TPTP Problem File: ITP120^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP120^1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer Modular_Distrib_Lattice problem prob_203__3262370_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : Modular_Distrib_Lattice/prob_203__3262370_1 [Des21]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.60 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0
% Syntax : Number of formulae : 284 ( 138 unt; 34 typ; 0 def)
% Number of atoms : 592 ( 190 equ; 0 cnn)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 1817 ( 14 ~; 1 |; 30 &;1556 @)
% ( 0 <=>; 216 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 184 ( 184 >; 0 *; 0 +; 0 <<)
% Number of symbols : 35 ( 32 usr; 5 con; 0-5 aty)
% Number of variables : 616 ( 40 ^; 570 !; 6 ?; 616 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 15:44:17.242
%------------------------------------------------------------------------------
% Could-be-implicit typings (2)
thf(ty_n_t__Set__Oset_Itf__a_J,type,
set_a: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (32)
thf(sy_c_Conditionally__Complete__Lattices_Opreorder_Obdd__above_001tf__a,type,
condit1627435690bove_a: ( a > a > $o ) > set_a > $o ).
thf(sy_c_Conditionally__Complete__Lattices_Opreorder_Obdd__below_001tf__a,type,
condit1001553558elow_a: ( a > a > $o ) > set_a > $o ).
thf(sy_c_Finite__Set_Ocomp__fun__idem_001tf__a_001tf__a,type,
finite40241356em_a_a: ( a > a > a ) > $o ).
thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
finite_finite_a: set_a > $o ).
thf(sy_c_Groups_Oabel__semigroup_001tf__a,type,
abel_semigroup_a: ( a > a > a ) > $o ).
thf(sy_c_Groups_Osemigroup_001tf__a,type,
semigroup_a: ( a > a > a ) > $o ).
thf(sy_c_If_001tf__a,type,
if_a: $o > a > a > a ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
inf_inf_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices_Osemilattice_001tf__a,type,
semilattice_a: ( a > a > a ) > $o ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
sup_sup_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices__Big_Osemilattice__set_001tf__a,type,
lattic1885654924_set_a: ( a > a > a ) > $o ).
thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oa__aux_001tf__a,type,
modula17988509_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).
thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Ob__aux_001tf__a,type,
modula1373251614_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).
thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oc__aux_001tf__a,type,
modula581031071_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).
thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Od__aux_001tf__a,type,
modula1936294176_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).
thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oe__aux_001tf__a,type,
modula1144073633_aux_a: ( a > a > a ) > ( a > a > a ) > a > a > a > a ).
thf(sy_c_Modular__Distrib__Lattice__Mirabelle__ybbibajlty_Olattice_Oincomp_001tf__a,type,
modula1727524044comp_a: ( a > a > $o ) > a > a > $o ).
thf(sy_c_Orderings_Oord_OLeast_001tf__a,type,
least_a: ( a > a > $o ) > ( a > $o ) > a ).
thf(sy_c_Orderings_Oord_Omax_001tf__a,type,
max_a: ( a > a > $o ) > a > a > a ).
thf(sy_c_Orderings_Oord_Omin_001tf__a,type,
min_a: ( a > a > $o ) > a > a > a ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
ord_less_eq_set_a: set_a > set_a > $o ).
thf(sy_c_Orderings_Oorder_OGreatest_001tf__a,type,
greatest_a: ( a > a > $o ) > ( a > $o ) > a ).
thf(sy_c_Orderings_Oorder_Oantimono_001tf__a_001t__Set__Oset_Itf__a_J,type,
antimono_a_set_a: ( a > a > $o ) > ( a > set_a ) > $o ).
thf(sy_c_Orderings_Oorder_Omono_001tf__a_001t__Set__Oset_Itf__a_J,type,
mono_a_set_a: ( a > a > $o ) > ( a > set_a ) > $o ).
thf(sy_c_Set_OCollect_001tf__a,type,
collect_a: ( a > $o ) > set_a ).
thf(sy_c_member_001tf__a,type,
member_a: a > set_a > $o ).
thf(sy_v_a,type,
a2: a ).
thf(sy_v_b,type,
b: a ).
thf(sy_v_c,type,
c: a ).
thf(sy_v_inf,type,
inf: a > a > a ).
thf(sy_v_less__eq,type,
less_eq: a > a > $o ).
thf(sy_v_sup,type,
sup: a > a > a ).
% Relevant facts (245)
thf(fact_0_local_Oantisym,axiom,
! [X: a,Y: a] :
( ( less_eq @ X @ Y )
=> ( ( less_eq @ Y @ X )
=> ( X = Y ) ) ) ).
% local.antisym
thf(fact_1_local_Oantisym__conv,axiom,
! [Y: a,X: a] :
( ( less_eq @ Y @ X )
=> ( ( less_eq @ X @ Y )
= ( X = Y ) ) ) ).
% local.antisym_conv
thf(fact_2_local_Odual__order_Oantisym,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
=> ( ( less_eq @ A @ B )
=> ( A = B ) ) ) ).
% local.dual_order.antisym
thf(fact_3_local_Odual__order_Oeq__iff,axiom,
( ( ^ [Y2: a,Z: a] : ( Y2 = Z ) )
= ( ^ [A2: a,B2: a] :
( ( less_eq @ B2 @ A2 )
& ( less_eq @ A2 @ B2 ) ) ) ) ).
% local.dual_order.eq_iff
thf(fact_4_local_Odual__order_Otrans,axiom,
! [B: a,A: a,C: a] :
( ( less_eq @ B @ A )
=> ( ( less_eq @ C @ B )
=> ( less_eq @ C @ A ) ) ) ).
% local.dual_order.trans
thf(fact_5_local_Oeq__iff,axiom,
( ( ^ [Y2: a,Z: a] : ( Y2 = Z ) )
= ( ^ [X2: a,Y3: a] :
( ( less_eq @ X2 @ Y3 )
& ( less_eq @ Y3 @ X2 ) ) ) ) ).
% local.eq_iff
thf(fact_6_local_Oeq__refl,axiom,
! [X: a,Y: a] :
( ( X = Y )
=> ( less_eq @ X @ Y ) ) ).
% local.eq_refl
thf(fact_7_local_Oord__eq__le__trans,axiom,
! [A: a,B: a,C: a] :
( ( A = B )
=> ( ( less_eq @ B @ C )
=> ( less_eq @ A @ C ) ) ) ).
% local.ord_eq_le_trans
thf(fact_8_local_Oord__le__eq__trans,axiom,
! [A: a,B: a,C: a] :
( ( less_eq @ A @ B )
=> ( ( B = C )
=> ( less_eq @ A @ C ) ) ) ).
% local.ord_le_eq_trans
thf(fact_9_local_Oorder_Oantisym,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
=> ( ( less_eq @ B @ A )
=> ( A = B ) ) ) ).
% local.order.antisym
thf(fact_10_local_Oorder_Oeq__iff,axiom,
( ( ^ [Y2: a,Z: a] : ( Y2 = Z ) )
= ( ^ [A2: a,B2: a] :
( ( less_eq @ A2 @ B2 )
& ( less_eq @ B2 @ A2 ) ) ) ) ).
% local.order.eq_iff
thf(fact_11_local_Oorder_Otrans,axiom,
! [A: a,B: a,C: a] :
( ( less_eq @ A @ B )
=> ( ( less_eq @ B @ C )
=> ( less_eq @ A @ C ) ) ) ).
% local.order.trans
thf(fact_12_local_Oorder__trans,axiom,
! [X: a,Y: a,Z2: a] :
( ( less_eq @ X @ Y )
=> ( ( less_eq @ Y @ Z2 )
=> ( less_eq @ X @ Z2 ) ) ) ).
% local.order_trans
thf(fact_13_local_Oinf_Oassoc,axiom,
! [A: a,B: a,C: a] :
( ( inf @ ( inf @ A @ B ) @ C )
= ( inf @ A @ ( inf @ B @ C ) ) ) ).
% local.inf.assoc
thf(fact_14_local_Oinf_Ocommute,axiom,
! [A: a,B: a] :
( ( inf @ A @ B )
= ( inf @ B @ A ) ) ).
