TPTP Problem File: ITP109^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP109^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer Lower_Semicontinuous problem prob_1098__6259092_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : Lower_Semicontinuous/prob_1098__6259092_1 [Des21]

% Status   : Theorem
% Rating   : 0.62 v9.0.0, 0.80 v8.2.0, 0.69 v8.1.0, 0.82 v7.5.0
% Syntax   : Number of formulae    :  418 ( 209 unt;  59 typ;   0 def)
%            Number of atoms       :  942 ( 525 equ;   0 cnn)
%            Maximal formula atoms :   11 (   2 avg)
%            Number of connectives : 3880 ( 121   ~;  12   |; 114   &;3253   @)
%                                         (   0 <=>; 380  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   6 avg)
%            Number of types       :    9 (   8 usr)
%            Number of type conns  :  297 ( 297   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   54 (  51 usr;   9 con; 0-3 aty)
%            Number of variables   : 1161 ( 141   ^; 993   !;  27   ?;1161   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:43:58.270
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Extended____Real__Oereal,type,
    extended_ereal: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (51)
thf(sy_c_Convex_Oconvex_001tf__b,type,
    convex_b: set_b > $o ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
    finite_finite_real: set_real > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__b,type,
    finite_finite_b: set_b > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_Itf__a_M_Eo_J,type,
    minus_minus_a_o: ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_Itf__b_M_Eo_J,type,
    minus_minus_b_o: ( b > $o ) > ( b > $o ) > b > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__b_J,type,
    minus_minus_set_b: set_b > set_b > set_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001tf__b,type,
    minus_minus_b: b > b > b ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Real__Oereal,type,
    plus_p2118002693_ereal: extended_ereal > extended_ereal > extended_ereal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_Itf__b_J,type,
    plus_plus_set_b: set_b > set_b > set_b ).

thf(sy_c_Groups_Oplus__class_Oplus_001tf__b,type,
    plus_plus_b: b > b > b ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups1296524820l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__a_001t__Nat__Onat,type,
    groups769445524_a_nat: ( a > nat ) > set_a > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__a_001t__Real__Oreal,type,
    groups1862963056a_real: ( a > real ) > set_a > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__a_001t__Set__Oset_Itf__b_J,type,
    groups919362075_set_b: ( a > set_b ) > set_a > set_b ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__a_001tf__b,type,
    groups1199149371um_a_b: ( a > b ) > set_a > b ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__b_001t__Nat__Onat,type,
    groups2098481813_b_nat: ( b > nat ) > set_b > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__b_001t__Real__Oreal,type,
    groups583146225b_real: ( b > real ) > set_b > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__b_001t__Set__Oset_Itf__b_J,type,
    groups448962650_set_b: ( b > set_b ) > set_b > set_b ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001tf__b_001tf__b,type,
    groups2026918778um_b_b: ( b > b ) > set_b > b ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001tf__b,type,
    if_b: $o > b > b > b ).

thf(sy_c_Lower__Semicontinuous__Mirabelle__mxyexokbxt_Oconvex__on_001tf__b,type,
    lower_311861425x_on_b: set_b > ( b > extended_ereal ) > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__b_J,type,
    bot_bot_set_b: set_b ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
    real_V453051771R_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001tf__b,type,
    real_V1035702896aleR_b: real > b > b ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_OCollect_001tf__b,type,
    collect_b: ( b > $o ) > set_b ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Oinsert_001tf__b,type,
    insert_b: b > set_b > set_b ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_c_member_001tf__b,type,
    member_b: b > set_b > $o ).

thf(sy_v_C,type,
    c: set_b ).

thf(sy_v_a,type,
    a2: a > real ).

thf(sy_v_aa____,type,
    aa: a > real ).

thf(sy_v_f,type,
    f: b > extended_ereal ).

thf(sy_v_i____,type,
    i: a ).

thf(sy_v_s,type,
    s: set_a ).

thf(sy_v_sa____,type,
    sa: set_a ).

thf(sy_v_y,type,
    y: a > b ).

% Relevant facts (353)
thf(fact_0_insert_Ohyps_I3_J,axiom,
    ~ ( member_a @ i @ sa ) ).

% insert.hyps(3)
thf(fact_1_asm,axiom,
    ( ( aa @ i )
   != one_one_real ) ).

% asm
thf(fact_2__092_060open_062_I_092_060Sum_062x_092_060in_062s_O_Aa_Ax_A_K_092_060_094sub_062R_Ay_Ax_A_P_092_060_094sub_062R_A_I1_A_N_Aa_Ai_J_J_A_061_A_I_092_060Sum_062j_092_060in_062s_O_Aa_Aj_A_K_092_060_094sub_062R_Ay_Aj_J_A_P_092_060_094sub_062R_A_I1_A_N_Aa_Ai_J_092_060close_062,axiom,
    ( ( groups1199149371um_a_b
      @ ^ [X: a] : ( real_V1035702896aleR_b @ ( inverse_inverse_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) @ ( real_V1035702896aleR_b @ ( aa @ X ) @ ( y @ X ) ) )
      @ sa )
    = ( real_V1035702896aleR_b @ ( inverse_inverse_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) )
      @ ( groups1199149371um_a_b
        @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
        @ sa ) ) ) ).

% \<open>(\<Sum>x\<in>s. a x *\<^sub>R y x /\<^sub>R (1 - a i)) = (\<Sum>j\<in>s. a j *\<^sub>R y j) /\<^sub>R (1 - a i)\<close>
thf(fact_3_insert_Ohyps_I2_J,axiom,
    sa != bot_bot_set_a ).

% insert.hyps(2)
thf(fact_4_insert_Ohyps_I1_J,axiom,
    finite_finite_a @ sa ).

% insert.hyps(1)
thf(fact_5__092_060open_062f_A_I_I_092_060Sum_062j_092_060in_062s_O_Aa_Aj_A_K_092_060_094sub_062R_Ay_Aj_J_A_L_Aa_Ai_A_K_092_060_094sub_062R_Ay_Ai_J_A_061_Af_A_I_I_I1_A_N_Aa_Ai_J_A_K_Ainverse_A_I1_A_N_Aa_Ai_J_J_A_K_092_060_094sub_062R_A_I_092_060Sum_062j_092_060in_062s_O_Aa_Aj_A_K_092_060_094sub_062R_Ay_Aj_J_A_L_Aa_Ai_A_K_092_060_094sub_062R_Ay_Ai_J_092_060close_062,axiom,
    ( ( f
      @ ( plus_plus_b
        @ ( groups1199149371um_a_b
          @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
          @ sa )
        @ ( real_V1035702896aleR_b @ ( aa @ i ) @ ( y @ i ) ) ) )
    = ( f
      @ ( plus_plus_b
        @ ( real_V1035702896aleR_b @ ( times_times_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) @ ( inverse_inverse_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) )
          @ ( groups1199149371um_a_b
            @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
            @ sa ) )
        @ ( real_V1035702896aleR_b @ ( aa @ i ) @ ( y @ i ) ) ) ) ) ).

% \<open>f ((\<Sum>j\<in>s. a j *\<^sub>R y j) + a i *\<^sub>R y i) = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum>j\<in>s. a j *\<^sub>R y j) + a i *\<^sub>R y i)\<close>
thf(fact_6_calculation,axiom,
    ( ( f
      @ ( groups1199149371um_a_b
        @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
        @ ( insert_a @ i @ sa ) ) )
    = ( f
      @ ( plus_plus_b
        @ ( real_V1035702896aleR_b @ ( times_times_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) @ ( inverse_inverse_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) )
          @ ( groups1199149371um_a_b
            @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
            @ sa ) )
        @ ( real_V1035702896aleR_b @ ( aa @ i ) @ ( y @ i ) ) ) ) ) ).

% calculation
thf(fact_7__092_060open_062f_A_I_092_060Sum_062j_092_060in_062insert_Ai_As_O_Aa_Aj_A_K_092_060_094sub_062R_Ay_Aj_J_A_061_Af_A_I_I_092_060Sum_062j_092_060in_062s_O_Aa_Aj_A_K_092_060_094sub_062R_Ay_Aj_J_A_L_Aa_Ai_A_K_092_060_094sub_062R_Ay_Ai_J_092_060close_062,axiom,
    ( ( f
      @ ( groups1199149371um_a_b
        @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
        @ ( insert_a @ i @ sa ) ) )
    = ( f
      @ ( plus_plus_b
        @ ( groups1199149371um_a_b
          @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
          @ sa )
        @ ( real_V1035702896aleR_b @ ( aa @ i ) @ ( y @ i ) ) ) ) ) ).

% \<open>f (\<Sum>j\<in>insert i s. a j *\<^sub>R y j) = f ((\<Sum>j\<in>s. a j *\<^sub>R y j) + a i *\<^sub>R y i)\<close>
thf(fact_8_scaleR__collapse,axiom,
    ! [U: real,A: b] :
      ( ( plus_plus_b @ ( real_V1035702896aleR_b @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V1035702896aleR_b @ U @ A ) )
      = A ) ).

% scaleR_collapse
thf(fact_9_scaleR__collapse,axiom,
    ! [U: real,A: real] :
      ( ( plus_plus_real @ ( real_V453051771R_real @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V453051771R_real @ U @ A ) )
      = A ) ).

% scaleR_collapse
thf(fact_10_scaleR__eq__iff,axiom,
    ! [B: b,U: real,A: b] :
      ( ( ( plus_plus_b @ B @ ( real_V1035702896aleR_b @ U @ A ) )
        = ( plus_plus_b @ A @ ( real_V1035702896aleR_b @ U @ B ) ) )
      = ( ( A = B )
        | ( U = one_one_real ) ) ) ).

% scaleR_eq_iff
thf(fact_11_scaleR__eq__iff,axiom,
    ! [B: real,U: real,A: real] :
      ( ( ( plus_plus_real @ B @ ( real_V453051771R_real @ U @ A ) )
        = ( plus_plus_real @ A @ ( real_V453051771R_real @ U @ B ) ) )
      = ( ( A = B )
        | ( U = one_one_real ) ) ) ).

% scaleR_eq_iff
thf(fact_12_yai_I1_J,axiom,
    member_b @ ( y @ i ) @ c ).

% yai(1)
thf(fact_13_scaleR__scaleR,axiom,
    ! [A: real,B: real,X2: b] :
      ( ( real_V1035702896aleR_b @ A @ ( real_V1035702896aleR_b @ B @ X2 ) )
      = ( real_V1035702896aleR_b @ ( times_times_real @ A @ B ) @ X2 ) ) ).

% scaleR_scaleR
thf(fact_14_scaleR__scaleR,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( real_V453051771R_real @ A @ ( real_V453051771R_real @ B @ X2 ) )
      = ( real_V453051771R_real @ ( times_times_real @ A @ B ) @ X2 ) ) ).

% scaleR_scaleR
thf(fact_15_scaleR__one,axiom,
    ! [X2: b] :
      ( ( real_V1035702896aleR_b @ one_one_real @ X2 )
      = X2 ) ).

% scaleR_one
thf(fact_16_scaleR__one,axiom,
    ! [X2: real] :
      ( ( real_V453051771R_real @ one_one_real @ X2 )
      = X2 ) ).

% scaleR_one
thf(fact_17__092_060open_062sum_Aa_As_A_061_A1_A_N_Aa_Ai_092_060close_062,axiom,
    ( ( groups1862963056a_real @ aa @ sa )
    = ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) ).

% \<open>sum a s = 1 - a i\<close>
thf(fact_18_inverse__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( inverse_inverse_real @ X2 )
        = one_one_real )
      = ( X2 = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_19_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_20_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_21_mult__scaleR__left,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( times_times_real @ ( real_V453051771R_real @ A @ X2 ) @ Y )
      = ( real_V453051771R_real @ A @ ( times_times_real @ X2 @ Y ) ) ) ).

% mult_scaleR_left
thf(fact_22_assms_I1_J,axiom,
    finite_finite_a @ s ).

% assms(1)
thf(fact_23_assms_I2_J,axiom,
    s != bot_bot_set_a ).

% assms(2)
thf(fact_24_assms_I7_J,axiom,
    ! [I: a] :
      ( ( member_a @ I @ s )
     => ( member_b @ ( y @ I ) @ c ) ) ).

% assms(7)
thf(fact_25_insert_Oprems_I3_J,axiom,
    ! [I: a] :
      ( ( member_a @ I @ ( insert_a @ i @ sa ) )
     => ( member_b @ ( y @ I ) @ c ) ) ).

% insert.prems(3)
thf(fact_26_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_27_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_28_insert_Oprems_I1_J,axiom,
    ( ( groups1862963056a_real @ aa @ ( insert_a @ i @ sa ) )
    = one_one_real ) ).

% insert.prems(1)
thf(fact_29_assms_I3_J,axiom,
    lower_311861425x_on_b @ c @ f ).

