TPTP Problem File: ITP117^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP117^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer Minkowskis_Theorem problem prob_290__6248976_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : Minkowskis_Theorem/prob_290__6248976_1 [Des21]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0
% Syntax   : Number of formulae    :  487 ( 187 unt; 133 typ;   0 def)
%            Number of atoms       :  807 ( 345 equ;   0 cnn)
%            Maximal formula atoms :    6 (   2 avg)
%            Number of connectives : 3013 (  72   ~;   3   |;  79   &;2559   @)
%                                         (   0 <=>; 300  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   6 avg)
%            Number of types       :   19 (  18 usr)
%            Number of type conns  :  541 ( 541   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  117 ( 115 usr;  16 con; 0-2 aty)
%            Number of variables   : 1094 ( 122   ^; 923   !;  49   ?;1094   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:47:06.896
%------------------------------------------------------------------------------
% Could-be-implicit typings (18)
thf(ty_n_t__Sigma____Algebra__Omeasure_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    sigma_1422848389real_n: $tType ).

thf(ty_n_t__Set__Oset_It__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    set_Si1125517487real_n: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J_J,type,
    set_se820660888real_n: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    sigma_1466784463real_n: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    set_se2111327970real_n: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J_J,type,
    set_se944069346_int_n: $tType ).

thf(ty_n_t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    set_Fi1058188332real_n: $tType ).

thf(ty_n_t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J,type,
    set_Fi160064172_int_n: $tType ).

thf(ty_n_t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    finite1489363574real_n: $tType ).

thf(ty_n_t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    finite964658038_int_n: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    set_Ex113815278nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
    extend1728876344nnreal: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_I_Eo_J,type,
    sigma_measure_o: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    set_set_o: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (115)
thf(sy_c_Complete__Lattices_OSup__class_OSup_001_Eo,type,
    complete_Sup_Sup_o: set_o > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple1413366923nnreal: set_Ex113815278nnreal > extend1728876344nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    comple2042271945real_n: set_Fi1058188332real_n > finite1489363574real_n ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_I_Eo_J,type,
    comple1665300069_set_o: set_set_o > set_o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J,type,
    comple970917503_int_n: set_se944069346_int_n > set_Fi160064172_int_n ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    comple825005695real_n: set_se2111327970real_n > set_Fi1058188332real_n ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple1682161881et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    comple1917283637real_n: set_se820660888real_n > set_se2111327970real_n ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    comple488165692real_n: set_Si1125517487real_n > sigma_1466784463real_n ).

thf(sy_c_Complete__Measure_Ocompletion_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    comple230862828real_n: sigma_1466784463real_n > sigma_1466784463real_n ).

thf(sy_c_Countable__Set_Ofrom__nat__into_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    counta1142393929_int_n: set_Fi160064172_int_n > nat > finite964658038_int_n ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    minus_1196255695_int_n: finite964658038_int_n > finite964658038_int_n > finite964658038_int_n ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    minus_1037315151real_n: finite1489363574real_n > finite1489363574real_n > finite1489363574real_n ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    minus_1686442501real_n: set_Fi1058188332real_n > set_Fi1058188332real_n > set_Fi1058188332real_n ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
    one_on705384445nnreal: extend1728876344nnreal ).

thf(sy_c_Groups_Oone__class_Oone_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    one_on1253059131real_n: finite1489363574real_n ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
    plus_p1763960001nnreal: extend1728876344nnreal > extend1728876344nnreal > extend1728876344nnreal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    plus_p1654784127_int_n: finite964658038_int_n > finite964658038_int_n > finite964658038_int_n ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    plus_p585657087real_n: finite1489363574real_n > finite1489363574real_n > finite1489363574real_n ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
    zero_z1963244097nnreal: extend1728876344nnreal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    zero_z200130687real_n: finite1489363574real_n ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_Eo_J,type,
    inf_inf_set_o: set_o > set_o > set_o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J,type,
    inf_in1108485182_int_n: set_Fi160064172_int_n > set_Fi160064172_int_n > set_Fi160064172_int_n ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    inf_in1974387902real_n: set_Fi1058188332real_n > set_Fi1058188332real_n > set_Fi1058188332real_n ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    inf_in632889204real_n: set_se2111327970real_n > set_se2111327970real_n > set_se2111327970real_n ).

thf(sy_c_Lebesgue__Measure_Olborel_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    lebesg260170249real_n: sigma_1466784463real_n ).

thf(sy_c_Measure__Space_Onull__sets_001_Eo,type,
    measure_null_sets_o: sigma_measure_o > set_set_o ).

thf(sy_c_Measure__Space_Onull__sets_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    measur1402256771real_n: sigma_1466784463real_n > set_se2111327970real_n ).

thf(sy_c_Measure__Space_Onull__sets_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    measur2126959417real_n: sigma_1422848389real_n > set_se820660888real_n ).

thf(sy_c_Minkowskis__Theorem__Mirabelle__uzuvqgwfeb_Oof__int__vec_001tf__n_001t__Real__Oreal,type,
    minkow1134813771n_real: finite964658038_int_n > finite1489363574real_n ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le2133614988nnreal: extend1728876344nnreal > extend1728876344nnreal > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_M_Eo_J,type,
    top_to287930409nt_n_o: finite964658038_int_n > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Nat__Onat_M_Eo_J,type,
    top_top_nat_o: nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_Eo,type,
    top_top_o: $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Nonnegative____Real__Oennreal,type,
    top_to1845833192nnreal: extend1728876344nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J,type,
    top_to131672412_int_n: set_Fi160064172_int_n ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    top_to1292442332real_n: set_Fi1058188332real_n ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J_J,type,
    top_to1587634578_int_n: set_se944069346_int_n ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    top_to20708754real_n: set_se2111327970real_n ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    top_top_set_set_nat: set_set_nat ).

thf(sy_c_Series_Osums_001t__Extended____Nonnegative____Real__Oennreal,type,
    sums_E1192373732nnreal: ( nat > extend1728876344nnreal ) > extend1728876344nnreal > $o ).

thf(sy_c_Set_OCollect_001_Eo,type,
    collect_o: ( $o > $o ) > set_o ).

thf(sy_c_Set_OCollect_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    collec1941932235_int_n: ( finite964658038_int_n > $o ) > set_Fi160064172_int_n ).

thf(sy_c_Set_OCollect_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    collec321817931real_n: ( finite1489363574real_n > $o ) > set_Fi1058188332real_n ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    collec452821761real_n: ( set_Fi1058188332real_n > $o ) > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001_Eo_001_Eo,type,
    image_o_o: ( $o > $o ) > set_o > set_o ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_I_Eo_J,type,
    image_o_set_o: ( $o > set_o ) > set_o > set_set_o ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_1759008383real_n: ( $o > set_Fi1058188332real_n ) > set_o > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    image_452144437real_n: ( $o > set_se2111327970real_n ) > set_o > set_se820660888real_n ).

thf(sy_c_Set_Oimage_001_Eo_001t__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_1599934780real_n: ( $o > sigma_1466784463real_n ) > set_o > set_Si1125517487real_n ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    image_2066995319nnreal: ( extend1728876344nnreal > extend1728876344nnreal ) > set_Ex113815278nnreal > set_Ex113815278nnreal ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001_Eo,type,
    image_216309723nt_n_o: ( finite964658038_int_n > $o ) > set_Fi160064172_int_n > set_o ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    image_1278151539_int_n: ( finite964658038_int_n > finite964658038_int_n ) > set_Fi160064172_int_n > set_Fi160064172_int_n ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    image_2058828787real_n: ( finite964658038_int_n > finite1489363574real_n ) > set_Fi160064172_int_n > set_Fi1058188332real_n ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Nat__Onat,type,
    image_497739341_n_nat: ( finite964658038_int_n > nat ) > set_Fi160064172_int_n > set_nat ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J,type,
    image_1819506345_int_n: ( finite964658038_int_n > set_Fi160064172_int_n ) > set_Fi160064172_int_n > set_se944069346_int_n ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_355963305real_n: ( finite964658038_int_n > set_Fi1058188332real_n ) > set_Fi160064172_int_n > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_1085873667et_nat: ( finite964658038_int_n > set_nat ) > set_Fi160064172_int_n > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    image_439535603real_n: ( finite1489363574real_n > finite1489363574real_n ) > set_Fi1058188332real_n > set_Fi1058188332real_n ).

thf(sy_c_Set_Oimage_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_545463721real_n: ( finite1489363574real_n > set_Fi1058188332real_n ) > set_Fi1058188332real_n > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_Eo,type,
    image_nat_o: ( nat > $o ) > set_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    image_1961920973_int_n: ( nat > finite964658038_int_n ) > set_nat > set_Fi160064172_int_n ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    image_183184717real_n: ( nat > finite1489363574real_n ) > set_nat > set_Fi1058188332real_n ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J,type,
    image_968789251_int_n: ( nat > set_Fi160064172_int_n ) > set_nat > set_se944069346_int_n ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_1856576259real_n: ( nat > set_Fi1058188332real_n ) > set_nat > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_Eo_J_001_Eo,type,
    image_set_o_o: ( set_o > $o ) > set_set_o > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_792439519real_n: ( set_Fi160064172_int_n > set_Fi1058188332real_n ) > set_se944069346_int_n > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_J_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    image_1054146965real_n: ( set_Fi160064172_int_n > set_se2111327970real_n ) > set_se944069346_int_n > set_se820660888real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001_Eo,type,
    image_1648361637al_n_o: ( set_Fi1058188332real_n > $o ) > set_se2111327970real_n > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001t__Set__Oset_I_Eo_J,type,
    image_1687589765_set_o: ( set_Fi1058188332real_n > set_o ) > set_se2111327970real_n > set_set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_1661509983real_n: ( set_Fi1058188332real_n > set_Fi1058188332real_n ) > set_se2111327970real_n > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    image_797440021real_n: ( set_Fi1058188332real_n > set_se2111327970real_n ) > set_se2111327970real_n > set_se820660888real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001t__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_987430492real_n: ( set_Fi1058188332real_n > sigma_1466784463real_n ) > set_se2111327970real_n > set_Si1125517487real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_933134521real_n: ( set_nat > set_Fi1058188332real_n ) > set_set_nat > set_se2111327970real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    image_1587769199real_n: ( set_nat > set_se2111327970real_n ) > set_set_nat > set_se820660888real_n ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J_001_Eo,type,
    image_1681970287al_n_o: ( set_se2111327970real_n > $o ) > set_se820660888real_n > set_o ).

thf(sy_c_Set_Oimage_001t__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    image_1298280374real_n: ( sigma_1466784463real_n > set_Fi1058188332real_n ) > set_Si1125517487real_n > set_se2111327970real_n ).

thf(sy_c_Set_Ovimage_001_Eo_001_Eo,type,
    vimage_o_o: ( $o > $o ) > set_o > set_o ).

thf(sy_c_Set_Ovimage_001_Eo_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    vimage961837641real_n: ( $o > set_Fi1058188332real_n ) > set_se2111327970real_n > set_o ).

thf(sy_c_Set_Ovimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    vimage1122713129_int_n: ( finite964658038_int_n > finite964658038_int_n ) > set_Fi160064172_int_n > set_Fi160064172_int_n ).

thf(sy_c_Set_Ovimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    vimage1276736425real_n: ( finite964658038_int_n > finite1489363574real_n ) > set_Fi1058188332real_n > set_Fi160064172_int_n ).

thf(sy_c_Set_Ovimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Nat__Onat,type,
    vimage1398021123_n_nat: ( finite964658038_int_n > nat ) > set_nat > set_Fi160064172_int_n ).

thf(sy_c_Set_Ovimage_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    vimage464515423real_n: ( finite964658038_int_n > set_Fi1058188332real_n ) > set_se2111327970real_n > set_Fi160064172_int_n ).

thf(sy_c_Set_Ovimage_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    vimage1233683625real_n: ( finite1489363574real_n > finite1489363574real_n ) > set_Fi1058188332real_n > set_Fi1058188332real_n ).

thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    vimage714719107_int_n: ( nat > finite964658038_int_n ) > set_Fi160064172_int_n > set_nat ).

thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    vimage1860757507real_n: ( nat > finite1489363574real_n ) > set_Fi1058188332real_n > set_nat ).

thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Nat__Onat,type,
    vimage_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    vimage3210681real_n: ( nat > set_Fi1058188332real_n ) > set_se2111327970real_n > set_nat ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001_Eo,type,
    vimage851190895al_n_o: ( set_Fi1058188332real_n > $o ) > set_o > set_se2111327970real_n ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    vimage784510485real_n: ( set_Fi1058188332real_n > set_Fi1058188332real_n ) > set_se2111327970real_n > set_se2111327970real_n ).

thf(sy_c_Sigma__Algebra_Oemeasure_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    sigma_1536574303real_n: sigma_1466784463real_n > set_Fi1058188332real_n > extend1728876344nnreal ).

thf(sy_c_Sigma__Algebra_Osets_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    sigma_1235138647real_n: sigma_1466784463real_n > set_se2111327970real_n ).

thf(sy_c_Sigma__Algebra_Ospace_001_Eo,type,
    sigma_space_o: sigma_measure_o > set_o ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    sigma_476185326real_n: sigma_1466784463real_n > set_Fi1058188332real_n ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    sigma_607186084real_n: sigma_1422848389real_n > set_se2111327970real_n ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Extended____Nonnegative____Real__Oennreal,type,
    member1217042383nnreal: extend1728876344nnreal > set_Ex113815278nnreal > $o ).

thf(sy_c_member_001t__Finite____Cartesian____Product__Ovec_It__Int__Oint_Mtf__n_J,type,
    member27055245_int_n: finite964658038_int_n > set_Fi160064172_int_n > $o ).

thf(sy_c_member_001t__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J,type,
    member1352538125real_n: finite1489363574real_n > set_Fi1058188332real_n > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_I_Eo_J,type,
    member_set_o: set_o > set_set_o > $o ).

thf(sy_c_member_001t__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    member223413699real_n: set_Fi1058188332real_n > set_se2111327970real_n > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J_J,type,
    member1475136633real_n: set_se2111327970real_n > set_se820660888real_n > $o ).

thf(sy_c_member_001t__Sigma____Algebra__Omeasure_It__Finite____Cartesian____Product__Ovec_It__Real__Oreal_Mtf__n_J_J,type,
    member1000184real_n: sigma_1466784463real_n > set_Si1125517487real_n > $o ).

thf(sy_v_R____,type,
    r: finite964658038_int_n > set_Fi1058188332real_n ).

thf(sy_v_S,type,
    s: set_Fi1058188332real_n ).

thf(sy_v_T_H____,type,
    t: finite964658038_int_n > set_Fi1058188332real_n ).

thf(sy_v_T____,type,
    t2: finite964658038_int_n > set_Fi1058188332real_n ).

thf(sy_v_f____,type,
    f: nat > finite964658038_int_n ).

% Relevant facts (353)
thf(fact_0_emeasure__T_H,axiom,
    ! [A: finite964658038_int_n] :
      ( ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( t @ A ) )
      = ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( t2 @ A ) ) ) ).

% emeasure_T'
thf(fact_1__092_060open_062_092_060And_062a_O_AT_H_Aa_A_092_060in_062_Asets_Alebesgue_092_060close_062,axiom,
    ! [A: finite964658038_int_n] : ( member223413699real_n @ ( t @ A ) @ ( sigma_1235138647real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ) ).

% \<open>\<And>a. T' a \<in> sets lebesgue\<close>
thf(fact_2__092_060open_062_092_060And_062a_O_AT_Aa_A_092_060in_062_Asets_Alebesgue_092_060close_062,axiom,
    ! [A: finite964658038_int_n] : ( member223413699real_n @ ( t2 @ A ) @ ( sigma_1235138647real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ) ).

% \<open>\<And>a. T a \<in> sets lebesgue\<close>
thf(fact_3_calculation,axiom,
    ( sums_E1192373732nnreal
    @ ^ [N: nat] : ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( t2 @ ( f @ N ) ) )
    @ ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ s ) ) ).

% calculation
thf(fact_4_assms_I1_J,axiom,
    member223413699real_n @ s @ ( sigma_1235138647real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ).

% assms(1)
thf(fact_5_emeasure__T__Int,axiom,
    ! [A: finite964658038_int_n,B: finite964658038_int_n] :
      ( ( A != B )
     => ( ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( inf_in1974387902real_n @ ( t2 @ A ) @ ( t2 @ B ) ) )
        = zero_z1963244097nnreal ) ) ).

% emeasure_T_Int
thf(fact_6_T__Int,axiom,
    ! [A: finite964658038_int_n,B: finite964658038_int_n] :
      ( ( A != B )
     => ( member223413699real_n @ ( inf_in1974387902real_n @ ( t2 @ A ) @ ( t2 @ B ) ) @ ( measur1402256771real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ) ) ).

% T_Int
thf(fact_7_assms_I2_J,axiom,
    ord_le2133614988nnreal @ one_on705384445nnreal @ ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ s ) ).

% assms(2)
thf(fact_8__092_060open_062_092_060And_062a_O_AR_Aa_A_092_060in_062_Asets_Alebesgue_092_060close_062,axiom,
    ! [A: finite964658038_int_n] : ( member223413699real_n @ ( r @ A ) @ ( sigma_1235138647real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ) ).

