TPTP Problem File: ITP108^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP108^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer Localization problem prob_758__8980450_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : Localization/prob_758__8980450_1 [Des21]

% Status   : Theorem
% Rating   : 0.25 v9.0.0, 0.40 v8.2.0, 0.23 v8.1.0, 0.27 v7.5.0
% Syntax   : Number of formulae    :  287 ( 119 unt;  42 typ;   0 def)
%            Number of atoms       :  568 ( 250 equ;   0 cnn)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives : 3894 (  18   ~;   0   |;   8   &;3625   @)
%                                         (   0 <=>; 243  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   15 (   6 avg)
%            Number of types       :    6 (   5 usr)
%            Number of type conns  :   58 (  58   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   38 (  37 usr;  11 con; 0-3 aty)
%            Number of variables   :  464 (  16   ^; 445   !;   3   ?; 464   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:39:18.132
%------------------------------------------------------------------------------
% Could-be-implicit typings (5)
thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_Itf__a_Mt__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_J_J,type,
    partia1833973666xt_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    product_prod_a_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (37)
thf(sy_c_AbelCoset_Oa__l__coset_001tf__a_001tf__b,type,
    a_l_coset_a_b: partia1833973666xt_a_b > a > set_a > set_a ).

thf(sy_c_AbelCoset_Oadditive__subgroup_001tf__a_001tf__b,type,
    additi2104487374up_a_b: set_a > partia1833973666xt_a_b > $o ).

thf(sy_c_AbelCoset_Oset__add_001tf__a_001tf__b,type,
    set_add_a_b: partia1833973666xt_a_b > set_a > set_a > set_a ).

thf(sy_c_Congruence_Opartial__object_Ocarrier_001tf__a_001t__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_J,type,
    partia1066395285xt_a_b: partia1833973666xt_a_b > set_a ).

thf(sy_c_Group_Omonoid_Omult_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    mult_a_ring_ext_a_b: partia1833973666xt_a_b > a > a > a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_Itf__a_J,type,
    uminus_uminus_set_a: set_a > set_a ).

thf(sy_c_Localization__Mirabelle__afvchqjmgj_Oeq__obj__rng__of__frac_001tf__a_001tf__b,type,
    locali1648887798ac_a_b: partia1833973666xt_a_b > set_a > $o ).

thf(sy_c_Localization__Mirabelle__afvchqjmgj_Omult__submonoid__of__crng_001tf__a_001tf__b,type,
    locali807230110ng_a_b: partia1833973666xt_a_b > set_a > $o ).

thf(sy_c_Localization__Mirabelle__afvchqjmgj_Omult__submonoid__of__rng_001tf__a_001tf__b,type,
    locali880295127ng_a_b: partia1833973666xt_a_b > set_a > $o ).

thf(sy_c_Localization__Mirabelle__afvchqjmgj_Osubmonoid_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
    locali425460998xt_a_b: partia1833973666xt_a_b > set_a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Product__Type_Oprod_Ofst_001tf__a_001tf__a,type,
    product_fst_a_a: product_prod_a_a > a ).

thf(sy_c_Product__Type_Oprod_Osnd_001tf__a_001tf__a,type,
    product_snd_a_a: product_prod_a_a > a ).

thf(sy_c_Ring_Oa__inv_001tf__a_001tf__b,type,
    a_inv_a_b: partia1833973666xt_a_b > a > a ).

thf(sy_c_Ring_Oa__minus_001tf__a_001tf__b,type,
    a_minus_a_b: partia1833973666xt_a_b > a > a > a ).

thf(sy_c_Ring_Oadd__pow_001tf__a_001tf__b_001t__Int__Oint,type,
    add_pow_a_b_int: partia1833973666xt_a_b > int > a > a ).

thf(sy_c_Ring_Oring_Oadd_001tf__a_001tf__b,type,
    add_a_b: partia1833973666xt_a_b > a > a > a ).

thf(sy_c_Ring_Oring_Ozero_001tf__a_001tf__b,type,
    zero_a_b: partia1833973666xt_a_b > a ).

thf(sy_c_Ring_Osemiring_001tf__a_001tf__b,type,
    semiring_a_b: partia1833973666xt_a_b > $o ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_R,type,
    r: partia1833973666xt_a_b ).

thf(sy_v_S,type,
    s: set_a ).

thf(sy_v_r,type,
    r2: a ).

thf(sy_v_r_H,type,
    r3: a ).

thf(sy_v_s,type,
    s2: a ).

thf(sy_v_s_H,type,
    s3: a ).

thf(sy_v_t_H____,type,
    t: a ).

thf(sy_v_t____,type,
    t2: a ).

thf(sy_v_x_H____,type,
    x: product_prod_a_a ).

thf(sy_v_y_H____,type,
    y: product_prod_a_a ).

% Relevant facts (244)
thf(fact_0_f18,axiom,
    member_a @ t @ ( partia1066395285xt_a_b @ r ) ).

% f18
thf(fact_1_f17,axiom,
    member_a @ t2 @ ( partia1066395285xt_a_b @ r ) ).

% f17
thf(fact_2_right__add__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A = B )
     => ( ( add_a_b @ r @ C @ A )
        = ( add_a_b @ r @ C @ B ) ) ) ).

% right_add_eq
thf(fact_3_local_Oright__minus__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A = B )
     => ( ( a_minus_a_b @ r @ C @ A )
        = ( a_minus_a_b @ r @ C @ B ) ) ) ).

% local.right_minus_eq
thf(fact_4_m__assoc,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ Z )
            = ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% m_assoc
thf(fact_5_m__comm,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
          = ( mult_a_ring_ext_a_b @ r @ Y @ X ) ) ) ) ).

% m_comm
thf(fact_6_m__lcomm,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) )
            = ( mult_a_ring_ext_a_b @ r @ Y @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) ) ) ) ) ) ).