% assms(3)
thf(fact_30_fis,axiom,
    finite_finite_a @ ( insert_a @ i @ sa ) ).

% fis
thf(fact_31_mult__scaleR__right,axiom,
    ! [X2: real,A: real,Y: real] :
      ( ( times_times_real @ X2 @ ( real_V453051771R_real @ A @ Y ) )
      = ( real_V453051771R_real @ A @ ( times_times_real @ X2 @ Y ) ) ) ).

% mult_scaleR_right
thf(fact_32_assms_I4_J,axiom,
    convex_b @ c ).

% assms(4)
thf(fact_33_assms_I5_J,axiom,
    ( ( groups1862963056a_real @ a2 @ s )
    = one_one_real ) ).

% assms(5)
thf(fact_34_real__scaleR__def,axiom,
    real_V453051771R_real = times_times_real ).

% real_scaleR_def
thf(fact_35_scale__left__commute,axiom,
    ! [A: real,B: real,X2: b] :
      ( ( real_V1035702896aleR_b @ A @ ( real_V1035702896aleR_b @ B @ X2 ) )
      = ( real_V1035702896aleR_b @ B @ ( real_V1035702896aleR_b @ A @ X2 ) ) ) ).

% scale_left_commute
thf(fact_36_scale__left__commute,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( real_V453051771R_real @ A @ ( real_V453051771R_real @ B @ X2 ) )
      = ( real_V453051771R_real @ B @ ( real_V453051771R_real @ A @ X2 ) ) ) ).

% scale_left_commute
thf(fact_37_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_38_scaleR__add__right,axiom,
    ! [A: real,X2: b,Y: b] :
      ( ( real_V1035702896aleR_b @ A @ ( plus_plus_b @ X2 @ Y ) )
      = ( plus_plus_b @ ( real_V1035702896aleR_b @ A @ X2 ) @ ( real_V1035702896aleR_b @ A @ Y ) ) ) ).

% scaleR_add_right
thf(fact_39_scaleR__add__right,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( real_V453051771R_real @ A @ ( plus_plus_real @ X2 @ Y ) )
      = ( plus_plus_real @ ( real_V453051771R_real @ A @ X2 ) @ ( real_V453051771R_real @ A @ Y ) ) ) ).

% scaleR_add_right
thf(fact_40_scaleR__add__left,axiom,
    ! [A: real,B: real,X2: b] :
      ( ( real_V1035702896aleR_b @ ( plus_plus_real @ A @ B ) @ X2 )
      = ( plus_plus_b @ ( real_V1035702896aleR_b @ A @ X2 ) @ ( real_V1035702896aleR_b @ B @ X2 ) ) ) ).

% scaleR_add_left
thf(fact_41_scaleR__add__left,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( real_V453051771R_real @ ( plus_plus_real @ A @ B ) @ X2 )
      = ( plus_plus_real @ ( real_V453051771R_real @ A @ X2 ) @ ( real_V453051771R_real @ B @ X2 ) ) ) ).

% scaleR_add_left
thf(fact_42_scaleR__left_Oadd,axiom,
    ! [X2: real,Y: real,Xa: b] :
      ( ( real_V1035702896aleR_b @ ( plus_plus_real @ X2 @ Y ) @ Xa )
      = ( plus_plus_b @ ( real_V1035702896aleR_b @ X2 @ Xa ) @ ( real_V1035702896aleR_b @ Y @ Xa ) ) ) ).

% scaleR_left.add
thf(fact_43_scaleR__left_Oadd,axiom,
    ! [X2: real,Y: real,Xa: real] :
      ( ( real_V453051771R_real @ ( plus_plus_real @ X2 @ Y ) @ Xa )
      = ( plus_plus_real @ ( real_V453051771R_real @ X2 @ Xa ) @ ( real_V453051771R_real @ Y @ Xa ) ) ) ).

% scaleR_left.add
thf(fact_44_scale__right__diff__distrib,axiom,
    ! [A: real,X2: b,Y: b] :
      ( ( real_V1035702896aleR_b @ A @ ( minus_minus_b @ X2 @ Y ) )
      = ( minus_minus_b @ ( real_V1035702896aleR_b @ A @ X2 ) @ ( real_V1035702896aleR_b @ A @ Y ) ) ) ).

% scale_right_diff_distrib
thf(fact_45_scale__right__diff__distrib,axiom,
    ! [A: real,X2: real,Y: real] :
      ( ( real_V453051771R_real @ A @ ( minus_minus_real @ X2 @ Y ) )
      = ( minus_minus_real @ ( real_V453051771R_real @ A @ X2 ) @ ( real_V453051771R_real @ A @ Y ) ) ) ).

% scale_right_diff_distrib
thf(fact_46_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: real,X2: real] :
      ( ( ( times_times_real @ Y @ X2 )
        = ( times_times_real @ X2 @ Y ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y ) @ X2 )
        = ( times_times_real @ X2 @ ( inverse_inverse_real @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_47_scale__sum__right,axiom,
    ! [A: real,F: a > b,A2: set_a] :
      ( ( real_V1035702896aleR_b @ A @ ( groups1199149371um_a_b @ F @ A2 ) )
      = ( groups1199149371um_a_b
        @ ^ [X: a] : ( real_V1035702896aleR_b @ A @ ( F @ X ) )
        @ A2 ) ) ).

% scale_sum_right
thf(fact_48_scale__sum__right,axiom,
    ! [A: real,F: a > real,A2: set_a] :
      ( ( real_V453051771R_real @ A @ ( groups1862963056a_real @ F @ A2 ) )
      = ( groups1862963056a_real
        @ ^ [X: a] : ( real_V453051771R_real @ A @ ( F @ X ) )
        @ A2 ) ) ).

% scale_sum_right
thf(fact_49_scale__sum__left,axiom,
    ! [F: a > real,A2: set_a,X2: b] :
      ( ( real_V1035702896aleR_b @ ( groups1862963056a_real @ F @ A2 ) @ X2 )
      = ( groups1199149371um_a_b
        @ ^ [A3: a] : ( real_V1035702896aleR_b @ ( F @ A3 ) @ X2 )
        @ A2 ) ) ).

% scale_sum_left
thf(fact_50_scale__sum__left,axiom,
    ! [F: a > real,A2: set_a,X2: real] :
      ( ( real_V453051771R_real @ ( groups1862963056a_real @ F @ A2 ) @ X2 )
      = ( groups1862963056a_real
        @ ^ [A3: a] : ( real_V453051771R_real @ ( F @ A3 ) @ X2 )
        @ A2 ) ) ).

% scale_sum_left
thf(fact_51_scaleR__right_Osum,axiom,
    ! [A: real,G: a > b,A2: set_a] :
      ( ( real_V1035702896aleR_b @ A @ ( groups1199149371um_a_b @ G @ A2 ) )
      = ( groups1199149371um_a_b
        @ ^ [X: a] : ( real_V1035702896aleR_b @ A @ ( G @ X ) )
        @ A2 ) ) ).

% scaleR_right.sum
thf(fact_52_scaleR__right_Osum,axiom,
    ! [A: real,G: a > real,A2: set_a] :
      ( ( real_V453051771R_real @ A @ ( groups1862963056a_real @ G @ A2 ) )
      = ( groups1862963056a_real
        @ ^ [X: a] : ( real_V453051771R_real @ A @ ( G @ X ) )
        @ A2 ) ) ).

% scaleR_right.sum
thf(fact_53_scaleR__left_Osum,axiom,
    ! [G: a > real,A2: set_a,X2: b] :
      ( ( real_V1035702896aleR_b @ ( groups1862963056a_real @ G @ A2 ) @ X2 )
      = ( groups1199149371um_a_b
        @ ^ [X: a] : ( real_V1035702896aleR_b @ ( G @ X ) @ X2 )
        @ A2 ) ) ).

% scaleR_left.sum
thf(fact_54_scaleR__left_Osum,axiom,
    ! [G: a > real,A2: set_a,X2: real] :
      ( ( real_V453051771R_real @ ( groups1862963056a_real @ G @ A2 ) @ X2 )
      = ( groups1862963056a_real
        @ ^ [X: a] : ( real_V453051771R_real @ ( G @ X ) @ X2 )
        @ A2 ) ) ).

% scaleR_left.sum
thf(fact_55_inverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = one_one_real )
     => ( ( inverse_inverse_real @ A )
        = B ) ) ).

% inverse_unique
thf(fact_56_scale__left__diff__distrib,axiom,
    ! [A: real,B: real,X2: b] :
      ( ( real_V1035702896aleR_b @ ( minus_minus_real @ A @ B ) @ X2 )
      = ( minus_minus_b @ ( real_V1035702896aleR_b @ A @ X2 ) @ ( real_V1035702896aleR_b @ B @ X2 ) ) ) ).

% scale_left_diff_distrib
thf(fact_57_scale__left__diff__distrib,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( real_V453051771R_real @ ( minus_minus_real @ A @ B ) @ X2 )
      = ( minus_minus_real @ ( real_V453051771R_real @ A @ X2 ) @ ( real_V453051771R_real @ B @ X2 ) ) ) ).

% scale_left_diff_distrib
thf(fact_58_scaleR__left_Odiff,axiom,
    ! [X2: real,Y: real,Xa: b] :
      ( ( real_V1035702896aleR_b @ ( minus_minus_real @ X2 @ Y ) @ Xa )
      = ( minus_minus_b @ ( real_V1035702896aleR_b @ X2 @ Xa ) @ ( real_V1035702896aleR_b @ Y @ Xa ) ) ) ).

% scaleR_left.diff
thf(fact_59_scaleR__left_Odiff,axiom,
    ! [X2: real,Y: real,Xa: real] :
      ( ( real_V453051771R_real @ ( minus_minus_real @ X2 @ Y ) @ Xa )
      = ( minus_minus_real @ ( real_V453051771R_real @ X2 @ Xa ) @ ( real_V453051771R_real @ Y @ Xa ) ) ) ).

% scaleR_left.diff
thf(fact_60_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_61_mem__Collect__eq,axiom,
    ! [A: b,P: b > $o] :
      ( ( member_b @ A @ ( collect_b @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_62_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X: a] : ( member_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_63_Collect__mem__eq,axiom,
    ! [A2: set_b] :
      ( ( collect_b
        @ ^ [X: b] : ( member_b @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_64_inverse__scaleR__distrib,axiom,
    ! [A: real,X2: real] :
      ( ( inverse_inverse_real @ ( real_V453051771R_real @ A @ X2 ) )
      = ( real_V453051771R_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ X2 ) ) ) ).

% inverse_scaleR_distrib
thf(fact_65_asum,axiom,
    ( member_b
    @ ( groups1199149371um_a_b
      @ ^ [J: a] : ( real_V1035702896aleR_b @ ( divide_divide_real @ ( aa @ J ) @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) @ ( y @ J ) )
      @ sa )
    @ c ) ).

% asum
thf(fact_66_sum_Oinsert,axiom,
    ! [A2: set_b,X2: b,G: b > b] :
      ( ( finite_finite_b @ A2 )
     => ( ~ ( member_b @ X2 @ A2 )
       => ( ( groups2026918778um_b_b @ G @ ( insert_b @ X2 @ A2 ) )
          = ( plus_plus_b @ ( G @ X2 ) @ ( groups2026918778um_b_b @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_67_sum_Oinsert,axiom,
    ! [A2: set_b,X2: b,G: b > real] :
      ( ( finite_finite_b @ A2 )
     => ( ~ ( member_b @ X2 @ A2 )
       => ( ( groups583146225b_real @ G @ ( insert_b @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups583146225b_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_68_sum_Oinsert,axiom,
    ! [A2: set_a,X2: a,G: a > b] :
      ( ( finite_finite_a @ A2 )
     => ( ~ ( member_a @ X2 @ A2 )
       => ( ( groups1199149371um_a_b @ G @ ( insert_a @ X2 @ A2 ) )
          = ( plus_plus_b @ ( G @ X2 ) @ ( groups1199149371um_a_b @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_69_sum_Oinsert,axiom,
    ! [A2: set_a,X2: a,G: a > real] :
      ( ( finite_finite_a @ A2 )
     => ( ~ ( member_a @ X2 @ A2 )
       => ( ( groups1862963056a_real @ G @ ( insert_a @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups1862963056a_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_70_affine__hull__finite__step,axiom,
    ! [S: set_b,A: b,W: real,Y: b] :
      ( ( finite_finite_b @ S )
     => ( ( ? [U2: b > real] :
              ( ( ( groups583146225b_real @ U2 @ ( insert_b @ A @ S ) )
                = W )
              & ( ( groups2026918778um_b_b
                  @ ^ [X: b] : ( real_V1035702896aleR_b @ ( U2 @ X ) @ X )
                  @ ( insert_b @ A @ S ) )
                = Y ) ) )
        = ( ? [V: real,U2: b > real] :
              ( ( ( groups583146225b_real @ U2 @ S )
                = ( minus_minus_real @ W @ V ) )
              & ( ( groups2026918778um_b_b
                  @ ^ [X: b] : ( real_V1035702896aleR_b @ ( U2 @ X ) @ X )
                  @ S )
                = ( minus_minus_b @ Y @ ( real_V1035702896aleR_b @ V @ A ) ) ) ) ) ) ) ).