% \<open>\<And>a. R a \<in> sets lebesgue\<close>
thf(fact_9__092_060open_062_I_092_060lambda_062n_O_Aemeasure_Alebesgue_A_IT_A_If_An_J_J_J_Asums_Aemeasure_Alebesgue_A_I_092_060Union_062n_O_AT_A_If_An_J_J_092_060close_062,axiom,
    ( sums_E1192373732nnreal
    @ ^ [N: nat] : ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( t2 @ ( f @ N ) ) )
    @ ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n )
      @ ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [N: nat] : ( t2 @ ( f @ N ) )
          @ top_top_set_nat ) ) ) ) ).

% \<open>(\<lambda>n. emeasure lebesgue (T (f n))) sums emeasure lebesgue (\<Union>n. T (f n))\<close>
thf(fact_10_T_H__def,axiom,
    ( t
    = ( ^ [A2: finite964658038_int_n] :
          ( image_439535603real_n
          @ ^ [X: finite1489363574real_n] : ( minus_1037315151real_n @ X @ ( minkow1134813771n_real @ A2 ) )
          @ ( t2 @ A2 ) ) ) ) ).

% T'_def
thf(fact_11_f__def,axiom,
    ( f
    = ( counta1142393929_int_n @ top_to131672412_int_n ) ) ).

% f_def
thf(fact_12_T_H__altdef,axiom,
    ! [A: finite964658038_int_n] :
      ( ( t @ A )
      = ( vimage1233683625real_n
        @ ^ [X: finite1489363574real_n] : ( plus_p585657087real_n @ X @ ( minkow1134813771n_real @ A ) )
        @ ( t2 @ A ) ) ) ).

% T'_altdef
thf(fact_13_of__int__vec__eq__iff,axiom,
    ! [A: finite964658038_int_n,B: finite964658038_int_n] :
      ( ( ( minkow1134813771n_real @ A )
        = ( minkow1134813771n_real @ B ) )
      = ( A = B ) ) ).

% of_int_vec_eq_iff
thf(fact_14_T__def,axiom,
    ( t2
    = ( ^ [A2: finite964658038_int_n] : ( inf_in1974387902real_n @ s @ ( r @ A2 ) ) ) ) ).

% T_def
thf(fact_15_R__Int,axiom,
    ! [A: finite964658038_int_n,B: finite964658038_int_n] :
      ( ( A != B )
     => ( member223413699real_n @ ( inf_in1974387902real_n @ ( r @ A ) @ ( r @ B ) ) @ ( measur1402256771real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ) ) ).

% R_Int
thf(fact_16_sums__emeasure_H,axiom,
    ! [B2: nat > set_Fi1058188332real_n,M: sigma_1466784463real_n] :
      ( ! [X2: nat] : ( member223413699real_n @ ( B2 @ X2 ) @ ( sigma_1235138647real_n @ M ) )
     => ( ! [X2: nat,Y: nat] :
            ( ( X2 != Y )
           => ( ( sigma_1536574303real_n @ M @ ( inf_in1974387902real_n @ ( B2 @ X2 ) @ ( B2 @ Y ) ) )
              = zero_z1963244097nnreal ) )
       => ( sums_E1192373732nnreal
          @ ^ [X: nat] : ( sigma_1536574303real_n @ M @ ( B2 @ X ) )
          @ ( sigma_1536574303real_n @ M @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ top_top_set_nat ) ) ) ) ) ) ).

% sums_emeasure'
thf(fact_17_null__sets__UN,axiom,
    ! [N2: nat > set_Fi1058188332real_n,M: sigma_1466784463real_n] :
      ( ! [I: nat] : ( member223413699real_n @ ( N2 @ I ) @ ( measur1402256771real_n @ M ) )
     => ( member223413699real_n @ ( comple825005695real_n @ ( image_1856576259real_n @ N2 @ top_top_set_nat ) ) @ ( measur1402256771real_n @ M ) ) ) ).

% null_sets_UN
thf(fact_18_null__sets__UN,axiom,
    ! [N2: finite964658038_int_n > set_Fi1058188332real_n,M: sigma_1466784463real_n] :
      ( ! [I: finite964658038_int_n] : ( member223413699real_n @ ( N2 @ I ) @ ( measur1402256771real_n @ M ) )
     => ( member223413699real_n @ ( comple825005695real_n @ ( image_355963305real_n @ N2 @ top_to131672412_int_n ) ) @ ( measur1402256771real_n @ M ) ) ) ).

% null_sets_UN
thf(fact_19_null__setsI,axiom,
    ! [M: sigma_1466784463real_n,A3: set_Fi1058188332real_n] :
      ( ( ( sigma_1536574303real_n @ M @ A3 )
        = zero_z1963244097nnreal )
     => ( ( member223413699real_n @ A3 @ ( sigma_1235138647real_n @ M ) )
       => ( member223413699real_n @ A3 @ ( measur1402256771real_n @ M ) ) ) ) ).

% null_setsI
thf(fact_20_image__vimage__eq,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( image_439535603real_n @ F @ ( vimage1233683625real_n @ F @ A3 ) )
      = ( inf_in1974387902real_n @ A3 @ ( image_439535603real_n @ F @ top_to1292442332real_n ) ) ) ).

% image_vimage_eq
thf(fact_21_image__vimage__eq,axiom,
    ! [F: nat > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( image_1856576259real_n @ F @ ( vimage3210681real_n @ F @ A3 ) )
      = ( inf_in632889204real_n @ A3 @ ( image_1856576259real_n @ F @ top_top_set_nat ) ) ) ).

% image_vimage_eq
thf(fact_22_image__vimage__eq,axiom,
    ! [F: nat > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( image_183184717real_n @ F @ ( vimage1860757507real_n @ F @ A3 ) )
      = ( inf_in1974387902real_n @ A3 @ ( image_183184717real_n @ F @ top_top_set_nat ) ) ) ).

% image_vimage_eq
thf(fact_23_image__vimage__eq,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( image_355963305real_n @ F @ ( vimage464515423real_n @ F @ A3 ) )
      = ( inf_in632889204real_n @ A3 @ ( image_355963305real_n @ F @ top_to131672412_int_n ) ) ) ).

% image_vimage_eq
thf(fact_24_image__vimage__eq,axiom,
    ! [F: finite964658038_int_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( image_2058828787real_n @ F @ ( vimage1276736425real_n @ F @ A3 ) )
      = ( inf_in1974387902real_n @ A3 @ ( image_2058828787real_n @ F @ top_to131672412_int_n ) ) ) ).

% image_vimage_eq
thf(fact_25__092_060open_062_092_060And_062a_O_AT_Aa_A_092_060in_062_Asets_Alebesgue_A_092_060Longrightarrow_062_A_I_092_060lambda_062x_O_Ax_A_L_Aof__int__vec_Aa_J_A_N_096_AT_Aa_A_092_060inter_062_Aspace_Alebesgue_A_092_060in_062_Asets_Alebesgue_092_060close_062,axiom,
    ! [A: finite964658038_int_n] :
      ( ( member223413699real_n @ ( t2 @ A ) @ ( sigma_1235138647real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) )
     => ( member223413699real_n
        @ ( inf_in1974387902real_n
          @ ( vimage1233683625real_n
            @ ^ [X: finite1489363574real_n] : ( plus_p585657087real_n @ X @ ( minkow1134813771n_real @ A ) )
            @ ( t2 @ A ) )
          @ ( sigma_476185326real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) )
        @ ( sigma_1235138647real_n @ ( comple230862828real_n @ lebesg260170249real_n ) ) ) ) ).

% \<open>\<And>a. T a \<in> sets lebesgue \<Longrightarrow> (\<lambda>x. x + of_int_vec a) -` T a \<inter> space lebesgue \<in> sets lebesgue\<close>
thf(fact_26_surj__diff__right,axiom,
    ! [A: finite964658038_int_n] :
      ( ( image_1278151539_int_n
        @ ^ [X: finite964658038_int_n] : ( minus_1196255695_int_n @ X @ A )
        @ top_to131672412_int_n )
      = top_to131672412_int_n ) ).

% surj_diff_right
thf(fact_27_surj__diff__right,axiom,
    ! [A: finite1489363574real_n] :
      ( ( image_439535603real_n
        @ ^ [X: finite1489363574real_n] : ( minus_1037315151real_n @ X @ A )
        @ top_to1292442332real_n )
      = top_to1292442332real_n ) ).

% surj_diff_right
thf(fact_28__092_060open_062_092_060Union_062_A_Irange_AT_J_A_061_A_I_092_060Union_062n_O_AT_A_If_An_J_J_092_060close_062,axiom,
    ( ( comple825005695real_n @ ( image_355963305real_n @ t2 @ top_to131672412_int_n ) )
    = ( comple825005695real_n
      @ ( image_1856576259real_n
        @ ^ [N: nat] : ( t2 @ ( f @ N ) )
        @ top_top_set_nat ) ) ) ).

% \<open>\<Union> (range T) = (\<Union>n. T (f n))\<close>
thf(fact_29_Sup__UNIV,axiom,
    ( ( comple1682161881et_nat @ top_top_set_set_nat )
    = top_top_set_nat ) ).

% Sup_UNIV
thf(fact_30_Sup__UNIV,axiom,
    ( ( comple970917503_int_n @ top_to1587634578_int_n )
    = top_to131672412_int_n ) ).

% Sup_UNIV
thf(fact_31_Sup__UNIV,axiom,
    ( ( comple825005695real_n @ top_to20708754real_n )
    = top_to1292442332real_n ) ).

% Sup_UNIV
thf(fact_32_Sup__UNIV,axiom,
    ( ( complete_Sup_Sup_o @ top_top_set_o )
    = top_top_o ) ).

% Sup_UNIV
thf(fact_33_Sup__eq__top__iff,axiom,
    ! [A3: set_Ex113815278nnreal] :
      ( ( ( comple1413366923nnreal @ A3 )
        = top_to1845833192nnreal )
      = ( ! [X: extend1728876344nnreal] :
            ( ( ord_le2133614988nnreal @ X @ top_to1845833192nnreal )
           => ? [Y2: extend1728876344nnreal] :
                ( ( member1217042383nnreal @ Y2 @ A3 )
                & ( ord_le2133614988nnreal @ X @ Y2 ) ) ) ) ) ).

% Sup_eq_top_iff
thf(fact_34_surj__plus,axiom,
    ! [A: finite1489363574real_n] :
      ( ( image_439535603real_n @ ( plus_p585657087real_n @ A ) @ top_to1292442332real_n )
      = top_to1292442332real_n ) ).

% surj_plus
thf(fact_35_surj__plus,axiom,
    ! [A: finite964658038_int_n] :
      ( ( image_1278151539_int_n @ ( plus_p1654784127_int_n @ A ) @ top_to131672412_int_n )
      = top_to131672412_int_n ) ).

% surj_plus
thf(fact_36_diff__numeral__special_I9_J,axiom,
    ( ( minus_1037315151real_n @ one_on1253059131real_n @ one_on1253059131real_n )
    = zero_z200130687real_n ) ).

% diff_numeral_special(9)
thf(fact_37_image__eqI,axiom,
    ! [B: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,X3: finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member1352538125real_n @ X3 @ A3 )
       => ( member1352538125real_n @ B @ ( image_439535603real_n @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_38_image__eqI,axiom,
    ! [B: set_Fi1058188332real_n,F: nat > set_Fi1058188332real_n,X3: nat,A3: set_nat] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member_nat @ X3 @ A3 )
       => ( member223413699real_n @ B @ ( image_1856576259real_n @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_39_image__eqI,axiom,
    ! [B: set_Fi1058188332real_n,F: finite964658038_int_n > set_Fi1058188332real_n,X3: finite964658038_int_n,A3: set_Fi160064172_int_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member27055245_int_n @ X3 @ A3 )
       => ( member223413699real_n @ B @ ( image_355963305real_n @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_40_image__eqI,axiom,
    ! [B: set_Fi1058188332real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n,X3: set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member223413699real_n @ X3 @ A3 )
       => ( member223413699real_n @ B @ ( image_1661509983real_n @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_41_image__eqI,axiom,
    ! [B: $o,F: set_Fi1058188332real_n > $o,X3: set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member223413699real_n @ X3 @ A3 )
       => ( member_o @ B @ ( image_1648361637al_n_o @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_42_image__eqI,axiom,
    ! [B: set_Fi1058188332real_n,F: $o > set_Fi1058188332real_n,X3: $o,A3: set_o] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member_o @ X3 @ A3 )
       => ( member223413699real_n @ B @ ( image_1759008383real_n @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_43_image__eqI,axiom,
    ! [B: $o,F: $o > $o,X3: $o,A3: set_o] :
      ( ( B
        = ( F @ X3 ) )
     => ( ( member_o @ X3 @ A3 )
       => ( member_o @ B @ ( image_o_o @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_44_UNIV__I,axiom,
    ! [X3: set_Fi1058188332real_n] : ( member223413699real_n @ X3 @ top_to20708754real_n ) ).

% UNIV_I
thf(fact_45_UNIV__I,axiom,
    ! [X3: $o] : ( member_o @ X3 @ top_top_set_o ) ).

% UNIV_I
thf(fact_46_UNIV__I,axiom,
    ! [X3: nat] : ( member_nat @ X3 @ top_top_set_nat ) ).

% UNIV_I
thf(fact_47_UNIV__I,axiom,
    ! [X3: finite964658038_int_n] : ( member27055245_int_n @ X3 @ top_to131672412_int_n ) ).

% UNIV_I
thf(fact_48_Int__iff,axiom,
    ! [C: set_Fi1058188332real_n,A3: set_se2111327970real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ C @ ( inf_in632889204real_n @ A3 @ B2 ) )
      = ( ( member223413699real_n @ C @ A3 )
        & ( member223413699real_n @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_49_Int__iff,axiom,
    ! [C: $o,A3: set_o,B2: set_o] :
      ( ( member_o @ C @ ( inf_inf_set_o @ A3 @ B2 ) )
      = ( ( member_o @ C @ A3 )
        & ( member_o @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_50_Int__iff,axiom,
    ! [C: finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ C @ ( inf_in1974387902real_n @ A3 @ B2 ) )
      = ( ( member1352538125real_n @ C @ A3 )
        & ( member1352538125real_n @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_51_IntI,axiom,
    ! [C: set_Fi1058188332real_n,A3: set_se2111327970real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ C @ A3 )
     => ( ( member223413699real_n @ C @ B2 )
       => ( member223413699real_n @ C @ ( inf_in632889204real_n @ A3 @ B2 ) ) ) ) ).

% IntI
thf(fact_52_IntI,axiom,
    ! [C: $o,A3: set_o,B2: set_o] :
      ( ( member_o @ C @ A3 )
     => ( ( member_o @ C @ B2 )
       => ( member_o @ C @ ( inf_inf_set_o @ A3 @ B2 ) ) ) ) ).

% IntI
thf(fact_53_IntI,axiom,
    ! [C: finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ C @ A3 )
     => ( ( member1352538125real_n @ C @ B2 )
       => ( member1352538125real_n @ C @ ( inf_in1974387902real_n @ A3 @ B2 ) ) ) ) ).

% IntI
thf(fact_54_Union__iff,axiom,
    ! [A3: set_Fi1058188332real_n,C2: set_se820660888real_n] :
      ( ( member223413699real_n @ A3 @ ( comple1917283637real_n @ C2 ) )
      = ( ? [X: set_se2111327970real_n] :
            ( ( member1475136633real_n @ X @ C2 )
            & ( member223413699real_n @ A3 @ X ) ) ) ) ).

% Union_iff
thf(fact_55_Union__iff,axiom,
    ! [A3: $o,C2: set_set_o] :
      ( ( member_o @ A3 @ ( comple1665300069_set_o @ C2 ) )
      = ( ? [X: set_o] :
            ( ( member_set_o @ X @ C2 )
            & ( member_o @ A3 @ X ) ) ) ) ).

% Union_iff
thf(fact_56_Union__iff,axiom,
    ! [A3: finite1489363574real_n,C2: set_se2111327970real_n] :
      ( ( member1352538125real_n @ A3 @ ( comple825005695real_n @ C2 ) )
      = ( ? [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ C2 )
            & ( member1352538125real_n @ A3 @ X ) ) ) ) ).

% Union_iff
thf(fact_57_UnionI,axiom,
    ! [X4: set_se2111327970real_n,C2: set_se820660888real_n,A3: set_Fi1058188332real_n] :
      ( ( member1475136633real_n @ X4 @ C2 )
     => ( ( member223413699real_n @ A3 @ X4 )
       => ( member223413699real_n @ A3 @ ( comple1917283637real_n @ C2 ) ) ) ) ).

% UnionI
thf(fact_58_UnionI,axiom,
    ! [X4: set_o,C2: set_set_o,A3: $o] :
      ( ( member_set_o @ X4 @ C2 )
     => ( ( member_o @ A3 @ X4 )
       => ( member_o @ A3 @ ( comple1665300069_set_o @ C2 ) ) ) ) ).

% UnionI
thf(fact_59_UnionI,axiom,
    ! [X4: set_Fi1058188332real_n,C2: set_se2111327970real_n,A3: finite1489363574real_n] :
      ( ( member223413699real_n @ X4 @ C2 )
     => ( ( member1352538125real_n @ A3 @ X4 )
       => ( member1352538125real_n @ A3 @ ( comple825005695real_n @ C2 ) ) ) ) ).