% m_lcomm
thf(fact_7_add_Om__assoc,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( add_a_b @ r @ ( add_a_b @ r @ X @ Y ) @ Z )
            = ( add_a_b @ r @ X @ ( add_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% add.m_assoc
thf(fact_8_add_Om__comm,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( add_a_b @ r @ X @ Y )
          = ( add_a_b @ r @ Y @ X ) ) ) ) ).

% add.m_comm
thf(fact_9_add_Om__lcomm,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( add_a_b @ r @ X @ ( add_a_b @ r @ Y @ Z ) )
            = ( add_a_b @ r @ Y @ ( add_a_b @ r @ X @ Z ) ) ) ) ) ) ).

% add.m_lcomm
thf(fact_10_f20,axiom,
    member_a @ s3 @ ( partia1066395285xt_a_b @ r ) ).

% f20
thf(fact_11_f19,axiom,
    member_a @ s2 @ ( partia1066395285xt_a_b @ r ) ).

% f19
thf(fact_12_f41,axiom,
    member_a @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f41
thf(fact_13_f42,axiom,
    member_a @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f42
thf(fact_14_l__distr,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ ( add_a_b @ r @ X @ Y ) @ Z )
            = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).

% l_distr
thf(fact_15_r__distr,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( mult_a_ring_ext_a_b @ r @ Z @ ( add_a_b @ r @ X @ Y ) )
            = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ Z @ X ) @ ( mult_a_ring_ext_a_b @ r @ Z @ Y ) ) ) ) ) ) ).

% r_distr
thf(fact_16_four__elem__comm,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia1066395285xt_a_b @ r ) )
         => ( ( member_a @ D @ ( partia1066395285xt_a_b @ r ) )
           => ( ( a_minus_a_b @ r @ ( add_a_b @ r @ ( a_minus_a_b @ r @ A @ C ) @ B ) @ D )
              = ( a_minus_a_b @ r @ ( a_minus_a_b @ r @ ( add_a_b @ r @ A @ B ) @ C ) @ D ) ) ) ) ) ) ).

% four_elem_comm
thf(fact_17_right__inv__add,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia1066395285xt_a_b @ r ) )
         => ( ( a_minus_a_b @ r @ ( a_minus_a_b @ r @ C @ A ) @ B )
            = ( a_minus_a_b @ r @ C @ ( add_a_b @ r @ A @ B ) ) ) ) ) ) ).

% right_inv_add
thf(fact_18_f21,axiom,
    member_a @ ( product_snd_a_a @ y ) @ ( partia1066395285xt_a_b @ r ) ).

% f21
thf(fact_19_f40,axiom,
    ( ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) ) )
    = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ) ).

% f40
thf(fact_20_f22,axiom,
    member_a @ ( product_fst_a_a @ x ) @ ( partia1066395285xt_a_b @ r ) ).

% f22
thf(fact_21__092_060open_062_092_060lbrakk_062snd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Afst_Ax_H_J_A_092_060in_062_Acarrier_AR_059_Asnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_Ar_H_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Afst_Ay_H_J_A_092_060in_062_Acarrier_AR_059_At_A_092_060otimes_062_At_H_A_092_060in_062_Acarrier_AR_092_060rbrakk_062_A_092_060Longrightarrow_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Afst_Ax_H_J_A_092_060oplus_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_Ar_H_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Afst_Ay_H_J_J_J_A_061_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Afst_Ax_H_J_J_A_092_060oplus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_Ar_H_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Afst_Ay_H_J_J_092_060close_062,axiom,
    ( ( member_a @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) @ ( partia1066395285xt_a_b @ r ) )
   => ( ( member_a @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( partia1066395285xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( add_a_b @ r @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) )
          = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ) ) ) ) ).

% \<open>\<lbrakk>snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r) \<ominus> s \<otimes> s' \<otimes> (snd y' \<otimes> fst x') \<in> carrier R; snd x' \<otimes> snd y' \<otimes> (s \<otimes> r') \<ominus> s \<otimes> s' \<otimes> (snd x' \<otimes> fst y') \<in> carrier R; t \<otimes> t' \<in> carrier R\<rbrakk> \<Longrightarrow> t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r) \<ominus> s \<otimes> s' \<otimes> (snd y' \<otimes> fst x') \<oplus> (snd x' \<otimes> snd y' \<otimes> (s \<otimes> r') \<ominus> s \<otimes> s' \<otimes> (snd x' \<otimes> fst y'))) = t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r) \<ominus> s \<otimes> s' \<otimes> (snd y' \<otimes> fst x')) \<oplus> t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s \<otimes> r') \<ominus> s \<otimes> s' \<otimes> (snd x' \<otimes> fst y'))\<close>
thf(fact_22_f15,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( partia1066395285xt_a_b @ r ) ).

% f15
thf(fact_23__092_060open_062snd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060in_062_Acarrier_AR_092_060close_062,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( partia1066395285xt_a_b @ r ) ).

% \<open>snd x' \<otimes> snd y' \<in> carrier R\<close>
thf(fact_24_f28,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f28
thf(fact_25_f11,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f11
thf(fact_26_f10,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( partia1066395285xt_a_b @ r ) ).

% f10
thf(fact_27_f27,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( partia1066395285xt_a_b @ r ) ).

% f27
thf(fact_28_f35,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) )
    = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ).

% f35
thf(fact_29__092_060open_062t_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Ar_A_092_060ominus_062_As_A_092_060otimes_062_Afst_Ax_H_J_A_061_At_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Ar_J_A_092_060ominus_062_At_A_092_060otimes_062_A_Is_A_092_060otimes_062_Afst_Ax_H_J_092_060close_062,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ) ).

% \<open>t \<otimes> (snd x' \<otimes> r \<ominus> s \<otimes> fst x') = t \<otimes> (snd x' \<otimes> r) \<ominus> t \<otimes> (s \<otimes> fst x')\<close>
thf(fact_30__092_060open_062t_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Ar_H_A_092_060ominus_062_As_H_A_092_060otimes_062_Afst_Ay_H_J_A_061_At_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Ar_H_J_A_092_060ominus_062_At_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Afst_Ay_H_J_092_060close_062,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) ) ).