% local.inf.commute
thf(fact_15_local_Oinf_Oleft__commute,axiom,
! [B: a,A: a,C: a] :
( ( inf @ B @ ( inf @ A @ C ) )
= ( inf @ A @ ( inf @ B @ C ) ) ) ).
% local.inf.left_commute
thf(fact_16_local_Oinf__assoc,axiom,
! [X: a,Y: a,Z2: a] :
( ( inf @ ( inf @ X @ Y ) @ Z2 )
= ( inf @ X @ ( inf @ Y @ Z2 ) ) ) ).
% local.inf_assoc
thf(fact_17_local_Oinf__commute,axiom,
! [X: a,Y: a] :
( ( inf @ X @ Y )
= ( inf @ Y @ X ) ) ).
% local.inf_commute
thf(fact_18_local_Oinf__left__commute,axiom,
! [X: a,Y: a,Z2: a] :
( ( inf @ X @ ( inf @ Y @ Z2 ) )
= ( inf @ Y @ ( inf @ X @ Z2 ) ) ) ).
% local.inf_left_commute
thf(fact_19_local_Osup_Oassoc,axiom,
! [A: a,B: a,C: a] :
( ( sup @ ( sup @ A @ B ) @ C )
= ( sup @ A @ ( sup @ B @ C ) ) ) ).
% local.sup.assoc
thf(fact_20_local_Osup_Ocommute,axiom,
! [A: a,B: a] :
( ( sup @ A @ B )
= ( sup @ B @ A ) ) ).
% local.sup.commute
thf(fact_21_local_Osup_Oleft__commute,axiom,
! [B: a,A: a,C: a] :
( ( sup @ B @ ( sup @ A @ C ) )
= ( sup @ A @ ( sup @ B @ C ) ) ) ).
% local.sup.left_commute
thf(fact_22_local_Osup__assoc,axiom,
! [X: a,Y: a,Z2: a] :
( ( sup @ ( sup @ X @ Y ) @ Z2 )
= ( sup @ X @ ( sup @ Y @ Z2 ) ) ) ).
% local.sup_assoc
thf(fact_23_local_Osup__commute,axiom,
! [X: a,Y: a] :
( ( sup @ X @ Y )
= ( sup @ Y @ X ) ) ).
% local.sup_commute
thf(fact_24_local_Osup__left__commute,axiom,
! [X: a,Y: a,Z2: a] :
( ( sup @ X @ ( sup @ Y @ Z2 ) )
= ( sup @ Y @ ( sup @ X @ Z2 ) ) ) ).
% local.sup_left_commute
thf(fact_25_local_Oinf_Oabsorb1,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
=> ( ( inf @ A @ B )
= A ) ) ).
% local.inf.absorb1
thf(fact_26_local_Oinf_Oabsorb2,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
=> ( ( inf @ A @ B )
= B ) ) ).
% local.inf.absorb2
thf(fact_27_local_Oinf_Oabsorb__iff1,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
= ( ( inf @ A @ B )
= A ) ) ).
% local.inf.absorb_iff1
thf(fact_28_local_Oinf_Oabsorb__iff2,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
= ( ( inf @ A @ B )
= B ) ) ).
% local.inf.absorb_iff2
thf(fact_29_local_Oinf_OboundedE,axiom,
! [A: a,B: a,C: a] :
( ( less_eq @ A @ ( inf @ B @ C ) )
=> ~ ( ( less_eq @ A @ B )
=> ~ ( less_eq @ A @ C ) ) ) ).
% local.inf.boundedE
thf(fact_30_local_Oinf_OboundedI,axiom,
! [A: a,B: a,C: a] :
( ( less_eq @ A @ B )
=> ( ( less_eq @ A @ C )
=> ( less_eq @ A @ ( inf @ B @ C ) ) ) ) ).
% local.inf.boundedI
thf(fact_31_local_Oinf_Ocobounded1,axiom,
! [A: a,B: a] : ( less_eq @ ( inf @ A @ B ) @ A ) ).
% local.inf.cobounded1
thf(fact_32_local_Oinf_Ocobounded2,axiom,
! [A: a,B: a] : ( less_eq @ ( inf @ A @ B ) @ B ) ).
% local.inf.cobounded2
thf(fact_33_local_Oinf_OcoboundedI1,axiom,
! [A: a,C: a,B: a] :
( ( less_eq @ A @ C )
=> ( less_eq @ ( inf @ A @ B ) @ C ) ) ).
% local.inf.coboundedI1
thf(fact_34_local_Oinf_OcoboundedI2,axiom,
! [B: a,C: a,A: a] :
( ( less_eq @ B @ C )
=> ( less_eq @ ( inf @ A @ B ) @ C ) ) ).
% local.inf.coboundedI2
thf(fact_35_local_Oinf_OorderE,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
=> ( A
= ( inf @ A @ B ) ) ) ).
% local.inf.orderE
thf(fact_36_local_Oinf_OorderI,axiom,
! [A: a,B: a] :
( ( A
= ( inf @ A @ B ) )
=> ( less_eq @ A @ B ) ) ).
% local.inf.orderI
thf(fact_37_local_Oinf_Oorder__iff,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
= ( A
= ( inf @ A @ B ) ) ) ).
% local.inf.order_iff
thf(fact_38_local_Oinf__absorb1,axiom,
! [X: a,Y: a] :
( ( less_eq @ X @ Y )
=> ( ( inf @ X @ Y )
= X ) ) ).
% local.inf_absorb1
thf(fact_39_local_Oinf__absorb2,axiom,
! [Y: a,X: a] :
( ( less_eq @ Y @ X )
=> ( ( inf @ X @ Y )
= Y ) ) ).
% local.inf_absorb2
thf(fact_40_local_Oinf__greatest,axiom,
! [X: a,Y: a,Z2: a] :
( ( less_eq @ X @ Y )
=> ( ( less_eq @ X @ Z2 )
=> ( less_eq @ X @ ( inf @ Y @ Z2 ) ) ) ) ).
% local.inf_greatest
thf(fact_41_local_Oinf__le1,axiom,
! [X: a,Y: a] : ( less_eq @ ( inf @ X @ Y ) @ X ) ).
% local.inf_le1
thf(fact_42_local_Oinf__le2,axiom,
! [X: a,Y: a] : ( less_eq @ ( inf @ X @ Y ) @ Y ) ).
% local.inf_le2
thf(fact_43_local_Oinf__mono,axiom,
! [A: a,C: a,B: a,D: a] :
( ( less_eq @ A @ C )
=> ( ( less_eq @ B @ D )
=> ( less_eq @ ( inf @ A @ B ) @ ( inf @ C @ D ) ) ) ) ).
% local.inf_mono
thf(fact_44_local_Oinf__unique,axiom,
! [F: a > a > a,X: a,Y: a] :
( ! [X3: a,Y4: a] : ( less_eq @ ( F @ X3 @ Y4 ) @ X3 )
=> ( ! [X3: a,Y4: a] : ( less_eq @ ( F @ X3 @ Y4 ) @ Y4 )
=> ( ! [X3: a,Y4: a,Z3: a] :
( ( less_eq @ X3 @ Y4 )
=> ( ( less_eq @ X3 @ Z3 )
=> ( less_eq @ X3 @ ( F @ Y4 @ Z3 ) ) ) )
=> ( ( inf @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% local.inf_unique
thf(fact_45_mem__Collect__eq,axiom,
! [A: a,P: a > $o] :
( ( member_a @ A @ ( collect_a @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
! [A3: set_a] :
( ( collect_a
@ ^ [X2: a] : ( member_a @ X2 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_47_Collect__cong,axiom,
! [P: a > $o,Q: a > $o] :
( ! [X3: a] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_a @ P )
= ( collect_a @ Q ) ) ) ).
% Collect_cong
thf(fact_48_local_Ole__iff__inf,axiom,
! [X: a,Y: a] :
( ( less_eq @ X @ Y )
= ( ( inf @ X @ Y )
= X ) ) ).
% local.le_iff_inf
thf(fact_49_local_Ole__infE,axiom,
! [X: a,A: a,B: a] :
( ( less_eq @ X @ ( inf @ A @ B ) )
=> ~ ( ( less_eq @ X @ A )
=> ~ ( less_eq @ X @ B ) ) ) ).