% UnionI
thf(fact_60_UN__ball__bex__simps_I1_J,axiom,
    ! [A3: set_se2111327970real_n,P: finite1489363574real_n > $o] :
      ( ( ! [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ A3 ) )
           => ( P @ X ) ) )
      = ( ! [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ A3 )
           => ! [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ X )
               => ( P @ Y2 ) ) ) ) ) ).

% UN_ball_bex_simps(1)
thf(fact_61_UN__ball__bex__simps_I3_J,axiom,
    ! [A3: set_se2111327970real_n,P: finite1489363574real_n > $o] :
      ( ( ? [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ A3 ) )
            & ( P @ X ) ) )
      = ( ? [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ A3 )
            & ? [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ X )
                & ( P @ Y2 ) ) ) ) ) ).

% UN_ball_bex_simps(3)
thf(fact_62_null__sets_ODiff,axiom,
    ! [A: set_Fi1058188332real_n,M: sigma_1466784463real_n,B: set_Fi1058188332real_n] :
      ( ( member223413699real_n @ A @ ( measur1402256771real_n @ M ) )
     => ( ( member223413699real_n @ B @ ( measur1402256771real_n @ M ) )
       => ( member223413699real_n @ ( minus_1686442501real_n @ A @ B ) @ ( measur1402256771real_n @ M ) ) ) ) ).

% null_sets.Diff
thf(fact_63_vimage__eq,axiom,
    ! [A: set_Fi1058188332real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ A @ ( vimage784510485real_n @ F @ B2 ) )
      = ( member223413699real_n @ ( F @ A ) @ B2 ) ) ).

% vimage_eq
thf(fact_64_vimage__eq,axiom,
    ! [A: set_Fi1058188332real_n,F: set_Fi1058188332real_n > $o,B2: set_o] :
      ( ( member223413699real_n @ A @ ( vimage851190895al_n_o @ F @ B2 ) )
      = ( member_o @ ( F @ A ) @ B2 ) ) ).

% vimage_eq
thf(fact_65_vimage__eq,axiom,
    ! [A: $o,F: $o > set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( member_o @ A @ ( vimage961837641real_n @ F @ B2 ) )
      = ( member223413699real_n @ ( F @ A ) @ B2 ) ) ).

% vimage_eq
thf(fact_66_vimage__eq,axiom,
    ! [A: $o,F: $o > $o,B2: set_o] :
      ( ( member_o @ A @ ( vimage_o_o @ F @ B2 ) )
      = ( member_o @ ( F @ A ) @ B2 ) ) ).

% vimage_eq
thf(fact_67_vimage__eq,axiom,
    ! [A: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ A @ ( vimage1233683625real_n @ F @ B2 ) )
      = ( member1352538125real_n @ ( F @ A ) @ B2 ) ) ).

% vimage_eq
thf(fact_68_vimageI,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,A: set_Fi1058188332real_n,B: set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( ( F @ A )
        = B )
     => ( ( member223413699real_n @ B @ B2 )
       => ( member223413699real_n @ A @ ( vimage784510485real_n @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_69_vimageI,axiom,
    ! [F: $o > set_Fi1058188332real_n,A: $o,B: set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( ( F @ A )
        = B )
     => ( ( member223413699real_n @ B @ B2 )
       => ( member_o @ A @ ( vimage961837641real_n @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_70_vimageI,axiom,
    ! [F: set_Fi1058188332real_n > $o,A: set_Fi1058188332real_n,B: $o,B2: set_o] :
      ( ( ( F @ A )
        = B )
     => ( ( member_o @ B @ B2 )
       => ( member223413699real_n @ A @ ( vimage851190895al_n_o @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_71_vimageI,axiom,
    ! [F: $o > $o,A: $o,B: $o,B2: set_o] :
      ( ( ( F @ A )
        = B )
     => ( ( member_o @ B @ B2 )
       => ( member_o @ A @ ( vimage_o_o @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_72_vimageI,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A: finite1489363574real_n,B: finite1489363574real_n,B2: set_Fi1058188332real_n] :
      ( ( ( F @ A )
        = B )
     => ( ( member1352538125real_n @ B @ B2 )
       => ( member1352538125real_n @ A @ ( vimage1233683625real_n @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_73_image__ident,axiom,
    ! [Y3: set_Fi1058188332real_n] :
      ( ( image_439535603real_n
        @ ^ [X: finite1489363574real_n] : X
        @ Y3 )
      = Y3 ) ).

% image_ident
thf(fact_74_vimage__Collect__eq,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,P: finite1489363574real_n > $o] :
      ( ( vimage1233683625real_n @ F @ ( collec321817931real_n @ P ) )
      = ( collec321817931real_n
        @ ^ [Y2: finite1489363574real_n] : ( P @ ( F @ Y2 ) ) ) ) ).

% vimage_Collect_eq
thf(fact_75_vimage__ident,axiom,
    ! [Y3: set_Fi1058188332real_n] :
      ( ( vimage1233683625real_n
        @ ^ [X: finite1489363574real_n] : X
        @ Y3 )
      = Y3 ) ).

% vimage_ident
thf(fact_76_Int__UNIV,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( ( inf_in1974387902real_n @ A3 @ B2 )
        = top_to1292442332real_n )
      = ( ( A3 = top_to1292442332real_n )
        & ( B2 = top_to1292442332real_n ) ) ) ).

% Int_UNIV
thf(fact_77_Int__UNIV,axiom,
    ! [A3: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A3 @ B2 )
        = top_top_set_nat )
      = ( ( A3 = top_top_set_nat )
        & ( B2 = top_top_set_nat ) ) ) ).

% Int_UNIV
thf(fact_78_Int__UNIV,axiom,
    ! [A3: set_Fi160064172_int_n,B2: set_Fi160064172_int_n] :
      ( ( ( inf_in1108485182_int_n @ A3 @ B2 )
        = top_to131672412_int_n )
      = ( ( A3 = top_to131672412_int_n )
        & ( B2 = top_to131672412_int_n ) ) ) ).

% Int_UNIV
thf(fact_79_ball__UN,axiom,
    ! [B2: nat > set_Fi1058188332real_n,A3: set_nat,P: finite1489363574real_n > $o] :
      ( ( ! [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) )
           => ( P @ X ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ A3 )
           => ! [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
               => ( P @ Y2 ) ) ) ) ) ).

% ball_UN
thf(fact_80_ball__UN,axiom,
    ! [B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: finite1489363574real_n > $o] :
      ( ( ! [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) )
           => ( P @ X ) ) )
      = ( ! [X: finite964658038_int_n] :
            ( ( member27055245_int_n @ X @ A3 )
           => ! [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
               => ( P @ Y2 ) ) ) ) ) ).

% ball_UN
thf(fact_81_mem__Collect__eq,axiom,
    ! [A: set_Fi1058188332real_n,P: set_Fi1058188332real_n > $o] :
      ( ( member223413699real_n @ A @ ( collec452821761real_n @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_82_mem__Collect__eq,axiom,
    ! [A: $o,P: $o > $o] :
      ( ( member_o @ A @ ( collect_o @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_83_Collect__mem__eq,axiom,
    ! [A3: set_se2111327970real_n] :
      ( ( collec452821761real_n
        @ ^ [X: set_Fi1058188332real_n] : ( member223413699real_n @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_84_Collect__mem__eq,axiom,
    ! [A3: set_o] :
      ( ( collect_o
        @ ^ [X: $o] : ( member_o @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_85_bex__UN,axiom,
    ! [B2: nat > set_Fi1058188332real_n,A3: set_nat,P: finite1489363574real_n > $o] :
      ( ( ? [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) )
            & ( P @ X ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A3 )
            & ? [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
                & ( P @ Y2 ) ) ) ) ) ).

% bex_UN
thf(fact_86_bex__UN,axiom,
    ! [B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: finite1489363574real_n > $o] :
      ( ( ? [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) )
            & ( P @ X ) ) )
      = ( ? [X: finite964658038_int_n] :
            ( ( member27055245_int_n @ X @ A3 )
            & ? [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
                & ( P @ Y2 ) ) ) ) ) ).

% bex_UN
thf(fact_87_UN__ball__bex__simps_I2_J,axiom,
    ! [B2: nat > set_Fi1058188332real_n,A3: set_nat,P: finite1489363574real_n > $o] :
      ( ( ! [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) )
           => ( P @ X ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ A3 )
           => ! [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
               => ( P @ Y2 ) ) ) ) ) ).

% UN_ball_bex_simps(2)
thf(fact_88_UN__ball__bex__simps_I2_J,axiom,
    ! [B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: finite1489363574real_n > $o] :
      ( ( ! [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) )
           => ( P @ X ) ) )
      = ( ! [X: finite964658038_int_n] :
            ( ( member27055245_int_n @ X @ A3 )
           => ! [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
               => ( P @ Y2 ) ) ) ) ) ).

% UN_ball_bex_simps(2)
thf(fact_89_UN__ball__bex__simps_I4_J,axiom,
    ! [B2: nat > set_Fi1058188332real_n,A3: set_nat,P: finite1489363574real_n > $o] :
      ( ( ? [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) )
            & ( P @ X ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A3 )
            & ? [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
                & ( P @ Y2 ) ) ) ) ) ).

% UN_ball_bex_simps(4)
thf(fact_90_UN__ball__bex__simps_I4_J,axiom,
    ! [B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: finite1489363574real_n > $o] :
      ( ( ? [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) )
            & ( P @ X ) ) )
      = ( ? [X: finite964658038_int_n] :
            ( ( member27055245_int_n @ X @ A3 )
            & ? [Y2: finite1489363574real_n] :
                ( ( member1352538125real_n @ Y2 @ ( B2 @ X ) )
                & ( P @ Y2 ) ) ) ) ) ).

% UN_ball_bex_simps(4)
thf(fact_91_vimage__UNIV,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n] :
      ( ( vimage1233683625real_n @ F @ top_to1292442332real_n )
      = top_to1292442332real_n ) ).

% vimage_UNIV
thf(fact_92_vimage__UNIV,axiom,
    ! [F: nat > nat] :
      ( ( vimage_nat_nat @ F @ top_top_set_nat )
      = top_top_set_nat ) ).

% vimage_UNIV
thf(fact_93_vimage__UNIV,axiom,
    ! [F: finite964658038_int_n > nat] :
      ( ( vimage1398021123_n_nat @ F @ top_top_set_nat )
      = top_to131672412_int_n ) ).

% vimage_UNIV
thf(fact_94_vimage__UNIV,axiom,
    ! [F: nat > finite964658038_int_n] :
      ( ( vimage714719107_int_n @ F @ top_to131672412_int_n )
      = top_top_set_nat ) ).

% vimage_UNIV
thf(fact_95_vimage__UNIV,axiom,
    ! [F: finite964658038_int_n > finite964658038_int_n] :
      ( ( vimage1122713129_int_n @ F @ top_to131672412_int_n )
      = top_to131672412_int_n ) ).

% vimage_UNIV
thf(fact_96_null__sets_OInt,axiom,
    ! [A: set_Fi1058188332real_n,M: sigma_1466784463real_n,B: set_Fi1058188332real_n] :
      ( ( member223413699real_n @ A @ ( measur1402256771real_n @ M ) )
     => ( ( member223413699real_n @ B @ ( measur1402256771real_n @ M ) )
       => ( member223413699real_n @ ( inf_in1974387902real_n @ A @ B ) @ ( measur1402256771real_n @ M ) ) ) ) ).

% null_sets.Int
thf(fact_97_vimage__Int,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( vimage1233683625real_n @ F @ ( inf_in1974387902real_n @ A3 @ B2 ) )
      = ( inf_in1974387902real_n @ ( vimage1233683625real_n @ F @ A3 ) @ ( vimage1233683625real_n @ F @ B2 ) ) ) ).

% vimage_Int
thf(fact_98_SUP__identity__eq,axiom,
    ! [A3: set_Fi1058188332real_n] :
      ( ( comple2042271945real_n
        @ ( image_439535603real_n
          @ ^ [X: finite1489363574real_n] : X
          @ A3 ) )
      = ( comple2042271945real_n @ A3 ) ) ).

% SUP_identity_eq
thf(fact_99_SUP__identity__eq,axiom,
    ! [A3: set_se2111327970real_n] :
      ( ( comple825005695real_n
        @ ( image_1661509983real_n
          @ ^ [X: set_Fi1058188332real_n] : X
          @ A3 ) )
      = ( comple825005695real_n @ A3 ) ) ).

% SUP_identity_eq
thf(fact_100_SUP__identity__eq,axiom,
    ! [A3: set_o] :
      ( ( complete_Sup_Sup_o
        @ ( image_o_o
          @ ^ [X: $o] : X
          @ A3 ) )
      = ( complete_Sup_Sup_o @ A3 ) ) ).

% SUP_identity_eq
thf(fact_101_UN__iff,axiom,
    ! [B: finite1489363574real_n,B2: nat > set_Fi1058188332real_n,A3: set_nat] :
      ( ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A3 )
            & ( member1352538125real_n @ B @ ( B2 @ X ) ) ) ) ) ).

% UN_iff
thf(fact_102_UN__iff,axiom,
    ! [B: finite1489363574real_n,B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n] :
      ( ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) )
      = ( ? [X: finite964658038_int_n] :
            ( ( member27055245_int_n @ X @ A3 )
            & ( member1352538125real_n @ B @ ( B2 @ X ) ) ) ) ) ).

% UN_iff
thf(fact_103_UN__I,axiom,
    ! [A: set_Fi1058188332real_n,A3: set_se2111327970real_n,B: set_Fi1058188332real_n,B2: set_Fi1058188332real_n > set_se2111327970real_n] :
      ( ( member223413699real_n @ A @ A3 )
     => ( ( member223413699real_n @ B @ ( B2 @ A ) )
       => ( member223413699real_n @ B @ ( comple1917283637real_n @ ( image_797440021real_n @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_104_UN__I,axiom,
    ! [A: set_Fi1058188332real_n,A3: set_se2111327970real_n,B: $o,B2: set_Fi1058188332real_n > set_o] :
      ( ( member223413699real_n @ A @ A3 )
     => ( ( member_o @ B @ ( B2 @ A ) )
       => ( member_o @ B @ ( comple1665300069_set_o @ ( image_1687589765_set_o @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_105_UN__I,axiom,
    ! [A: $o,A3: set_o,B: set_Fi1058188332real_n,B2: $o > set_se2111327970real_n] :
      ( ( member_o @ A @ A3 )
     => ( ( member223413699real_n @ B @ ( B2 @ A ) )
       => ( member223413699real_n @ B @ ( comple1917283637real_n @ ( image_452144437real_n @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_106_UN__I,axiom,
    ! [A: $o,A3: set_o,B: $o,B2: $o > set_o] :
      ( ( member_o @ A @ A3 )
     => ( ( member_o @ B @ ( B2 @ A ) )
       => ( member_o @ B @ ( comple1665300069_set_o @ ( image_o_set_o @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_107_UN__I,axiom,
    ! [A: nat,A3: set_nat,B: finite1489363574real_n,B2: nat > set_Fi1058188332real_n] :
      ( ( member_nat @ A @ A3 )
     => ( ( member1352538125real_n @ B @ ( B2 @ A ) )
       => ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_108_UN__I,axiom,
    ! [A: finite964658038_int_n,A3: set_Fi160064172_int_n,B: finite1489363574real_n,B2: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( member27055245_int_n @ A @ A3 )
     => ( ( member1352538125real_n @ B @ ( B2 @ A ) )
       => ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_109_UN__I,axiom,
    ! [A: set_Fi1058188332real_n,A3: set_se2111327970real_n,B: finite1489363574real_n,B2: set_Fi1058188332real_n > set_Fi1058188332real_n] :
      ( ( member223413699real_n @ A @ A3 )
     => ( ( member1352538125real_n @ B @ ( B2 @ A ) )
       => ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1661509983real_n @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_110_UN__I,axiom,
    ! [A: $o,A3: set_o,B: finite1489363574real_n,B2: $o > set_Fi1058188332real_n] :
      ( ( member_o @ A @ A3 )
     => ( ( member1352538125real_n @ B @ ( B2 @ A ) )
       => ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1759008383real_n @ B2 @ A3 ) ) ) ) ) ).

% UN_I
thf(fact_111_S__decompose,axiom,
    ( s
    = ( comple825005695real_n @ ( image_355963305real_n @ t2 @ top_to131672412_int_n ) ) ) ).

% S_decompose
thf(fact_112_image__add__0,axiom,
    ! [S: set_Fi1058188332real_n] :
      ( ( image_439535603real_n @ ( plus_p585657087real_n @ zero_z200130687real_n ) @ S )
      = S ) ).

% image_add_0
thf(fact_113_image__add__0,axiom,
    ! [S: set_Ex113815278nnreal] :
      ( ( image_2066995319nnreal @ ( plus_p1763960001nnreal @ zero_z1963244097nnreal ) @ S )
      = S ) ).

% image_add_0
thf(fact_114_null__sets_OInt__space__eq2,axiom,
    ! [X3: set_Fi1058188332real_n,M: sigma_1466784463real_n] :
      ( ( member223413699real_n @ X3 @ ( measur1402256771real_n @ M ) )
     => ( ( inf_in1974387902real_n @ X3 @ ( sigma_476185326real_n @ M ) )
        = X3 ) ) ).