% \<open>t' \<otimes> (snd y' \<otimes> r' \<ominus> s' \<otimes> fst y') = t' \<otimes> (snd y' \<otimes> r') \<ominus> t' \<otimes> (s' \<otimes> fst y')\<close>
thf(fact_31_f16,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f16
thf(fact_32_f24,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) )
    = ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ t2 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) ) ) ).

% f24
thf(fact_33_f9,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f9
thf(fact_34__092_060open_062t_A_092_060otimes_062_As_A_092_060otimes_062_Asnd_Ax_H_A_092_060in_062_Acarrier_AR_092_060close_062,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( partia1066395285xt_a_b @ r ) ).

% \<open>t \<otimes> s \<otimes> snd x' \<in> carrier R\<close>
thf(fact_35_f23,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) )
    = ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ t2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ).

% f23
thf(fact_36_f34,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) )
    = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) ) ).

% f34
thf(fact_37_f36,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) ) @ ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) )
    = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ).

% f36
thf(fact_38_f13,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f13
thf(fact_39__092_060open_062t_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_J_A_092_060ominus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Afst_Ax_H_J_J_A_061_At_H_A_092_060otimes_062_As_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_At_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Ar_J_A_092_060ominus_062_At_H_A_092_060otimes_062_As_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_At_A_092_060otimes_062_A_Is_A_092_060otimes_062_Afst_Ax_H_J_092_060close_062,axiom,
    ( ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ t2 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ t2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ) ).

% \<open>t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r)) \<ominus> t \<otimes> t' \<otimes> (s \<otimes> s' \<otimes> (snd y' \<otimes> fst x')) = t' \<otimes> s' \<otimes> snd y' \<otimes> t \<otimes> (snd x' \<otimes> r) \<ominus> t' \<otimes> s' \<otimes> snd y' \<otimes> t \<otimes> (s \<otimes> fst x')\<close>
thf(fact_40_f12,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ t2 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ t2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ) ).

% f12
thf(fact_41_f25,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) ) ).

% f25
thf(fact_42_f32,axiom,
    ( ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) )
    = ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) ) ).

% f32
thf(fact_43_f26,axiom,
    ( ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ t ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) ) ).

% f26
thf(fact_44_f29,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) )
    = ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) ) ) ).

% f29
thf(fact_45_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_47_Collect__cong,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_a @ P )
        = ( collect_a @ Q ) ) ) ).

% Collect_cong
thf(fact_48_f30,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) )
    = ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ).

% f30
thf(fact_49_f33,axiom,
    ( ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) )
    = ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ).

% f33
thf(fact_50__092_060open_062t_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_A_092_060oplus_062_As_A_092_060otimes_062_Ar_H_J_J_A_061_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_J_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_A_092_060oplus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_J_A_092_060otimes_062_A_Is_A_092_060otimes_062_Ar_H_J_092_060close_062,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) )
    = ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) ) ).

% \<open>t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r \<oplus> s \<otimes> r')) = t \<otimes> t' \<otimes> (snd x' \<otimes> snd y') \<otimes> (s' \<otimes> r) \<oplus> t \<otimes> t' \<otimes> (snd x' \<otimes> snd y') \<otimes> (s \<otimes> r')\<close>
thf(fact_51_f14,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f14
thf(fact_52__092_060open_062t_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Afst_Ax_H_J_J_A_092_060oplus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_Ar_H_J_A_092_060ominus_062_As_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Afst_Ay_H_J_J_A_061_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_H_A_092_060otimes_062_Ar_J_J_A_092_060ominus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Afst_Ax_H_J_J_A_092_060oplus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Asnd_Ay_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_Ar_H_J_J_A_092_060ominus_062_At_A_092_060otimes_062_At_H_A_092_060otimes_062_A_Is_A_092_060otimes_062_As_H_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Afst_Ay_H_J_J_092_060close_062,axiom,
    ( ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) )
    = ( a_minus_a_b @ r @ ( add_a_b @ r @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ).

% \<open>t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r) \<ominus> s \<otimes> s' \<otimes> (snd y' \<otimes> fst x')) \<oplus> t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s \<otimes> r') \<ominus> s \<otimes> s' \<otimes> (snd x' \<otimes> fst y')) = t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s' \<otimes> r)) \<ominus> t \<otimes> t' \<otimes> (s \<otimes> s' \<otimes> (snd y' \<otimes> fst x')) \<oplus> t \<otimes> t' \<otimes> (snd x' \<otimes> snd y' \<otimes> (s \<otimes> r')) \<ominus> t \<otimes> t' \<otimes> (s \<otimes> s' \<otimes> (snd x' \<otimes> fst y'))\<close>
thf(fact_53_f31,axiom,
    ( ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) ) )
    = ( add_a_b @ r @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ) ).

% f31
thf(fact_54_f37,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f37
thf(fact_55_f39,axiom,
    member_a @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f39
thf(fact_56_f38,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) @ ( partia1066395285xt_a_b @ r ) ).

% f38
thf(fact_57_f5,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) )
    = ( zero_a_b @ r ) ) ).

% f5
thf(fact_58_f7,axiom,
    ( ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) )
    = ( zero_a_b @ r ) ) ).

% f7
thf(fact_59_minus__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( member_a @ ( a_minus_a_b @ r @ X @ Y ) @ ( partia1066395285xt_a_b @ r ) ) ) ) ).

% minus_closed
thf(fact_60_add_Om__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( member_a @ ( add_a_b @ r @ X @ Y ) @ ( partia1066395285xt_a_b @ r ) ) ) ) ).

% add.m_closed
thf(fact_61_local_Oadd_Oright__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
         => ( ( ( add_a_b @ r @ Y @ X )
              = ( add_a_b @ r @ Z @ X ) )
            = ( Y = Z ) ) ) ) ) ).