% affine_hull_finite_step
thf(fact_71_affine__hull__finite__step,axiom,
    ! [S: set_real,A: real,W: real,Y: real] :
      ( ( finite_finite_real @ S )
     => ( ( ? [U2: real > real] :
              ( ( ( groups1296524820l_real @ U2 @ ( insert_real @ A @ S ) )
                = W )
              & ( ( groups1296524820l_real
                  @ ^ [X: real] : ( real_V453051771R_real @ ( U2 @ X ) @ X )
                  @ ( insert_real @ A @ S ) )
                = Y ) ) )
        = ( ? [V: real,U2: real > real] :
              ( ( ( groups1296524820l_real @ U2 @ S )
                = ( minus_minus_real @ W @ V ) )
              & ( ( groups1296524820l_real
                  @ ^ [X: real] : ( real_V453051771R_real @ ( U2 @ X ) @ X )
                  @ S )
                = ( minus_minus_real @ Y @ ( real_V453051771R_real @ V @ A ) ) ) ) ) ) ) ).

% affine_hull_finite_step
thf(fact_72_a1,axiom,
    ( ( groups1862963056a_real
      @ ^ [J: a] : ( divide_divide_real @ ( aa @ J ) @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) )
      @ sa )
    = one_one_real ) ).

% a1
thf(fact_73__092_060open_062sum_Aa_As_A_P_A_I1_A_N_Aa_Ai_J_A_061_A1_092_060close_062,axiom,
    ( ( divide_divide_real @ ( groups1862963056a_real @ aa @ sa ) @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) )
    = one_one_real ) ).

% \<open>sum a s / (1 - a i) = 1\<close>
thf(fact_74_singleton__conv,axiom,
    ! [A: a] :
      ( ( collect_a
        @ ^ [X: a] : ( X = A ) )
      = ( insert_a @ A @ bot_bot_set_a ) ) ).

% singleton_conv
thf(fact_75_singleton__conv2,axiom,
    ! [A: a] :
      ( ( collect_a
        @ ( ^ [Y2: a,Z: a] : ( Y2 = Z )
          @ A ) )
      = ( insert_a @ A @ bot_bot_set_a ) ) ).

% singleton_conv2
thf(fact_76_finite__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( finite_finite_a @ ( insert_a @ A @ A2 ) )
      = ( finite_finite_a @ A2 ) ) ).

% finite_insert
thf(fact_77_sum__diff1,axiom,
    ! [A2: set_b,A: b,F: b > real] :
      ( ( finite_finite_b @ A2 )
     => ( ( ( member_b @ A @ A2 )
         => ( ( groups583146225b_real @ F @ ( minus_minus_set_b @ A2 @ ( insert_b @ A @ bot_bot_set_b ) ) )
            = ( minus_minus_real @ ( groups583146225b_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_b @ A @ A2 )
         => ( ( groups583146225b_real @ F @ ( minus_minus_set_b @ A2 @ ( insert_b @ A @ bot_bot_set_b ) ) )
            = ( groups583146225b_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_78_sum__diff1,axiom,
    ! [A2: set_a,A: a,F: a > b] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ A @ A2 )
         => ( ( groups1199149371um_a_b @ F @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( minus_minus_b @ ( groups1199149371um_a_b @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_a @ A @ A2 )
         => ( ( groups1199149371um_a_b @ F @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( groups1199149371um_a_b @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_79_sum__diff1,axiom,
    ! [A2: set_a,A: a,F: a > real] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ A @ A2 )
         => ( ( groups1862963056a_real @ F @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( minus_minus_real @ ( groups1862963056a_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_a @ A @ A2 )
         => ( ( groups1862963056a_real @ F @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( groups1862963056a_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_80_singletonI,axiom,
    ! [A: b] : ( member_b @ A @ ( insert_b @ A @ bot_bot_set_b ) ) ).

% singletonI
thf(fact_81_singletonI,axiom,
    ! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_82_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X: a] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_83_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X: a] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_84_all__not__in__conv,axiom,
    ! [A2: set_b] :
      ( ( ! [X: b] :
            ~ ( member_b @ X @ A2 ) )
      = ( A2 = bot_bot_set_b ) ) ).

% all_not_in_conv
thf(fact_85_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X: a] :
            ~ ( member_a @ X @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_86_empty__iff,axiom,
    ! [C: b] :
      ~ ( member_b @ C @ bot_bot_set_b ) ).

% empty_iff
thf(fact_87_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_88_insert__absorb2,axiom,
    ! [X2: a,A2: set_a] :
      ( ( insert_a @ X2 @ ( insert_a @ X2 @ A2 ) )
      = ( insert_a @ X2 @ A2 ) ) ).

% insert_absorb2
thf(fact_89_insert__iff,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
      = ( ( A = B )
        | ( member_a @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_90_insert__iff,axiom,
    ! [A: b,B: b,A2: set_b] :
      ( ( member_b @ A @ ( insert_b @ B @ A2 ) )
      = ( ( A = B )
        | ( member_b @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_91_insertCI,axiom,
    ! [A: a,B2: set_a,B: a] :
      ( ( ~ ( member_a @ A @ B2 )
       => ( A = B ) )
     => ( member_a @ A @ ( insert_a @ B @ B2 ) ) ) ).

% insertCI
thf(fact_92_insertCI,axiom,
    ! [A: b,B2: set_b,B: b] :
      ( ( ~ ( member_b @ A @ B2 )
       => ( A = B ) )
     => ( member_b @ A @ ( insert_b @ B @ B2 ) ) ) ).

% insertCI
thf(fact_93_Diff__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        & ~ ( member_a @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_94_Diff__iff,axiom,
    ! [C: b,A2: set_b,B2: set_b] :
      ( ( member_b @ C @ ( minus_minus_set_b @ A2 @ B2 ) )
      = ( ( member_b @ C @ A2 )
        & ~ ( member_b @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_95_DiffI,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_96_DiffI,axiom,
    ! [C: b,A2: set_b,B2: set_b] :
      ( ( member_b @ C @ A2 )
     => ( ~ ( member_b @ C @ B2 )
       => ( member_b @ C @ ( minus_minus_set_b @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_97_finite__Collect__disjI,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( finite_finite_a
        @ ( collect_a
          @ ^ [X: a] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite_finite_a @ ( collect_a @ P ) )
        & ( finite_finite_a @ ( collect_a @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_98_finite__Collect__conjI,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ( finite_finite_a @ ( collect_a @ P ) )
        | ( finite_finite_a @ ( collect_a @ Q ) ) )
     => ( finite_finite_a
        @ ( collect_a
          @ ^ [X: a] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_99_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_100_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_101_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_102_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_103_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_104_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_105_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_106_finite__Diff2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) )
        = ( finite_finite_a @ A2 ) ) ) ).

% finite_Diff2
thf(fact_107_finite__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_108_insert__Diff1,axiom,
    ! [X2: a,B2: set_a,A2: set_a] :
      ( ( member_a @ X2 @ B2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X2 @ A2 ) @ B2 )
        = ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_109_insert__Diff1,axiom,
    ! [X2: b,B2: set_b,A2: set_b] :
      ( ( member_b @ X2 @ B2 )
     => ( ( minus_minus_set_b @ ( insert_b @ X2 @ A2 ) @ B2 )
        = ( minus_minus_set_b @ A2 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_110_Diff__insert0,axiom,
    ! [X2: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X2 @ A2 )
     => ( ( minus_minus_set_a @ A2 @ ( insert_a @ X2 @ B2 ) )
        = ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_111_Diff__insert0,axiom,
    ! [X2: b,A2: set_b,B2: set_b] :
      ( ~ ( member_b @ X2 @ A2 )
     => ( ( minus_minus_set_b @ A2 @ ( insert_b @ X2 @ B2 ) )
        = ( minus_minus_set_b @ A2 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_112_inverse__divide,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ B @ A ) ) ).

% inverse_divide
thf(fact_113_insert__Diff__single,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
      = ( insert_a @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_114_finite__Diff__insert,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) ) )
      = ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_115_sum__diff1__nat,axiom,
    ! [A: b,A2: set_b,F: b > nat] :
      ( ( ( member_b @ A @ A2 )
       => ( ( groups2098481813_b_nat @ F @ ( minus_minus_set_b @ A2 @ ( insert_b @ A @ bot_bot_set_b ) ) )
          = ( minus_minus_nat @ ( groups2098481813_b_nat @ F @ A2 ) @ ( F @ A ) ) ) )
      & ( ~ ( member_b @ A @ A2 )
       => ( ( groups2098481813_b_nat @ F @ ( minus_minus_set_b @ A2 @ ( insert_b @ A @ bot_bot_set_b ) ) )
          = ( groups2098481813_b_nat @ F @ A2 ) ) ) ) ).

% sum_diff1_nat
thf(fact_116_sum__diff1__nat,axiom,
    ! [A: a,A2: set_a,F: a > nat] :
      ( ( ( member_a @ A @ A2 )
       => ( ( groups769445524_a_nat @ F @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
          = ( minus_minus_nat @ ( groups769445524_a_nat @ F @ A2 ) @ ( F @ A ) ) ) )
      & ( ~ ( member_a @ A @ A2 )
       => ( ( groups769445524_a_nat @ F @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
          = ( groups769445524_a_nat @ F @ A2 ) ) ) ) ).

% sum_diff1_nat
thf(fact_117_minus__set__def,axiom,
    ( minus_minus_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( collect_a
          @ ( minus_minus_a_o
            @ ^ [X: a] : ( member_a @ X @ A4 )
            @ ^ [X: a] : ( member_a @ X @ B3 ) ) ) ) ) ).

% minus_set_def
thf(fact_118_minus__set__def,axiom,
    ( minus_minus_set_b
    = ( ^ [A4: set_b,B3: set_b] :
          ( collect_b
          @ ( minus_minus_b_o
            @ ^ [X: b] : ( member_b @ X @ A4 )
            @ ^ [X: b] : ( member_b @ X @ B3 ) ) ) ) ) ).

% minus_set_def
thf(fact_119_set__diff__eq,axiom,
    ( minus_minus_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( collect_a
          @ ^ [X: a] :
              ( ( member_a @ X @ A4 )
              & ~ ( member_a @ X @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_120_set__diff__eq,axiom,
    ( minus_minus_set_b
    = ( ^ [A4: set_b,B3: set_b] :
          ( collect_b
          @ ^ [X: b] :
              ( ( member_b @ X @ A4 )
              & ~ ( member_b @ X @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_121_DiffD2,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( member_a @ C @ B2 ) ) ).

% DiffD2
thf(fact_122_DiffD2,axiom,
    ! [C: b,A2: set_b,B2: set_b] :
      ( ( member_b @ C @ ( minus_minus_set_b @ A2 @ B2 ) )
     => ~ ( member_b @ C @ B2 ) ) ).

% DiffD2
thf(fact_123_DiffD1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_124_DiffD1,axiom,
    ! [C: b,A2: set_b,B2: set_b] :
      ( ( member_b @ C @ ( minus_minus_set_b @ A2 @ B2 ) )
     => ( member_b @ C @ A2 ) ) ).

% DiffD1
thf(fact_125_DiffE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ( member_a @ C @ B2 ) ) ) ).

% DiffE
thf(fact_126_DiffE,axiom,
    ! [C: b,A2: set_b,B2: set_b] :
      ( ( member_b @ C @ ( minus_minus_set_b @ A2 @ B2 ) )
     => ~ ( ( member_b @ C @ A2 )
         => ( member_b @ C @ B2 ) ) ) ).