% local.le_infE
thf(fact_50_local_Ole__infI,axiom,
! [X: a,A: a,B: a] :
( ( less_eq @ X @ A )
=> ( ( less_eq @ X @ B )
=> ( less_eq @ X @ ( inf @ A @ B ) ) ) ) ).
% local.le_infI
thf(fact_51_local_Ole__infI1,axiom,
! [A: a,X: a,B: a] :
( ( less_eq @ A @ X )
=> ( less_eq @ ( inf @ A @ B ) @ X ) ) ).
% local.le_infI1
thf(fact_52_local_Ole__infI2,axiom,
! [B: a,X: a,A: a] :
( ( less_eq @ B @ X )
=> ( less_eq @ ( inf @ A @ B ) @ X ) ) ).
% local.le_infI2
thf(fact_53_local_Ole__iff__sup,axiom,
! [X: a,Y: a] :
( ( less_eq @ X @ Y )
= ( ( sup @ X @ Y )
= Y ) ) ).
% local.le_iff_sup
thf(fact_54_local_Ole__supE,axiom,
! [A: a,B: a,X: a] :
( ( less_eq @ ( sup @ A @ B ) @ X )
=> ~ ( ( less_eq @ A @ X )
=> ~ ( less_eq @ B @ X ) ) ) ).
% local.le_supE
thf(fact_55_local_Ole__supI,axiom,
! [A: a,X: a,B: a] :
( ( less_eq @ A @ X )
=> ( ( less_eq @ B @ X )
=> ( less_eq @ ( sup @ A @ B ) @ X ) ) ) ).
% local.le_supI
thf(fact_56_local_Ole__supI1,axiom,
! [X: a,A: a,B: a] :
( ( less_eq @ X @ A )
=> ( less_eq @ X @ ( sup @ A @ B ) ) ) ).
% local.le_supI1
thf(fact_57_local_Ole__supI2,axiom,
! [X: a,B: a,A: a] :
( ( less_eq @ X @ B )
=> ( less_eq @ X @ ( sup @ A @ B ) ) ) ).
% local.le_supI2
thf(fact_58_local_Osup_Oabsorb1,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
=> ( ( sup @ A @ B )
= A ) ) ).
% local.sup.absorb1
thf(fact_59_local_Osup_Oabsorb2,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
=> ( ( sup @ A @ B )
= B ) ) ).
% local.sup.absorb2
thf(fact_60_local_Osup_Oabsorb__iff1,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
= ( ( sup @ A @ B )
= A ) ) ).
% local.sup.absorb_iff1
thf(fact_61_local_Osup_Oabsorb__iff2,axiom,
! [A: a,B: a] :
( ( less_eq @ A @ B )
= ( ( sup @ A @ B )
= B ) ) ).
% local.sup.absorb_iff2
thf(fact_62_local_Osup_OboundedE,axiom,
! [B: a,C: a,A: a] :
( ( less_eq @ ( sup @ B @ C ) @ A )
=> ~ ( ( less_eq @ B @ A )
=> ~ ( less_eq @ C @ A ) ) ) ).
% local.sup.boundedE
thf(fact_63_local_Osup_OboundedI,axiom,
! [B: a,A: a,C: a] :
( ( less_eq @ B @ A )
=> ( ( less_eq @ C @ A )
=> ( less_eq @ ( sup @ B @ C ) @ A ) ) ) ).
% local.sup.boundedI
thf(fact_64_local_Osup_Ocobounded1,axiom,
! [A: a,B: a] : ( less_eq @ A @ ( sup @ A @ B ) ) ).
% local.sup.cobounded1
thf(fact_65_local_Osup_Ocobounded2,axiom,
! [B: a,A: a] : ( less_eq @ B @ ( sup @ A @ B ) ) ).
% local.sup.cobounded2
thf(fact_66_local_Osup_OcoboundedI1,axiom,
! [C: a,A: a,B: a] :
( ( less_eq @ C @ A )
=> ( less_eq @ C @ ( sup @ A @ B ) ) ) ).
% local.sup.coboundedI1
thf(fact_67_local_Osup_OcoboundedI2,axiom,
! [C: a,B: a,A: a] :
( ( less_eq @ C @ B )
=> ( less_eq @ C @ ( sup @ A @ B ) ) ) ).
% local.sup.coboundedI2
thf(fact_68_local_Osup_Omono,axiom,
! [C: a,A: a,D: a,B: a] :
( ( less_eq @ C @ A )
=> ( ( less_eq @ D @ B )
=> ( less_eq @ ( sup @ C @ D ) @ ( sup @ A @ B ) ) ) ) ).
% local.sup.mono
thf(fact_69_local_Osup_OorderE,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
=> ( A
= ( sup @ A @ B ) ) ) ).
% local.sup.orderE
thf(fact_70_local_Osup_OorderI,axiom,
! [A: a,B: a] :
( ( A
= ( sup @ A @ B ) )
=> ( less_eq @ B @ A ) ) ).
% local.sup.orderI
thf(fact_71_local_Osup_Oorder__iff,axiom,
! [B: a,A: a] :
( ( less_eq @ B @ A )
= ( A
= ( sup @ A @ B ) ) ) ).
% local.sup.order_iff
thf(fact_72_local_Osup__absorb1,axiom,
! [Y: a,X: a] :
( ( less_eq @ Y @ X )
=> ( ( sup @ X @ Y )
= X ) ) ).
% local.sup_absorb1
thf(fact_73_local_Osup__absorb2,axiom,
! [X: a,Y: a] :
( ( less_eq @ X @ Y )
=> ( ( sup @ X @ Y )
= Y ) ) ).
% local.sup_absorb2
thf(fact_74_local_Osup__ge1,axiom,
! [X: a,Y: a] : ( less_eq @ X @ ( sup @ X @ Y ) ) ).
% local.sup_ge1
thf(fact_75_local_Osup__ge2,axiom,
! [Y: a,X: a] : ( less_eq @ Y @ ( sup @ X @ Y ) ) ).
% local.sup_ge2
thf(fact_76_local_Osup__least,axiom,
! [Y: a,X: a,Z2: a] :
( ( less_eq @ Y @ X )
=> ( ( less_eq @ Z2 @ X )
=> ( less_eq @ ( sup @ Y @ Z2 ) @ X ) ) ) ).
% local.sup_least
thf(fact_77_local_Osup__mono,axiom,
! [A: a,C: a,B: a,D: a] :
( ( less_eq @ A @ C )
=> ( ( less_eq @ B @ D )
=> ( less_eq @ ( sup @ A @ B ) @ ( sup @ C @ D ) ) ) ) ).
% local.sup_mono
thf(fact_78_local_Osup__unique,axiom,
! [F: a > a > a,X: a,Y: a] :
( ! [X3: a,Y4: a] : ( less_eq @ X3 @ ( F @ X3 @ Y4 ) )
=> ( ! [X3: a,Y4: a] : ( less_eq @ Y4 @ ( F @ X3 @ Y4 ) )
=> ( ! [X3: a,Y4: a,Z3: a] :
( ( less_eq @ Y4 @ X3 )
=> ( ( less_eq @ Z3 @ X3 )
=> ( less_eq @ ( F @ Y4 @ Z3 ) @ X3 ) ) )
=> ( ( sup @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% local.sup_unique
thf(fact_79_local_Odistrib__imp1,axiom,
! [X: a,Y: a,Z2: a] :
( ! [X3: a,Y4: a,Z3: a] :
( ( inf @ X3 @ ( sup @ Y4 @ Z3 ) )
= ( sup @ ( inf @ X3 @ Y4 ) @ ( inf @ X3 @ Z3 ) ) )
=> ( ( sup @ X @ ( inf @ Y @ Z2 ) )
= ( inf @ ( sup @ X @ Y ) @ ( sup @ X @ Z2 ) ) ) ) ).