% local.add.right_cancel
thf(fact_62_semiring__simprules_I3_J,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( partia1066395285xt_a_b @ r ) ) ) ) ).

% semiring_simprules(3)
thf(fact_63_f4,axiom,
    member_a @ t2 @ s ).

% f4
thf(fact_64_f6,axiom,
    member_a @ t @ s ).

% f6
thf(fact_65_f8,axiom,
    member_a @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ s ).

% f8
thf(fact_66_local_Osemiring__axioms,axiom,
    semiring_a_b @ r ).

% local.semiring_axioms
thf(fact_67_minus__eq,axiom,
    ! [X: a,Y: a] :
      ( ( a_minus_a_b @ r @ X @ Y )
      = ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) ) ).

% minus_eq
thf(fact_68_prod__eqI,axiom,
    ! [P2: product_prod_a_a,Q2: product_prod_a_a] :
      ( ( ( product_fst_a_a @ P2 )
        = ( product_fst_a_a @ Q2 ) )
     => ( ( ( product_snd_a_a @ P2 )
          = ( product_snd_a_a @ Q2 ) )
       => ( P2 = Q2 ) ) ) ).

% prod_eqI
thf(fact_69_exE__realizer_H,axiom,
    ! [P: a > a > $o,P2: product_prod_a_a] :
      ( ( P @ ( product_snd_a_a @ P2 ) @ ( product_fst_a_a @ P2 ) )
     => ~ ! [X3: a,Y2: a] :
            ~ ( P @ Y2 @ X3 ) ) ).

% exE_realizer'
thf(fact_70_prod_Oexpand,axiom,
    ! [Prod: product_prod_a_a,Prod2: product_prod_a_a] :
      ( ( ( ( product_fst_a_a @ Prod )
          = ( product_fst_a_a @ Prod2 ) )
        & ( ( product_snd_a_a @ Prod )
          = ( product_snd_a_a @ Prod2 ) ) )
     => ( Prod = Prod2 ) ) ).

% prod.expand
thf(fact_71_local_Ominus__unique,axiom,
    ! [Y: a,X: a,Y3: a] :
      ( ( ( add_a_b @ r @ Y @ X )
        = ( zero_a_b @ r ) )
     => ( ( ( add_a_b @ r @ X @ Y3 )
          = ( zero_a_b @ r ) )
       => ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
         => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
           => ( ( member_a @ Y3 @ ( partia1066395285xt_a_b @ r ) )
             => ( Y = Y3 ) ) ) ) ) ) ).

% local.minus_unique
thf(fact_72_add_Or__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ? [X3: a] :
          ( ( member_a @ X3 @ ( partia1066395285xt_a_b @ r ) )
          & ( ( add_a_b @ r @ X @ X3 )
            = ( zero_a_b @ r ) ) ) ) ).

% add.r_inv_ex
thf(fact_73_add_Oone__unique,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( partia1066395285xt_a_b @ r ) )
     => ( ! [X3: a] :
            ( ( member_a @ X3 @ ( partia1066395285xt_a_b @ r ) )
           => ( ( add_a_b @ r @ U @ X3 )
              = X3 ) )
       => ( U
          = ( zero_a_b @ r ) ) ) ) ).

% add.one_unique
thf(fact_74_add_Ol__inv__ex,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ? [X3: a] :
          ( ( member_a @ X3 @ ( partia1066395285xt_a_b @ r ) )
          & ( ( add_a_b @ r @ X3 @ X )
            = ( zero_a_b @ r ) ) ) ) ).

% add.l_inv_ex
thf(fact_75_add_Oinv__comm,axiom,
    ! [X: a,Y: a] :
      ( ( ( add_a_b @ r @ X @ Y )
        = ( zero_a_b @ r ) )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
         => ( ( add_a_b @ r @ Y @ X )
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.inv_comm
thf(fact_76_r__minus,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) )
          = ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) ) ) ) ) ).

% r_minus
thf(fact_77_l__minus,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Y )
          = ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) ) ) ) ) ).

% l_minus
thf(fact_78_r__neg2,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( add_a_b @ r @ X @ ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Y ) )
          = Y ) ) ) ).

% r_neg2
thf(fact_79_r__neg1,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ ( add_a_b @ r @ X @ Y ) )
          = Y ) ) ) ).

% r_neg1
thf(fact_80_local_Ominus__add,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( a_inv_a_b @ r @ ( add_a_b @ r @ X @ Y ) )
          = ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ ( a_inv_a_b @ r @ Y ) ) ) ) ) ).

% local.minus_add
thf(fact_81_add_Oinv__solve__right_H,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia1066395285xt_a_b @ r ) )
         => ( ( ( add_a_b @ r @ B @ ( a_inv_a_b @ r @ C ) )
              = A )
            = ( B
              = ( add_a_b @ r @ A @ C ) ) ) ) ) ) ).

% add.inv_solve_right'
thf(fact_82_add_Oinv__solve__right,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia1066395285xt_a_b @ r ) )
         => ( ( A
              = ( add_a_b @ r @ B @ ( a_inv_a_b @ r @ C ) ) )
            = ( B
              = ( add_a_b @ r @ A @ C ) ) ) ) ) ) ).

% add.inv_solve_right
thf(fact_83_add_Oinv__solve__left_H,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia1066395285xt_a_b @ r ) )
         => ( ( ( add_a_b @ r @ ( a_inv_a_b @ r @ B ) @ C )
              = A )
            = ( C
              = ( add_a_b @ r @ B @ A ) ) ) ) ) ) ).

% add.inv_solve_left'
thf(fact_84_add_Oinv__solve__left,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ C @ ( partia1066395285xt_a_b @ r ) )
         => ( ( A
              = ( add_a_b @ r @ ( a_inv_a_b @ r @ B ) @ C ) )
            = ( C
              = ( add_a_b @ r @ B @ A ) ) ) ) ) ) ).