% DiffE
thf(fact_127_Diff__infinite__finite,axiom,
    ! [T: set_a,S: set_a] :
      ( ( finite_finite_a @ T )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_128_insert__Diff__if,axiom,
    ! [X2: a,B2: set_a,A2: set_a] :
      ( ( ( member_a @ X2 @ B2 )
       => ( ( minus_minus_set_a @ ( insert_a @ X2 @ A2 ) @ B2 )
          = ( minus_minus_set_a @ A2 @ B2 ) ) )
      & ( ~ ( member_a @ X2 @ B2 )
       => ( ( minus_minus_set_a @ ( insert_a @ X2 @ A2 ) @ B2 )
          = ( insert_a @ X2 @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_129_insert__Diff__if,axiom,
    ! [X2: b,B2: set_b,A2: set_b] :
      ( ( ( member_b @ X2 @ B2 )
       => ( ( minus_minus_set_b @ ( insert_b @ X2 @ A2 ) @ B2 )
          = ( minus_minus_set_b @ A2 @ B2 ) ) )
      & ( ~ ( member_b @ X2 @ B2 )
       => ( ( minus_minus_set_b @ ( insert_b @ X2 @ A2 ) @ B2 )
          = ( insert_b @ X2 @ ( minus_minus_set_b @ A2 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_130_sum__divide__distrib,axiom,
    ! [F: a > real,A2: set_a,R: real] :
      ( ( divide_divide_real @ ( groups1862963056a_real @ F @ A2 ) @ R )
      = ( groups1862963056a_real
        @ ^ [N: a] : ( divide_divide_real @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_131_convex__ereal__add,axiom,
    ! [S2: set_b,F: b > extended_ereal,G: b > extended_ereal] :
      ( ( lower_311861425x_on_b @ S2 @ F )
     => ( ( lower_311861425x_on_b @ S2 @ G )
       => ( lower_311861425x_on_b @ S2
          @ ^ [X: b] : ( plus_p2118002693_ereal @ ( F @ X ) @ ( G @ X ) ) ) ) ) ).

% convex_ereal_add
thf(fact_132_times__divide__times__eq,axiom,
    ! [X2: real,Y: real,Z2: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ Z2 @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X2 @ Z2 ) @ ( times_times_real @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_133_divide__divide__times__eq,axiom,
    ! [X2: real,Y: real,Z2: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ Z2 @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X2 @ W ) @ ( times_times_real @ Y @ Z2 ) ) ) ).

% divide_divide_times_eq
thf(fact_134_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_135_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_136_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_137_Diff__insert__absorb,axiom,
    ! [X2: b,A2: set_b] :
      ( ~ ( member_b @ X2 @ A2 )
     => ( ( minus_minus_set_b @ ( insert_b @ X2 @ A2 ) @ ( insert_b @ X2 @ bot_bot_set_b ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_138_Diff__insert__absorb,axiom,
    ! [X2: a,A2: set_a] :
      ( ~ ( member_a @ X2 @ A2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X2 @ A2 ) @ ( insert_a @ X2 @ bot_bot_set_a ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_139_Diff__insert2,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) @ B2 ) ) ).

% Diff_insert2
thf(fact_140_insert__Diff,axiom,
    ! [A: b,A2: set_b] :
      ( ( member_b @ A @ A2 )
     => ( ( insert_b @ A @ ( minus_minus_set_b @ A2 @ ( insert_b @ A @ bot_bot_set_b ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_141_insert__Diff,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_142_Diff__insert,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ).

% Diff_insert
thf(fact_143_finite__empty__induct,axiom,
    ! [A2: set_b,P: set_b > $o] :
      ( ( finite_finite_b @ A2 )
     => ( ( P @ A2 )
       => ( ! [A5: b,A6: set_b] :
              ( ( finite_finite_b @ A6 )
             => ( ( member_b @ A5 @ A6 )
               => ( ( P @ A6 )
                 => ( P @ ( minus_minus_set_b @ A6 @ ( insert_b @ A5 @ bot_bot_set_b ) ) ) ) ) )
         => ( P @ bot_bot_set_b ) ) ) ) ).

% finite_empty_induct
thf(fact_144_finite__empty__induct,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( P @ A2 )
       => ( ! [A5: a,A6: set_a] :
              ( ( finite_finite_a @ A6 )
             => ( ( member_a @ A5 @ A6 )
               => ( ( P @ A6 )
                 => ( P @ ( minus_minus_set_a @ A6 @ ( insert_a @ A5 @ bot_bot_set_a ) ) ) ) ) )
         => ( P @ bot_bot_set_a ) ) ) ) ).

% finite_empty_induct
thf(fact_145_infinite__coinduct,axiom,
    ! [X3: set_a > $o,A2: set_a] :
      ( ( X3 @ A2 )
     => ( ! [A6: set_a] :
            ( ( X3 @ A6 )
           => ? [X4: a] :
                ( ( member_a @ X4 @ A6 )
                & ( ( X3 @ ( minus_minus_set_a @ A6 @ ( insert_a @ X4 @ bot_bot_set_a ) ) )
                  | ~ ( finite_finite_a @ ( minus_minus_set_a @ A6 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) ) ) )
       => ~ ( finite_finite_a @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_146_infinite__remove,axiom,
    ! [S: set_a,A: a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% infinite_remove
thf(fact_147_field__class_Ofield__divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A3: real,B4: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B4 ) ) ) ) ).

% field_class.field_divide_inverse
thf(fact_148_divide__inverse,axiom,
    ( divide_divide_real
    = ( ^ [A3: real,B4: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B4 ) ) ) ) ).

% divide_inverse
thf(fact_149_divide__inverse__commute,axiom,
    ( divide_divide_real
    = ( ^ [A3: real,B4: real] : ( times_times_real @ ( inverse_inverse_real @ B4 ) @ A3 ) ) ) ).

% divide_inverse_commute
thf(fact_150_inverse__eq__divide,axiom,
    ( inverse_inverse_real
    = ( divide_divide_real @ one_one_real ) ) ).

% inverse_eq_divide
thf(fact_151_ex__in__conv,axiom,
    ! [A2: set_b] :
      ( ( ? [X: b] : ( member_b @ X @ A2 ) )
      = ( A2 != bot_bot_set_b ) ) ).

% ex_in_conv
thf(fact_152_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X: a] : ( member_a @ X @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_153_equals0I,axiom,
    ! [A2: set_b] :
      ( ! [Y3: b] :
          ~ ( member_b @ Y3 @ A2 )
     => ( A2 = bot_bot_set_b ) ) ).

% equals0I
thf(fact_154_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y3: a] :
          ~ ( member_a @ Y3 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_155_equals0D,axiom,
    ! [A2: set_b,A: b] :
      ( ( A2 = bot_bot_set_b )
     => ~ ( member_b @ A @ A2 ) ) ).

% equals0D
thf(fact_156_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_157_emptyE,axiom,
    ! [A: b] :
      ~ ( member_b @ A @ bot_bot_set_b ) ).

% emptyE
thf(fact_158_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_159_mk__disjoint__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ? [B5: set_a] :
          ( ( A2
            = ( insert_a @ A @ B5 ) )
          & ~ ( member_a @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_160_mk__disjoint__insert,axiom,
    ! [A: b,A2: set_b] :
      ( ( member_b @ A @ A2 )
     => ? [B5: set_b] :
          ( ( A2
            = ( insert_b @ A @ B5 ) )
          & ~ ( member_b @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_161_insert__commute,axiom,
    ! [X2: a,Y: a,A2: set_a] :
      ( ( insert_a @ X2 @ ( insert_a @ Y @ A2 ) )
      = ( insert_a @ Y @ ( insert_a @ X2 @ A2 ) ) ) ).

% insert_commute
thf(fact_162_insert__eq__iff,axiom,
    ! [A: a,A2: set_a,B: a,B2: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ~ ( member_a @ B @ B2 )
       => ( ( ( insert_a @ A @ A2 )
            = ( insert_a @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A2 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_a] :
                  ( ( A2
                    = ( insert_a @ B @ C2 ) )
                  & ~ ( member_a @ B @ C2 )
                  & ( B2
                    = ( insert_a @ A @ C2 ) )
                  & ~ ( member_a @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_163_insert__eq__iff,axiom,
    ! [A: b,A2: set_b,B: b,B2: set_b] :
      ( ~ ( member_b @ A @ A2 )
     => ( ~ ( member_b @ B @ B2 )
       => ( ( ( insert_b @ A @ A2 )
            = ( insert_b @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A2 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_b] :
                  ( ( A2
                    = ( insert_b @ B @ C2 ) )
                  & ~ ( member_b @ B @ C2 )
                  & ( B2
                    = ( insert_b @ A @ C2 ) )
                  & ~ ( member_b @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_164_insert__absorb,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_165_insert__absorb,axiom,
    ! [A: b,A2: set_b] :
      ( ( member_b @ A @ A2 )
     => ( ( insert_b @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_166_insert__ident,axiom,
    ! [X2: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X2 @ A2 )
     => ( ~ ( member_a @ X2 @ B2 )
       => ( ( ( insert_a @ X2 @ A2 )
            = ( insert_a @ X2 @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% insert_ident
thf(fact_167_insert__ident,axiom,
    ! [X2: b,A2: set_b,B2: set_b] :
      ( ~ ( member_b @ X2 @ A2 )
     => ( ~ ( member_b @ X2 @ B2 )
       => ( ( ( insert_b @ X2 @ A2 )
            = ( insert_b @ X2 @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% insert_ident
thf(fact_168_Set_Oset__insert,axiom,
    ! [X2: a,A2: set_a] :
      ( ( member_a @ X2 @ A2 )
     => ~ ! [B5: set_a] :
            ( ( A2
              = ( insert_a @ X2 @ B5 ) )
           => ( member_a @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_169_Set_Oset__insert,axiom,
    ! [X2: b,A2: set_b] :
      ( ( member_b @ X2 @ A2 )
     => ~ ! [B5: set_b] :
            ( ( A2
              = ( insert_b @ X2 @ B5 ) )
           => ( member_b @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_170_insertI2,axiom,
    ! [A: a,B2: set_a,B: a] :
      ( ( member_a @ A @ B2 )
     => ( member_a @ A @ ( insert_a @ B @ B2 ) ) ) ).

% insertI2
thf(fact_171_insertI2,axiom,
    ! [A: b,B2: set_b,B: b] :
      ( ( member_b @ A @ B2 )
     => ( member_b @ A @ ( insert_b @ B @ B2 ) ) ) ).

% insertI2
thf(fact_172_insertI1,axiom,
    ! [A: a,B2: set_a] : ( member_a @ A @ ( insert_a @ A @ B2 ) ) ).

% insertI1
thf(fact_173_insertI1,axiom,
    ! [A: b,B2: set_b] : ( member_b @ A @ ( insert_b @ A @ B2 ) ) ).

% insertI1
thf(fact_174_insertE,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
     => ( ( A != B )
       => ( member_a @ A @ A2 ) ) ) ).

% insertE
thf(fact_175_insertE,axiom,
    ! [A: b,B: b,A2: set_b] :
      ( ( member_b @ A @ ( insert_b @ B @ A2 ) )
     => ( ( A != B )
       => ( member_b @ A @ A2 ) ) ) ).

% insertE
thf(fact_176_sum_Ocong,axiom,
    ! [A2: set_a,B2: set_a,G: a > b,H: a > b] :
      ( ( A2 = B2 )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ B2 )
           => ( ( G @ X5 )
              = ( H @ X5 ) ) )
       => ( ( groups1199149371um_a_b @ G @ A2 )
          = ( groups1199149371um_a_b @ H @ B2 ) ) ) ) ).

% sum.cong
thf(fact_177_sum_Ocong,axiom,
    ! [A2: set_a,B2: set_a,G: a > real,H: a > real] :
      ( ( A2 = B2 )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ B2 )
           => ( ( G @ X5 )
              = ( H @ X5 ) ) )
       => ( ( groups1862963056a_real @ G @ A2 )
          = ( groups1862963056a_real @ H @ B2 ) ) ) ) ).