% local.distrib_imp1
thf(fact_80_local_Odistrib__imp2,axiom,
! [X: a,Y: a,Z2: a] :
( ! [X3: a,Y4: a,Z3: a] :
( ( sup @ X3 @ ( inf @ Y4 @ Z3 ) )
= ( inf @ ( sup @ X3 @ Y4 ) @ ( sup @ X3 @ Z3 ) ) )
=> ( ( inf @ X @ ( sup @ Y @ Z2 ) )
= ( sup @ ( inf @ X @ Y ) @ ( inf @ X @ Z2 ) ) ) ) ).
% local.distrib_imp2
thf(fact_81_local_Oa__join__d,axiom,
! [A: a,B: a,C: a] :
( ( sup @ A @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
= ( sup @ A @ ( inf @ B @ C ) ) ) ).
% local.a_join_d
thf(fact_82_a__meet__d,axiom,
! [A: a,B: a,C: a] :
( ( inf @ A @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
= ( sup @ ( inf @ A @ B ) @ ( inf @ C @ A ) ) ) ).
% a_meet_d
thf(fact_83_local_Ob__join__d,axiom,
! [B: a,A: a,C: a] :
( ( sup @ B @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
= ( sup @ B @ ( inf @ C @ A ) ) ) ).
% local.b_join_d
thf(fact_84_b__meet__d,axiom,
! [B: a,A: a,C: a] :
( ( inf @ B @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
= ( sup @ ( inf @ B @ C ) @ ( inf @ A @ B ) ) ) ).
% b_meet_d
thf(fact_85_c__meet__d,axiom,
! [C: a,A: a,B: a] :
( ( inf @ C @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) )
= ( sup @ ( inf @ C @ A ) @ ( inf @ B @ C ) ) ) ).
% c_meet_d
thf(fact_86_local_Od__aux__def,axiom,
! [A: a,B: a,C: a] :
( ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C )
= ( sup @ ( sup @ ( inf @ A @ B ) @ ( inf @ B @ C ) ) @ ( inf @ C @ A ) ) ) ).
% local.d_aux_def
thf(fact_87_local_Od__b__c__a,axiom,
! [B: a,C: a,A: a] :
( ( modula1936294176_aux_a @ inf @ sup @ B @ C @ A )
= ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ).
% local.d_b_c_a
thf(fact_88_local_Od__c__a__b,axiom,
! [C: a,A: a,B: a] :
( ( modula1936294176_aux_a @ inf @ sup @ C @ A @ B )
= ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ).
% local.d_c_a_b
thf(fact_89_local_Oa__meet__e,axiom,
! [A: a,B: a,C: a] :
( ( inf @ A @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
= ( inf @ A @ ( sup @ B @ C ) ) ) ).
% local.a_meet_e
thf(fact_90_local_Ob__meet__e,axiom,
! [B: a,A: a,C: a] :
( ( inf @ B @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
= ( inf @ B @ ( sup @ C @ A ) ) ) ).
% local.b_meet_e
thf(fact_91_local_Oc__meet__e,axiom,
! [C: a,A: a,B: a] :
( ( inf @ C @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
= ( inf @ C @ ( sup @ A @ B ) ) ) ).
% local.c_meet_e
thf(fact_92_local_Oe__aux__def,axiom,
! [A: a,B: a,C: a] :
( ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C )
= ( inf @ ( inf @ ( sup @ A @ B ) @ ( sup @ B @ C ) ) @ ( sup @ C @ A ) ) ) ).
% local.e_aux_def
thf(fact_93_local_Oe__b__c__a,axiom,
! [B: a,C: a,A: a] :
( ( modula1144073633_aux_a @ inf @ sup @ B @ C @ A )
= ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ).
% local.e_b_c_a
thf(fact_94_local_Oe__c__a__b,axiom,
! [C: a,A: a,B: a] :
( ( modula1144073633_aux_a @ inf @ sup @ C @ A @ B )
= ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) ).
% local.e_c_a_b
thf(fact_95_local_Odistrib__inf__le,axiom,
! [X: a,Y: a,Z2: a] : ( less_eq @ ( sup @ ( inf @ X @ Y ) @ ( inf @ X @ Z2 ) ) @ ( inf @ X @ ( sup @ Y @ Z2 ) ) ) ).
% local.distrib_inf_le
thf(fact_96_local_Odistrib__sup__le,axiom,
! [X: a,Y: a,Z2: a] : ( less_eq @ ( sup @ X @ ( inf @ Y @ Z2 ) ) @ ( inf @ ( sup @ X @ Y ) @ ( sup @ X @ Z2 ) ) ) ).
% local.distrib_sup_le
thf(fact_97_local_Omodular,axiom,
! [X: a,Y: a,Z2: a] :
( ( less_eq @ X @ Y )
=> ( ( sup @ X @ ( inf @ Y @ Z2 ) )
= ( inf @ Y @ ( sup @ X @ Z2 ) ) ) ) ).
% local.modular
thf(fact_98_local_Oincomp__def,axiom,
! [X: a,Y: a] :
( ( modula1727524044comp_a @ less_eq @ X @ Y )
= ( ~ ( less_eq @ X @ Y )
& ~ ( less_eq @ Y @ X ) ) ) ).
% local.incomp_def
thf(fact_99_local_Oorder_Orefl,axiom,
! [A: a] : ( less_eq @ A @ A ) ).
% local.order.refl
thf(fact_100_local_Oorder__refl,axiom,
! [X: a] : ( less_eq @ X @ X ) ).
% local.order_refl
thf(fact_101_local_Oinf_Oidem,axiom,
! [A: a] :
( ( inf @ A @ A )
= A ) ).
% local.inf.idem
thf(fact_102_local_Oinf_Oleft__idem,axiom,
! [A: a,B: a] :
( ( inf @ A @ ( inf @ A @ B ) )
= ( inf @ A @ B ) ) ).
% local.inf.left_idem
thf(fact_103_local_Oinf_Oright__idem,axiom,
! [A: a,B: a] :
( ( inf @ ( inf @ A @ B ) @ B )
= ( inf @ A @ B ) ) ).
% local.inf.right_idem
thf(fact_104_local_Oinf__idem,axiom,
! [X: a] :
( ( inf @ X @ X )
= X ) ).
% local.inf_idem
thf(fact_105_local_Oinf__left__idem,axiom,
! [X: a,Y: a] :
( ( inf @ X @ ( inf @ X @ Y ) )
= ( inf @ X @ Y ) ) ).
% local.inf_left_idem
thf(fact_106_local_Oinf__right__idem,axiom,
! [X: a,Y: a] :
( ( inf @ ( inf @ X @ Y ) @ Y )
= ( inf @ X @ Y ) ) ).
% local.inf_right_idem
thf(fact_107_local_Osup_Oidem,axiom,
! [A: a] :
( ( sup @ A @ A )
= A ) ).
% local.sup.idem
thf(fact_108_local_Osup_Oleft__idem,axiom,
! [A: a,B: a] :
( ( sup @ A @ ( sup @ A @ B ) )
= ( sup @ A @ B ) ) ).
% local.sup.left_idem
thf(fact_109_local_Osup_Oright__idem,axiom,
! [A: a,B: a] :
( ( sup @ ( sup @ A @ B ) @ B )
= ( sup @ A @ B ) ) ).
% local.sup.right_idem
thf(fact_110_local_Osup__idem,axiom,
! [X: a] :
( ( sup @ X @ X )
= X ) ).
% local.sup_idem
thf(fact_111_local_Osup__left__idem,axiom,
! [X: a,Y: a] :
( ( sup @ X @ ( sup @ X @ Y ) )
= ( sup @ X @ Y ) ) ).
% local.sup_left_idem
thf(fact_112_local_Oc__a,axiom,
! [A: a,B: a,C: a] :
( ( modula581031071_aux_a @ inf @ sup @ A @ B @ C )
= ( modula17988509_aux_a @ inf @ sup @ C @ A @ B ) ) ).
% local.c_a
thf(fact_113_local_OGreatestI2__order,axiom,
! [P: a > $o,X: a,Q: a > $o] :
( ( P @ X )
=> ( ! [Y4: a] :
( ( P @ Y4 )
=> ( less_eq @ Y4 @ X ) )
=> ( ! [X3: a] :
( ( P @ X3 )
=> ( ! [Y5: a] :
( ( P @ Y5 )
=> ( less_eq @ Y5 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( greatest_a @ less_eq @ P ) ) ) ) ) ).