% add.inv_solve_left
thf(fact_85_add_Oinv__mult__group,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( a_inv_a_b @ r @ ( add_a_b @ r @ X @ Y ) )
          = ( add_a_b @ r @ ( a_inv_a_b @ r @ Y ) @ ( a_inv_a_b @ r @ X ) ) ) ) ) ).

% add.inv_mult_group
thf(fact_86_a__transpose__inv,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( ( add_a_b @ r @ X @ Y )
        = Z )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
         => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ r ) )
           => ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Z )
              = Y ) ) ) ) ) ).

% a_transpose_inv
thf(fact_87_eq__obj__rng__of__frac__axioms,axiom,
    locali1648887798ac_a_b @ r @ s ).

% eq_obj_rng_of_frac_axioms
thf(fact_88_sum__zero__eq__neg,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( ( add_a_b @ r @ X @ Y )
            = ( zero_a_b @ r ) )
         => ( X
            = ( a_inv_a_b @ r @ Y ) ) ) ) ) ).

% sum_zero_eq_neg
thf(fact_89_r__neg,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ X ) )
        = ( zero_a_b @ r ) ) ) ).

% r_neg
thf(fact_90_minus__equality,axiom,
    ! [Y: a,X: a] :
      ( ( ( add_a_b @ r @ Y @ X )
        = ( zero_a_b @ r ) )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
         => ( ( a_inv_a_b @ r @ X )
            = Y ) ) ) ) ).

% minus_equality
thf(fact_91_l__neg,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ X )
        = ( zero_a_b @ r ) ) ) ).

% l_neg
thf(fact_92_inv__add,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( a_inv_a_b @ r @ ( add_a_b @ r @ A @ B ) )
          = ( a_minus_a_b @ r @ ( a_inv_a_b @ r @ A ) @ B ) ) ) ) ).

% inv_add
thf(fact_93__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062t_O_A_092_060lbrakk_062t_A_092_060in_062_AS_059_At_A_092_060otimes_062_A_Isnd_Ax_H_A_092_060otimes_062_Ar_A_092_060ominus_062_As_A_092_060otimes_062_Afst_Ax_H_J_A_061_A_092_060zero_062_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [T: a] :
        ( ( member_a @ T @ s )
       => ( ( mult_a_ring_ext_a_b @ r @ T @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) )
         != ( zero_a_b @ r ) ) ) ).

% \<open>\<And>thesis. (\<And>t. \<lbrakk>t \<in> S; t \<otimes> (snd x' \<otimes> r \<ominus> s \<otimes> fst x') = \<zero>\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_94__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062t_H_O_A_092_060lbrakk_062t_H_A_092_060in_062_AS_059_At_H_A_092_060otimes_062_A_Isnd_Ay_H_A_092_060otimes_062_Ar_H_A_092_060ominus_062_As_H_A_092_060otimes_062_Afst_Ay_H_J_A_061_A_092_060zero_062_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [T2: a] :
        ( ( member_a @ T2 @ s )
       => ( ( mult_a_ring_ext_a_b @ r @ T2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) )
         != ( zero_a_b @ r ) ) ) ).

% \<open>\<And>thesis. (\<And>t'. \<lbrakk>t' \<in> S; t' \<otimes> (snd y' \<otimes> r' \<ominus> s' \<otimes> fst y') = \<zero>\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_95_zero__closed,axiom,
    member_a @ ( zero_a_b @ r ) @ ( partia1066395285xt_a_b @ r ) ).

% zero_closed
thf(fact_96_local_Ominus__minus,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( a_inv_a_b @ r @ ( a_inv_a_b @ r @ X ) )
        = X ) ) ).

% local.minus_minus
thf(fact_97_add_Oinv__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( member_a @ ( a_inv_a_b @ r @ X ) @ ( partia1066395285xt_a_b @ r ) ) ) ).

% add.inv_closed
thf(fact_98_local_Ominus__zero,axiom,
    ( ( a_inv_a_b @ r @ ( zero_a_b @ r ) )
    = ( zero_a_b @ r ) ) ).

% local.minus_zero
thf(fact_99_m__closed,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ s )
     => ( ( member_a @ Y @ s )
       => ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ s ) ) ) ).

% m_closed
thf(fact_100_r__null,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ X @ ( zero_a_b @ r ) )
        = ( zero_a_b @ r ) ) ) ).

% r_null
thf(fact_101_l__null,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( mult_a_ring_ext_a_b @ r @ ( zero_a_b @ r ) @ X )
        = ( zero_a_b @ r ) ) ) ).

% l_null
thf(fact_102_r__zero,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_a_b @ r @ X @ ( zero_a_b @ r ) )
        = X ) ) ).

% r_zero
thf(fact_103_l__zero,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_a_b @ r @ ( zero_a_b @ r ) @ X )
        = X ) ) ).

% l_zero
thf(fact_104_add_Or__cancel__one_H,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
       => ( ( X
            = ( add_a_b @ r @ A @ X ) )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.r_cancel_one'
thf(fact_105_add_Or__cancel__one,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
       => ( ( ( add_a_b @ r @ A @ X )
            = X )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.r_cancel_one
thf(fact_106_add_Ol__cancel__one_H,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
       => ( ( X
            = ( add_a_b @ r @ X @ A ) )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.l_cancel_one'
thf(fact_107_add_Ol__cancel__one,axiom,
    ! [X: a,A: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
       => ( ( ( add_a_b @ r @ X @ A )
            = X )
          = ( A
            = ( zero_a_b @ r ) ) ) ) ) ).

% add.l_cancel_one
thf(fact_108_add_Oinv__eq__1__iff,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( ( a_inv_a_b @ r @ X )
          = ( zero_a_b @ r ) )
        = ( X
          = ( zero_a_b @ r ) ) ) ) ).

% add.inv_eq_1_iff
thf(fact_109_mult__submonoid__of__rng__axioms,axiom,
    locali880295127ng_a_b @ r @ s ).