% null_sets.Int_space_eq2
thf(fact_115_null__sets_OInt__space__eq1,axiom,
    ! [X3: set_Fi1058188332real_n,M: sigma_1466784463real_n] :
      ( ( member223413699real_n @ X3 @ ( measur1402256771real_n @ M ) )
     => ( ( inf_in1974387902real_n @ ( sigma_476185326real_n @ M ) @ X3 )
        = X3 ) ) ).

% null_sets.Int_space_eq1
thf(fact_116_in__sets__SUP,axiom,
    ! [I2: set_Fi1058188332real_n,I3: set_se2111327970real_n,M: set_Fi1058188332real_n > sigma_1466784463real_n,Y3: set_Fi1058188332real_n,X4: set_Fi1058188332real_n] :
      ( ( member223413699real_n @ I2 @ I3 )
     => ( ! [I: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ I @ I3 )
           => ( ( sigma_476185326real_n @ ( M @ I ) )
              = Y3 ) )
       => ( ( member223413699real_n @ X4 @ ( sigma_1235138647real_n @ ( M @ I2 ) ) )
         => ( member223413699real_n @ X4 @ ( sigma_1235138647real_n @ ( comple488165692real_n @ ( image_987430492real_n @ M @ I3 ) ) ) ) ) ) ) ).

% in_sets_SUP
thf(fact_117_in__sets__SUP,axiom,
    ! [I2: $o,I3: set_o,M: $o > sigma_1466784463real_n,Y3: set_Fi1058188332real_n,X4: set_Fi1058188332real_n] :
      ( ( member_o @ I2 @ I3 )
     => ( ! [I: $o] :
            ( ( member_o @ I @ I3 )
           => ( ( sigma_476185326real_n @ ( M @ I ) )
              = Y3 ) )
       => ( ( member223413699real_n @ X4 @ ( sigma_1235138647real_n @ ( M @ I2 ) ) )
         => ( member223413699real_n @ X4 @ ( sigma_1235138647real_n @ ( comple488165692real_n @ ( image_1599934780real_n @ M @ I3 ) ) ) ) ) ) ) ).

% in_sets_SUP
thf(fact_118_in__sets__Sup,axiom,
    ! [M: set_Si1125517487real_n,X4: set_Fi1058188332real_n,M2: sigma_1466784463real_n,A3: set_Fi1058188332real_n] :
      ( ! [M3: sigma_1466784463real_n] :
          ( ( member1000184real_n @ M3 @ M )
         => ( ( sigma_476185326real_n @ M3 )
            = X4 ) )
     => ( ( member1000184real_n @ M2 @ M )
       => ( ( member223413699real_n @ A3 @ ( sigma_1235138647real_n @ M2 ) )
         => ( member223413699real_n @ A3 @ ( sigma_1235138647real_n @ ( comple488165692real_n @ M ) ) ) ) ) ) ).

% in_sets_Sup
thf(fact_119_sets__SUP__cong,axiom,
    ! [I3: set_se2111327970real_n,M: set_Fi1058188332real_n > sigma_1466784463real_n,N2: set_Fi1058188332real_n > sigma_1466784463real_n] :
      ( ! [I: set_Fi1058188332real_n] :
          ( ( member223413699real_n @ I @ I3 )
         => ( ( sigma_1235138647real_n @ ( M @ I ) )
            = ( sigma_1235138647real_n @ ( N2 @ I ) ) ) )
     => ( ( sigma_1235138647real_n @ ( comple488165692real_n @ ( image_987430492real_n @ M @ I3 ) ) )
        = ( sigma_1235138647real_n @ ( comple488165692real_n @ ( image_987430492real_n @ N2 @ I3 ) ) ) ) ) ).

% sets_SUP_cong
thf(fact_120_sets__SUP__cong,axiom,
    ! [I3: set_o,M: $o > sigma_1466784463real_n,N2: $o > sigma_1466784463real_n] :
      ( ! [I: $o] :
          ( ( member_o @ I @ I3 )
         => ( ( sigma_1235138647real_n @ ( M @ I ) )
            = ( sigma_1235138647real_n @ ( N2 @ I ) ) ) )
     => ( ( sigma_1235138647real_n @ ( comple488165692real_n @ ( image_1599934780real_n @ M @ I3 ) ) )
        = ( sigma_1235138647real_n @ ( comple488165692real_n @ ( image_1599934780real_n @ N2 @ I3 ) ) ) ) ) ).

% sets_SUP_cong
thf(fact_121_Sup__set__def,axiom,
    ( comple1917283637real_n
    = ( ^ [A4: set_se820660888real_n] :
          ( collec452821761real_n
          @ ^ [X: set_Fi1058188332real_n] : ( complete_Sup_Sup_o @ ( image_1681970287al_n_o @ ( member223413699real_n @ X ) @ A4 ) ) ) ) ) ).

% Sup_set_def
thf(fact_122_Sup__set__def,axiom,
    ( comple1665300069_set_o
    = ( ^ [A4: set_set_o] :
          ( collect_o
          @ ^ [X: $o] : ( complete_Sup_Sup_o @ ( image_set_o_o @ ( member_o @ X ) @ A4 ) ) ) ) ) ).

% Sup_set_def
thf(fact_123_Sup__set__def,axiom,
    ( comple825005695real_n
    = ( ^ [A4: set_se2111327970real_n] :
          ( collec321817931real_n
          @ ^ [X: finite1489363574real_n] : ( complete_Sup_Sup_o @ ( image_1648361637al_n_o @ ( member1352538125real_n @ X ) @ A4 ) ) ) ) ) ).

% Sup_set_def
thf(fact_124_space__Sup__eq__UN,axiom,
    ! [M: set_Si1125517487real_n] :
      ( ( sigma_476185326real_n @ ( comple488165692real_n @ M ) )
      = ( comple825005695real_n @ ( image_1298280374real_n @ sigma_476185326real_n @ M ) ) ) ).

% space_Sup_eq_UN
thf(fact_125_top__set__def,axiom,
    ( top_top_set_nat
    = ( collect_nat @ top_top_nat_o ) ) ).

% top_set_def
thf(fact_126_top__set__def,axiom,
    ( top_to131672412_int_n
    = ( collec1941932235_int_n @ top_to287930409nt_n_o ) ) ).

% top_set_def
thf(fact_127_Diff__Int__distrib2,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ ( minus_1686442501real_n @ A3 @ B2 ) @ C2 )
      = ( minus_1686442501real_n @ ( inf_in1974387902real_n @ A3 @ C2 ) @ ( inf_in1974387902real_n @ B2 @ C2 ) ) ) ).

% Diff_Int_distrib2
thf(fact_128_Diff__Int__distrib,axiom,
    ! [C2: set_Fi1058188332real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ C2 @ ( minus_1686442501real_n @ A3 @ B2 ) )
      = ( minus_1686442501real_n @ ( inf_in1974387902real_n @ C2 @ A3 ) @ ( inf_in1974387902real_n @ C2 @ B2 ) ) ) ).

% Diff_Int_distrib
thf(fact_129_Diff__Diff__Int,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( minus_1686442501real_n @ A3 @ ( minus_1686442501real_n @ A3 @ B2 ) )
      = ( inf_in1974387902real_n @ A3 @ B2 ) ) ).

% Diff_Diff_Int
thf(fact_130_Diff__Int2,axiom,
    ! [A3: set_Fi1058188332real_n,C2: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( minus_1686442501real_n @ ( inf_in1974387902real_n @ A3 @ C2 ) @ ( inf_in1974387902real_n @ B2 @ C2 ) )
      = ( minus_1686442501real_n @ ( inf_in1974387902real_n @ A3 @ C2 ) @ B2 ) ) ).

% Diff_Int2
thf(fact_131_Int__Diff,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: set_Fi1058188332real_n] :
      ( ( minus_1686442501real_n @ ( inf_in1974387902real_n @ A3 @ B2 ) @ C2 )
      = ( inf_in1974387902real_n @ A3 @ ( minus_1686442501real_n @ B2 @ C2 ) ) ) ).

% Int_Diff
thf(fact_132_vimage__Diff,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( vimage1233683625real_n @ F @ ( minus_1686442501real_n @ A3 @ B2 ) )
      = ( minus_1686442501real_n @ ( vimage1233683625real_n @ F @ A3 ) @ ( vimage1233683625real_n @ F @ B2 ) ) ) ).

% vimage_Diff
thf(fact_133_null__sets_Osets__Collect__disj,axiom,
    ! [M: sigma_1422848389real_n,P: set_Fi1058188332real_n > $o,Q: set_Fi1058188332real_n > $o] :
      ( ( member1475136633real_n
        @ ( collec452821761real_n
          @ ^ [X: set_Fi1058188332real_n] :
              ( ( member223413699real_n @ X @ ( sigma_607186084real_n @ M ) )
              & ( P @ X ) ) )
        @ ( measur2126959417real_n @ M ) )
     => ( ( member1475136633real_n
          @ ( collec452821761real_n
            @ ^ [X: set_Fi1058188332real_n] :
                ( ( member223413699real_n @ X @ ( sigma_607186084real_n @ M ) )
                & ( Q @ X ) ) )
          @ ( measur2126959417real_n @ M ) )
       => ( member1475136633real_n
          @ ( collec452821761real_n
            @ ^ [X: set_Fi1058188332real_n] :
                ( ( member223413699real_n @ X @ ( sigma_607186084real_n @ M ) )
                & ( ( Q @ X )
                  | ( P @ X ) ) ) )
          @ ( measur2126959417real_n @ M ) ) ) ) ).

% null_sets.sets_Collect_disj
thf(fact_134_null__sets_Osets__Collect__disj,axiom,
    ! [M: sigma_measure_o,P: $o > $o,Q: $o > $o] :
      ( ( member_set_o
        @ ( collect_o
          @ ^ [X: $o] :
              ( ( member_o @ X @ ( sigma_space_o @ M ) )
              & ( P @ X ) ) )
        @ ( measure_null_sets_o @ M ) )
     => ( ( member_set_o
          @ ( collect_o
            @ ^ [X: $o] :
                ( ( member_o @ X @ ( sigma_space_o @ M ) )
                & ( Q @ X ) ) )
          @ ( measure_null_sets_o @ M ) )
       => ( member_set_o
          @ ( collect_o
            @ ^ [X: $o] :
                ( ( member_o @ X @ ( sigma_space_o @ M ) )
                & ( ( Q @ X )
                  | ( P @ X ) ) ) )
          @ ( measure_null_sets_o @ M ) ) ) ) ).

% null_sets.sets_Collect_disj
thf(fact_135_null__sets_Osets__Collect__disj,axiom,
    ! [M: sigma_1466784463real_n,P: finite1489363574real_n > $o,Q: finite1489363574real_n > $o] :
      ( ( member223413699real_n
        @ ( collec321817931real_n
          @ ^ [X: finite1489363574real_n] :
              ( ( member1352538125real_n @ X @ ( sigma_476185326real_n @ M ) )
              & ( P @ X ) ) )
        @ ( measur1402256771real_n @ M ) )
     => ( ( member223413699real_n
          @ ( collec321817931real_n
            @ ^ [X: finite1489363574real_n] :
                ( ( member1352538125real_n @ X @ ( sigma_476185326real_n @ M ) )
                & ( Q @ X ) ) )
          @ ( measur1402256771real_n @ M ) )
       => ( member223413699real_n
          @ ( collec321817931real_n
            @ ^ [X: finite1489363574real_n] :
                ( ( member1352538125real_n @ X @ ( sigma_476185326real_n @ M ) )
                & ( ( Q @ X )
                  | ( P @ X ) ) ) )
          @ ( measur1402256771real_n @ M ) ) ) ) ).

% null_sets.sets_Collect_disj
thf(fact_136_null__sets_Osets__Collect__conj,axiom,
    ! [M: sigma_1422848389real_n,P: set_Fi1058188332real_n > $o,Q: set_Fi1058188332real_n > $o] :
      ( ( member1475136633real_n
        @ ( collec452821761real_n
          @ ^ [X: set_Fi1058188332real_n] :
              ( ( member223413699real_n @ X @ ( sigma_607186084real_n @ M ) )
              & ( P @ X ) ) )
        @ ( measur2126959417real_n @ M ) )
     => ( ( member1475136633real_n
          @ ( collec452821761real_n
            @ ^ [X: set_Fi1058188332real_n] :
                ( ( member223413699real_n @ X @ ( sigma_607186084real_n @ M ) )
                & ( Q @ X ) ) )
          @ ( measur2126959417real_n @ M ) )
       => ( member1475136633real_n
          @ ( collec452821761real_n
            @ ^ [X: set_Fi1058188332real_n] :
                ( ( member223413699real_n @ X @ ( sigma_607186084real_n @ M ) )
                & ( Q @ X )
                & ( P @ X ) ) )
          @ ( measur2126959417real_n @ M ) ) ) ) ).

% null_sets.sets_Collect_conj
thf(fact_137_null__sets_Osets__Collect__conj,axiom,
    ! [M: sigma_measure_o,P: $o > $o,Q: $o > $o] :
      ( ( member_set_o
        @ ( collect_o
          @ ^ [X: $o] :
              ( ( member_o @ X @ ( sigma_space_o @ M ) )
              & ( P @ X ) ) )
        @ ( measure_null_sets_o @ M ) )
     => ( ( member_set_o
          @ ( collect_o
            @ ^ [X: $o] :
                ( ( member_o @ X @ ( sigma_space_o @ M ) )
                & ( Q @ X ) ) )
          @ ( measure_null_sets_o @ M ) )
       => ( member_set_o
          @ ( collect_o
            @ ^ [X: $o] :
                ( ( member_o @ X @ ( sigma_space_o @ M ) )
                & ( Q @ X )
                & ( P @ X ) ) )
          @ ( measure_null_sets_o @ M ) ) ) ) ).

% null_sets.sets_Collect_conj
thf(fact_138_null__sets_Osets__Collect__conj,axiom,
    ! [M: sigma_1466784463real_n,P: finite1489363574real_n > $o,Q: finite1489363574real_n > $o] :
      ( ( member223413699real_n
        @ ( collec321817931real_n
          @ ^ [X: finite1489363574real_n] :
              ( ( member1352538125real_n @ X @ ( sigma_476185326real_n @ M ) )
              & ( P @ X ) ) )
        @ ( measur1402256771real_n @ M ) )
     => ( ( member223413699real_n
          @ ( collec321817931real_n
            @ ^ [X: finite1489363574real_n] :
                ( ( member1352538125real_n @ X @ ( sigma_476185326real_n @ M ) )
                & ( Q @ X ) ) )
          @ ( measur1402256771real_n @ M ) )
       => ( member223413699real_n
          @ ( collec321817931real_n
            @ ^ [X: finite1489363574real_n] :
                ( ( member1352538125real_n @ X @ ( sigma_476185326real_n @ M ) )
                & ( Q @ X )
                & ( P @ X ) ) )
          @ ( measur1402256771real_n @ M ) ) ) ) ).

% null_sets.sets_Collect_conj
thf(fact_139_translation__diff,axiom,
    ! [A: finite1489363574real_n,S2: set_Fi1058188332real_n,T: set_Fi1058188332real_n] :
      ( ( image_439535603real_n @ ( plus_p585657087real_n @ A ) @ ( minus_1686442501real_n @ S2 @ T ) )
      = ( minus_1686442501real_n @ ( image_439535603real_n @ ( plus_p585657087real_n @ A ) @ S2 ) @ ( image_439535603real_n @ ( plus_p585657087real_n @ A ) @ T ) ) ) ).

% translation_diff
thf(fact_140_null__set__Diff,axiom,
    ! [B2: set_Fi1058188332real_n,M: sigma_1466784463real_n,A3: set_Fi1058188332real_n] :
      ( ( member223413699real_n @ B2 @ ( measur1402256771real_n @ M ) )
     => ( ( member223413699real_n @ A3 @ ( sigma_1235138647real_n @ M ) )
       => ( member223413699real_n @ ( minus_1686442501real_n @ B2 @ A3 ) @ ( measur1402256771real_n @ M ) ) ) ) ).

% null_set_Diff
thf(fact_141_Int__Union2,axiom,
    ! [B2: set_se2111327970real_n,A3: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ ( comple825005695real_n @ B2 ) @ A3 )
      = ( comple825005695real_n
        @ ( image_1661509983real_n
          @ ^ [C3: set_Fi1058188332real_n] : ( inf_in1974387902real_n @ C3 @ A3 )
          @ B2 ) ) ) ).

% Int_Union2
thf(fact_142_Int__Union,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( inf_in1974387902real_n @ A3 @ ( comple825005695real_n @ B2 ) )
      = ( comple825005695real_n @ ( image_1661509983real_n @ ( inf_in1974387902real_n @ A3 ) @ B2 ) ) ) ).

% Int_Union
thf(fact_143_vimage__Union,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_se2111327970real_n] :
      ( ( vimage1233683625real_n @ F @ ( comple825005695real_n @ A3 ) )
      = ( comple825005695real_n @ ( image_1661509983real_n @ ( vimage1233683625real_n @ F ) @ A3 ) ) ) ).

% vimage_Union
thf(fact_144_UN__extend__simps_I6_J,axiom,
    ! [A3: nat > set_Fi1058188332real_n,C2: set_nat,B2: set_Fi1058188332real_n] :
      ( ( minus_1686442501real_n @ ( comple825005695real_n @ ( image_1856576259real_n @ A3 @ C2 ) ) @ B2 )
      = ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [X: nat] : ( minus_1686442501real_n @ ( A3 @ X ) @ B2 )
          @ C2 ) ) ) ).