% local.GreatestI2_order
thf(fact_114_local_OGreatest__equality,axiom,
! [P: a > $o,X: a] :
( ( P @ X )
=> ( ! [Y4: a] :
( ( P @ Y4 )
=> ( less_eq @ Y4 @ X ) )
=> ( ( greatest_a @ less_eq @ P )
= X ) ) ) ).
% local.Greatest_equality
thf(fact_115_local_Omax__def,axiom,
! [A: a,B: a] :
( ( ( less_eq @ A @ B )
=> ( ( max_a @ less_eq @ A @ B )
= B ) )
& ( ~ ( less_eq @ A @ B )
=> ( ( max_a @ less_eq @ A @ B )
= A ) ) ) ).
% local.max_def
thf(fact_116_local_Omin__def,axiom,
! [A: a,B: a] :
( ( ( less_eq @ A @ B )
=> ( ( min_a @ less_eq @ A @ B )
= A ) )
& ( ~ ( less_eq @ A @ B )
=> ( ( min_a @ less_eq @ A @ B )
= B ) ) ) ).
% local.min_def
thf(fact_117_local_Oa__aux__def,axiom,
! [A: a,B: a,C: a] :
( ( modula17988509_aux_a @ inf @ sup @ A @ B @ C )
= ( sup @ ( inf @ A @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).
% local.a_aux_def
thf(fact_118_local_Oc__aux__def,axiom,
! [A: a,B: a,C: a] :
( ( modula581031071_aux_a @ inf @ sup @ A @ B @ C )
= ( sup @ ( inf @ C @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).
% local.c_aux_def
thf(fact_119_local_Oinf_Obounded__iff,axiom,
! [A: a,B: a,C: a] :
( ( less_eq @ A @ ( inf @ B @ C ) )
= ( ( less_eq @ A @ B )
& ( less_eq @ A @ C ) ) ) ).
% local.inf.bounded_iff
thf(fact_120_local_Ole__inf__iff,axiom,
! [X: a,Y: a,Z2: a] :
( ( less_eq @ X @ ( inf @ Y @ Z2 ) )
= ( ( less_eq @ X @ Y )
& ( less_eq @ X @ Z2 ) ) ) ).
% local.le_inf_iff
thf(fact_121_local_Ole__sup__iff,axiom,
! [X: a,Y: a,Z2: a] :
( ( less_eq @ ( sup @ X @ Y ) @ Z2 )
= ( ( less_eq @ X @ Z2 )
& ( less_eq @ Y @ Z2 ) ) ) ).
% local.le_sup_iff
thf(fact_122_local_Osup_Obounded__iff,axiom,
! [B: a,C: a,A: a] :
( ( less_eq @ ( sup @ B @ C ) @ A )
= ( ( less_eq @ B @ A )
& ( less_eq @ C @ A ) ) ) ).
% local.sup.bounded_iff
thf(fact_123_local_Oinf__sup__absorb,axiom,
! [X: a,Y: a] :
( ( inf @ X @ ( sup @ X @ Y ) )
= X ) ).
% local.inf_sup_absorb
thf(fact_124_local_Osup__inf__absorb,axiom,
! [X: a,Y: a] :
( ( sup @ X @ ( inf @ X @ Y ) )
= X ) ).
% local.sup_inf_absorb
thf(fact_125_local_Ob__a,axiom,
! [A: a,B: a,C: a] :
( ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C )
= ( modula17988509_aux_a @ inf @ sup @ B @ C @ A ) ) ).
% local.b_a
thf(fact_126_local_OLeast1I,axiom,
! [P: a > $o] :
( ? [X4: a] :
( ( P @ X4 )
& ! [Y4: a] :
( ( P @ Y4 )
=> ( less_eq @ X4 @ Y4 ) )
& ! [Y4: a] :
( ( ( P @ Y4 )
& ! [Ya: a] :
( ( P @ Ya )
=> ( less_eq @ Y4 @ Ya ) ) )
=> ( Y4 = X4 ) ) )
=> ( P @ ( least_a @ less_eq @ P ) ) ) ).
% local.Least1I
thf(fact_127_local_OLeast1__le,axiom,
! [P: a > $o,Z2: a] :
( ? [X4: a] :
( ( P @ X4 )
& ! [Y4: a] :
( ( P @ Y4 )
=> ( less_eq @ X4 @ Y4 ) )
& ! [Y4: a] :
( ( ( P @ Y4 )
& ! [Ya: a] :
( ( P @ Ya )
=> ( less_eq @ Y4 @ Ya ) ) )
=> ( Y4 = X4 ) ) )
=> ( ( P @ Z2 )
=> ( less_eq @ ( least_a @ less_eq @ P ) @ Z2 ) ) ) ).
% local.Least1_le
thf(fact_128_local_OLeastI2__order,axiom,
! [P: a > $o,X: a,Q: a > $o] :
( ( P @ X )
=> ( ! [Y4: a] :
( ( P @ Y4 )
=> ( less_eq @ X @ Y4 ) )
=> ( ! [X3: a] :
( ( P @ X3 )
=> ( ! [Y5: a] :
( ( P @ Y5 )
=> ( less_eq @ X3 @ Y5 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( least_a @ less_eq @ P ) ) ) ) ) ).
% local.LeastI2_order
thf(fact_129_local_OLeast__equality,axiom,
! [P: a > $o,X: a] :
( ( P @ X )
=> ( ! [Y4: a] :
( ( P @ Y4 )
=> ( less_eq @ X @ Y4 ) )
=> ( ( least_a @ less_eq @ P )
= X ) ) ) ).
% local.Least_equality
thf(fact_130_local_Ob__aux__def,axiom,
! [A: a,B: a,C: a] :
( ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C )
= ( sup @ ( inf @ B @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) ) @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).
% local.b_aux_def
thf(fact_131_a__meet__b__eq__d,axiom,
! [A: a,B: a,C: a] :
( ( less_eq @ ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1144073633_aux_a @ inf @ sup @ A @ B @ C ) )
=> ( ( inf @ ( modula17988509_aux_a @ inf @ sup @ A @ B @ C ) @ ( modula1373251614_aux_a @ inf @ sup @ A @ B @ C ) )
= ( modula1936294176_aux_a @ inf @ sup @ A @ B @ C ) ) ) ).
% a_meet_b_eq_d
thf(fact_132_lattice_Oa__aux_Ocong,axiom,
modula17988509_aux_a = modula17988509_aux_a ).
% lattice.a_aux.cong
thf(fact_133_lattice_Oc__aux_Ocong,axiom,
modula581031071_aux_a = modula581031071_aux_a ).
% lattice.c_aux.cong
thf(fact_134_lattice_Od__aux_Ocong,axiom,
modula1936294176_aux_a = modula1936294176_aux_a ).
% lattice.d_aux.cong
thf(fact_135_lattice_Oe__aux_Ocong,axiom,
modula1144073633_aux_a = modula1144073633_aux_a ).
% lattice.e_aux.cong
thf(fact_136_local_Ocomp__fun__idem__sup,axiom,
finite40241356em_a_a @ sup ).
% local.comp_fun_idem_sup
thf(fact_137_local_Ocomp__fun__idem__inf,axiom,
finite40241356em_a_a @ inf ).
% local.comp_fun_idem_inf
thf(fact_138_local_Osup_Osemigroup__axioms,axiom,
semigroup_a @ sup ).
% local.sup.semigroup_axioms
thf(fact_139_local_Oinf_Osemigroup__axioms,axiom,
semigroup_a @ inf ).
% local.inf.semigroup_axioms
thf(fact_140_local_Osup_Osemilattice__axioms,axiom,
semilattice_a @ sup ).
% local.sup.semilattice_axioms
thf(fact_141_local_Oinf_Osemilattice__axioms,axiom,
semilattice_a @ inf ).
% local.inf.semilattice_axioms
thf(fact_142_local_Osup_Oabel__semigroup__axioms,axiom,
abel_semigroup_a @ sup ).
% local.sup.abel_semigroup_axioms
thf(fact_143_local_Oinf_Oabel__semigroup__axioms,axiom,
abel_semigroup_a @ inf ).
