TPTP Problem File: ITP102^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP102^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer ListInf problem prob_77__5408624_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : ListInf/prob_77__5408624_1 [Des21]

% Status   : Theorem
% Rating   : 0.38 v9.0.0, 0.40 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0
% Syntax   : Number of formulae    :  282 (  94 unt;  27 typ;   0 def)
%            Number of atoms       :  742 ( 227 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 2091 (  94   ~;  24   |;  32   &;1556   @)
%                                         (   0 <=>; 385  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   6 avg)
%            Number of types       :    5 (   4 usr)
%            Number of type conns  :  112 ( 112   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   24 (  23 usr;   2 con; 0-3 aty)
%            Number of variables   :  744 (  62   ^; 640   !;  42   ?; 744   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:30:23.131
%------------------------------------------------------------------------------
% Could-be-implicit typings (4)
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (23)
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_List2_Olist__asc_001t__Nat__Onat,type,
    list_asc_nat: list_nat > $o ).

thf(sy_c_List2_Olist__desc_001t__Nat__Onat,type,
    list_desc_nat: list_nat > $o ).

thf(sy_c_List2_Olist__strict__asc_001t__Nat__Onat,type,
    list_strict_asc_nat: list_nat > $o ).

thf(sy_c_List2_Olist__strict__desc_001t__Nat__Onat,type,
    list_strict_desc_nat: list_nat > $o ).

thf(sy_c_ListInf__Mirabelle__akbajwqfbr_Oi__append_001t__Nat__Onat,type,
    listIn923761578nd_nat: list_nat > ( nat > nat ) > nat > nat ).

thf(sy_c_ListInf__Mirabelle__akbajwqfbr_Oi__append_001tf__a,type,
    listIn1312259492pend_a: list_a > ( nat > a ) > nat > a ).

thf(sy_c_List_Olinorder__class_Osorted_001t__Nat__Onat,type,
    linorder_sorted_nat: list_nat > $o ).

thf(sy_c_List_Olist__ex_001t__Nat__Onat,type,
    list_ex_nat: ( nat > $o ) > list_nat > $o ).

thf(sy_c_List_Olist__ex_001tf__a,type,
    list_ex_a: ( a > $o ) > list_a > $o ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001tf__a,type,
    nth_a: list_a > nat > a ).

thf(sy_c_List_Orev_001t__Nat__Onat,type,
    rev_nat: list_nat > list_nat ).

thf(sy_c_List_Orev_001tf__a,type,
    rev_a: list_a > list_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_v_f,type,
    f: nat > a ).

thf(sy_v_g,type,
    g: nat > a ).

thf(sy_v_xs,type,
    xs: list_a ).

thf(sy_v_ys,type,
    ys: list_a ).

% Relevant facts (252)
thf(fact_0_i__append__eq__i__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat,F: nat > nat,G: nat > nat] :
      ( ( ( size_size_list_nat @ Xs )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( listIn923761578nd_nat @ Xs @ F )
          = ( listIn923761578nd_nat @ Ys @ G ) )
        = ( ( Xs = Ys )
          & ( F = G ) ) ) ) ).

% i_append_eq_i_append_conv
thf(fact_1_i__append__eq__i__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a,F: nat > a,G: nat > a] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( listIn1312259492pend_a @ Xs @ F )
          = ( listIn1312259492pend_a @ Ys @ G ) )
        = ( ( Xs = Ys )
          & ( F = G ) ) ) ) ).

% i_append_eq_i_append_conv
thf(fact_2_i__append__nth1,axiom,
    ! [N: nat,Xs: list_nat,F: nat > nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( listIn923761578nd_nat @ Xs @ F @ N )
        = ( nth_nat @ Xs @ N ) ) ) ).

% i_append_nth1
thf(fact_3_i__append__nth1,axiom,
    ! [N: nat,Xs: list_a,F: nat > a] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( listIn1312259492pend_a @ Xs @ F @ N )
        = ( nth_a @ Xs @ N ) ) ) ).