% UN_extend_simps(6)
thf(fact_145_UN__extend__simps_I6_J,axiom,
    ! [A3: finite964658038_int_n > set_Fi1058188332real_n,C2: set_Fi160064172_int_n,B2: set_Fi1058188332real_n] :
      ( ( minus_1686442501real_n @ ( comple825005695real_n @ ( image_355963305real_n @ A3 @ C2 ) ) @ B2 )
      = ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [X: finite964658038_int_n] : ( minus_1686442501real_n @ ( A3 @ X ) @ B2 )
          @ C2 ) ) ) ).

% UN_extend_simps(6)
thf(fact_146_emeasure__Diff__null__set,axiom,
    ! [B2: set_Fi1058188332real_n,M: sigma_1466784463real_n,A3: set_Fi1058188332real_n] :
      ( ( member223413699real_n @ B2 @ ( measur1402256771real_n @ M ) )
     => ( ( member223413699real_n @ A3 @ ( sigma_1235138647real_n @ M ) )
       => ( ( sigma_1536574303real_n @ M @ ( minus_1686442501real_n @ A3 @ B2 ) )
          = ( sigma_1536574303real_n @ M @ A3 ) ) ) ) ).

% emeasure_Diff_null_set
thf(fact_147_Sup_OSUP__cong,axiom,
    ! [A3: set_nat,B2: set_nat,C2: nat > set_Fi1058188332real_n,D: nat > set_Fi1058188332real_n,Sup: set_se2111327970real_n > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( Sup @ ( image_1856576259real_n @ C2 @ A3 ) )
          = ( Sup @ ( image_1856576259real_n @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_148_Sup_OSUP__cong,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: finite1489363574real_n > finite1489363574real_n,D: finite1489363574real_n > finite1489363574real_n,Sup: set_Fi1058188332real_n > finite1489363574real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: finite1489363574real_n] :
            ( ( member1352538125real_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( Sup @ ( image_439535603real_n @ C2 @ A3 ) )
          = ( Sup @ ( image_439535603real_n @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_149_Sup_OSUP__cong,axiom,
    ! [A3: set_Fi160064172_int_n,B2: set_Fi160064172_int_n,C2: finite964658038_int_n > set_Fi1058188332real_n,D: finite964658038_int_n > set_Fi1058188332real_n,Sup: set_se2111327970real_n > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: finite964658038_int_n] :
            ( ( member27055245_int_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( Sup @ ( image_355963305real_n @ C2 @ A3 ) )
          = ( Sup @ ( image_355963305real_n @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_150_Inf_OINF__cong,axiom,
    ! [A3: set_nat,B2: set_nat,C2: nat > set_Fi1058188332real_n,D: nat > set_Fi1058188332real_n,Inf: set_se2111327970real_n > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( Inf @ ( image_1856576259real_n @ C2 @ A3 ) )
          = ( Inf @ ( image_1856576259real_n @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_151_Inf_OINF__cong,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: finite1489363574real_n > finite1489363574real_n,D: finite1489363574real_n > finite1489363574real_n,Inf: set_Fi1058188332real_n > finite1489363574real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: finite1489363574real_n] :
            ( ( member1352538125real_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( Inf @ ( image_439535603real_n @ C2 @ A3 ) )
          = ( Inf @ ( image_439535603real_n @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_152_Inf_OINF__cong,axiom,
    ! [A3: set_Fi160064172_int_n,B2: set_Fi160064172_int_n,C2: finite964658038_int_n > set_Fi1058188332real_n,D: finite964658038_int_n > set_Fi1058188332real_n,Inf: set_se2111327970real_n > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: finite964658038_int_n] :
            ( ( member27055245_int_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( Inf @ ( image_355963305real_n @ C2 @ A3 ) )
          = ( Inf @ ( image_355963305real_n @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_153_rev__image__eqI,axiom,
    ! [X3: finite1489363574real_n,A3: set_Fi1058188332real_n,B: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n] :
      ( ( member1352538125real_n @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member1352538125real_n @ B @ ( image_439535603real_n @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_154_rev__image__eqI,axiom,
    ! [X3: nat,A3: set_nat,B: set_Fi1058188332real_n,F: nat > set_Fi1058188332real_n] :
      ( ( member_nat @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member223413699real_n @ B @ ( image_1856576259real_n @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_155_rev__image__eqI,axiom,
    ! [X3: finite964658038_int_n,A3: set_Fi160064172_int_n,B: set_Fi1058188332real_n,F: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( member27055245_int_n @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member223413699real_n @ B @ ( image_355963305real_n @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_156_rev__image__eqI,axiom,
    ! [X3: set_Fi1058188332real_n,A3: set_se2111327970real_n,B: set_Fi1058188332real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n] :
      ( ( member223413699real_n @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member223413699real_n @ B @ ( image_1661509983real_n @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_157_rev__image__eqI,axiom,
    ! [X3: set_Fi1058188332real_n,A3: set_se2111327970real_n,B: $o,F: set_Fi1058188332real_n > $o] :
      ( ( member223413699real_n @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member_o @ B @ ( image_1648361637al_n_o @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_158_rev__image__eqI,axiom,
    ! [X3: $o,A3: set_o,B: set_Fi1058188332real_n,F: $o > set_Fi1058188332real_n] :
      ( ( member_o @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member223413699real_n @ B @ ( image_1759008383real_n @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_159_rev__image__eqI,axiom,
    ! [X3: $o,A3: set_o,B: $o,F: $o > $o] :
      ( ( member_o @ X3 @ A3 )
     => ( ( B
          = ( F @ X3 ) )
       => ( member_o @ B @ ( image_o_o @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_160_ball__imageD,axiom,
    ! [F: nat > set_Fi1058188332real_n,A3: set_nat,P: set_Fi1058188332real_n > $o] :
      ( ! [X2: set_Fi1058188332real_n] :
          ( ( member223413699real_n @ X2 @ ( image_1856576259real_n @ F @ A3 ) )
         => ( P @ X2 ) )
     => ! [X5: nat] :
          ( ( member_nat @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_161_ball__imageD,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n,P: finite1489363574real_n > $o] :
      ( ! [X2: finite1489363574real_n] :
          ( ( member1352538125real_n @ X2 @ ( image_439535603real_n @ F @ A3 ) )
         => ( P @ X2 ) )
     => ! [X5: finite1489363574real_n] :
          ( ( member1352538125real_n @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_162_ball__imageD,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: set_Fi1058188332real_n > $o] :
      ( ! [X2: set_Fi1058188332real_n] :
          ( ( member223413699real_n @ X2 @ ( image_355963305real_n @ F @ A3 ) )
         => ( P @ X2 ) )
     => ! [X5: finite964658038_int_n] :
          ( ( member27055245_int_n @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_163_image__cong,axiom,
    ! [M: set_nat,N2: set_nat,F: nat > set_Fi1058188332real_n,G: nat > set_Fi1058188332real_n] :
      ( ( M = N2 )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ N2 )
           => ( ( F @ X2 )
              = ( G @ X2 ) ) )
       => ( ( image_1856576259real_n @ F @ M )
          = ( image_1856576259real_n @ G @ N2 ) ) ) ) ).

% image_cong
thf(fact_164_image__cong,axiom,
    ! [M: set_Fi1058188332real_n,N2: set_Fi1058188332real_n,F: finite1489363574real_n > finite1489363574real_n,G: finite1489363574real_n > finite1489363574real_n] :
      ( ( M = N2 )
     => ( ! [X2: finite1489363574real_n] :
            ( ( member1352538125real_n @ X2 @ N2 )
           => ( ( F @ X2 )
              = ( G @ X2 ) ) )
       => ( ( image_439535603real_n @ F @ M )
          = ( image_439535603real_n @ G @ N2 ) ) ) ) ).

% image_cong
thf(fact_165_image__cong,axiom,
    ! [M: set_Fi160064172_int_n,N2: set_Fi160064172_int_n,F: finite964658038_int_n > set_Fi1058188332real_n,G: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( M = N2 )
     => ( ! [X2: finite964658038_int_n] :
            ( ( member27055245_int_n @ X2 @ N2 )
           => ( ( F @ X2 )
              = ( G @ X2 ) ) )
       => ( ( image_355963305real_n @ F @ M )
          = ( image_355963305real_n @ G @ N2 ) ) ) ) ).

% image_cong
thf(fact_166_bex__imageD,axiom,
    ! [F: nat > set_Fi1058188332real_n,A3: set_nat,P: set_Fi1058188332real_n > $o] :
      ( ? [X5: set_Fi1058188332real_n] :
          ( ( member223413699real_n @ X5 @ ( image_1856576259real_n @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X2: nat] :
          ( ( member_nat @ X2 @ A3 )
          & ( P @ ( F @ X2 ) ) ) ) ).

% bex_imageD
thf(fact_167_bex__imageD,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n,P: finite1489363574real_n > $o] :
      ( ? [X5: finite1489363574real_n] :
          ( ( member1352538125real_n @ X5 @ ( image_439535603real_n @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X2: finite1489363574real_n] :
          ( ( member1352538125real_n @ X2 @ A3 )
          & ( P @ ( F @ X2 ) ) ) ) ).

% bex_imageD
thf(fact_168_bex__imageD,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: set_Fi1058188332real_n > $o] :
      ( ? [X5: set_Fi1058188332real_n] :
          ( ( member223413699real_n @ X5 @ ( image_355963305real_n @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X2: finite964658038_int_n] :
          ( ( member27055245_int_n @ X2 @ A3 )
          & ( P @ ( F @ X2 ) ) ) ) ).

% bex_imageD
thf(fact_169_image__iff,axiom,
    ! [Z: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ Z @ ( image_439535603real_n @ F @ A3 ) )
      = ( ? [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ A3 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_170_image__iff,axiom,
    ! [Z: set_Fi1058188332real_n,F: nat > set_Fi1058188332real_n,A3: set_nat] :
      ( ( member223413699real_n @ Z @ ( image_1856576259real_n @ F @ A3 ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A3 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_171_image__iff,axiom,
    ! [Z: set_Fi1058188332real_n,F: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n] :
      ( ( member223413699real_n @ Z @ ( image_355963305real_n @ F @ A3 ) )
      = ( ? [X: finite964658038_int_n] :
            ( ( member27055245_int_n @ X @ A3 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_172_imageI,axiom,
    ! [X3: finite1489363574real_n,A3: set_Fi1058188332real_n,F: finite1489363574real_n > finite1489363574real_n] :
      ( ( member1352538125real_n @ X3 @ A3 )
     => ( member1352538125real_n @ ( F @ X3 ) @ ( image_439535603real_n @ F @ A3 ) ) ) ).

% imageI
thf(fact_173_imageI,axiom,
    ! [X3: nat,A3: set_nat,F: nat > set_Fi1058188332real_n] :
      ( ( member_nat @ X3 @ A3 )
     => ( member223413699real_n @ ( F @ X3 ) @ ( image_1856576259real_n @ F @ A3 ) ) ) ).

% imageI
thf(fact_174_imageI,axiom,
    ! [X3: finite964658038_int_n,A3: set_Fi160064172_int_n,F: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( member27055245_int_n @ X3 @ A3 )
     => ( member223413699real_n @ ( F @ X3 ) @ ( image_355963305real_n @ F @ A3 ) ) ) ).

% imageI
thf(fact_175_imageI,axiom,
    ! [X3: set_Fi1058188332real_n,A3: set_se2111327970real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n] :
      ( ( member223413699real_n @ X3 @ A3 )
     => ( member223413699real_n @ ( F @ X3 ) @ ( image_1661509983real_n @ F @ A3 ) ) ) ).

% imageI
thf(fact_176_imageI,axiom,
    ! [X3: set_Fi1058188332real_n,A3: set_se2111327970real_n,F: set_Fi1058188332real_n > $o] :
      ( ( member223413699real_n @ X3 @ A3 )
     => ( member_o @ ( F @ X3 ) @ ( image_1648361637al_n_o @ F @ A3 ) ) ) ).

% imageI
thf(fact_177_imageI,axiom,
    ! [X3: $o,A3: set_o,F: $o > set_Fi1058188332real_n] :
      ( ( member_o @ X3 @ A3 )
     => ( member223413699real_n @ ( F @ X3 ) @ ( image_1759008383real_n @ F @ A3 ) ) ) ).

% imageI
thf(fact_178_imageI,axiom,
    ! [X3: $o,A3: set_o,F: $o > $o] :
      ( ( member_o @ X3 @ A3 )
     => ( member_o @ ( F @ X3 ) @ ( image_o_o @ F @ A3 ) ) ) ).

% imageI
thf(fact_179_is__num__normalize_I1_J,axiom,
    ! [A: finite1489363574real_n,B: finite1489363574real_n,C: finite1489363574real_n] :
      ( ( plus_p585657087real_n @ ( plus_p585657087real_n @ A @ B ) @ C )
      = ( plus_p585657087real_n @ A @ ( plus_p585657087real_n @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_180_UNIV__witness,axiom,
    ? [X2: set_Fi1058188332real_n] : ( member223413699real_n @ X2 @ top_to20708754real_n ) ).

% UNIV_witness
thf(fact_181_UNIV__witness,axiom,
    ? [X2: $o] : ( member_o @ X2 @ top_top_set_o ) ).

% UNIV_witness
thf(fact_182_UNIV__witness,axiom,
    ? [X2: nat] : ( member_nat @ X2 @ top_top_set_nat ) ).

% UNIV_witness
thf(fact_183_UNIV__witness,axiom,
    ? [X2: finite964658038_int_n] : ( member27055245_int_n @ X2 @ top_to131672412_int_n ) ).

% UNIV_witness
thf(fact_184_UNIV__eq__I,axiom,
    ! [A3: set_se2111327970real_n] :
      ( ! [X2: set_Fi1058188332real_n] : ( member223413699real_n @ X2 @ A3 )
     => ( top_to20708754real_n = A3 ) ) ).

% UNIV_eq_I
thf(fact_185_UNIV__eq__I,axiom,
    ! [A3: set_o] :
      ( ! [X2: $o] : ( member_o @ X2 @ A3 )
     => ( top_top_set_o = A3 ) ) ).

% UNIV_eq_I
thf(fact_186_UNIV__eq__I,axiom,
    ! [A3: set_nat] :
      ( ! [X2: nat] : ( member_nat @ X2 @ A3 )
     => ( top_top_set_nat = A3 ) ) ).

% UNIV_eq_I
thf(fact_187_UNIV__eq__I,axiom,
    ! [A3: set_Fi160064172_int_n] :
      ( ! [X2: finite964658038_int_n] : ( member27055245_int_n @ X2 @ A3 )
     => ( top_to131672412_int_n = A3 ) ) ).

% UNIV_eq_I
thf(fact_188_Int__left__commute,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ A3 @ ( inf_in1974387902real_n @ B2 @ C2 ) )
      = ( inf_in1974387902real_n @ B2 @ ( inf_in1974387902real_n @ A3 @ C2 ) ) ) ).

% Int_left_commute
thf(fact_189_Int__left__absorb,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ A3 @ ( inf_in1974387902real_n @ A3 @ B2 ) )
      = ( inf_in1974387902real_n @ A3 @ B2 ) ) ).

% Int_left_absorb
thf(fact_190_Int__commute,axiom,
    ( inf_in1974387902real_n
    = ( ^ [A4: set_Fi1058188332real_n,B3: set_Fi1058188332real_n] : ( inf_in1974387902real_n @ B3 @ A4 ) ) ) ).

% Int_commute
thf(fact_191_Int__absorb,axiom,
    ! [A3: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ A3 @ A3 )
      = A3 ) ).

% Int_absorb
thf(fact_192_Int__assoc,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ ( inf_in1974387902real_n @ A3 @ B2 ) @ C2 )
      = ( inf_in1974387902real_n @ A3 @ ( inf_in1974387902real_n @ B2 @ C2 ) ) ) ).

% Int_assoc
thf(fact_193_IntD2,axiom,
    ! [C: set_Fi1058188332real_n,A3: set_se2111327970real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ C @ ( inf_in632889204real_n @ A3 @ B2 ) )
     => ( member223413699real_n @ C @ B2 ) ) ).

% IntD2
thf(fact_194_IntD2,axiom,
    ! [C: $o,A3: set_o,B2: set_o] :
      ( ( member_o @ C @ ( inf_inf_set_o @ A3 @ B2 ) )
     => ( member_o @ C @ B2 ) ) ).

% IntD2
thf(fact_195_IntD2,axiom,
    ! [C: finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ C @ ( inf_in1974387902real_n @ A3 @ B2 ) )
     => ( member1352538125real_n @ C @ B2 ) ) ).

% IntD2
thf(fact_196_IntD1,axiom,
    ! [C: set_Fi1058188332real_n,A3: set_se2111327970real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ C @ ( inf_in632889204real_n @ A3 @ B2 ) )
     => ( member223413699real_n @ C @ A3 ) ) ).

% IntD1
thf(fact_197_IntD1,axiom,
    ! [C: $o,A3: set_o,B2: set_o] :
      ( ( member_o @ C @ ( inf_inf_set_o @ A3 @ B2 ) )
     => ( member_o @ C @ A3 ) ) ).