% local.inf.abel_semigroup_axioms
thf(fact_144_local_OSup__fin_Osemilattice__set__axioms,axiom,
lattic1885654924_set_a @ sup ).
% local.Sup_fin.semilattice_set_axioms
thf(fact_145_local_OInf__fin_Osemilattice__set__axioms,axiom,
lattic1885654924_set_a @ inf ).
% local.Inf_fin.semilattice_set_axioms
thf(fact_146_local_Obdd__above__def,axiom,
! [A3: set_a] :
( ( condit1627435690bove_a @ less_eq @ A3 )
= ( ? [M: a] :
! [X2: a] :
( ( member_a @ X2 @ A3 )
=> ( less_eq @ X2 @ M ) ) ) ) ).
% local.bdd_above_def
thf(fact_147_local_Obdd__below__def,axiom,
! [A3: set_a] :
( ( condit1001553558elow_a @ less_eq @ A3 )
= ( ? [M2: a] :
! [X2: a] :
( ( member_a @ X2 @ A3 )
=> ( less_eq @ M2 @ X2 ) ) ) ) ).
% local.bdd_below_def
thf(fact_148_local_Obdd__belowI,axiom,
! [A3: set_a,M3: a] :
( ! [X3: a] :
( ( member_a @ X3 @ A3 )
=> ( less_eq @ M3 @ X3 ) )
=> ( condit1001553558elow_a @ less_eq @ A3 ) ) ).
% local.bdd_belowI
thf(fact_149_local_Obdd__aboveI,axiom,
! [A3: set_a,M4: a] :
( ! [X3: a] :
( ( member_a @ X3 @ A3 )
=> ( less_eq @ X3 @ M4 ) )
=> ( condit1627435690bove_a @ less_eq @ A3 ) ) ).
% local.bdd_aboveI
thf(fact_150_lattice_Oincomp_Ocong,axiom,
modula1727524044comp_a = modula1727524044comp_a ).
% lattice.incomp.cong
thf(fact_151_lattice_Ob__aux_Ocong,axiom,
modula1373251614_aux_a = modula1373251614_aux_a ).
% lattice.b_aux.cong
thf(fact_152_abel__semigroup_Oaxioms_I1_J,axiom,
! [F: a > a > a] :
( ( abel_semigroup_a @ F )
=> ( semigroup_a @ F ) ) ).
% abel_semigroup.axioms(1)
thf(fact_153_semilattice__set__def,axiom,
lattic1885654924_set_a = semilattice_a ).
% semilattice_set_def
thf(fact_154_semilattice__set_Ointro,axiom,
! [F: a > a > a] :
( ( semilattice_a @ F )
=> ( lattic1885654924_set_a @ F ) ) ).
% semilattice_set.intro
thf(fact_155_abel__semigroup_Oleft__commute,axiom,
! [F: a > a > a,B: a,A: a,C: a] :
( ( abel_semigroup_a @ F )
=> ( ( F @ B @ ( F @ A @ C ) )
= ( F @ A @ ( F @ B @ C ) ) ) ) ).
% abel_semigroup.left_commute
thf(fact_156_abel__semigroup_Ocommute,axiom,
! [F: a > a > a,A: a,B: a] :
( ( abel_semigroup_a @ F )
=> ( ( F @ A @ B )
= ( F @ B @ A ) ) ) ).
% abel_semigroup.commute
thf(fact_157_semigroup_Ointro,axiom,
! [F: a > a > a] :
( ! [A4: a,B3: a,C2: a] :
( ( F @ ( F @ A4 @ B3 ) @ C2 )
= ( F @ A4 @ ( F @ B3 @ C2 ) ) )
=> ( semigroup_a @ F ) ) ).
% semigroup.intro
thf(fact_158_semigroup_Oassoc,axiom,
! [F: a > a > a,A: a,B: a,C: a] :
( ( semigroup_a @ F )
=> ( ( F @ ( F @ A @ B ) @ C )
= ( F @ A @ ( F @ B @ C ) ) ) ) ).
% semigroup.assoc
thf(fact_159_semigroup__def,axiom,
( semigroup_a
= ( ^ [F2: a > a > a] :
! [A2: a,B2: a,C3: a] :
( ( F2 @ ( F2 @ A2 @ B2 ) @ C3 )
= ( F2 @ A2 @ ( F2 @ B2 @ C3 ) ) ) ) ) ).
% semigroup_def
thf(fact_160_semilattice__set_Oaxioms,axiom,
! [F: a > a > a] :
( ( lattic1885654924_set_a @ F )
=> ( semilattice_a @ F ) ) ).
% semilattice_set.axioms
thf(fact_161_semilattice_Oaxioms_I1_J,axiom,
! [F: a > a > a] :
( ( semilattice_a @ F )
=> ( abel_semigroup_a @ F ) ) ).
% semilattice.axioms(1)
thf(fact_162_local_Obdd__above__mono,axiom,
! [B4: set_a,A3: set_a] :
( ( condit1627435690bove_a @ less_eq @ B4 )
=> ( ( ord_less_eq_set_a @ A3 @ B4 )
=> ( condit1627435690bove_a @ less_eq @ A3 ) ) ) ).
% local.bdd_above_mono
thf(fact_163_local_Obdd__below__mono,axiom,
! [B4: set_a,A3: set_a] :
( ( condit1001553558elow_a @ less_eq @ B4 )
=> ( ( ord_less_eq_set_a @ A3 @ B4 )
=> ( condit1001553558elow_a @ less_eq @ A3 ) ) ) ).
% local.bdd_below_mono
thf(fact_164_local_Oantimono__def,axiom,
! [F: a > set_a] :
( ( antimono_a_set_a @ less_eq @ F )
= ( ! [X2: a,Y3: a] :
( ( less_eq @ X2 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ Y3 ) @ ( F @ X2 ) ) ) ) ) ).
% local.antimono_def
thf(fact_165_local_OantimonoI,axiom,
! [F: a > set_a] :
( ! [X3: a,Y4: a] :
( ( less_eq @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ Y4 ) @ ( F @ X3 ) ) )
=> ( antimono_a_set_a @ less_eq @ F ) ) ).
% local.antimonoI
thf(fact_166_local_OantimonoE,axiom,
! [F: a > set_a,X: a,Y: a] :
( ( antimono_a_set_a @ less_eq @ F )
=> ( ( less_eq @ X @ Y )
=> ( ord_less_eq_set_a @ ( F @ Y ) @ ( F @ X ) ) ) ) ).
% local.antimonoE
thf(fact_167_local_OantimonoD,axiom,
! [F: a > set_a,X: a,Y: a] :
( ( antimono_a_set_a @ less_eq @ F )
=> ( ( less_eq @ X @ Y )
=> ( ord_less_eq_set_a @ ( F @ Y ) @ ( F @ X ) ) ) ) ).
% local.antimonoD
thf(fact_168_local_OmonoD,axiom,
! [F: a > set_a,X: a,Y: a] :
( ( mono_a_set_a @ less_eq @ F )
=> ( ( less_eq @ X @ Y )
=> ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y ) ) ) ) ).
% local.monoD
thf(fact_169_local_OmonoE,axiom,
! [F: a > set_a,X: a,Y: a] :
( ( mono_a_set_a @ less_eq @ F )
=> ( ( less_eq @ X @ Y )
=> ( ord_less_eq_set_a @ ( F @ X ) @ ( F @ Y ) ) ) ) ).
% local.monoE
thf(fact_170_local_OmonoI,axiom,
! [F: a > set_a] :
( ! [X3: a,Y4: a] :
( ( less_eq @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( mono_a_set_a @ less_eq @ F ) ) ).
% local.monoI
thf(fact_171_local_Omono__def,axiom,
! [F: a > set_a] :
( ( mono_a_set_a @ less_eq @ F )
= ( ! [X2: a,Y3: a] :
( ( less_eq @ X2 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y3 ) ) ) ) ) ).
% local.mono_def
thf(fact_172_semilattice_Oidem,axiom,
! [F: a > a > a,A: a] :
( ( semilattice_a @ F )
=> ( ( F @ A @ A )
= A ) ) ).
