a @ X2 @ A6 )
         => ( member_a @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_228_equalityE,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( A3 = B4 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B4 )
         => ~ ( ord_less_eq_set_a @ B4 @ A3 ) ) ) ).

% equalityE
thf(fact_229_subsetD,axiom,
    ! [A3: set_a,B4: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( member_a @ C @ A3 )
       => ( member_a @ C @ B4 ) ) ) ).

% subsetD
thf(fact_230_in__mono,axiom,
    ! [A3: set_a,B4: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ B4 )
     => ( ( member_a @ X @ A3 )
       => ( member_a @ X @ B4 ) ) ) ).

% in_mono
thf(fact_231_local_Omono__inf,axiom,
    ! [F: a > set_a,A3: a,B4: a] :
      ( ( mono_a_set_a @ less_eq @ F )
     => ( ord_less_eq_set_a @ ( F @ ( inf @ A3 @ B4 ) ) @ ( inf_inf_set_a @ ( F @ A3 ) @ ( F @ B4 ) ) ) ) ).

% local.mono_inf
thf(fact_232_local_OSup__fin_Oclosed,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ! [X3: a,Y4: a] : ( member_a @ ( sup @ X3 @ Y4 ) @ ( insert_a @ X3 @ ( insert_a @ Y4 @ bot_bot_set_a ) ) )
         => ( member_a @ ( lattic1781219155_fin_a @ sup @ A3 ) @ A3 ) ) ) ) ).

% local.Sup_fin.closed
thf(fact_233_local_Obdd__above__Int1,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( condit1627435690bove_a @ less_eq @ A3 )
     => ( condit1627435690bove_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).

% local.bdd_above_Int1
thf(fact_234_local_Obdd__above__Int2,axiom,
    ! [B4: set_a,A3: set_a] :
      ( ( condit1627435690bove_a @ less_eq @ B4 )
     => ( condit1627435690bove_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).

% local.bdd_above_Int2
thf(fact_235_local_Obdd__below__Int1,axiom,
    ! [A3: set_a,B4: set_a] :
      ( ( condit1001553558elow_a @ less_eq @ A3 )
     => ( condit1001553558elow_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).

% local.bdd_below_Int1
thf(fact_236_local_Obdd__below__Int2,axiom,
    ! [B4: set_a,A3: set_a] :
      ( ( condit1001553558elow_a @ less_eq @ B4 )
     => ( condit1001553558elow_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).

% local.bdd_below_Int2
thf(fact_237_Int__subset__iff,axiom,
    ! [C4: set_a,A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ C4 @ ( inf_inf_set_a @ A3 @ B4 ) )
      = ( ( ord_less_eq_set_a @ C4 @ A3 )
        & ( ord_less_eq_set_a @ C4 @ B4 ) ) ) ).

% Int_subset_iff
thf(fact_238_semilattice__inf__class_Oinf__right__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% semilattice_inf_class.inf_right_idem
thf(fact_239_semilattice__inf__class_Oinf_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ B )
      = ( inf_inf_set_a @ A @ B ) ) ).

% semilattice_inf_class.inf.right_idem
thf(fact_240_semilattice__inf__class_Oinf__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% semilattice_inf_class.inf_left_idem
thf(fact_241_semilattice__inf__class_Oinf_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B ) )
      = ( inf_inf_set_a @ A @ B ) ) ).

% semilattice_inf_class.inf.left_idem
thf(fact_242_semilattice__inf__class_Oinf__idem,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ X )
      = X ) ).

% semilattice_inf_class.inf_idem
thf(fact_243_semilattice__inf__class_Oinf_Oidem,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ A )
      = A ) ).

% semilattice_inf_class.inf.idem
thf(fact_244_local_OInf__fin_Oinsert__not__elem,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ~ ( member_a @ X @ A3 )
       => ( ( A3 != bot_bot_set_a )
         => ( ( lattic247676691_fin_a @ inf @ ( insert_a @ X @ A3 ) )
            = ( inf @ X @ ( lattic247676691_fin_a @ inf @ A3 ) ) ) ) ) ) ).

% local.Inf_fin.insert_not_elem
thf(fact_245_local_OInf__fin_Oclosed,axiom,
    ! [A3: set_a] :
      ( ( finite_finite_a @ A3 )
     => ( ( A3 != bot_bot_set_a )
       => ( ! [X3: a,Y4: a] : ( member_a @ ( inf @ X3 @ Y4 ) @ ( insert_a @ X3 @ ( insert_a @ Y4 @ bot_bot_set_a ) ) )
         => ( member_a @ ( lattic247676691_fin_a @ inf @ A3 ) @ A3 ) ) ) ) ).

% local.Inf_fin.closed
thf(fact_246_local_OSup__fin_Oinsert__not__elem,axiom,
    ! [A3: set_a,X: a] :
      ( ( finite_finite_a @ A3 )
     => ( ~ ( member_a @ X @ A3 )
       => ( ( A3 != bot_bot_set_a )
         => ( ( lattic1781219155_fin_a @ sup @ ( insert_a @ X @ A3 ) )
            = ( sup @ X @ ( lattic1781219155_fin_a @ sup @ A3 ) ) ) ) ) ) ).

% local.Sup_fin.insert_not_elem
thf(fact_247_semilattice__inf__class_Ole__inf__iff,axiom,
    ! [X: set_a,Y: set_a,Z2: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z2 ) )
      = ( ( ord_less_eq_set_a @ X @ Y )
        & ( ord_less_eq_set_a @ X @ Z2 ) ) ) ).

% semilattice_inf_class.le_inf_iff
thf(fact_248_semilattice__inf__class_Oinf_Obounded__iff,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
      = ( ( ord_less_eq_set_a @ A @ B )
        & ( ord_less_eq_set_a @ A @ C ) ) ) ).

% semilattice_inf_class.inf.bounded_iff
thf(fact_249_inf__bot__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% inf_bot_right
thf(fact_250_inf__bot__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% inf_bot_left
thf(fact_251_insert__subset,axiom,
    ! [X: a,A3: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A3 ) @ B4 )
      = ( ( member_a @ X @ B4 )
        & ( ord_less_eq_set_a @ A3 @ B4 ) ) ) ).

% insert_subset
thf(fact_252_singleton__insert__inj__eq,axiom,
    ! [B: a,A: a,A3: set_a] :
      ( ( ( insert_a @ B @ bot_bot_set_a )
        = ( insert_a @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_253_singleton__insert__inj__eq_H,axiom,
    ! [A: a,A3: set_a,B: a] :
      ( ( ( insert_a @ A @ A3 )
        = ( insert_a @ B @ bot_bot_set_a ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'

% Conjectures (2)
thf(conj_0,hypothesis,
    less_eq @ ( modula1936294176_aux_a @ inf @ sup @ a2 @ b @ c ) @ ( modula1144073633_aux_a @ inf @ sup @ a2 @ b @ c ) ).

thf(conj_1,conjecture,
    ( ( sup @ ( modula17988509_aux_a @ inf @ sup @ c @ a2 @ b ) @ ( modula17988509_aux_a @ inf @ sup @ a2 @ b @ c ) )
    = ( modula1144073633_aux_a @ inf @ sup @ a2 @ b @ c ) ) ).

%------------------------------------------------------------------------------