% i_append_nth1
thf(fact_4_nth__equalityI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs ) )
           => ( ( nth_nat @ Xs @ I )
              = ( nth_nat @ Ys @ I ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_5_nth__equalityI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
           => ( ( nth_a @ Xs @ I )
              = ( nth_a @ Ys @ I ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_6_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ K )
           => ? [X: nat] : ( P @ I2 @ X ) ) )
      = ( ? [Xs2: list_nat] :
            ( ( ( size_size_list_nat @ Xs2 )
              = K )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K )
               => ( P @ I2 @ ( nth_nat @ Xs2 @ I2 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_7_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > a > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ K )
           => ? [X: a] : ( P @ I2 @ X ) ) )
      = ( ? [Xs2: list_a] :
            ( ( ( size_size_list_a @ Xs2 )
              = K )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K )
               => ( P @ I2 @ ( nth_a @ Xs2 @ I2 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_8_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y: list_nat,Z: list_nat] : ( Y = Z ) )
    = ( ^ [Xs2: list_nat,Ys2: list_nat] :
          ( ( ( size_size_list_nat @ Xs2 )
            = ( size_size_list_nat @ Ys2 ) )
          & ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
             => ( ( nth_nat @ Xs2 @ I2 )
                = ( nth_nat @ Ys2 @ I2 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_9_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y: list_a,Z: list_a] : ( Y = Z ) )
    = ( ^ [Xs2: list_a,Ys2: list_a] :
          ( ( ( size_size_list_a @ Xs2 )
            = ( size_size_list_a @ Ys2 ) )
          & ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ ( size_size_list_a @ Xs2 ) )
             => ( ( nth_a @ Xs2 @ I2 )
                = ( nth_a @ Ys2 @ I2 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_10_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_11_list__desc__trans__le,axiom,
    ( list_desc_nat
    = ( ^ [Xs2: list_nat] :
        ! [J: nat] :
          ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
         => ! [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ J )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ J ) @ ( nth_nat @ Xs2 @ I2 ) ) ) ) ) ) ).

% list_desc_trans_le
thf(fact_12_length__induct,axiom,
    ! [P: list_nat > $o,Xs: list_nat] :
      ( ! [Xs3: list_nat] :
          ( ! [Ys3: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys3 ) @ ( size_size_list_nat @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_13_length__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ! [Xs3: list_a] :
          ( ! [Ys3: list_a] :
              ( ( ord_less_nat @ ( size_size_list_a @ Ys3 ) @ ( size_size_list_a @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_14_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M @ N2 )
          & ( M != N2 ) ) ) ) ).

% nat_less_le
thf(fact_15_less__imp__le__nat,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_imp_le_nat
thf(fact_16_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_nat @ M @ N2 )
          | ( M = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_17_less__or__eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_or_eq_imp_le
thf(fact_18_le__neq__implies__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( M2 != N )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% le_neq_implies_less
thf(fact_19_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I3: nat,J2: nat] :
      ( ! [I: nat,J3: nat] :
          ( ( ord_less_nat @ I @ J3 )
         => ( ord_less_nat @ ( F @ I ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I3 @ J2 )
       => ( ord_less_eq_nat @ ( F @ I3 ) @ ( F @ J2 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_20_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_21_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A2 )
          & ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_22_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_23_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat,B3: nat] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_24_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_25_order__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_eq_nat @ X2 @ Z2 ) ) ) ).

% order_trans
thf(fact_26_order__class_Oorder_Oantisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% order_class.order.antisym
thf(fact_27_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_28_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_29_order__class_Oorder_Oeq__iff,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A2 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% order_class.order.eq_iff
thf(fact_30_antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv
thf(fact_31_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_32_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_33_le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% le_cases
thf(fact_34_eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% eq_refl
thf(fact_35_linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linear
thf(fact_36_antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% antisym
thf(fact_37_eq__iff,axiom,
    ( ( ^ [Y: nat,Z: nat] : ( Y = Z ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% eq_iff
thf(fact_38_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_39_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_40_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_41_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_42_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_43_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_44_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_45_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_46_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B3: nat] :
              ( ( P @ B3 @ A3 )
             => ( P @ A3 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_47_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X: nat] : ( P2 @ X ) )
    = ( ^ [P3: nat > $o] :
        ? [N2: nat] :
          ( ( P3 @ N2 )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N2 )
             => ~ ( P3 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_48_less__imp__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% less_imp_not_less
thf(fact_49_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_50_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_51_linorder__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_52_less__imp__triv,axiom,
    ! [X2: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X2 )
       => P ) ) ).

% less_imp_triv
thf(fact_53_less__imp__not__eq2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% less_imp_not_eq2
thf(fact_54_antisym__conv3,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_55_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X4: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X4 )
             => ( P @ Y5 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_56_less__not__sym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% less_not_sym
thf(fact_57_less__imp__not__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_not_eq
thf(fact_58_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_59_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_60_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_61_less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% less_irrefl
thf(fact_62_less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% less_linear
thf(fact_63_less__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% less_trans
thf(fact_64_less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% less_asym'
thf(fact_65_less__asym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% less_asym
thf(fact_66_less__imp__neq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_67_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_68_neq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_nat @ X2 @ Y2 )
        | ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% neq_iff
thf(fact_69_neqE,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% neqE
thf(fact_70_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_71_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_72_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_73_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_74_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_75_linorder__neqE__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_76_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
              & ~ ( P @ M3 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_77_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ( P @ M3 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_78_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_79_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_80_less__not__refl2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ N @ M2 )
     => ( M2 != N ) ) ).