% semilattice.idem
thf(fact_173_semilattice_Oleft__idem,axiom,
! [F: a > a > a,A: a,B: a] :
( ( semilattice_a @ F )
=> ( ( F @ A @ ( F @ A @ B ) )
= ( F @ A @ B ) ) ) ).
% semilattice.left_idem
thf(fact_174_semilattice_Oright__idem,axiom,
! [F: a > a > a,A: a,B: a] :
( ( semilattice_a @ F )
=> ( ( F @ ( F @ A @ B ) @ B )
= ( F @ A @ B ) ) ) ).
% semilattice.right_idem
thf(fact_175_subsetI,axiom,
! [A3: set_a,B4: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A3 )
=> ( member_a @ X3 @ B4 ) )
=> ( ord_less_eq_set_a @ A3 @ B4 ) ) ).
% subsetI
thf(fact_176_subset__antisym,axiom,
! [A3: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A3 @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ A3 )
=> ( A3 = B4 ) ) ) ).
% subset_antisym
thf(fact_177_preorder__class_Oorder__refl,axiom,
! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).
% preorder_class.order_refl
thf(fact_178_order_Oantimono_Ocong,axiom,
antimono_a_set_a = antimono_a_set_a ).
% order.antimono.cong
thf(fact_179_order_Omono_Ocong,axiom,
mono_a_set_a = mono_a_set_a ).
% order.mono.cong
thf(fact_180_order__class_Odual__order_Oantisym,axiom,
! [B: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B @ A )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( A = B ) ) ) ).
% order_class.dual_order.antisym
thf(fact_181_order__class_Odual__order_Oeq__iff,axiom,
( ( ^ [Y2: set_a,Z: set_a] : ( Y2 = Z ) )
= ( ^ [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
& ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ) ).
% order_class.dual_order.eq_iff
thf(fact_182_order__class_Odual__order_Otrans,axiom,
! [B: set_a,A: set_a,C: set_a] :
( ( ord_less_eq_set_a @ B @ A )
=> ( ( ord_less_eq_set_a @ C @ B )
=> ( ord_less_eq_set_a @ C @ A ) ) ) ).
% order_class.dual_order.trans
thf(fact_183_order__class_Odual__order_Orefl,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).
% order_class.dual_order.refl
thf(fact_184_preorder__class_Oorder__trans,axiom,
! [X: set_a,Y: set_a,Z2: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ Z2 )
=> ( ord_less_eq_set_a @ X @ Z2 ) ) ) ).
% preorder_class.order_trans
thf(fact_185_order__class_Oorder_Oantisym,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ B @ A )
=> ( A = B ) ) ) ).
% order_class.order.antisym
thf(fact_186_ord__class_Oord__le__eq__trans,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_set_a @ A @ C ) ) ) ).
% ord_class.ord_le_eq_trans
thf(fact_187_ord__class_Oord__eq__le__trans,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( A = B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_eq_set_a @ A @ C ) ) ) ).
% ord_class.ord_eq_le_trans
thf(fact_188_order__class_Oorder_Oeq__iff,axiom,
( ( ^ [Y2: set_a,Z: set_a] : ( Y2 = Z ) )
= ( ^ [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
& ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ) ).
% order_class.order.eq_iff
thf(fact_189_order__class_Oantisym__conv,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( ord_less_eq_set_a @ X @ Y )
= ( X = Y ) ) ) ).
% order_class.antisym_conv
thf(fact_190_order__class_Oorder_Otrans,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_eq_set_a @ A @ C ) ) ) ).
% order_class.order.trans
thf(fact_191_preorder__class_Oeq__refl,axiom,
! [X: set_a,Y: set_a] :
( ( X = Y )
=> ( ord_less_eq_set_a @ X @ Y ) ) ).
% preorder_class.eq_refl
thf(fact_192_order__class_Oantisym,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ X )
=> ( X = Y ) ) ) ).
% order_class.antisym
thf(fact_193_order__class_Oeq__iff,axiom,
( ( ^ [Y2: set_a,Z: set_a] : ( Y2 = Z ) )
= ( ^ [X2: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y3 )
& ( ord_less_eq_set_a @ Y3 @ X2 ) ) ) ) ).
% order_class.eq_iff
thf(fact_194_ord__le__eq__subst,axiom,
! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_195_ord__eq__le__subst,axiom,
! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_196_order__subst2,axiom,
! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_197_order__subst1,axiom,
! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ ( F @ B ) )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_198_Collect__mono__iff,axiom,
! [P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
= ( ! [X2: a] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_199_set__eq__subset,axiom,
( ( ^ [Y2: set_a,Z: set_a] : ( Y2 = Z ) )
= ( ^ [A5: set_a,B5: set_a] :
( ( ord_less_eq_set_a @ A5 @ B5 )
& ( ord_less_eq_set_a @ B5 @ A5 ) ) ) ) ).
% set_eq_subset
thf(fact_200_subset__trans,axiom,
! [A3: set_a,B4: set_a,C4: set_a] :
( ( ord_less_eq_set_a @ A3 @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C4 )
=> ( ord_less_eq_set_a @ A3 @ C4 ) ) ) ).
% subset_trans
thf(fact_201_Collect__mono,axiom,
! [P: a > $o,Q: a > $o] :
( ! [X3: a] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).
% Collect_mono
thf(fact_202_subset__refl,axiom,
! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).
% subset_refl
thf(fact_203_subset__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A5: set_a,B5: set_a] :
! [T: a] :
( ( member_a @ T @ A5 )
=> ( member_a @ T @ B5 ) ) ) ) ).
% subset_iff
thf(fact_204_equalityD2,axiom,
! [A3: set_a,B4: set_a] :
( ( A3 = B4 )
=> ( ord_less_eq_set_a @ B4 @ A3 ) ) ).
% equalityD2
thf(fact_205_equalityD1,axiom,
! [A3: set_a,B4: set_a] :
( ( A3 = B4 )
=> ( ord_less_eq_set_a @ A3 @ B4 ) ) ).
% equalityD1
thf(fact_206_subset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A5: set_a,B5: set_a] :
! [X2: a] :
( ( member_a @ X2 @ A5 )
=> ( member_a @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_207_equalityE,axiom,
! [A3: set_a,B4: set_a] :
( ( A3 = B4 )
=> ~ ( ( ord_less_eq_set_a @ A3 @ B4 )
=> ~ ( ord_less_eq_set_a @ B4 @ A3 ) ) ) ).
% equalityE
thf(fact_208_subsetD,axiom,
! [A3: set_a,B4: set_a,C: a] :
( ( ord_less_eq_set_a @ A3 @ B4 )
=> ( ( member_a @ C @ A3 )
=> ( member_a @ C @ B4 ) ) ) ).
% subsetD
thf(fact_209_in__mono,axiom,
! [A3: set_a,B4: set_a,X: a] :
( ( ord_less_eq_set_a @ A3 @ B4 )
=> ( ( member_a @ X @ A3 )
=> ( member_a @ X @ B4 ) ) ) ).
% in_mono
thf(fact_210_ord_OLeast_Ocong,axiom,
least_a = least_a ).
% ord.Least.cong
thf(fact_211_order_OGreatest_Ocong,axiom,
greatest_a = greatest_a ).
% order.Greatest.cong
thf(fact_212_ord_Omin_Ocong,axiom,
min_a = min_a ).
% ord.min.cong
thf(fact_213_ord_Omax_Ocong,axiom,
max_a = max_a ).
% ord.max.cong
thf(fact_214_ord_Omin__def,axiom,
( min_a
= ( ^ [Less_eq: a > a > $o,A2: a,B2: a] : ( if_a @ ( Less_eq @ A2 @ B2 ) @ A2 @ B2 ) ) ) ).
% ord.min_def
thf(fact_215_ord_Omax__def,axiom,
( max_a
= ( ^ [Less_eq: a > a > $o,A2: a,B2: a] : ( if_a @ ( Less_eq @ A2 @ B2 ) @ B2 @ A2 ) ) ) ).