% IntD1
thf(fact_198_IntD1,axiom,
    ! [C: finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ C @ ( inf_in1974387902real_n @ A3 @ B2 ) )
     => ( member1352538125real_n @ C @ A3 ) ) ).

% IntD1
thf(fact_199_IntE,axiom,
    ! [C: set_Fi1058188332real_n,A3: set_se2111327970real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ C @ ( inf_in632889204real_n @ A3 @ B2 ) )
     => ~ ( ( member223413699real_n @ C @ A3 )
         => ~ ( member223413699real_n @ C @ B2 ) ) ) ).

% IntE
thf(fact_200_IntE,axiom,
    ! [C: $o,A3: set_o,B2: set_o] :
      ( ( member_o @ C @ ( inf_inf_set_o @ A3 @ B2 ) )
     => ~ ( ( member_o @ C @ A3 )
         => ~ ( member_o @ C @ B2 ) ) ) ).

% IntE
thf(fact_201_IntE,axiom,
    ! [C: finite1489363574real_n,A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ C @ ( inf_in1974387902real_n @ A3 @ B2 ) )
     => ~ ( ( member1352538125real_n @ C @ A3 )
         => ~ ( member1352538125real_n @ C @ B2 ) ) ) ).

% IntE
thf(fact_202_UnionE,axiom,
    ! [A3: set_Fi1058188332real_n,C2: set_se820660888real_n] :
      ( ( member223413699real_n @ A3 @ ( comple1917283637real_n @ C2 ) )
     => ~ ! [X6: set_se2111327970real_n] :
            ( ( member223413699real_n @ A3 @ X6 )
           => ~ ( member1475136633real_n @ X6 @ C2 ) ) ) ).

% UnionE
thf(fact_203_UnionE,axiom,
    ! [A3: $o,C2: set_set_o] :
      ( ( member_o @ A3 @ ( comple1665300069_set_o @ C2 ) )
     => ~ ! [X6: set_o] :
            ( ( member_o @ A3 @ X6 )
           => ~ ( member_set_o @ X6 @ C2 ) ) ) ).

% UnionE
thf(fact_204_UnionE,axiom,
    ! [A3: finite1489363574real_n,C2: set_se2111327970real_n] :
      ( ( member1352538125real_n @ A3 @ ( comple825005695real_n @ C2 ) )
     => ~ ! [X6: set_Fi1058188332real_n] :
            ( ( member1352538125real_n @ A3 @ X6 )
           => ~ ( member223413699real_n @ X6 @ C2 ) ) ) ).

% UnionE
thf(fact_205_vimage__Collect,axiom,
    ! [P: finite1489363574real_n > $o,F: finite1489363574real_n > finite1489363574real_n,Q: finite1489363574real_n > $o] :
      ( ! [X2: finite1489363574real_n] :
          ( ( P @ ( F @ X2 ) )
          = ( Q @ X2 ) )
     => ( ( vimage1233683625real_n @ F @ ( collec321817931real_n @ P ) )
        = ( collec321817931real_n @ Q ) ) ) ).

% vimage_Collect
thf(fact_206_vimageI2,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,A: set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( member223413699real_n @ ( F @ A ) @ A3 )
     => ( member223413699real_n @ A @ ( vimage784510485real_n @ F @ A3 ) ) ) ).

% vimageI2
thf(fact_207_vimageI2,axiom,
    ! [F: $o > set_Fi1058188332real_n,A: $o,A3: set_se2111327970real_n] :
      ( ( member223413699real_n @ ( F @ A ) @ A3 )
     => ( member_o @ A @ ( vimage961837641real_n @ F @ A3 ) ) ) ).

% vimageI2
thf(fact_208_vimageI2,axiom,
    ! [F: set_Fi1058188332real_n > $o,A: set_Fi1058188332real_n,A3: set_o] :
      ( ( member_o @ ( F @ A ) @ A3 )
     => ( member223413699real_n @ A @ ( vimage851190895al_n_o @ F @ A3 ) ) ) ).

% vimageI2
thf(fact_209_vimageI2,axiom,
    ! [F: $o > $o,A: $o,A3: set_o] :
      ( ( member_o @ ( F @ A ) @ A3 )
     => ( member_o @ A @ ( vimage_o_o @ F @ A3 ) ) ) ).

% vimageI2
thf(fact_210_vimageI2,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A: finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ ( F @ A ) @ A3 )
     => ( member1352538125real_n @ A @ ( vimage1233683625real_n @ F @ A3 ) ) ) ).

% vimageI2
thf(fact_211_vimageE,axiom,
    ! [A: set_Fi1058188332real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( member223413699real_n @ A @ ( vimage784510485real_n @ F @ B2 ) )
     => ( member223413699real_n @ ( F @ A ) @ B2 ) ) ).

% vimageE
thf(fact_212_vimageE,axiom,
    ! [A: set_Fi1058188332real_n,F: set_Fi1058188332real_n > $o,B2: set_o] :
      ( ( member223413699real_n @ A @ ( vimage851190895al_n_o @ F @ B2 ) )
     => ( member_o @ ( F @ A ) @ B2 ) ) ).

% vimageE
thf(fact_213_vimageE,axiom,
    ! [A: $o,F: $o > set_Fi1058188332real_n,B2: set_se2111327970real_n] :
      ( ( member_o @ A @ ( vimage961837641real_n @ F @ B2 ) )
     => ( member223413699real_n @ ( F @ A ) @ B2 ) ) ).

% vimageE
thf(fact_214_vimageE,axiom,
    ! [A: $o,F: $o > $o,B2: set_o] :
      ( ( member_o @ A @ ( vimage_o_o @ F @ B2 ) )
     => ( member_o @ ( F @ A ) @ B2 ) ) ).

% vimageE
thf(fact_215_vimageE,axiom,
    ! [A: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,B2: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ A @ ( vimage1233683625real_n @ F @ B2 ) )
     => ( member1352538125real_n @ ( F @ A ) @ B2 ) ) ).

% vimageE
thf(fact_216_vimageD,axiom,
    ! [A: set_Fi1058188332real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( member223413699real_n @ A @ ( vimage784510485real_n @ F @ A3 ) )
     => ( member223413699real_n @ ( F @ A ) @ A3 ) ) ).

% vimageD
thf(fact_217_vimageD,axiom,
    ! [A: set_Fi1058188332real_n,F: set_Fi1058188332real_n > $o,A3: set_o] :
      ( ( member223413699real_n @ A @ ( vimage851190895al_n_o @ F @ A3 ) )
     => ( member_o @ ( F @ A ) @ A3 ) ) ).

% vimageD
thf(fact_218_vimageD,axiom,
    ! [A: $o,F: $o > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( member_o @ A @ ( vimage961837641real_n @ F @ A3 ) )
     => ( member223413699real_n @ ( F @ A ) @ A3 ) ) ).

% vimageD
thf(fact_219_vimageD,axiom,
    ! [A: $o,F: $o > $o,A3: set_o] :
      ( ( member_o @ A @ ( vimage_o_o @ F @ A3 ) )
     => ( member_o @ ( F @ A ) @ A3 ) ) ).

% vimageD
thf(fact_220_vimageD,axiom,
    ! [A: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ A @ ( vimage1233683625real_n @ F @ A3 ) )
     => ( member1352538125real_n @ ( F @ A ) @ A3 ) ) ).

% vimageD
thf(fact_221_Sup_OSUP__identity__eq,axiom,
    ! [Sup: set_Fi1058188332real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( Sup
        @ ( image_439535603real_n
          @ ^ [X: finite1489363574real_n] : X
          @ A3 ) )
      = ( Sup @ A3 ) ) ).

% Sup.SUP_identity_eq
thf(fact_222_Inf_OINF__identity__eq,axiom,
    ! [Inf: set_Fi1058188332real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( Inf
        @ ( image_439535603real_n
          @ ^ [X: finite1489363574real_n] : X
          @ A3 ) )
      = ( Inf @ A3 ) ) ).

% Inf.INF_identity_eq
thf(fact_223_Compr__image__eq,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n,P: finite1489363574real_n > $o] :
      ( ( collec321817931real_n
        @ ^ [X: finite1489363574real_n] :
            ( ( member1352538125real_n @ X @ ( image_439535603real_n @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_439535603real_n @ F
        @ ( collec321817931real_n
          @ ^ [X: finite1489363574real_n] :
              ( ( member1352538125real_n @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_224_Compr__image__eq,axiom,
    ! [F: nat > set_Fi1058188332real_n,A3: set_nat,P: set_Fi1058188332real_n > $o] :
      ( ( collec452821761real_n
        @ ^ [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ ( image_1856576259real_n @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_1856576259real_n @ F
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_225_Compr__image__eq,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n,P: set_Fi1058188332real_n > $o] :
      ( ( collec452821761real_n
        @ ^ [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ ( image_355963305real_n @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_355963305real_n @ F
        @ ( collec1941932235_int_n
          @ ^ [X: finite964658038_int_n] :
              ( ( member27055245_int_n @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_226_Compr__image__eq,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,A3: set_se2111327970real_n,P: set_Fi1058188332real_n > $o] :
      ( ( collec452821761real_n
        @ ^ [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ ( image_1661509983real_n @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_1661509983real_n @ F
        @ ( collec452821761real_n
          @ ^ [X: set_Fi1058188332real_n] :
              ( ( member223413699real_n @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_227_Compr__image__eq,axiom,
    ! [F: $o > set_Fi1058188332real_n,A3: set_o,P: set_Fi1058188332real_n > $o] :
      ( ( collec452821761real_n
        @ ^ [X: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X @ ( image_1759008383real_n @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_1759008383real_n @ F
        @ ( collect_o
          @ ^ [X: $o] :
              ( ( member_o @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_228_Compr__image__eq,axiom,
    ! [F: set_Fi1058188332real_n > $o,A3: set_se2111327970real_n,P: $o > $o] :
      ( ( collect_o
        @ ^ [X: $o] :
            ( ( member_o @ X @ ( image_1648361637al_n_o @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_1648361637al_n_o @ F
        @ ( collec452821761real_n
          @ ^ [X: set_Fi1058188332real_n] :
              ( ( member223413699real_n @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_229_Compr__image__eq,axiom,
    ! [F: $o > $o,A3: set_o,P: $o > $o] :
      ( ( collect_o
        @ ^ [X: $o] :
            ( ( member_o @ X @ ( image_o_o @ F @ A3 ) )
            & ( P @ X ) ) )
      = ( image_o_o @ F
        @ ( collect_o
          @ ^ [X: $o] :
              ( ( member_o @ X @ A3 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_230_image__image,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,G: nat > set_Fi1058188332real_n,A3: set_nat] :
      ( ( image_1661509983real_n @ F @ ( image_1856576259real_n @ G @ A3 ) )
      = ( image_1856576259real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_231_image__image,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,G: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n] :
      ( ( image_1661509983real_n @ F @ ( image_355963305real_n @ G @ A3 ) )
      = ( image_355963305real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_232_image__image,axiom,
    ! [F: nat > set_Fi1058188332real_n,G: nat > nat,A3: set_nat] :
      ( ( image_1856576259real_n @ F @ ( image_nat_nat @ G @ A3 ) )
      = ( image_1856576259real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_233_image__image,axiom,
    ! [F: nat > set_Fi1058188332real_n,G: finite964658038_int_n > nat,A3: set_Fi160064172_int_n] :
      ( ( image_1856576259real_n @ F @ ( image_497739341_n_nat @ G @ A3 ) )
      = ( image_355963305real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_234_image__image,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,G: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( image_439535603real_n @ F @ ( image_439535603real_n @ G @ A3 ) )
      = ( image_439535603real_n
        @ ^ [X: finite1489363574real_n] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_235_image__image,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,G: nat > finite964658038_int_n,A3: set_nat] :
      ( ( image_355963305real_n @ F @ ( image_1961920973_int_n @ G @ A3 ) )
      = ( image_1856576259real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_236_image__image,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,G: finite964658038_int_n > finite964658038_int_n,A3: set_Fi160064172_int_n] :
      ( ( image_355963305real_n @ F @ ( image_1278151539_int_n @ G @ A3 ) )
      = ( image_355963305real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ A3 ) ) ).

% image_image
thf(fact_237_imageE,axiom,
    ! [B: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,A3: set_Fi1058188332real_n] :
      ( ( member1352538125real_n @ B @ ( image_439535603real_n @ F @ A3 ) )
     => ~ ! [X2: finite1489363574real_n] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member1352538125real_n @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_238_imageE,axiom,
    ! [B: set_Fi1058188332real_n,F: nat > set_Fi1058188332real_n,A3: set_nat] :
      ( ( member223413699real_n @ B @ ( image_1856576259real_n @ F @ A3 ) )
     => ~ ! [X2: nat] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member_nat @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_239_imageE,axiom,
    ! [B: set_Fi1058188332real_n,F: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n] :
      ( ( member223413699real_n @ B @ ( image_355963305real_n @ F @ A3 ) )
     => ~ ! [X2: finite964658038_int_n] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member27055245_int_n @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_240_imageE,axiom,
    ! [B: set_Fi1058188332real_n,F: set_Fi1058188332real_n > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( member223413699real_n @ B @ ( image_1661509983real_n @ F @ A3 ) )
     => ~ ! [X2: set_Fi1058188332real_n] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member223413699real_n @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_241_imageE,axiom,
    ! [B: set_Fi1058188332real_n,F: $o > set_Fi1058188332real_n,A3: set_o] :
      ( ( member223413699real_n @ B @ ( image_1759008383real_n @ F @ A3 ) )
     => ~ ! [X2: $o] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member_o @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_242_imageE,axiom,
    ! [B: $o,F: set_Fi1058188332real_n > $o,A3: set_se2111327970real_n] :
      ( ( member_o @ B @ ( image_1648361637al_n_o @ F @ A3 ) )
     => ~ ! [X2: set_Fi1058188332real_n] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member223413699real_n @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_243_imageE,axiom,
    ! [B: $o,F: $o > $o,A3: set_o] :
      ( ( member_o @ B @ ( image_o_o @ F @ A3 ) )
     => ~ ! [X2: $o] :
            ( ( B
              = ( F @ X2 ) )
           => ~ ( member_o @ X2 @ A3 ) ) ) ).

% imageE
thf(fact_244_UNIV__def,axiom,
    ( top_top_set_nat
    = ( collect_nat
      @ ^ [X: nat] : $true ) ) ).

% UNIV_def
thf(fact_245_UNIV__def,axiom,
    ( top_to131672412_int_n
    = ( collec1941932235_int_n
      @ ^ [X: finite964658038_int_n] : $true ) ) ).

% UNIV_def
thf(fact_246_Collect__conj__eq,axiom,
    ! [P: finite1489363574real_n > $o,Q: finite1489363574real_n > $o] :
      ( ( collec321817931real_n
        @ ^ [X: finite1489363574real_n] :
            ( ( P @ X )
            & ( Q @ X ) ) )
      = ( inf_in1974387902real_n @ ( collec321817931real_n @ P ) @ ( collec321817931real_n @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_247_Int__Collect,axiom,
    ! [X3: set_Fi1058188332real_n,A3: set_se2111327970real_n,P: set_Fi1058188332real_n > $o] :
      ( ( member223413699real_n @ X3 @ ( inf_in632889204real_n @ A3 @ ( collec452821761real_n @ P ) ) )
      = ( ( member223413699real_n @ X3 @ A3 )
        & ( P @ X3 ) ) ) ).

% Int_Collect
thf(fact_248_Int__Collect,axiom,
    ! [X3: $o,A3: set_o,P: $o > $o] :
      ( ( member_o @ X3 @ ( inf_inf_set_o @ A3 @ ( collect_o @ P ) ) )
      = ( ( member_o @ X3 @ A3 )
        & ( P @ X3 ) ) ) ).

% Int_Collect
thf(fact_249_Int__Collect,axiom,
    ! [X3: finite1489363574real_n,A3: set_Fi1058188332real_n,P: finite1489363574real_n > $o] :
      ( ( member1352538125real_n @ X3 @ ( inf_in1974387902real_n @ A3 @ ( collec321817931real_n @ P ) ) )
      = ( ( member1352538125real_n @ X3 @ A3 )
        & ( P @ X3 ) ) ) ).

% Int_Collect
thf(fact_250_Int__def,axiom,
    ( inf_in632889204real_n
    = ( ^ [A4: set_se2111327970real_n,B3: set_se2111327970real_n] :
          ( collec452821761real_n
          @ ^ [X: set_Fi1058188332real_n] :
              ( ( member223413699real_n @ X @ A4 )
              & ( member223413699real_n @ X @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_251_Int__def,axiom,
    ( inf_inf_set_o
    = ( ^ [A4: set_o,B3: set_o] :
          ( collect_o
          @ ^ [X: $o] :
              ( ( member_o @ X @ A4 )
              & ( member_o @ X @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_252_Int__def,axiom,
    ( inf_in1974387902real_n
    = ( ^ [A4: set_Fi1058188332real_n,B3: set_Fi1058188332real_n] :
          ( collec321817931real_n
          @ ^ [X: finite1489363574real_n] :
              ( ( member1352538125real_n @ X @ A4 )
              & ( member1352538125real_n @ X @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_253_vimage__def,axiom,
    ( vimage1233683625real_n
    = ( ^ [F2: finite1489363574real_n > finite1489363574real_n,B3: set_Fi1058188332real_n] :
          ( collec321817931real_n
          @ ^ [X: finite1489363574real_n] : ( member1352538125real_n @ ( F2 @ X ) @ B3 ) ) ) ) ).