% mult_submonoid_of_rng_axioms
thf(fact_110_mult__submonoid__of__crng__axioms,axiom,
    locali807230110ng_a_b @ r @ s ).

% mult_submonoid_of_crng_axioms
thf(fact_111_prod__eq__iff,axiom,
    ( ( ^ [Y4: product_prod_a_a,Z2: product_prod_a_a] : ( Y4 = Z2 ) )
    = ( ^ [S: product_prod_a_a,T3: product_prod_a_a] :
          ( ( ( product_fst_a_a @ S )
            = ( product_fst_a_a @ T3 ) )
          & ( ( product_snd_a_a @ S )
            = ( product_snd_a_a @ T3 ) ) ) ) ) ).

% prod_eq_iff
thf(fact_112_submonoid__axioms,axiom,
    locali425460998xt_a_b @ r @ s ).

% submonoid_axioms
thf(fact_113_add_Oint__pow__inv,axiom,
    ! [X: a,I: int] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ I @ ( a_inv_a_b @ r @ X ) )
        = ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) ) ) ) ).

% add.int_pow_inv
thf(fact_114_semiring_Osemiring__simprules_I11_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( add_a_b @ R @ X @ ( zero_a_b @ R ) )
          = X ) ) ) ).

% semiring.semiring_simprules(11)
thf(fact_115_semiring_Osemiring__simprules_I6_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( add_a_b @ R @ ( zero_a_b @ R ) @ X )
          = X ) ) ) ).

% semiring.semiring_simprules(6)
thf(fact_116_semiring_Ol__null,axiom,
    ! [R: partia1833973666xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( mult_a_ring_ext_a_b @ R @ ( zero_a_b @ R ) @ X )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.l_null
thf(fact_117_semiring_Or__null,axiom,
    ! [R: partia1833973666xt_a_b,X: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( mult_a_ring_ext_a_b @ R @ X @ ( zero_a_b @ R ) )
          = ( zero_a_b @ R ) ) ) ) ).

% semiring.r_null
thf(fact_118_semiring_Or__distr,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ R ) )
           => ( ( mult_a_ring_ext_a_b @ R @ Z @ ( add_a_b @ R @ X @ Y ) )
              = ( add_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ Z @ X ) @ ( mult_a_ring_ext_a_b @ R @ Z @ Y ) ) ) ) ) ) ) ).

% semiring.r_distr
thf(fact_119_add__pow__ldistr__int,axiom,
    ! [A: a,B: a,K: int] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ ( add_pow_a_b_int @ r @ K @ A ) @ B )
          = ( add_pow_a_b_int @ r @ K @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).

% add_pow_ldistr_int
thf(fact_120_add__pow__rdistr__int,axiom,
    ! [A: a,B: a,K: int] :
      ( ( member_a @ A @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ B @ ( partia1066395285xt_a_b @ r ) )
       => ( ( mult_a_ring_ext_a_b @ r @ A @ ( add_pow_a_b_int @ r @ K @ B ) )
          = ( add_pow_a_b_int @ r @ K @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).

% add_pow_rdistr_int
thf(fact_121_add_Oint__pow__distrib,axiom,
    ! [X: a,Y: a,I: int] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
       => ( ( add_pow_a_b_int @ r @ I @ ( add_a_b @ r @ X @ Y ) )
          = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ I @ Y ) ) ) ) ) ).

% add.int_pow_distrib
thf(fact_122_add_Oint__pow__mult__distrib,axiom,
    ! [X: a,Y: a,I: int] :
      ( ( ( add_a_b @ r @ X @ Y )
        = ( add_a_b @ r @ Y @ X ) )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ r ) )
         => ( ( add_pow_a_b_int @ r @ I @ ( add_a_b @ r @ X @ Y ) )
            = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ I @ Y ) ) ) ) ) ) ).

% add.int_pow_mult_distrib
thf(fact_123_add_Oint__pow__closed,axiom,
    ! [X: a,I: int] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( member_a @ ( add_pow_a_b_int @ r @ I @ X ) @ ( partia1066395285xt_a_b @ r ) ) ) ).

% add.int_pow_closed
thf(fact_124_add_Oint__pow__one,axiom,
    ! [Z: int] :
      ( ( add_pow_a_b_int @ r @ Z @ ( zero_a_b @ r ) )
      = ( zero_a_b @ r ) ) ).

% add.int_pow_one
thf(fact_125_Localization__Mirabelle__afvchqjmgj_Osubmonoid_Ois__submonoid,axiom,
    ! [M: partia1833973666xt_a_b,S2: set_a] :
      ( ( locali425460998xt_a_b @ M @ S2 )
     => ( locali425460998xt_a_b @ M @ S2 ) ) ).

% Localization_Mirabelle_afvchqjmgj.submonoid.is_submonoid
thf(fact_126_mult__submonoid__of__crng_Oaxioms_I2_J,axiom,
    ! [R: partia1833973666xt_a_b,S2: set_a] :
      ( ( locali807230110ng_a_b @ R @ S2 )
     => ( locali880295127ng_a_b @ R @ S2 ) ) ).

% mult_submonoid_of_crng.axioms(2)
thf(fact_127_mult__submonoid__of__rng_Oaxioms_I2_J,axiom,
    ! [R: partia1833973666xt_a_b,S2: set_a] :
      ( ( locali880295127ng_a_b @ R @ S2 )
     => ( locali425460998xt_a_b @ R @ S2 ) ) ).

% mult_submonoid_of_rng.axioms(2)
thf(fact_128_eq__obj__rng__of__frac_Oaxioms_I2_J,axiom,
    ! [R: partia1833973666xt_a_b,S2: set_a] :
      ( ( locali1648887798ac_a_b @ R @ S2 )
     => ( locali807230110ng_a_b @ R @ S2 ) ) ).