% sum.cong
thf(fact_178_sum_Oeq__general,axiom,
    ! [B2: set_a,A2: set_b,H: b > a,Gamma: a > b,Phi: b > b] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ? [X4: b] :
              ( ( member_b @ X4 @ A2 )
              & ( ( H @ X4 )
                = Y3 )
              & ! [Ya: b] :
                  ( ( ( member_b @ Ya @ A2 )
                    & ( ( H @ Ya )
                      = Y3 ) )
                 => ( Ya = X4 ) ) ) )
     => ( ! [X5: b] :
            ( ( member_b @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups2026918778um_b_b @ Phi @ A2 )
          = ( groups1199149371um_a_b @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general
thf(fact_179_sum_Oeq__general,axiom,
    ! [B2: set_a,A2: set_b,H: b > a,Gamma: a > real,Phi: b > real] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ? [X4: b] :
              ( ( member_b @ X4 @ A2 )
              & ( ( H @ X4 )
                = Y3 )
              & ! [Ya: b] :
                  ( ( ( member_b @ Ya @ A2 )
                    & ( ( H @ Ya )
                      = Y3 ) )
                 => ( Ya = X4 ) ) ) )
     => ( ! [X5: b] :
            ( ( member_b @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups583146225b_real @ Phi @ A2 )
          = ( groups1862963056a_real @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general
thf(fact_180_sum_Oeq__general,axiom,
    ! [B2: set_b,A2: set_a,H: a > b,Gamma: b > b,Phi: a > b] :
      ( ! [Y3: b] :
          ( ( member_b @ Y3 @ B2 )
         => ? [X4: a] :
              ( ( member_a @ X4 @ A2 )
              & ( ( H @ X4 )
                = Y3 )
              & ! [Ya: a] :
                  ( ( ( member_a @ Ya @ A2 )
                    & ( ( H @ Ya )
                      = Y3 ) )
                 => ( Ya = X4 ) ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_b @ ( H @ X5 ) @ B2 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1199149371um_a_b @ Phi @ A2 )
          = ( groups2026918778um_b_b @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general
thf(fact_181_sum_Oeq__general,axiom,
    ! [B2: set_a,A2: set_a,H: a > a,Gamma: a > b,Phi: a > b] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ? [X4: a] :
              ( ( member_a @ X4 @ A2 )
              & ( ( H @ X4 )
                = Y3 )
              & ! [Ya: a] :
                  ( ( ( member_a @ Ya @ A2 )
                    & ( ( H @ Ya )
                      = Y3 ) )
                 => ( Ya = X4 ) ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1199149371um_a_b @ Phi @ A2 )
          = ( groups1199149371um_a_b @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general
thf(fact_182_sum_Oeq__general,axiom,
    ! [B2: set_b,A2: set_a,H: a > b,Gamma: b > real,Phi: a > real] :
      ( ! [Y3: b] :
          ( ( member_b @ Y3 @ B2 )
         => ? [X4: a] :
              ( ( member_a @ X4 @ A2 )
              & ( ( H @ X4 )
                = Y3 )
              & ! [Ya: a] :
                  ( ( ( member_a @ Ya @ A2 )
                    & ( ( H @ Ya )
                      = Y3 ) )
                 => ( Ya = X4 ) ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_b @ ( H @ X5 ) @ B2 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1862963056a_real @ Phi @ A2 )
          = ( groups583146225b_real @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general
thf(fact_183_sum_Oeq__general,axiom,
    ! [B2: set_a,A2: set_a,H: a > a,Gamma: a > real,Phi: a > real] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ? [X4: a] :
              ( ( member_a @ X4 @ A2 )
              & ( ( H @ X4 )
                = Y3 )
              & ! [Ya: a] :
                  ( ( ( member_a @ Ya @ A2 )
                    & ( ( H @ Ya )
                      = Y3 ) )
                 => ( Ya = X4 ) ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1862963056a_real @ Phi @ A2 )
          = ( groups1862963056a_real @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general
thf(fact_184_sum_Oeq__general__inverses,axiom,
    ! [B2: set_a,K: a > b,A2: set_b,H: b > a,Gamma: a > b,Phi: b > b] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ( ( member_b @ ( K @ Y3 ) @ A2 )
            & ( ( H @ ( K @ Y3 ) )
              = Y3 ) ) )
     => ( ! [X5: b] :
            ( ( member_b @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( K @ ( H @ X5 ) )
                = X5 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups2026918778um_b_b @ Phi @ A2 )
          = ( groups1199149371um_a_b @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_185_sum_Oeq__general__inverses,axiom,
    ! [B2: set_a,K: a > b,A2: set_b,H: b > a,Gamma: a > real,Phi: b > real] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ( ( member_b @ ( K @ Y3 ) @ A2 )
            & ( ( H @ ( K @ Y3 ) )
              = Y3 ) ) )
     => ( ! [X5: b] :
            ( ( member_b @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( K @ ( H @ X5 ) )
                = X5 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups583146225b_real @ Phi @ A2 )
          = ( groups1862963056a_real @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_186_sum_Oeq__general__inverses,axiom,
    ! [B2: set_b,K: b > a,A2: set_a,H: a > b,Gamma: b > b,Phi: a > b] :
      ( ! [Y3: b] :
          ( ( member_b @ Y3 @ B2 )
         => ( ( member_a @ ( K @ Y3 ) @ A2 )
            & ( ( H @ ( K @ Y3 ) )
              = Y3 ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_b @ ( H @ X5 ) @ B2 )
              & ( ( K @ ( H @ X5 ) )
                = X5 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1199149371um_a_b @ Phi @ A2 )
          = ( groups2026918778um_b_b @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_187_sum_Oeq__general__inverses,axiom,
    ! [B2: set_a,K: a > a,A2: set_a,H: a > a,Gamma: a > b,Phi: a > b] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ( ( member_a @ ( K @ Y3 ) @ A2 )
            & ( ( H @ ( K @ Y3 ) )
              = Y3 ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( K @ ( H @ X5 ) )
                = X5 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1199149371um_a_b @ Phi @ A2 )
          = ( groups1199149371um_a_b @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_188_sum_Oeq__general__inverses,axiom,
    ! [B2: set_b,K: b > a,A2: set_a,H: a > b,Gamma: b > real,Phi: a > real] :
      ( ! [Y3: b] :
          ( ( member_b @ Y3 @ B2 )
         => ( ( member_a @ ( K @ Y3 ) @ A2 )
            & ( ( H @ ( K @ Y3 ) )
              = Y3 ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_b @ ( H @ X5 ) @ B2 )
              & ( ( K @ ( H @ X5 ) )
                = X5 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1862963056a_real @ Phi @ A2 )
          = ( groups583146225b_real @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_189_sum_Oeq__general__inverses,axiom,
    ! [B2: set_a,K: a > a,A2: set_a,H: a > a,Gamma: a > real,Phi: a > real] :
      ( ! [Y3: a] :
          ( ( member_a @ Y3 @ B2 )
         => ( ( member_a @ ( K @ Y3 ) @ A2 )
            & ( ( H @ ( K @ Y3 ) )
              = Y3 ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_a @ ( H @ X5 ) @ B2 )
              & ( ( K @ ( H @ X5 ) )
                = X5 )
              & ( ( Gamma @ ( H @ X5 ) )
                = ( Phi @ X5 ) ) ) )
       => ( ( groups1862963056a_real @ Phi @ A2 )
          = ( groups1862963056a_real @ Gamma @ B2 ) ) ) ) ).

% sum.eq_general_inverses
thf(fact_190_sum_Oreindex__bij__witness,axiom,
    ! [S: set_b,I2: a > b,J2: b > a,T: set_a,H: a > b,G: b > b] :
      ( ! [A5: b] :
          ( ( member_b @ A5 @ S )
         => ( ( I2 @ ( J2 @ A5 ) )
            = A5 ) )
     => ( ! [A5: b] :
            ( ( member_b @ A5 @ S )
           => ( member_a @ ( J2 @ A5 ) @ T ) )
       => ( ! [B6: a] :
              ( ( member_a @ B6 @ T )
             => ( ( J2 @ ( I2 @ B6 ) )
                = B6 ) )
         => ( ! [B6: a] :
                ( ( member_a @ B6 @ T )
               => ( member_b @ ( I2 @ B6 ) @ S ) )
           => ( ! [A5: b] :
                  ( ( member_b @ A5 @ S )
                 => ( ( H @ ( J2 @ A5 ) )
                    = ( G @ A5 ) ) )
             => ( ( groups2026918778um_b_b @ G @ S )
                = ( groups1199149371um_a_b @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_191_sum_Oreindex__bij__witness,axiom,
    ! [S: set_b,I2: a > b,J2: b > a,T: set_a,H: a > real,G: b > real] :
      ( ! [A5: b] :
          ( ( member_b @ A5 @ S )
         => ( ( I2 @ ( J2 @ A5 ) )
            = A5 ) )
     => ( ! [A5: b] :
            ( ( member_b @ A5 @ S )
           => ( member_a @ ( J2 @ A5 ) @ T ) )
       => ( ! [B6: a] :
              ( ( member_a @ B6 @ T )
             => ( ( J2 @ ( I2 @ B6 ) )
                = B6 ) )
         => ( ! [B6: a] :
                ( ( member_a @ B6 @ T )
               => ( member_b @ ( I2 @ B6 ) @ S ) )
           => ( ! [A5: b] :
                  ( ( member_b @ A5 @ S )
                 => ( ( H @ ( J2 @ A5 ) )
                    = ( G @ A5 ) ) )
             => ( ( groups583146225b_real @ G @ S )
                = ( groups1862963056a_real @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_192_sum_Oreindex__bij__witness,axiom,
    ! [S: set_a,I2: b > a,J2: a > b,T: set_b,H: b > b,G: a > b] :
      ( ! [A5: a] :
          ( ( member_a @ A5 @ S )
         => ( ( I2 @ ( J2 @ A5 ) )
            = A5 ) )
     => ( ! [A5: a] :
            ( ( member_a @ A5 @ S )
           => ( member_b @ ( J2 @ A5 ) @ T ) )
       => ( ! [B6: b] :
              ( ( member_b @ B6 @ T )
             => ( ( J2 @ ( I2 @ B6 ) )
                = B6 ) )
         => ( ! [B6: b] :
                ( ( member_b @ B6 @ T )
               => ( member_a @ ( I2 @ B6 ) @ S ) )
           => ( ! [A5: a] :
                  ( ( member_a @ A5 @ S )
                 => ( ( H @ ( J2 @ A5 ) )
                    = ( G @ A5 ) ) )
             => ( ( groups1199149371um_a_b @ G @ S )
                = ( groups2026918778um_b_b @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_193_sum_Oreindex__bij__witness,axiom,
    ! [S: set_a,I2: a > a,J2: a > a,T: set_a,H: a > b,G: a > b] :
      ( ! [A5: a] :
          ( ( member_a @ A5 @ S )
         => ( ( I2 @ ( J2 @ A5 ) )
            = A5 ) )
     => ( ! [A5: a] :
            ( ( member_a @ A5 @ S )
           => ( member_a @ ( J2 @ A5 ) @ T ) )
       => ( ! [B6: a] :
              ( ( member_a @ B6 @ T )
             => ( ( J2 @ ( I2 @ B6 ) )
                = B6 ) )
         => ( ! [B6: a] :
                ( ( member_a @ B6 @ T )
               => ( member_a @ ( I2 @ B6 ) @ S ) )
           => ( ! [A5: a] :
                  ( ( member_a @ A5 @ S )
                 => ( ( H @ ( J2 @ A5 ) )
                    = ( G @ A5 ) ) )
             => ( ( groups1199149371um_a_b @ G @ S )
                = ( groups1199149371um_a_b @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_194_sum_Oreindex__bij__witness,axiom,
    ! [S: set_a,I2: b > a,J2: a > b,T: set_b,H: b > real,G: a > real] :
      ( ! [A5: a] :
          ( ( member_a @ A5 @ S )
         => ( ( I2 @ ( J2 @ A5 ) )
            = A5 ) )
     => ( ! [A5: a] :
            ( ( member_a @ A5 @ S )
           => ( member_b @ ( J2 @ A5 ) @ T ) )
       => ( ! [B6: b] :
              ( ( member_b @ B6 @ T )
             => ( ( J2 @ ( I2 @ B6 ) )
                = B6 ) )
         => ( ! [B6: b] :
                ( ( member_b @ B6 @ T )
               => ( member_a @ ( I2 @ B6 ) @ S ) )
           => ( ! [A5: a] :
                  ( ( member_a @ A5 @ S )
                 => ( ( H @ ( J2 @ A5 ) )
                    = ( G @ A5 ) ) )
             => ( ( groups1862963056a_real @ G @ S )
                = ( groups583146225b_real @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_195_sum_Oreindex__bij__witness,axiom,
    ! [S: set_a,I2: a > a,J2: a > a,T: set_a,H: a > real,G: a > real] :
      ( ! [A5: a] :
          ( ( member_a @ A5 @ S )
         => ( ( I2 @ ( J2 @ A5 ) )
            = A5 ) )
     => ( ! [A5: a] :
            ( ( member_a @ A5 @ S )
           => ( member_a @ ( J2 @ A5 ) @ T ) )
       => ( ! [B6: a] :
              ( ( member_a @ B6 @ T )
             => ( ( J2 @ ( I2 @ B6 ) )
                = B6 ) )
         => ( ! [B6: a] :
                ( ( member_a @ B6 @ T )
               => ( member_a @ ( I2 @ B6 ) @ S ) )
           => ( ! [A5: a] :
                  ( ( member_a @ A5 @ S )
                 => ( ( H @ ( J2 @ A5 ) )
                    = ( G @ A5 ) ) )
             => ( ( groups1862963056a_real @ G @ S )
                = ( groups1862963056a_real @ H @ T ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness
thf(fact_196_if__smult,axiom,
    ! [P: $o,X2: real,Y: real,V2: b] :
      ( ( P
       => ( ( real_V1035702896aleR_b @ ( if_real @ P @ X2 @ Y ) @ V2 )
          = ( real_V1035702896aleR_b @ X2 @ V2 ) ) )
      & ( ~ P
       => ( ( real_V1035702896aleR_b @ ( if_real @ P @ X2 @ Y ) @ V2 )
          = ( real_V1035702896aleR_b @ Y @ V2 ) ) ) ) ).