% vimage_def
thf(fact_254_less__numeral__extra_I3_J,axiom,
    ~ ( ord_le2133614988nnreal @ zero_z1963244097nnreal @ zero_z1963244097nnreal ) ).

% less_numeral_extra(3)
thf(fact_255_less__numeral__extra_I4_J,axiom,
    ~ ( ord_le2133614988nnreal @ one_on705384445nnreal @ one_on705384445nnreal ) ).

% less_numeral_extra(4)
thf(fact_256_range__eqI,axiom,
    ! [B: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n,X3: finite1489363574real_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( member1352538125real_n @ B @ ( image_439535603real_n @ F @ top_to1292442332real_n ) ) ) ).

% range_eqI
thf(fact_257_range__eqI,axiom,
    ! [B: set_Fi1058188332real_n,F: nat > set_Fi1058188332real_n,X3: nat] :
      ( ( B
        = ( F @ X3 ) )
     => ( member223413699real_n @ B @ ( image_1856576259real_n @ F @ top_top_set_nat ) ) ) ).

% range_eqI
thf(fact_258_range__eqI,axiom,
    ! [B: $o,F: nat > $o,X3: nat] :
      ( ( B
        = ( F @ X3 ) )
     => ( member_o @ B @ ( image_nat_o @ F @ top_top_set_nat ) ) ) ).

% range_eqI
thf(fact_259_range__eqI,axiom,
    ! [B: set_Fi1058188332real_n,F: finite964658038_int_n > set_Fi1058188332real_n,X3: finite964658038_int_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( member223413699real_n @ B @ ( image_355963305real_n @ F @ top_to131672412_int_n ) ) ) ).

% range_eqI
thf(fact_260_range__eqI,axiom,
    ! [B: $o,F: finite964658038_int_n > $o,X3: finite964658038_int_n] :
      ( ( B
        = ( F @ X3 ) )
     => ( member_o @ B @ ( image_216309723nt_n_o @ F @ top_to131672412_int_n ) ) ) ).

% range_eqI
thf(fact_261_surj__def,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n] :
      ( ( ( image_439535603real_n @ F @ top_to1292442332real_n )
        = top_to1292442332real_n )
      = ( ! [Y2: finite1489363574real_n] :
          ? [X: finite1489363574real_n] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_262_surj__def,axiom,
    ! [F: nat > set_Fi1058188332real_n] :
      ( ( ( image_1856576259real_n @ F @ top_top_set_nat )
        = top_to20708754real_n )
      = ( ! [Y2: set_Fi1058188332real_n] :
          ? [X: nat] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_263_surj__def,axiom,
    ! [F: nat > nat] :
      ( ( ( image_nat_nat @ F @ top_top_set_nat )
        = top_top_set_nat )
      = ( ! [Y2: nat] :
          ? [X: nat] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_264_surj__def,axiom,
    ! [F: nat > finite964658038_int_n] :
      ( ( ( image_1961920973_int_n @ F @ top_top_set_nat )
        = top_to131672412_int_n )
      = ( ! [Y2: finite964658038_int_n] :
          ? [X: nat] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_265_surj__def,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( ( image_355963305real_n @ F @ top_to131672412_int_n )
        = top_to20708754real_n )
      = ( ! [Y2: set_Fi1058188332real_n] :
          ? [X: finite964658038_int_n] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_266_surj__def,axiom,
    ! [F: finite964658038_int_n > nat] :
      ( ( ( image_497739341_n_nat @ F @ top_to131672412_int_n )
        = top_top_set_nat )
      = ( ! [Y2: nat] :
          ? [X: finite964658038_int_n] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_267_surj__def,axiom,
    ! [F: finite964658038_int_n > finite964658038_int_n] :
      ( ( ( image_1278151539_int_n @ F @ top_to131672412_int_n )
        = top_to131672412_int_n )
      = ( ! [Y2: finite964658038_int_n] :
          ? [X: finite964658038_int_n] :
            ( Y2
            = ( F @ X ) ) ) ) ).

% surj_def
thf(fact_268_rangeI,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,X3: finite1489363574real_n] : ( member1352538125real_n @ ( F @ X3 ) @ ( image_439535603real_n @ F @ top_to1292442332real_n ) ) ).

% rangeI
thf(fact_269_rangeI,axiom,
    ! [F: nat > set_Fi1058188332real_n,X3: nat] : ( member223413699real_n @ ( F @ X3 ) @ ( image_1856576259real_n @ F @ top_top_set_nat ) ) ).

% rangeI
thf(fact_270_rangeI,axiom,
    ! [F: nat > $o,X3: nat] : ( member_o @ ( F @ X3 ) @ ( image_nat_o @ F @ top_top_set_nat ) ) ).

% rangeI
thf(fact_271_rangeI,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,X3: finite964658038_int_n] : ( member223413699real_n @ ( F @ X3 ) @ ( image_355963305real_n @ F @ top_to131672412_int_n ) ) ).

% rangeI
thf(fact_272_rangeI,axiom,
    ! [F: finite964658038_int_n > $o,X3: finite964658038_int_n] : ( member_o @ ( F @ X3 ) @ ( image_216309723nt_n_o @ F @ top_to131672412_int_n ) ) ).

% rangeI
thf(fact_273_surjI,axiom,
    ! [G: finite1489363574real_n > finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n] :
      ( ! [X2: finite1489363574real_n] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_439535603real_n @ G @ top_to1292442332real_n )
        = top_to1292442332real_n ) ) ).

% surjI
thf(fact_274_surjI,axiom,
    ! [G: nat > set_Fi1058188332real_n,F: set_Fi1058188332real_n > nat] :
      ( ! [X2: set_Fi1058188332real_n] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_1856576259real_n @ G @ top_top_set_nat )
        = top_to20708754real_n ) ) ).

% surjI
thf(fact_275_surjI,axiom,
    ! [G: nat > nat,F: nat > nat] :
      ( ! [X2: nat] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_nat_nat @ G @ top_top_set_nat )
        = top_top_set_nat ) ) ).

% surjI
thf(fact_276_surjI,axiom,
    ! [G: nat > finite964658038_int_n,F: finite964658038_int_n > nat] :
      ( ! [X2: finite964658038_int_n] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_1961920973_int_n @ G @ top_top_set_nat )
        = top_to131672412_int_n ) ) ).

% surjI
thf(fact_277_surjI,axiom,
    ! [G: finite964658038_int_n > set_Fi1058188332real_n,F: set_Fi1058188332real_n > finite964658038_int_n] :
      ( ! [X2: set_Fi1058188332real_n] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_355963305real_n @ G @ top_to131672412_int_n )
        = top_to20708754real_n ) ) ).

% surjI
thf(fact_278_surjI,axiom,
    ! [G: finite964658038_int_n > nat,F: nat > finite964658038_int_n] :
      ( ! [X2: nat] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_497739341_n_nat @ G @ top_to131672412_int_n )
        = top_top_set_nat ) ) ).

% surjI
thf(fact_279_surjI,axiom,
    ! [G: finite964658038_int_n > finite964658038_int_n,F: finite964658038_int_n > finite964658038_int_n] :
      ( ! [X2: finite964658038_int_n] :
          ( ( G @ ( F @ X2 ) )
          = X2 )
     => ( ( image_1278151539_int_n @ G @ top_to131672412_int_n )
        = top_to131672412_int_n ) ) ).

% surjI
thf(fact_280_surjE,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,Y4: finite1489363574real_n] :
      ( ( ( image_439535603real_n @ F @ top_to1292442332real_n )
        = top_to1292442332real_n )
     => ~ ! [X2: finite1489363574real_n] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_281_surjE,axiom,
    ! [F: nat > set_Fi1058188332real_n,Y4: set_Fi1058188332real_n] :
      ( ( ( image_1856576259real_n @ F @ top_top_set_nat )
        = top_to20708754real_n )
     => ~ ! [X2: nat] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_282_surjE,axiom,
    ! [F: nat > nat,Y4: nat] :
      ( ( ( image_nat_nat @ F @ top_top_set_nat )
        = top_top_set_nat )
     => ~ ! [X2: nat] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_283_surjE,axiom,
    ! [F: nat > finite964658038_int_n,Y4: finite964658038_int_n] :
      ( ( ( image_1961920973_int_n @ F @ top_top_set_nat )
        = top_to131672412_int_n )
     => ~ ! [X2: nat] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_284_surjE,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,Y4: set_Fi1058188332real_n] :
      ( ( ( image_355963305real_n @ F @ top_to131672412_int_n )
        = top_to20708754real_n )
     => ~ ! [X2: finite964658038_int_n] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_285_surjE,axiom,
    ! [F: finite964658038_int_n > nat,Y4: nat] :
      ( ( ( image_497739341_n_nat @ F @ top_to131672412_int_n )
        = top_top_set_nat )
     => ~ ! [X2: finite964658038_int_n] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_286_surjE,axiom,
    ! [F: finite964658038_int_n > finite964658038_int_n,Y4: finite964658038_int_n] :
      ( ( ( image_1278151539_int_n @ F @ top_to131672412_int_n )
        = top_to131672412_int_n )
     => ~ ! [X2: finite964658038_int_n] :
            ( Y4
           != ( F @ X2 ) ) ) ).

% surjE
thf(fact_287_surjD,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,Y4: finite1489363574real_n] :
      ( ( ( image_439535603real_n @ F @ top_to1292442332real_n )
        = top_to1292442332real_n )
     => ? [X2: finite1489363574real_n] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_288_surjD,axiom,
    ! [F: nat > set_Fi1058188332real_n,Y4: set_Fi1058188332real_n] :
      ( ( ( image_1856576259real_n @ F @ top_top_set_nat )
        = top_to20708754real_n )
     => ? [X2: nat] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_289_surjD,axiom,
    ! [F: nat > nat,Y4: nat] :
      ( ( ( image_nat_nat @ F @ top_top_set_nat )
        = top_top_set_nat )
     => ? [X2: nat] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_290_surjD,axiom,
    ! [F: nat > finite964658038_int_n,Y4: finite964658038_int_n] :
      ( ( ( image_1961920973_int_n @ F @ top_top_set_nat )
        = top_to131672412_int_n )
     => ? [X2: nat] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_291_surjD,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,Y4: set_Fi1058188332real_n] :
      ( ( ( image_355963305real_n @ F @ top_to131672412_int_n )
        = top_to20708754real_n )
     => ? [X2: finite964658038_int_n] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_292_surjD,axiom,
    ! [F: finite964658038_int_n > nat,Y4: nat] :
      ( ( ( image_497739341_n_nat @ F @ top_to131672412_int_n )
        = top_top_set_nat )
     => ? [X2: finite964658038_int_n] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_293_surjD,axiom,
    ! [F: finite964658038_int_n > finite964658038_int_n,Y4: finite964658038_int_n] :
      ( ( ( image_1278151539_int_n @ F @ top_to131672412_int_n )
        = top_to131672412_int_n )
     => ? [X2: finite964658038_int_n] :
          ( Y4
          = ( F @ X2 ) ) ) ).

% surjD
thf(fact_294_less__Sup__iff,axiom,
    ! [A: extend1728876344nnreal,S: set_Ex113815278nnreal] :
      ( ( ord_le2133614988nnreal @ A @ ( comple1413366923nnreal @ S ) )
      = ( ? [X: extend1728876344nnreal] :
            ( ( member1217042383nnreal @ X @ S )
            & ( ord_le2133614988nnreal @ A @ X ) ) ) ) ).

% less_Sup_iff
thf(fact_295_SUP__cong,axiom,
    ! [A3: set_Fi1058188332real_n,B2: set_Fi1058188332real_n,C2: finite1489363574real_n > finite1489363574real_n,D: finite1489363574real_n > finite1489363574real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: finite1489363574real_n] :
            ( ( member1352538125real_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( comple2042271945real_n @ ( image_439535603real_n @ C2 @ A3 ) )
          = ( comple2042271945real_n @ ( image_439535603real_n @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_296_SUP__cong,axiom,
    ! [A3: set_nat,B2: set_nat,C2: nat > set_Fi1058188332real_n,D: nat > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: nat] :
            ( ( member_nat @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( comple825005695real_n @ ( image_1856576259real_n @ C2 @ A3 ) )
          = ( comple825005695real_n @ ( image_1856576259real_n @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_297_SUP__cong,axiom,
    ! [A3: set_Fi160064172_int_n,B2: set_Fi160064172_int_n,C2: finite964658038_int_n > set_Fi1058188332real_n,D: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: finite964658038_int_n] :
            ( ( member27055245_int_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( comple825005695real_n @ ( image_355963305real_n @ C2 @ A3 ) )
          = ( comple825005695real_n @ ( image_355963305real_n @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_298_SUP__cong,axiom,
    ! [A3: set_se2111327970real_n,B2: set_se2111327970real_n,C2: set_Fi1058188332real_n > set_Fi1058188332real_n,D: set_Fi1058188332real_n > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( comple825005695real_n @ ( image_1661509983real_n @ C2 @ A3 ) )
          = ( comple825005695real_n @ ( image_1661509983real_n @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_299_SUP__cong,axiom,
    ! [A3: set_o,B2: set_o,C2: $o > set_Fi1058188332real_n,D: $o > set_Fi1058188332real_n] :
      ( ( A3 = B2 )
     => ( ! [X2: $o] :
            ( ( member_o @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( comple825005695real_n @ ( image_1759008383real_n @ C2 @ A3 ) )
          = ( comple825005695real_n @ ( image_1759008383real_n @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_300_SUP__cong,axiom,
    ! [A3: set_se2111327970real_n,B2: set_se2111327970real_n,C2: set_Fi1058188332real_n > $o,D: set_Fi1058188332real_n > $o] :
      ( ( A3 = B2 )
     => ( ! [X2: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_1648361637al_n_o @ C2 @ A3 ) )
          = ( complete_Sup_Sup_o @ ( image_1648361637al_n_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_301_SUP__cong,axiom,
    ! [A3: set_o,B2: set_o,C2: $o > $o,D: $o > $o] :
      ( ( A3 = B2 )
     => ( ! [X2: $o] :
            ( ( member_o @ X2 @ B2 )
           => ( ( C2 @ X2 )
              = ( D @ X2 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_o_o @ C2 @ A3 ) )
          = ( complete_Sup_Sup_o @ ( image_o_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_302_Int__UNIV__right,axiom,
    ! [A3: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ A3 @ top_to1292442332real_n )
      = A3 ) ).

% Int_UNIV_right
thf(fact_303_Int__UNIV__right,axiom,
    ! [A3: set_nat] :
      ( ( inf_inf_set_nat @ A3 @ top_top_set_nat )
      = A3 ) ).

% Int_UNIV_right
thf(fact_304_Int__UNIV__right,axiom,
    ! [A3: set_Fi160064172_int_n] :
      ( ( inf_in1108485182_int_n @ A3 @ top_to131672412_int_n )
      = A3 ) ).

% Int_UNIV_right
thf(fact_305_Int__UNIV__left,axiom,
    ! [B2: set_Fi1058188332real_n] :
      ( ( inf_in1974387902real_n @ top_to1292442332real_n @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_306_Int__UNIV__left,axiom,
    ! [B2: set_nat] :
      ( ( inf_inf_set_nat @ top_top_set_nat @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_307_Int__UNIV__left,axiom,
    ! [B2: set_Fi160064172_int_n] :
      ( ( inf_in1108485182_int_n @ top_to131672412_int_n @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_308_Union__UNIV,axiom,
    ( ( comple1682161881et_nat @ top_top_set_set_nat )
    = top_top_set_nat ) ).

% Union_UNIV
thf(fact_309_Union__UNIV,axiom,
    ( ( comple970917503_int_n @ top_to1587634578_int_n )
    = top_to131672412_int_n ) ).

% Union_UNIV
thf(fact_310_Union__UNIV,axiom,
    ( ( comple825005695real_n @ top_to20708754real_n )
    = top_to1292442332real_n ) ).

% Union_UNIV
thf(fact_311_null__setsD2,axiom,
    ! [A3: set_Fi1058188332real_n,M: sigma_1466784463real_n] :
      ( ( member223413699real_n @ A3 @ ( measur1402256771real_n @ M ) )
     => ( member223413699real_n @ A3 @ ( sigma_1235138647real_n @ M ) ) ) ).

% null_setsD2
thf(fact_312_vimage__inter__cong,axiom,
    ! [S: set_Fi1058188332real_n,F: finite1489363574real_n > finite1489363574real_n,G: finite1489363574real_n > finite1489363574real_n,Y4: set_Fi1058188332real_n] :
      ( ! [W: finite1489363574real_n] :
          ( ( member1352538125real_n @ W @ S )
         => ( ( F @ W )
            = ( G @ W ) ) )
     => ( ( inf_in1974387902real_n @ ( vimage1233683625real_n @ F @ Y4 ) @ S )
        = ( inf_in1974387902real_n @ ( vimage1233683625real_n @ G @ Y4 ) @ S ) ) ) ).