% eq_obj_rng_of_frac.axioms(2)
thf(fact_129_Localization__Mirabelle__afvchqjmgj_Osubmonoid_Om__closed,axiom,
    ! [M: partia1833973666xt_a_b,S2: set_a,X: a,Y: a] :
      ( ( locali425460998xt_a_b @ M @ S2 )
     => ( ( member_a @ X @ S2 )
       => ( ( member_a @ Y @ S2 )
         => ( member_a @ ( mult_a_ring_ext_a_b @ M @ X @ Y ) @ S2 ) ) ) ) ).

% Localization_Mirabelle_afvchqjmgj.submonoid.m_closed
thf(fact_130_a__minus__def,axiom,
    ( a_minus_a_b
    = ( ^ [R2: partia1833973666xt_a_b,X2: a,Y5: a] : ( add_a_b @ R2 @ X2 @ ( a_inv_a_b @ R2 @ Y5 ) ) ) ) ).

% a_minus_def
thf(fact_131_semiring_Osemiring__simprules_I8_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ R ) )
           => ( ( mult_a_ring_ext_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ X @ Y ) @ Z )
              = ( mult_a_ring_ext_a_b @ R @ X @ ( mult_a_ring_ext_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% semiring.semiring_simprules(8)
thf(fact_132_semiring_Osemiring__simprules_I3_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( member_a @ ( mult_a_ring_ext_a_b @ R @ X @ Y ) @ ( partia1066395285xt_a_b @ R ) ) ) ) ) ).

% semiring.semiring_simprules(3)
thf(fact_133_semiring_Osemiring__simprules_I12_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ R ) )
           => ( ( add_a_b @ R @ X @ ( add_a_b @ R @ Y @ Z ) )
              = ( add_a_b @ R @ Y @ ( add_a_b @ R @ X @ Z ) ) ) ) ) ) ) ).

% semiring.semiring_simprules(12)
thf(fact_134_semiring_Osemiring__simprules_I7_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( ( add_a_b @ R @ X @ Y )
            = ( add_a_b @ R @ Y @ X ) ) ) ) ) ).

% semiring.semiring_simprules(7)
thf(fact_135_semiring_Osemiring__simprules_I5_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ R ) )
           => ( ( add_a_b @ R @ ( add_a_b @ R @ X @ Y ) @ Z )
              = ( add_a_b @ R @ X @ ( add_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% semiring.semiring_simprules(5)
thf(fact_136_semiring_Osemiring__simprules_I1_J,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( member_a @ ( add_a_b @ R @ X @ Y ) @ ( partia1066395285xt_a_b @ R ) ) ) ) ) ).

% semiring.semiring_simprules(1)
thf(fact_137_semiring_Osemiring__simprules_I2_J,axiom,
    ! [R: partia1833973666xt_a_b] :
      ( ( semiring_a_b @ R )
     => ( member_a @ ( zero_a_b @ R ) @ ( partia1066395285xt_a_b @ R ) ) ) ).

% semiring.semiring_simprules(2)
thf(fact_138_semiring_Ol__distr,axiom,
    ! [R: partia1833973666xt_a_b,X: a,Y: a,Z: a] :
      ( ( semiring_a_b @ R )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ R ) )
       => ( ( member_a @ Y @ ( partia1066395285xt_a_b @ R ) )
         => ( ( member_a @ Z @ ( partia1066395285xt_a_b @ R ) )
           => ( ( mult_a_ring_ext_a_b @ R @ ( add_a_b @ R @ X @ Y ) @ Z )
              = ( add_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ X @ Z ) @ ( mult_a_ring_ext_a_b @ R @ Y @ Z ) ) ) ) ) ) ) ).

% semiring.l_distr
thf(fact_139_add_Oint__pow__diff,axiom,
    ! [X: a,N: int,M2: int] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ ( minus_minus_int @ N @ M2 ) @ X )
        = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ N @ X ) @ ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ M2 @ X ) ) ) ) ) ).

% add.int_pow_diff
thf(fact_140_add_Oint__pow__neg,axiom,
    ! [X: a,I: int] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ ( uminus_uminus_int @ I ) @ X )
        = ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) ) ) ) ).

% add.int_pow_neg
thf(fact_141_add_Oint__pow__mult,axiom,
    ! [X: a,I: int,J: int] :
      ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
     => ( ( add_pow_a_b_int @ r @ ( plus_plus_int @ I @ J ) @ X )
        = ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ J @ X ) ) ) ) ).

% add.int_pow_mult
thf(fact_142_subset,axiom,
    ord_less_eq_set_a @ s @ ( partia1066395285xt_a_b @ r ) ).

% subset
thf(fact_143_Localization__Mirabelle__afvchqjmgj_Osubmonoid_Osubset,axiom,
    ! [M: partia1833973666xt_a_b,S2: set_a] :
      ( ( locali425460998xt_a_b @ M @ S2 )
     => ( ord_less_eq_set_a @ S2 @ ( partia1066395285xt_a_b @ M ) ) ) ).

% Localization_Mirabelle_afvchqjmgj.submonoid.subset
thf(fact_144_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_145_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_146_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_147_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_148_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_149_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_150_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_151_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_152_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_153_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_154_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_155_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_156_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_157_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_158_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_159_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_160_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_161_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_162_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_163_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_164_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_165_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_166_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_167_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_168_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_169_group__add__class_Oadd_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% group_add_class.add.right_cancel
thf(fact_170_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_171_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_172_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_173_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_174_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_175_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_176_diff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_177_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_178_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_179_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_180_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_181_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_182_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_183_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_184_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_185_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_186_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_187_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_188_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_189_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_190_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_191_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_192_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_193_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_194_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_195_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_196_diff__diff__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_add
thf(fact_197_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_198_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_199_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_200_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_201_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_202_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_203_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_204_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_205_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_206_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_207_add__le__add__imp__diff__le,axiom,
    ! [I: int,K: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_208_add__le__imp__le__diff,axiom,
    ! [I: int,K: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_209_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_210_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_211_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_212_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_213_group__cancel_Osub2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_214_add_Oone__in__subset,axiom,
    ! [H: set_a] :
      ( ( ord_less_eq_set_a @ H @ ( partia1066395285xt_a_b @ r ) )
     => ( ( H != bot_bot_set_a )
       => ( ! [X3: a] :
              ( ( member_a @ X3 @ H )
             => ( member_a @ ( a_inv_a_b @ r @ X3 ) @ H ) )
         => ( ! [X3: a] :
                ( ( member_a @ X3 @ H )
               => ! [Xa: a] :
                    ( ( member_a @ Xa @ H )
                   => ( member_a @ ( add_a_b @ r @ X3 @ Xa ) @ H ) ) )
           => ( member_a @ ( zero_a_b @ r ) @ H ) ) ) ) ) ).