% if_smult
thf(fact_197_if__smult,axiom,
    ! [P: $o,X2: real,Y: real,V2: real] :
      ( ( P
       => ( ( real_V453051771R_real @ ( if_real @ P @ X2 @ Y ) @ V2 )
          = ( real_V453051771R_real @ X2 @ V2 ) ) )
      & ( ~ P
       => ( ( real_V453051771R_real @ ( if_real @ P @ X2 @ Y ) @ V2 )
          = ( real_V453051771R_real @ Y @ V2 ) ) ) ) ).

% if_smult
thf(fact_198_sum_Oinsert__remove,axiom,
    ! [A2: set_a,G: a > b,X2: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( groups1199149371um_a_b @ G @ ( insert_a @ X2 @ A2 ) )
        = ( plus_plus_b @ ( G @ X2 ) @ ( groups1199149371um_a_b @ G @ ( minus_minus_set_a @ A2 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_199_sum_Oinsert__remove,axiom,
    ! [A2: set_a,G: a > real,X2: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( groups1862963056a_real @ G @ ( insert_a @ X2 @ A2 ) )
        = ( plus_plus_real @ ( G @ X2 ) @ ( groups1862963056a_real @ G @ ( minus_minus_set_a @ A2 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_200_sum_Oremove,axiom,
    ! [A2: set_b,X2: b,G: b > b] :
      ( ( finite_finite_b @ A2 )
     => ( ( member_b @ X2 @ A2 )
       => ( ( groups2026918778um_b_b @ G @ A2 )
          = ( plus_plus_b @ ( G @ X2 ) @ ( groups2026918778um_b_b @ G @ ( minus_minus_set_b @ A2 @ ( insert_b @ X2 @ bot_bot_set_b ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_201_sum_Oremove,axiom,
    ! [A2: set_b,X2: b,G: b > real] :
      ( ( finite_finite_b @ A2 )
     => ( ( member_b @ X2 @ A2 )
       => ( ( groups583146225b_real @ G @ A2 )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups583146225b_real @ G @ ( minus_minus_set_b @ A2 @ ( insert_b @ X2 @ bot_bot_set_b ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_202_sum_Oremove,axiom,
    ! [A2: set_a,X2: a,G: a > b] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X2 @ A2 )
       => ( ( groups1199149371um_a_b @ G @ A2 )
          = ( plus_plus_b @ ( G @ X2 ) @ ( groups1199149371um_a_b @ G @ ( minus_minus_set_a @ A2 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_203_sum_Oremove,axiom,
    ! [A2: set_a,X2: a,G: a > real] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X2 @ A2 )
       => ( ( groups1862963056a_real @ G @ A2 )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups1862963056a_real @ G @ ( minus_minus_set_a @ A2 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_204_sum_Odelta__remove,axiom,
    ! [S: set_b,A: b,B: b > b,C: b > b] :
      ( ( finite_finite_b @ S )
     => ( ( ( member_b @ A @ S )
         => ( ( groups2026918778um_b_b
              @ ^ [K2: b] : ( if_b @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( plus_plus_b @ ( B @ A ) @ ( groups2026918778um_b_b @ C @ ( minus_minus_set_b @ S @ ( insert_b @ A @ bot_bot_set_b ) ) ) ) ) )
        & ( ~ ( member_b @ A @ S )
         => ( ( groups2026918778um_b_b
              @ ^ [K2: b] : ( if_b @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( groups2026918778um_b_b @ C @ ( minus_minus_set_b @ S @ ( insert_b @ A @ bot_bot_set_b ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_205_sum_Odelta__remove,axiom,
    ! [S: set_b,A: b,B: b > real,C: b > real] :
      ( ( finite_finite_b @ S )
     => ( ( ( member_b @ A @ S )
         => ( ( groups583146225b_real
              @ ^ [K2: b] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( plus_plus_real @ ( B @ A ) @ ( groups583146225b_real @ C @ ( minus_minus_set_b @ S @ ( insert_b @ A @ bot_bot_set_b ) ) ) ) ) )
        & ( ~ ( member_b @ A @ S )
         => ( ( groups583146225b_real
              @ ^ [K2: b] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( groups583146225b_real @ C @ ( minus_minus_set_b @ S @ ( insert_b @ A @ bot_bot_set_b ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_206_sum_Odelta__remove,axiom,
    ! [S: set_a,A: a,B: a > b,C: a > b] :
      ( ( finite_finite_a @ S )
     => ( ( ( member_a @ A @ S )
         => ( ( groups1199149371um_a_b
              @ ^ [K2: a] : ( if_b @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( plus_plus_b @ ( B @ A ) @ ( groups1199149371um_a_b @ C @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ) )
        & ( ~ ( member_a @ A @ S )
         => ( ( groups1199149371um_a_b
              @ ^ [K2: a] : ( if_b @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( groups1199149371um_a_b @ C @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_207_sum_Odelta__remove,axiom,
    ! [S: set_a,A: a,B: a > real,C: a > real] :
      ( ( finite_finite_a @ S )
     => ( ( ( member_a @ A @ S )
         => ( ( groups1862963056a_real
              @ ^ [K2: a] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( plus_plus_real @ ( B @ A ) @ ( groups1862963056a_real @ C @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ) )
        & ( ~ ( member_a @ A @ S )
         => ( ( groups1862963056a_real
              @ ^ [K2: a] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S )
            = ( groups1862963056a_real @ C @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_208_empty__def,axiom,
    ( bot_bot_set_a
    = ( collect_a
      @ ^ [X: a] : $false ) ) ).

% empty_def
thf(fact_209_pigeonhole__infinite__rel,axiom,
    ! [A2: set_b,B2: set_a,R2: b > a > $o] :
      ( ~ ( finite_finite_b @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ! [X5: b] :
              ( ( member_b @ X5 @ A2 )
             => ? [Xa2: a] :
                  ( ( member_a @ Xa2 @ B2 )
                  & ( R2 @ X5 @ Xa2 ) ) )
         => ? [X5: a] :
              ( ( member_a @ X5 @ B2 )
              & ~ ( finite_finite_b
                  @ ( collect_b
                    @ ^ [A3: b] :
                        ( ( member_b @ A3 @ A2 )
                        & ( R2 @ A3 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_210_pigeonhole__infinite__rel,axiom,
    ! [A2: set_a,B2: set_a,R2: a > a > $o] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ! [X5: a] :
              ( ( member_a @ X5 @ A2 )
             => ? [Xa2: a] :
                  ( ( member_a @ Xa2 @ B2 )
                  & ( R2 @ X5 @ Xa2 ) ) )
         => ? [X5: a] :
              ( ( member_a @ X5 @ B2 )
              & ~ ( finite_finite_a
                  @ ( collect_a
                    @ ^ [A3: a] :
                        ( ( member_a @ A3 @ A2 )
                        & ( R2 @ A3 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_211_not__finite__existsD,axiom,
    ! [P: a > $o] :
      ( ~ ( finite_finite_a @ ( collect_a @ P ) )
     => ? [X_1: a] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_212_insert__Collect,axiom,
    ! [A: a,P: a > $o] :
      ( ( insert_a @ A @ ( collect_a @ P ) )
      = ( collect_a
        @ ^ [U2: a] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_213_insert__compr,axiom,
    ( insert_a
    = ( ^ [A3: a,B3: set_a] :
          ( collect_a
          @ ^ [X: a] :
              ( ( X = A3 )
              | ( member_a @ X @ B3 ) ) ) ) ) ).

% insert_compr
thf(fact_214_insert__compr,axiom,
    ( insert_b
    = ( ^ [A3: b,B3: set_b] :
          ( collect_b
          @ ^ [X: b] :
              ( ( X = A3 )
              | ( member_b @ X @ B3 ) ) ) ) ) ).

% insert_compr
thf(fact_215_sum__delta__notmem_I4_J,axiom,
    ! [X2: a,S2: set_a,P: a > b,Q: a > b] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1199149371um_a_b
          @ ^ [Y4: a] : ( if_b @ ( X2 = Y4 ) @ ( P @ Y4 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1199149371um_a_b @ Q @ S2 ) ) ) ).

% sum_delta_notmem(4)
thf(fact_216_sum__delta__notmem_I4_J,axiom,
    ! [X2: a,S2: set_a,P: a > real,Q: a > real] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1862963056a_real
          @ ^ [Y4: a] : ( if_real @ ( X2 = Y4 ) @ ( P @ Y4 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1862963056a_real @ Q @ S2 ) ) ) ).

% sum_delta_notmem(4)
thf(fact_217_sum__delta__notmem_I3_J,axiom,
    ! [X2: a,S2: set_a,P: a > b,Q: a > b] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1199149371um_a_b
          @ ^ [Y4: a] : ( if_b @ ( Y4 = X2 ) @ ( P @ Y4 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1199149371um_a_b @ Q @ S2 ) ) ) ).

% sum_delta_notmem(3)
thf(fact_218_sum__delta__notmem_I3_J,axiom,
    ! [X2: a,S2: set_a,P: a > real,Q: a > real] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1862963056a_real
          @ ^ [Y4: a] : ( if_real @ ( Y4 = X2 ) @ ( P @ Y4 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1862963056a_real @ Q @ S2 ) ) ) ).

% sum_delta_notmem(3)
thf(fact_219_sum__delta__notmem_I2_J,axiom,
    ! [X2: a,S2: set_a,P: a > b,Q: a > b] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1199149371um_a_b
          @ ^ [Y4: a] : ( if_b @ ( X2 = Y4 ) @ ( P @ X2 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1199149371um_a_b @ Q @ S2 ) ) ) ).

% sum_delta_notmem(2)
thf(fact_220_sum__delta__notmem_I2_J,axiom,
    ! [X2: a,S2: set_a,P: a > real,Q: a > real] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1862963056a_real
          @ ^ [Y4: a] : ( if_real @ ( X2 = Y4 ) @ ( P @ X2 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1862963056a_real @ Q @ S2 ) ) ) ).

% sum_delta_notmem(2)
thf(fact_221_sum__delta__notmem_I1_J,axiom,
    ! [X2: a,S2: set_a,P: a > b,Q: a > b] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1199149371um_a_b
          @ ^ [Y4: a] : ( if_b @ ( Y4 = X2 ) @ ( P @ X2 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1199149371um_a_b @ Q @ S2 ) ) ) ).

% sum_delta_notmem(1)
thf(fact_222_sum__delta__notmem_I1_J,axiom,
    ! [X2: a,S2: set_a,P: a > real,Q: a > real] :
      ( ~ ( member_a @ X2 @ S2 )
     => ( ( groups1862963056a_real
          @ ^ [Y4: a] : ( if_real @ ( Y4 = X2 ) @ ( P @ X2 ) @ ( Q @ Y4 ) )
          @ S2 )
        = ( groups1862963056a_real @ Q @ S2 ) ) ) ).

% sum_delta_notmem(1)
thf(fact_223_sum_Oswap,axiom,
    ! [G: a > a > b,B2: set_a,A2: set_a] :
      ( ( groups1199149371um_a_b
        @ ^ [I3: a] : ( groups1199149371um_a_b @ ( G @ I3 ) @ B2 )
        @ A2 )
      = ( groups1199149371um_a_b
        @ ^ [J: a] :
            ( groups1199149371um_a_b
            @ ^ [I3: a] : ( G @ I3 @ J )
            @ A2 )
        @ B2 ) ) ).

% sum.swap
thf(fact_224_sum_Oswap,axiom,
    ! [G: a > a > real,B2: set_a,A2: set_a] :
      ( ( groups1862963056a_real
        @ ^ [I3: a] : ( groups1862963056a_real @ ( G @ I3 ) @ B2 )
        @ A2 )
      = ( groups1862963056a_real
        @ ^ [J: a] :
            ( groups1862963056a_real
            @ ^ [I3: a] : ( G @ I3 @ J )
            @ A2 )
        @ B2 ) ) ).

% sum.swap
thf(fact_225_infinite__imp__nonempty,axiom,
    ! [S: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ( S != bot_bot_set_a ) ) ).

% infinite_imp_nonempty
thf(fact_226_finite_OemptyI,axiom,
    finite_finite_a @ bot_bot_set_a ).

% finite.emptyI
thf(fact_227_singleton__inject,axiom,
    ! [A: a,B: a] :
      ( ( ( insert_a @ A @ bot_bot_set_a )
        = ( insert_a @ B @ bot_bot_set_a ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_228_insert__not__empty,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ A2 )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_229_doubleton__eq__iff,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ( insert_a @ A @ ( insert_a @ B @ bot_bot_set_a ) )
        = ( insert_a @ C @ ( insert_a @ D @ bot_bot_set_a ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_230_singleton__iff,axiom,
    ! [B: b,A: b] :
      ( ( member_b @ B @ ( insert_b @ A @ bot_bot_set_b ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_231_singleton__iff,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_232_singletonD,axiom,
    ! [B: b,A: b] :
      ( ( member_b @ B @ ( insert_b @ A @ bot_bot_set_b ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_233_singletonD,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_234_finite_OinsertI,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( insert_a @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_235_sum__product,axiom,
    ! [F: a > real,A2: set_a,G: a > real,B2: set_a] :
      ( ( times_times_real @ ( groups1862963056a_real @ F @ A2 ) @ ( groups1862963056a_real @ G @ B2 ) )
      = ( groups1862963056a_real
        @ ^ [I3: a] :
            ( groups1862963056a_real
            @ ^ [J: a] : ( times_times_real @ ( F @ I3 ) @ ( G @ J ) )
            @ B2 )
        @ A2 ) ) ).