% vimage_inter_cong
thf(fact_313_translation__subtract__diff,axiom,
    ! [A: finite1489363574real_n,S2: set_Fi1058188332real_n,T: set_Fi1058188332real_n] :
      ( ( image_439535603real_n
        @ ^ [X: finite1489363574real_n] : ( minus_1037315151real_n @ X @ A )
        @ ( minus_1686442501real_n @ S2 @ T ) )
      = ( minus_1686442501real_n
        @ ( image_439535603real_n
          @ ^ [X: finite1489363574real_n] : ( minus_1037315151real_n @ X @ A )
          @ S2 )
        @ ( image_439535603real_n
          @ ^ [X: finite1489363574real_n] : ( minus_1037315151real_n @ X @ A )
          @ T ) ) ) ).

% translation_subtract_diff
thf(fact_314_range__composition,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,G: finite1489363574real_n > finite1489363574real_n] :
      ( ( image_439535603real_n
        @ ^ [X: finite1489363574real_n] : ( F @ ( G @ X ) )
        @ top_to1292442332real_n )
      = ( image_439535603real_n @ F @ ( image_439535603real_n @ G @ top_to1292442332real_n ) ) ) ).

% range_composition
thf(fact_315_range__composition,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,G: nat > finite1489363574real_n] :
      ( ( image_183184717real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ top_top_set_nat )
      = ( image_439535603real_n @ F @ ( image_183184717real_n @ G @ top_top_set_nat ) ) ) ).

% range_composition
thf(fact_316_range__composition,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,G: nat > set_Fi1058188332real_n] :
      ( ( image_1856576259real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ top_top_set_nat )
      = ( image_1661509983real_n @ F @ ( image_1856576259real_n @ G @ top_top_set_nat ) ) ) ).

% range_composition
thf(fact_317_range__composition,axiom,
    ! [F: nat > set_Fi1058188332real_n,G: nat > nat] :
      ( ( image_1856576259real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ top_top_set_nat )
      = ( image_1856576259real_n @ F @ ( image_nat_nat @ G @ top_top_set_nat ) ) ) ).

% range_composition
thf(fact_318_range__composition,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,G: nat > finite964658038_int_n] :
      ( ( image_1856576259real_n
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ top_top_set_nat )
      = ( image_355963305real_n @ F @ ( image_1961920973_int_n @ G @ top_top_set_nat ) ) ) ).

% range_composition
thf(fact_319_range__composition,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,G: finite964658038_int_n > finite1489363574real_n] :
      ( ( image_2058828787real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ top_to131672412_int_n )
      = ( image_439535603real_n @ F @ ( image_2058828787real_n @ G @ top_to131672412_int_n ) ) ) ).

% range_composition
thf(fact_320_range__composition,axiom,
    ! [F: set_Fi1058188332real_n > set_Fi1058188332real_n,G: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( image_355963305real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ top_to131672412_int_n )
      = ( image_1661509983real_n @ F @ ( image_355963305real_n @ G @ top_to131672412_int_n ) ) ) ).

% range_composition
thf(fact_321_range__composition,axiom,
    ! [F: nat > set_Fi1058188332real_n,G: finite964658038_int_n > nat] :
      ( ( image_355963305real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ top_to131672412_int_n )
      = ( image_1856576259real_n @ F @ ( image_497739341_n_nat @ G @ top_to131672412_int_n ) ) ) ).

% range_composition
thf(fact_322_range__composition,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,G: finite964658038_int_n > finite964658038_int_n] :
      ( ( image_355963305real_n
        @ ^ [X: finite964658038_int_n] : ( F @ ( G @ X ) )
        @ top_to131672412_int_n )
      = ( image_355963305real_n @ F @ ( image_1278151539_int_n @ G @ top_to131672412_int_n ) ) ) ).

% range_composition
thf(fact_323_rangeE,axiom,
    ! [B: finite1489363574real_n,F: finite1489363574real_n > finite1489363574real_n] :
      ( ( member1352538125real_n @ B @ ( image_439535603real_n @ F @ top_to1292442332real_n ) )
     => ~ ! [X2: finite1489363574real_n] :
            ( B
           != ( F @ X2 ) ) ) ).

% rangeE
thf(fact_324_rangeE,axiom,
    ! [B: set_Fi1058188332real_n,F: nat > set_Fi1058188332real_n] :
      ( ( member223413699real_n @ B @ ( image_1856576259real_n @ F @ top_top_set_nat ) )
     => ~ ! [X2: nat] :
            ( B
           != ( F @ X2 ) ) ) ).

% rangeE
thf(fact_325_rangeE,axiom,
    ! [B: $o,F: nat > $o] :
      ( ( member_o @ B @ ( image_nat_o @ F @ top_top_set_nat ) )
     => ~ ! [X2: nat] :
            ( B
            = ( ~ ( F @ X2 ) ) ) ) ).

% rangeE
thf(fact_326_rangeE,axiom,
    ! [B: set_Fi1058188332real_n,F: finite964658038_int_n > set_Fi1058188332real_n] :
      ( ( member223413699real_n @ B @ ( image_355963305real_n @ F @ top_to131672412_int_n ) )
     => ~ ! [X2: finite964658038_int_n] :
            ( B
           != ( F @ X2 ) ) ) ).

% rangeE
thf(fact_327_rangeE,axiom,
    ! [B: $o,F: finite964658038_int_n > $o] :
      ( ( member_o @ B @ ( image_216309723nt_n_o @ F @ top_to131672412_int_n ) )
     => ~ ! [X2: finite964658038_int_n] :
            ( B
            = ( ~ ( F @ X2 ) ) ) ) ).

% rangeE
thf(fact_328_SUP__commute,axiom,
    ! [F: nat > nat > set_Fi1058188332real_n,B2: set_nat,A3: set_nat] :
      ( ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [I4: nat] : ( comple825005695real_n @ ( image_1856576259real_n @ ( F @ I4 ) @ B2 ) )
          @ A3 ) )
      = ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [J: nat] :
              ( comple825005695real_n
              @ ( image_1856576259real_n
                @ ^ [I4: nat] : ( F @ I4 @ J )
                @ A3 ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_329_SUP__commute,axiom,
    ! [F: nat > finite964658038_int_n > set_Fi1058188332real_n,B2: set_Fi160064172_int_n,A3: set_nat] :
      ( ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [I4: nat] : ( comple825005695real_n @ ( image_355963305real_n @ ( F @ I4 ) @ B2 ) )
          @ A3 ) )
      = ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [J: finite964658038_int_n] :
              ( comple825005695real_n
              @ ( image_1856576259real_n
                @ ^ [I4: nat] : ( F @ I4 @ J )
                @ A3 ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_330_SUP__commute,axiom,
    ! [F: finite964658038_int_n > nat > set_Fi1058188332real_n,B2: set_nat,A3: set_Fi160064172_int_n] :
      ( ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [I4: finite964658038_int_n] : ( comple825005695real_n @ ( image_1856576259real_n @ ( F @ I4 ) @ B2 ) )
          @ A3 ) )
      = ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [J: nat] :
              ( comple825005695real_n
              @ ( image_355963305real_n
                @ ^ [I4: finite964658038_int_n] : ( F @ I4 @ J )
                @ A3 ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_331_SUP__commute,axiom,
    ! [F: finite964658038_int_n > finite964658038_int_n > set_Fi1058188332real_n,B2: set_Fi160064172_int_n,A3: set_Fi160064172_int_n] :
      ( ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [I4: finite964658038_int_n] : ( comple825005695real_n @ ( image_355963305real_n @ ( F @ I4 ) @ B2 ) )
          @ A3 ) )
      = ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [J: finite964658038_int_n] :
              ( comple825005695real_n
              @ ( image_355963305real_n
                @ ^ [I4: finite964658038_int_n] : ( F @ I4 @ J )
                @ A3 ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_332_image__Union,axiom,
    ! [F: nat > set_Fi1058188332real_n,S: set_set_nat] :
      ( ( image_1856576259real_n @ F @ ( comple1682161881et_nat @ S ) )
      = ( comple1917283637real_n @ ( image_1587769199real_n @ ( image_1856576259real_n @ F ) @ S ) ) ) ).

% image_Union
thf(fact_333_image__Union,axiom,
    ! [F: finite964658038_int_n > set_Fi1058188332real_n,S: set_se944069346_int_n] :
      ( ( image_355963305real_n @ F @ ( comple970917503_int_n @ S ) )
      = ( comple1917283637real_n @ ( image_1054146965real_n @ ( image_355963305real_n @ F ) @ S ) ) ) ).

% image_Union
thf(fact_334_image__Union,axiom,
    ! [F: finite1489363574real_n > finite1489363574real_n,S: set_se2111327970real_n] :
      ( ( image_439535603real_n @ F @ ( comple825005695real_n @ S ) )
      = ( comple825005695real_n @ ( image_1661509983real_n @ ( image_439535603real_n @ F ) @ S ) ) ) ).

% image_Union
thf(fact_335_UN__UN__flatten,axiom,
    ! [C2: nat > set_Fi1058188332real_n,B2: nat > set_nat,A3: set_nat] :
      ( ( comple825005695real_n @ ( image_1856576259real_n @ C2 @ ( comple1682161881et_nat @ ( image_nat_set_nat @ B2 @ A3 ) ) ) )
      = ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [Y2: nat] : ( comple825005695real_n @ ( image_1856576259real_n @ C2 @ ( B2 @ Y2 ) ) )
          @ A3 ) ) ) ).

% UN_UN_flatten
thf(fact_336_UN__UN__flatten,axiom,
    ! [C2: nat > set_Fi1058188332real_n,B2: finite964658038_int_n > set_nat,A3: set_Fi160064172_int_n] :
      ( ( comple825005695real_n @ ( image_1856576259real_n @ C2 @ ( comple1682161881et_nat @ ( image_1085873667et_nat @ B2 @ A3 ) ) ) )
      = ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [Y2: finite964658038_int_n] : ( comple825005695real_n @ ( image_1856576259real_n @ C2 @ ( B2 @ Y2 ) ) )
          @ A3 ) ) ) ).

% UN_UN_flatten
thf(fact_337_UN__UN__flatten,axiom,
    ! [C2: finite964658038_int_n > set_Fi1058188332real_n,B2: nat > set_Fi160064172_int_n,A3: set_nat] :
      ( ( comple825005695real_n @ ( image_355963305real_n @ C2 @ ( comple970917503_int_n @ ( image_968789251_int_n @ B2 @ A3 ) ) ) )
      = ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [Y2: nat] : ( comple825005695real_n @ ( image_355963305real_n @ C2 @ ( B2 @ Y2 ) ) )
          @ A3 ) ) ) ).

% UN_UN_flatten
thf(fact_338_UN__UN__flatten,axiom,
    ! [C2: finite964658038_int_n > set_Fi1058188332real_n,B2: finite964658038_int_n > set_Fi160064172_int_n,A3: set_Fi160064172_int_n] :
      ( ( comple825005695real_n @ ( image_355963305real_n @ C2 @ ( comple970917503_int_n @ ( image_1819506345_int_n @ B2 @ A3 ) ) ) )
      = ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [Y2: finite964658038_int_n] : ( comple825005695real_n @ ( image_355963305real_n @ C2 @ ( B2 @ Y2 ) ) )
          @ A3 ) ) ) ).

% UN_UN_flatten
thf(fact_339_UN__UN__flatten,axiom,
    ! [C2: finite1489363574real_n > set_Fi1058188332real_n,B2: nat > set_Fi1058188332real_n,A3: set_nat] :
      ( ( comple825005695real_n @ ( image_545463721real_n @ C2 @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) ) )
      = ( comple825005695real_n
        @ ( image_1856576259real_n
          @ ^ [Y2: nat] : ( comple825005695real_n @ ( image_545463721real_n @ C2 @ ( B2 @ Y2 ) ) )
          @ A3 ) ) ) ).

% UN_UN_flatten
thf(fact_340_UN__UN__flatten,axiom,
    ! [C2: finite1489363574real_n > set_Fi1058188332real_n,B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n] :
      ( ( comple825005695real_n @ ( image_545463721real_n @ C2 @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) ) )
      = ( comple825005695real_n
        @ ( image_355963305real_n
          @ ^ [Y2: finite964658038_int_n] : ( comple825005695real_n @ ( image_545463721real_n @ C2 @ ( B2 @ Y2 ) ) )
          @ A3 ) ) ) ).

% UN_UN_flatten
thf(fact_341_UN__E,axiom,
    ! [B: set_Fi1058188332real_n,B2: set_Fi1058188332real_n > set_se2111327970real_n,A3: set_se2111327970real_n] :
      ( ( member223413699real_n @ B @ ( comple1917283637real_n @ ( image_797440021real_n @ B2 @ A3 ) ) )
     => ~ ! [X2: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X2 @ A3 )
           => ~ ( member223413699real_n @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_342_UN__E,axiom,
    ! [B: set_Fi1058188332real_n,B2: $o > set_se2111327970real_n,A3: set_o] :
      ( ( member223413699real_n @ B @ ( comple1917283637real_n @ ( image_452144437real_n @ B2 @ A3 ) ) )
     => ~ ! [X2: $o] :
            ( ( member_o @ X2 @ A3 )
           => ~ ( member223413699real_n @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_343_UN__E,axiom,
    ! [B: $o,B2: set_Fi1058188332real_n > set_o,A3: set_se2111327970real_n] :
      ( ( member_o @ B @ ( comple1665300069_set_o @ ( image_1687589765_set_o @ B2 @ A3 ) ) )
     => ~ ! [X2: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X2 @ A3 )
           => ~ ( member_o @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_344_UN__E,axiom,
    ! [B: $o,B2: $o > set_o,A3: set_o] :
      ( ( member_o @ B @ ( comple1665300069_set_o @ ( image_o_set_o @ B2 @ A3 ) ) )
     => ~ ! [X2: $o] :
            ( ( member_o @ X2 @ A3 )
           => ~ ( member_o @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_345_UN__E,axiom,
    ! [B: finite1489363574real_n,B2: nat > set_Fi1058188332real_n,A3: set_nat] :
      ( ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ A3 ) ) )
     => ~ ! [X2: nat] :
            ( ( member_nat @ X2 @ A3 )
           => ~ ( member1352538125real_n @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_346_UN__E,axiom,
    ! [B: finite1489363574real_n,B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_Fi160064172_int_n] :
      ( ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_355963305real_n @ B2 @ A3 ) ) )
     => ~ ! [X2: finite964658038_int_n] :
            ( ( member27055245_int_n @ X2 @ A3 )
           => ~ ( member1352538125real_n @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_347_UN__E,axiom,
    ! [B: finite1489363574real_n,B2: set_Fi1058188332real_n > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1661509983real_n @ B2 @ A3 ) ) )
     => ~ ! [X2: set_Fi1058188332real_n] :
            ( ( member223413699real_n @ X2 @ A3 )
           => ~ ( member1352538125real_n @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_348_UN__E,axiom,
    ! [B: finite1489363574real_n,B2: $o > set_Fi1058188332real_n,A3: set_o] :
      ( ( member1352538125real_n @ B @ ( comple825005695real_n @ ( image_1759008383real_n @ B2 @ A3 ) ) )
     => ~ ! [X2: $o] :
            ( ( member_o @ X2 @ A3 )
           => ~ ( member1352538125real_n @ B @ ( B2 @ X2 ) ) ) ) ).

% UN_E
thf(fact_349_UN__extend__simps_I8_J,axiom,
    ! [B2: nat > set_Fi1058188332real_n,A3: set_set_nat] :
      ( ( comple825005695real_n
        @ ( image_933134521real_n
          @ ^ [Y2: set_nat] : ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ Y2 ) )
          @ A3 ) )
      = ( comple825005695real_n @ ( image_1856576259real_n @ B2 @ ( comple1682161881et_nat @ A3 ) ) ) ) ).

% UN_extend_simps(8)
thf(fact_350_UN__extend__simps_I8_J,axiom,
    ! [B2: finite964658038_int_n > set_Fi1058188332real_n,A3: set_se944069346_int_n] :
      ( ( comple825005695real_n
        @ ( image_792439519real_n
          @ ^ [Y2: set_Fi160064172_int_n] : ( comple825005695real_n @ ( image_355963305real_n @ B2 @ Y2 ) )
          @ A3 ) )
      = ( comple825005695real_n @ ( image_355963305real_n @ B2 @ ( comple970917503_int_n @ A3 ) ) ) ) ).

% UN_extend_simps(8)
thf(fact_351_UN__extend__simps_I8_J,axiom,
    ! [B2: finite1489363574real_n > set_Fi1058188332real_n,A3: set_se2111327970real_n] :
      ( ( comple825005695real_n
        @ ( image_1661509983real_n
          @ ^ [Y2: set_Fi1058188332real_n] : ( comple825005695real_n @ ( image_545463721real_n @ B2 @ Y2 ) )
          @ A3 ) )
      = ( comple825005695real_n @ ( image_545463721real_n @ B2 @ ( comple825005695real_n @ A3 ) ) ) ) ).

% UN_extend_simps(8)
thf(fact_352_Sup__bool__def,axiom,
    ( complete_Sup_Sup_o
    = ( member_o @ $true ) ) ).

% Sup_bool_def

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( ^ [N: nat] : ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( t2 @ ( f @ N ) ) ) )
    = ( ^ [N: nat] : ( sigma_1536574303real_n @ ( comple230862828real_n @ lebesg260170249real_n ) @ ( t @ ( f @ N ) ) ) ) ) ).

%------------------------------------------------------------------------------