% add.one_in_subset
thf(fact_215_a__lcos__mult__one,axiom,
    ! [M: set_a] :
      ( ( ord_less_eq_set_a @ M @ ( partia1066395285xt_a_b @ r ) )
     => ( ( a_l_coset_a_b @ r @ ( zero_a_b @ r ) @ M )
        = M ) ) ).

% a_lcos_mult_one
thf(fact_216_a__lcos__m__assoc,axiom,
    ! [M: set_a,G: a,H2: a] :
      ( ( ord_less_eq_set_a @ M @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ G @ ( partia1066395285xt_a_b @ r ) )
       => ( ( member_a @ H2 @ ( partia1066395285xt_a_b @ r ) )
         => ( ( a_l_coset_a_b @ r @ G @ ( a_l_coset_a_b @ r @ H2 @ M ) )
            = ( a_l_coset_a_b @ r @ ( add_a_b @ r @ G @ H2 ) @ M ) ) ) ) ) ).

% a_lcos_m_assoc
thf(fact_217_carrier__not__empty,axiom,
    ( ( partia1066395285xt_a_b @ r )
   != bot_bot_set_a ) ).

% carrier_not_empty
thf(fact_218_a__l__coset__subset__G,axiom,
    ! [H: set_a,X: a] :
      ( ( ord_less_eq_set_a @ H @ ( partia1066395285xt_a_b @ r ) )
     => ( ( member_a @ X @ ( partia1066395285xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( a_l_coset_a_b @ r @ X @ H ) @ ( partia1066395285xt_a_b @ r ) ) ) ) ).

% a_l_coset_subset_G
thf(fact_219_setadd__subset__G,axiom,
    ! [H: set_a,K2: set_a] :
      ( ( ord_less_eq_set_a @ H @ ( partia1066395285xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ K2 @ ( partia1066395285xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( set_add_a_b @ r @ H @ K2 ) @ ( partia1066395285xt_a_b @ r ) ) ) ) ).

% setadd_subset_G
thf(fact_220_set__add__closed,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( partia1066395285xt_a_b @ r ) )
     => ( ( ord_less_eq_set_a @ B3 @ ( partia1066395285xt_a_b @ r ) )
       => ( ord_less_eq_set_a @ ( set_add_a_b @ r @ A2 @ B3 ) @ ( partia1066395285xt_a_b @ r ) ) ) ) ).

% set_add_closed
thf(fact_221_add__additive__subgroups,axiom,
    ! [H: set_a,K2: set_a] :
      ( ( additi2104487374up_a_b @ H @ r )
     => ( ( additi2104487374up_a_b @ K2 @ r )
       => ( additi2104487374up_a_b @ ( set_add_a_b @ r @ H @ K2 ) @ r ) ) ) ).

% add_additive_subgroups
thf(fact_222_Diff__eq__empty__iff,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ( ( minus_minus_set_a @ A2 @ B3 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_223_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_224_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X2: a] :
            ~ ( member_a @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_225_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_226_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X2: a] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_227_subsetI,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_a @ X3 @ B3 ) )
     => ( ord_less_eq_set_a @ A2 @ B3 ) ) ).

% subsetI
thf(fact_228_subset__antisym,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_229_Compl__subset__Compl__iff,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ A2 ) @ ( uminus_uminus_set_a @ B3 ) )
      = ( ord_less_eq_set_a @ B3 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_230_Compl__anti__mono,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B3 )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ B3 ) @ ( uminus_uminus_set_a @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_231_subset__empty,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_232_empty__subsetI,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).

% empty_subsetI
thf(fact_233_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_234_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_235_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_236_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_237_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_238_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y2: a] :
          ~ ( member_a @ Y2 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_239_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X2: a] : ( member_a @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_240_in__mono,axiom,
    ! [A2: set_a,B3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ B3 )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ X @ B3 ) ) ) ).

% in_mono
thf(fact_241_subsetD,axiom,
    ! [A2: set_a,B3: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A2 @ B3 )
     => ( ( member_a @ C @ A2 )
       => ( member_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_242_equalityE,axiom,
    ! [A2: set_a,B3: set_a] :
      ( ( A2 = B3 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B3 )
         => ~ ( ord_less_eq_set_a @ B3 @ A2 ) ) ) ).

% equalityE
thf(fact_243_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
        ! [X2: a] :
          ( ( member_a @ X2 @ A4 )
         => ( member_a @ X2 @ B4 ) ) ) ) ).

% subset_eq

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t @ s3 ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ t2 @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ r2 ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ ( product_fst_a_a @ x ) ) ) ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ s2 ) @ ( product_snd_a_a @ x ) ) @ ( mult_a_ring_ext_a_b @ r @ t @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ r3 ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ ( product_fst_a_a @ y ) ) ) ) ) )
    = ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ t2 @ t ) @ ( add_a_b @ r @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s3 @ r2 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ y ) @ ( product_fst_a_a @ x ) ) ) ) @ ( a_minus_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_snd_a_a @ y ) ) @ ( mult_a_ring_ext_a_b @ r @ s2 @ r3 ) ) @ ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ s2 @ s3 ) @ ( mult_a_ring_ext_a_b @ r @ ( product_snd_a_a @ x ) @ ( product_fst_a_a @ y ) ) ) ) ) ) ) ).

%------------------------------------------------------------------------------