% sum_product
thf(fact_236_sum__distrib__left,axiom,
    ! [R: real,F: a > real,A2: set_a] :
      ( ( times_times_real @ R @ ( groups1862963056a_real @ F @ A2 ) )
      = ( groups1862963056a_real
        @ ^ [N: a] : ( times_times_real @ R @ ( F @ N ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_237_sum__distrib__right,axiom,
    ! [F: a > real,A2: set_a,R: real] :
      ( ( times_times_real @ ( groups1862963056a_real @ F @ A2 ) @ R )
      = ( groups1862963056a_real
        @ ^ [N: a] : ( times_times_real @ ( F @ N ) @ R )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_238_sum_Odistrib,axiom,
    ! [G: a > b,H: a > b,A2: set_a] :
      ( ( groups1199149371um_a_b
        @ ^ [X: a] : ( plus_plus_b @ ( G @ X ) @ ( H @ X ) )
        @ A2 )
      = ( plus_plus_b @ ( groups1199149371um_a_b @ G @ A2 ) @ ( groups1199149371um_a_b @ H @ A2 ) ) ) ).

% sum.distrib
thf(fact_239_sum_Odistrib,axiom,
    ! [G: a > real,H: a > real,A2: set_a] :
      ( ( groups1862963056a_real
        @ ^ [X: a] : ( plus_plus_real @ ( G @ X ) @ ( H @ X ) )
        @ A2 )
      = ( plus_plus_real @ ( groups1862963056a_real @ G @ A2 ) @ ( groups1862963056a_real @ H @ A2 ) ) ) ).

% sum.distrib
thf(fact_240_Collect__conv__if2,axiom,
    ! [P: a > $o,A: a] :
      ( ( ( P @ A )
       => ( ( collect_a
            @ ^ [X: a] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_a @ A @ bot_bot_set_a ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_a
            @ ^ [X: a] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_a ) ) ) ).

% Collect_conv_if2
thf(fact_241_Collect__conv__if,axiom,
    ! [P: a > $o,A: a] :
      ( ( ( P @ A )
       => ( ( collect_a
            @ ^ [X: a] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_a @ A @ bot_bot_set_a ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_a
            @ ^ [X: a] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_a ) ) ) ).

% Collect_conv_if
thf(fact_242_sum__subtractf,axiom,
    ! [F: a > b,G: a > b,A2: set_a] :
      ( ( groups1199149371um_a_b
        @ ^ [X: a] : ( minus_minus_b @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_b @ ( groups1199149371um_a_b @ F @ A2 ) @ ( groups1199149371um_a_b @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_243_sum__subtractf,axiom,
    ! [F: a > real,G: a > real,A2: set_a] :
      ( ( groups1862963056a_real
        @ ^ [X: a] : ( minus_minus_real @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_real @ ( groups1862963056a_real @ F @ A2 ) @ ( groups1862963056a_real @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_244_sum_Oswap__restrict,axiom,
    ! [A2: set_b,B2: set_a,G: b > a > b,R2: b > a > $o] :
      ( ( finite_finite_b @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( groups2026918778um_b_b
            @ ^ [X: b] :
                ( groups1199149371um_a_b @ ( G @ X )
                @ ( collect_a
                  @ ^ [Y4: a] :
                      ( ( member_a @ Y4 @ B2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ A2 )
          = ( groups1199149371um_a_b
            @ ^ [Y4: a] :
                ( groups2026918778um_b_b
                @ ^ [X: b] : ( G @ X @ Y4 )
                @ ( collect_b
                  @ ^ [X: b] :
                      ( ( member_b @ X @ A2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_245_sum_Oswap__restrict,axiom,
    ! [A2: set_b,B2: set_a,G: b > a > real,R2: b > a > $o] :
      ( ( finite_finite_b @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( groups583146225b_real
            @ ^ [X: b] :
                ( groups1862963056a_real @ ( G @ X )
                @ ( collect_a
                  @ ^ [Y4: a] :
                      ( ( member_a @ Y4 @ B2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ A2 )
          = ( groups1862963056a_real
            @ ^ [Y4: a] :
                ( groups583146225b_real
                @ ^ [X: b] : ( G @ X @ Y4 )
                @ ( collect_b
                  @ ^ [X: b] :
                      ( ( member_b @ X @ A2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_246_sum_Oswap__restrict,axiom,
    ! [A2: set_a,B2: set_b,G: a > b > b,R2: a > b > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_b @ B2 )
       => ( ( groups1199149371um_a_b
            @ ^ [X: a] :
                ( groups2026918778um_b_b @ ( G @ X )
                @ ( collect_b
                  @ ^ [Y4: b] :
                      ( ( member_b @ Y4 @ B2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ A2 )
          = ( groups2026918778um_b_b
            @ ^ [Y4: b] :
                ( groups1199149371um_a_b
                @ ^ [X: a] : ( G @ X @ Y4 )
                @ ( collect_a
                  @ ^ [X: a] :
                      ( ( member_a @ X @ A2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_247_sum_Oswap__restrict,axiom,
    ! [A2: set_a,B2: set_a,G: a > a > b,R2: a > a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( groups1199149371um_a_b
            @ ^ [X: a] :
                ( groups1199149371um_a_b @ ( G @ X )
                @ ( collect_a
                  @ ^ [Y4: a] :
                      ( ( member_a @ Y4 @ B2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ A2 )
          = ( groups1199149371um_a_b
            @ ^ [Y4: a] :
                ( groups1199149371um_a_b
                @ ^ [X: a] : ( G @ X @ Y4 )
                @ ( collect_a
                  @ ^ [X: a] :
                      ( ( member_a @ X @ A2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_248_sum_Oswap__restrict,axiom,
    ! [A2: set_a,B2: set_b,G: a > b > real,R2: a > b > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_b @ B2 )
       => ( ( groups1862963056a_real
            @ ^ [X: a] :
                ( groups583146225b_real @ ( G @ X )
                @ ( collect_b
                  @ ^ [Y4: b] :
                      ( ( member_b @ Y4 @ B2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ A2 )
          = ( groups583146225b_real
            @ ^ [Y4: b] :
                ( groups1862963056a_real
                @ ^ [X: a] : ( G @ X @ Y4 )
                @ ( collect_a
                  @ ^ [X: a] :
                      ( ( member_a @ X @ A2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_249_sum_Oswap__restrict,axiom,
    ! [A2: set_a,B2: set_a,G: a > a > real,R2: a > a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( groups1862963056a_real
            @ ^ [X: a] :
                ( groups1862963056a_real @ ( G @ X )
                @ ( collect_a
                  @ ^ [Y4: a] :
                      ( ( member_a @ Y4 @ B2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ A2 )
          = ( groups1862963056a_real
            @ ^ [Y4: a] :
                ( groups1862963056a_real
                @ ^ [X: a] : ( G @ X @ Y4 )
                @ ( collect_a
                  @ ^ [X: a] :
                      ( ( member_a @ X @ A2 )
                      & ( R2 @ X @ Y4 ) ) ) )
            @ B2 ) ) ) ) ).

% sum.swap_restrict
thf(fact_250_infinite__finite__induct,axiom,
    ! [P: set_b > $o,A2: set_b] :
      ( ! [A6: set_b] :
          ( ~ ( finite_finite_b @ A6 )
         => ( P @ A6 ) )
     => ( ( P @ bot_bot_set_b )
       => ( ! [X5: b,F2: set_b] :
              ( ( finite_finite_b @ F2 )
             => ( ~ ( member_b @ X5 @ F2 )
               => ( ( P @ F2 )
                 => ( P @ ( insert_b @ X5 @ F2 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_251_infinite__finite__induct,axiom,
    ! [P: set_a > $o,A2: set_a] :
      ( ! [A6: set_a] :
          ( ~ ( finite_finite_a @ A6 )
         => ( P @ A6 ) )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X5: a,F2: set_a] :
              ( ( finite_finite_a @ F2 )
             => ( ~ ( member_a @ X5 @ F2 )
               => ( ( P @ F2 )
                 => ( P @ ( insert_a @ X5 @ F2 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_252_finite__ne__induct,axiom,
    ! [F3: set_b,P: set_b > $o] :
      ( ( finite_finite_b @ F3 )
     => ( ( F3 != bot_bot_set_b )
       => ( ! [X5: b] : ( P @ ( insert_b @ X5 @ bot_bot_set_b ) )
         => ( ! [X5: b,F2: set_b] :
                ( ( finite_finite_b @ F2 )
               => ( ( F2 != bot_bot_set_b )
                 => ( ~ ( member_b @ X5 @ F2 )
                   => ( ( P @ F2 )
                     => ( P @ ( insert_b @ X5 @ F2 ) ) ) ) ) )
           => ( P @ F3 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_253_finite__ne__induct,axiom,
    ! [F3: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F3 )
     => ( ( F3 != bot_bot_set_a )
       => ( ! [X5: a] : ( P @ ( insert_a @ X5 @ bot_bot_set_a ) )
         => ( ! [X5: a,F2: set_a] :
                ( ( finite_finite_a @ F2 )
               => ( ( F2 != bot_bot_set_a )
                 => ( ~ ( member_a @ X5 @ F2 )
                   => ( ( P @ F2 )
                     => ( P @ ( insert_a @ X5 @ F2 ) ) ) ) ) )
           => ( P @ F3 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_254_finite_Oinducts,axiom,
    ! [X2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ X2 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [A6: set_a,A5: a] :
              ( ( finite_finite_a @ A6 )
             => ( ( P @ A6 )
               => ( P @ ( insert_a @ A5 @ A6 ) ) ) )
         => ( P @ X2 ) ) ) ) ).

% finite.inducts
thf(fact_255_finite__induct,axiom,
    ! [F3: set_b,P: set_b > $o] :
      ( ( finite_finite_b @ F3 )
     => ( ( P @ bot_bot_set_b )
       => ( ! [X5: b,F2: set_b] :
              ( ( finite_finite_b @ F2 )
             => ( ~ ( member_b @ X5 @ F2 )
               => ( ( P @ F2 )
                 => ( P @ ( insert_b @ X5 @ F2 ) ) ) ) )
         => ( P @ F3 ) ) ) ) ).

% finite_induct
thf(fact_256_finite__induct,axiom,
    ! [F3: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F3 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X5: a,F2: set_a] :
              ( ( finite_finite_a @ F2 )
             => ( ~ ( member_a @ X5 @ F2 )
               => ( ( P @ F2 )
                 => ( P @ ( insert_a @ X5 @ F2 ) ) ) ) )
         => ( P @ F3 ) ) ) ) ).

% finite_induct
thf(fact_257_finite_Osimps,axiom,
    ( finite_finite_a
    = ( ^ [A3: set_a] :
          ( ( A3 = bot_bot_set_a )
          | ? [A4: set_a,B4: a] :
              ( ( A3
                = ( insert_a @ B4 @ A4 ) )
              & ( finite_finite_a @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_258_finite_Ocases,axiom,
    ! [A: set_a] :
      ( ( finite_finite_a @ A )
     => ( ( A != bot_bot_set_a )
       => ~ ! [A6: set_a] :
              ( ? [A5: a] :
                  ( A
                  = ( insert_a @ A5 @ A6 ) )
             => ~ ( finite_finite_a @ A6 ) ) ) ) ).