% ord.max_def
thf(fact_216_local_Omono__inf,axiom,
! [F: a > set_a,A3: a,B4: a] :
( ( mono_a_set_a @ less_eq @ F )
=> ( ord_less_eq_set_a @ ( F @ ( inf @ A3 @ B4 ) ) @ ( inf_inf_set_a @ ( F @ A3 ) @ ( F @ B4 ) ) ) ) ).
% local.mono_inf
thf(fact_217_local_Omono__sup,axiom,
! [F: a > set_a,A3: a,B4: a] :
( ( mono_a_set_a @ less_eq @ F )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( F @ A3 ) @ ( F @ B4 ) ) @ ( F @ ( sup @ A3 @ B4 ) ) ) ) ).
% local.mono_sup
thf(fact_218_local_Obdd__above__finite,axiom,
! [A3: set_a] :
( ( finite_finite_a @ A3 )
=> ( condit1627435690bove_a @ less_eq @ A3 ) ) ).
% local.bdd_above_finite
thf(fact_219_local_Ofinite__has__minimal2,axiom,
! [A3: set_a,A: a] :
( ( finite_finite_a @ A3 )
=> ( ( member_a @ A @ A3 )
=> ? [X3: a] :
( ( member_a @ X3 @ A3 )
& ( less_eq @ X3 @ A )
& ! [Xa: a] :
( ( member_a @ Xa @ A3 )
=> ( ( less_eq @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% local.finite_has_minimal2
thf(fact_220_local_Ofinite__has__maximal2,axiom,
! [A3: set_a,A: a] :
( ( finite_finite_a @ A3 )
=> ( ( member_a @ A @ A3 )
=> ? [X3: a] :
( ( member_a @ X3 @ A3 )
& ( less_eq @ A @ X3 )
& ! [Xa: a] :
( ( member_a @ Xa @ A3 )
=> ( ( less_eq @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% local.finite_has_maximal2
thf(fact_221_local_Obdd__below__Int2,axiom,
! [B4: set_a,A3: set_a] :
( ( condit1001553558elow_a @ less_eq @ B4 )
=> ( condit1001553558elow_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).
% local.bdd_below_Int2
thf(fact_222_local_Obdd__below__Int1,axiom,
! [A3: set_a,B4: set_a] :
( ( condit1001553558elow_a @ less_eq @ A3 )
=> ( condit1001553558elow_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).
% local.bdd_below_Int1
thf(fact_223_local_Obdd__above__Int2,axiom,
! [B4: set_a,A3: set_a] :
( ( condit1627435690bove_a @ less_eq @ B4 )
=> ( condit1627435690bove_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).
% local.bdd_above_Int2
thf(fact_224_local_Obdd__above__Int1,axiom,
! [A3: set_a,B4: set_a] :
( ( condit1627435690bove_a @ less_eq @ A3 )
=> ( condit1627435690bove_a @ less_eq @ ( inf_inf_set_a @ A3 @ B4 ) ) ) ).
% local.bdd_above_Int1
thf(fact_225_local_Obdd__below__finite,axiom,
! [A3: set_a] :
( ( finite_finite_a @ A3 )
=> ( condit1001553558elow_a @ less_eq @ A3 ) ) ).
% local.bdd_below_finite
thf(fact_226_Un__subset__iff,axiom,
! [A3: set_a,B4: set_a,C4: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B4 ) @ C4 )
= ( ( ord_less_eq_set_a @ A3 @ C4 )
& ( ord_less_eq_set_a @ B4 @ C4 ) ) ) ).
% Un_subset_iff
thf(fact_227_Int__subset__iff,axiom,
! [C4: set_a,A3: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ C4 @ ( inf_inf_set_a @ A3 @ B4 ) )
= ( ( ord_less_eq_set_a @ C4 @ A3 )
& ( ord_less_eq_set_a @ C4 @ B4 ) ) ) ).
% Int_subset_iff
thf(fact_228_semilattice__inf__class_Oinf__right__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
= ( inf_inf_set_a @ X @ Y ) ) ).
% semilattice_inf_class.inf_right_idem
thf(fact_229_semilattice__inf__class_Oinf_Oright__idem,axiom,
! [A: set_a,B: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ B )
= ( inf_inf_set_a @ A @ B ) ) ).
% semilattice_inf_class.inf.right_idem
thf(fact_230_semilattice__inf__class_Oinf__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% semilattice_inf_class.inf_left_idem
thf(fact_231_semilattice__inf__class_Oinf_Oleft__idem,axiom,
! [A: set_a,B: set_a] :
( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B ) )
= ( inf_inf_set_a @ A @ B ) ) ).
% semilattice_inf_class.inf.left_idem
thf(fact_232_semilattice__inf__class_Oinf__idem,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ X )
= X ) ).
% semilattice_inf_class.inf_idem
thf(fact_233_semilattice__inf__class_Oinf_Oidem,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ A @ A )
= A ) ).
% semilattice_inf_class.inf.idem
thf(fact_234_semilattice__sup__class_Osup_Oright__idem,axiom,
! [A: set_a,B: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ B )
= ( sup_sup_set_a @ A @ B ) ) ).
% semilattice_sup_class.sup.right_idem
thf(fact_235_semilattice__sup__class_Osup__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= ( sup_sup_set_a @ X @ Y ) ) ).
% semilattice_sup_class.sup_left_idem
thf(fact_236_semilattice__sup__class_Osup_Oleft__idem,axiom,
! [A: set_a,B: set_a] :
( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B ) )
= ( sup_sup_set_a @ A @ B ) ) ).
% semilattice_sup_class.sup.left_idem
thf(fact_237_semilattice__sup__class_Osup__idem,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ X )
= X ) ).
% semilattice_sup_class.sup_idem
thf(fact_238_semilattice__sup__class_Osup_Oidem,axiom,
! [A: set_a] :
( ( sup_sup_set_a @ A @ A )
= A ) ).
% semilattice_sup_class.sup.idem
thf(fact_239_semilattice__inf__class_Ole__inf__iff,axiom,
! [X: set_a,Y: set_a,Z2: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z2 ) )
= ( ( ord_less_eq_set_a @ X @ Y )
& ( ord_less_eq_set_a @ X @ Z2 ) ) ) ).
% semilattice_inf_class.le_inf_iff
thf(fact_240_semilattice__inf__class_Oinf_Obounded__iff,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
= ( ( ord_less_eq_set_a @ A @ B )
& ( ord_less_eq_set_a @ A @ C ) ) ) ).
% semilattice_inf_class.inf.bounded_iff
thf(fact_241_semilattice__sup__class_Ole__sup__iff,axiom,
! [X: set_a,Y: set_a,Z2: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z2 )
= ( ( ord_less_eq_set_a @ X @ Z2 )
& ( ord_less_eq_set_a @ Y @ Z2 ) ) ) ).
% semilattice_sup_class.le_sup_iff
thf(fact_242_semilattice__sup__class_Osup_Obounded__iff,axiom,
! [B: set_a,C: set_a,A: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
= ( ( ord_less_eq_set_a @ B @ A )
& ( ord_less_eq_set_a @ C @ A ) ) ) ).
% semilattice_sup_class.sup.bounded_iff
thf(fact_243_lattice__class_Osup__inf__absorb,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= X ) ).
% lattice_class.sup_inf_absorb
thf(fact_244_lattice__class_Oinf__sup__absorb,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= X ) ).
% lattice_class.inf_sup_absorb
% Helper facts (3)
thf(help_If_3_1_If_001tf__a_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001tf__a_T,axiom,
! [X: a,Y: a] :
( ( if_a @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001tf__a_T,axiom,
! [X: a,Y: a] :
( ( if_a @ $true @ X @ Y )
= X ) ).
% Conjectures (2)
thf(conj_0,hypothesis,
less_eq @ ( modula1936294176_aux_a @ inf @ sup @ a2 @ b @ c ) @ ( modula1144073633_aux_a @ inf @ sup @ a2 @ b @ c ) ).
thf(conj_1,conjecture,
( ( inf @ ( modula17988509_aux_a @ inf @ sup @ b @ c @ a2 ) @ ( modula581031071_aux_a @ inf @ sup @ a2 @ b @ c ) )
= ( modula1936294176_aux_a @ inf @ sup @ a2 @ b @ c ) ) ).
%------------------------------------------------------------------------------