% finite.cases
thf(fact_259_prod_Ofinite__Collect__op,axiom,
    ! [I4: set_b,X2: b > real,Y: b > real] :
      ( ( finite_finite_b
        @ ( collect_b
          @ ^ [I3: b] :
              ( ( member_b @ I3 @ I4 )
              & ( ( X2 @ I3 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_b
          @ ( collect_b
            @ ^ [I3: b] :
                ( ( member_b @ I3 @ I4 )
                & ( ( Y @ I3 )
                 != one_one_real ) ) ) )
       => ( finite_finite_b
          @ ( collect_b
            @ ^ [I3: b] :
                ( ( member_b @ I3 @ I4 )
                & ( ( times_times_real @ ( X2 @ I3 ) @ ( Y @ I3 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_260_prod_Ofinite__Collect__op,axiom,
    ! [I4: set_a,X2: a > real,Y: a > real] :
      ( ( finite_finite_a
        @ ( collect_a
          @ ^ [I3: a] :
              ( ( member_a @ I3 @ I4 )
              & ( ( X2 @ I3 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_a
          @ ( collect_a
            @ ^ [I3: a] :
                ( ( member_a @ I3 @ I4 )
                & ( ( Y @ I3 )
                 != one_one_real ) ) ) )
       => ( finite_finite_a
          @ ( collect_a
            @ ^ [I3: a] :
                ( ( member_a @ I3 @ I4 )
                & ( ( times_times_real @ ( X2 @ I3 ) @ ( Y @ I3 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_261_sum_Oinsert__if,axiom,
    ! [A2: set_b,X2: b,G: b > b] :
      ( ( finite_finite_b @ A2 )
     => ( ( ( member_b @ X2 @ A2 )
         => ( ( groups2026918778um_b_b @ G @ ( insert_b @ X2 @ A2 ) )
            = ( groups2026918778um_b_b @ G @ A2 ) ) )
        & ( ~ ( member_b @ X2 @ A2 )
         => ( ( groups2026918778um_b_b @ G @ ( insert_b @ X2 @ A2 ) )
            = ( plus_plus_b @ ( G @ X2 ) @ ( groups2026918778um_b_b @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_262_sum_Oinsert__if,axiom,
    ! [A2: set_b,X2: b,G: b > real] :
      ( ( finite_finite_b @ A2 )
     => ( ( ( member_b @ X2 @ A2 )
         => ( ( groups583146225b_real @ G @ ( insert_b @ X2 @ A2 ) )
            = ( groups583146225b_real @ G @ A2 ) ) )
        & ( ~ ( member_b @ X2 @ A2 )
         => ( ( groups583146225b_real @ G @ ( insert_b @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups583146225b_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_263_sum_Oinsert__if,axiom,
    ! [A2: set_a,X2: a,G: a > b] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ X2 @ A2 )
         => ( ( groups1199149371um_a_b @ G @ ( insert_a @ X2 @ A2 ) )
            = ( groups1199149371um_a_b @ G @ A2 ) ) )
        & ( ~ ( member_a @ X2 @ A2 )
         => ( ( groups1199149371um_a_b @ G @ ( insert_a @ X2 @ A2 ) )
            = ( plus_plus_b @ ( G @ X2 ) @ ( groups1199149371um_a_b @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_264_sum_Oinsert__if,axiom,
    ! [A2: set_a,X2: a,G: a > real] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ X2 @ A2 )
         => ( ( groups1862963056a_real @ G @ ( insert_a @ X2 @ A2 ) )
            = ( groups1862963056a_real @ G @ A2 ) ) )
        & ( ~ ( member_a @ X2 @ A2 )
         => ( ( groups1862963056a_real @ G @ ( insert_a @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups1862963056a_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_265_convex__singleton,axiom,
    ! [A: b] : ( convex_b @ ( insert_b @ A @ bot_bot_set_b ) ) ).

% convex_singleton
thf(fact_266_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_267_convex__empty,axiom,
    convex_b @ bot_bot_set_b ).

% convex_empty
thf(fact_268_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_269_add__diff__cancel,axiom,
    ! [A: b,B: b] :
      ( ( minus_minus_b @ ( plus_plus_b @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_270_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_271_diff__add__cancel,axiom,
    ! [A: b,B: b] :
      ( ( plus_plus_b @ ( minus_minus_b @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_272_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_273_add__right__cancel,axiom,
    ! [B: b,A: b,C: b] :
      ( ( ( plus_plus_b @ B @ A )
        = ( plus_plus_b @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_274_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_275_add__left__cancel,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ( plus_plus_b @ A @ B )
        = ( plus_plus_b @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_276_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_277_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_278_mult_Oleft__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult.left_neutral
thf(fact_279_add__diff__cancel__right_H,axiom,
    ! [A: b,B: b] :
      ( ( minus_minus_b @ ( plus_plus_b @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_280_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_281_add__diff__cancel__right,axiom,
    ! [A: b,C: b,B: b] :
      ( ( minus_minus_b @ ( plus_plus_b @ A @ C ) @ ( plus_plus_b @ B @ C ) )
      = ( minus_minus_b @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_282_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_283_add__diff__cancel__left_H,axiom,
    ! [A: b,B: b] :
      ( ( minus_minus_b @ ( plus_plus_b @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_284_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_285_add__diff__cancel__left,axiom,
    ! [C: b,A: b,B: b] :
      ( ( minus_minus_b @ ( plus_plus_b @ C @ A ) @ ( plus_plus_b @ C @ B ) )
      = ( minus_minus_b @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_286_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_287_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_288_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A3: real,B4: real] : ( times_times_real @ B4 @ A3 ) ) ) ).

% mult.commute
thf(fact_289_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_290_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_291_add__right__imp__eq,axiom,
    ! [B: b,A: b,C: b] :
      ( ( ( plus_plus_b @ B @ A )
        = ( plus_plus_b @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_292_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_293_add__left__imp__eq,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ( plus_plus_b @ A @ B )
        = ( plus_plus_b @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_294_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_295_add_Oleft__commute,axiom,
    ! [B: b,A: b,C: b] :
      ( ( plus_plus_b @ B @ ( plus_plus_b @ A @ C ) )
      = ( plus_plus_b @ A @ ( plus_plus_b @ B @ C ) ) ) ).

% add.left_commute
thf(fact_296_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_297_add_Ocommute,axiom,
    ( plus_plus_b
    = ( ^ [A3: b,B4: b] : ( plus_plus_b @ B4 @ A3 ) ) ) ).

% add.commute
thf(fact_298_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B4: real] : ( plus_plus_real @ B4 @ A3 ) ) ) ).

% add.commute
thf(fact_299_add_Oright__cancel,axiom,
    ! [B: b,A: b,C: b] :
      ( ( ( plus_plus_b @ B @ A )
        = ( plus_plus_b @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_300_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_301_add_Oleft__cancel,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ( plus_plus_b @ A @ B )
        = ( plus_plus_b @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_302_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_303_add_Oassoc,axiom,
    ! [A: b,B: b,C: b] :
      ( ( plus_plus_b @ ( plus_plus_b @ A @ B ) @ C )
      = ( plus_plus_b @ A @ ( plus_plus_b @ B @ C ) ) ) ).

% add.assoc
thf(fact_304_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_305_group__cancel_Oadd2,axiom,
    ! [B2: b,K: b,B: b,A: b] :
      ( ( B2
        = ( plus_plus_b @ K @ B ) )
     => ( ( plus_plus_b @ A @ B2 )
        = ( plus_plus_b @ K @ ( plus_plus_b @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_306_group__cancel_Oadd2,axiom,
    ! [B2: real,K: real,B: real,A: real] :
      ( ( B2
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B2 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_307_group__cancel_Oadd1,axiom,
    ! [A2: b,K: b,A: b,B: b] :
      ( ( A2
        = ( plus_plus_b @ K @ A ) )
     => ( ( plus_plus_b @ A2 @ B )
        = ( plus_plus_b @ K @ ( plus_plus_b @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_308_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_309_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: real,J2: real,K: real,L: real] :
      ( ( ( I2 = J2 )
        & ( K = L ) )
     => ( ( plus_plus_real @ I2 @ K )
        = ( plus_plus_real @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_310_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: b,B: b,C: b] :
      ( ( plus_plus_b @ ( plus_plus_b @ A @ B ) @ C )
      = ( plus_plus_b @ A @ ( plus_plus_b @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_311_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_312_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_313_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_314_one__reorient,axiom,
    ! [X2: real] :
      ( ( one_one_real = X2 )
      = ( X2 = one_one_real ) ) ).

% one_reorient
thf(fact_315_convex__set__plus,axiom,
    ! [S: set_b,T: set_b] :
      ( ( convex_b @ S )
     => ( ( convex_b @ T )
       => ( convex_b @ ( plus_plus_set_b @ S @ T ) ) ) ) ).

% convex_set_plus
thf(fact_316_convex__set__sum,axiom,
    ! [A2: set_a,B2: a > set_b] :
      ( ! [I5: a] :
          ( ( member_a @ I5 @ A2 )
         => ( convex_b @ ( B2 @ I5 ) ) )
     => ( convex_b @ ( groups919362075_set_b @ B2 @ A2 ) ) ) ).

% convex_set_sum
thf(fact_317_convex__set__sum,axiom,
    ! [A2: set_b,B2: b > set_b] :
      ( ! [I5: b] :
          ( ( member_b @ I5 @ A2 )
         => ( convex_b @ ( B2 @ I5 ) ) )
     => ( convex_b @ ( groups448962650_set_b @ B2 @ A2 ) ) ) ).

% convex_set_sum
thf(fact_318_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_319_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_320_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_321_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_322_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_323_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_324_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_325_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_326_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_327_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_328_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_329_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_330_add__implies__diff,axiom,
    ! [C: b,B: b,A: b] :
      ( ( ( plus_plus_b @ C @ B )
        = A )
     => ( C
        = ( minus_minus_b @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_331_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_332_diff__diff__add,axiom,
    ! [A: b,B: b,C: b] :
      ( ( minus_minus_b @ ( minus_minus_b @ A @ B ) @ C )
      = ( minus_minus_b @ A @ ( plus_plus_b @ B @ C ) ) ) ).

% diff_diff_add
thf(fact_333_diff__diff__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_add
thf(fact_334_diff__add__eq__diff__diff__swap,axiom,
    ! [A: b,B: b,C: b] :
      ( ( minus_minus_b @ A @ ( plus_plus_b @ B @ C ) )
      = ( minus_minus_b @ ( minus_minus_b @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_335_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_336_diff__add__eq,axiom,
    ! [A: b,B: b,C: b] :
      ( ( plus_plus_b @ ( minus_minus_b @ A @ B ) @ C )
      = ( minus_minus_b @ ( plus_plus_b @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_337_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_338_diff__diff__eq2,axiom,
    ! [A: b,B: b,C: b] :
      ( ( minus_minus_b @ A @ ( minus_minus_b @ B @ C ) )
      = ( minus_minus_b @ ( plus_plus_b @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_339_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_340_add__diff__eq,axiom,
    ! [A: b,B: b,C: b] :
      ( ( plus_plus_b @ A @ ( minus_minus_b @ B @ C ) )
      = ( minus_minus_b @ ( plus_plus_b @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_341_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_342_eq__diff__eq,axiom,
    ! [A: b,C: b,B: b] :
      ( ( A
        = ( minus_minus_b @ C @ B ) )
      = ( ( plus_plus_b @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_343_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_344_diff__eq__eq,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ( minus_minus_b @ A @ B )
        = C )
      = ( A
        = ( plus_plus_b @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_345_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_346_group__cancel_Osub1,axiom,
    ! [A2: b,K: b,A: b,B: b] :
      ( ( A2
        = ( plus_plus_b @ K @ A ) )
     => ( ( minus_minus_b @ A2 @ B )
        = ( plus_plus_b @ K @ ( minus_minus_b @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_347_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_348_lambda__one,axiom,
    ( ( ^ [X: real] : X )
    = ( times_times_real @ one_one_real ) ) ).

% lambda_one
thf(fact_349_square__diff__square__factored,axiom,
    ! [X2: real,Y: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) )
      = ( times_times_real @ ( plus_plus_real @ X2 @ Y ) @ ( minus_minus_real @ X2 @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_350_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_351_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_352_ai1,axiom,
    ord_less_eq_real @ ( aa @ i ) @ one_one_real ).

% ai1

% Helper facts (5)
thf(help_If_2_1_If_001tf__b_T,axiom,
    ! [X2: b,Y: b] :
      ( ( if_b @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001tf__b_T,axiom,
    ! [X2: b,Y: b] :
      ( ( if_b @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X2: real,Y: real] :
      ( ( if_real @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X2: real,Y: real] :
      ( ( if_real @ $true @ X2 @ Y )
      = X2 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( f
      @ ( plus_plus_b
        @ ( real_V1035702896aleR_b @ ( times_times_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) @ ( inverse_inverse_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) )
          @ ( groups1199149371um_a_b
            @ ^ [J: a] : ( real_V1035702896aleR_b @ ( aa @ J ) @ ( y @ J ) )
            @ sa ) )
        @ ( real_V1035702896aleR_b @ ( aa @ i ) @ ( y @ i ) ) ) )
    = ( f
      @ ( plus_plus_b
        @ ( real_V1035702896aleR_b @ ( minus_minus_real @ one_one_real @ ( aa @ i ) )
          @ ( groups1199149371um_a_b
            @ ^ [J: a] : ( real_V1035702896aleR_b @ ( times_times_real @ ( aa @ J ) @ ( inverse_inverse_real @ ( minus_minus_real @ one_one_real @ ( aa @ i ) ) ) ) @ ( y @ J ) )
            @ sa ) )
        @ ( real_V1035702896aleR_b @ ( aa @ i ) @ ( y @ i ) ) ) ) ) ).

%------------------------------------------------------------------------------