% less_not_refl2
thf(fact_81_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_82_nat__neq__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != N )
      = ( ( ord_less_nat @ M2 @ N )
        | ( ord_less_nat @ N @ M2 ) ) ) ).

% nat_neq_iff
thf(fact_83_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_84_nat__le__linear,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
      | ( ord_less_eq_nat @ N @ M2 ) ) ).

% nat_le_linear
thf(fact_85_le__antisym,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_eq_nat @ N @ M2 )
       => ( M2 = N ) ) ) ).

% le_antisym
thf(fact_86_eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 = N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% eq_imp_le
thf(fact_87_le__trans,axiom,
    ! [I3: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K )
       => ( ord_less_eq_nat @ I3 @ K ) ) ) ).

% le_trans
thf(fact_88_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_89_size__neq__size__imp__neq,axiom,
    ! [X2: list_a,Y2: list_a] :
      ( ( ( size_size_list_a @ X2 )
       != ( size_size_list_a @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_90_size__neq__size__imp__neq,axiom,
    ! [X2: list_nat,Y2: list_nat] :
      ( ( ( size_size_list_nat @ X2 )
       != ( size_size_list_nat @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_91_neq__if__length__neq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
       != ( size_size_list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_92_neq__if__length__neq,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
       != ( size_size_list_nat @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_93_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_a] :
      ( ( size_size_list_a @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_94_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_nat] :
      ( ( size_size_list_nat @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_95_list__desc__trans,axiom,
    ( list_desc_nat
    = ( ^ [Xs2: list_nat] :
        ! [J: nat] :
          ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
         => ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ J ) @ ( nth_nat @ Xs2 @ I2 ) ) ) ) ) ) ).

% list_desc_trans
thf(fact_96_order_Onot__eq__order__implies__strict,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order.not_eq_order_implies_strict
thf(fact_97_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_98_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A2 )
          & ( A2 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_99_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( ord_less_nat @ B2 @ A2 )
          | ( A2 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_100_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_101_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_102_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_103_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A2 @ B2 )
          & ( A2 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_104_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_nat @ A2 @ B2 )
          | ( A2 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_105_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_106_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_107_not__le__imp__less,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ord_less_nat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_108_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ~ ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_109_le__imp__less__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% le_imp_less_or_eq
thf(fact_110_le__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% le_less_linear
thf(fact_111_less__le__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% less_le_trans
thf(fact_112_le__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% le_less_trans
thf(fact_113_less__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% less_imp_le
thf(fact_114_antisym__conv2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_115_antisym__conv1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_116_le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% le_neq_trans
thf(fact_117_not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% not_less
thf(fact_118_not__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X2 ) ) ).

% not_le
thf(fact_119_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_120_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_121_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_122_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_123_less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% less_le
thf(fact_124_le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_nat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% le_less
thf(fact_125_leI,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% leI
thf(fact_126_leD,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_127_list__strict__asc__trans__le,axiom,
    ! [Xs: list_nat] :
      ( ( list_strict_asc_nat @ Xs )
     => ! [J4: nat] :
          ( ( ord_less_nat @ J4 @ ( size_size_list_nat @ Xs ) )
         => ! [I4: nat] :
              ( ( ord_less_eq_nat @ I4 @ J4 )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs @ I4 ) @ ( nth_nat @ Xs @ J4 ) ) ) ) ) ).

% list_strict_asc_trans_le
thf(fact_128_list__asc__trans__le,axiom,
    ( list_asc_nat
    = ( ^ [Xs2: list_nat] :
        ! [J: nat] :
          ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
         => ! [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ J )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Xs2 @ J ) ) ) ) ) ) ).

% list_asc_trans_le
thf(fact_129_list__strict__desc__trans,axiom,
    ( list_strict_desc_nat
    = ( ^ [Xs2: list_nat] :
        ! [J: nat] :
          ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
         => ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ord_less_nat @ ( nth_nat @ Xs2 @ J ) @ ( nth_nat @ Xs2 @ I2 ) ) ) ) ) ) ).

% list_strict_desc_trans
thf(fact_130_list__strict__asc__trans,axiom,
    ( list_strict_asc_nat
    = ( ^ [Xs2: list_nat] :
        ! [J: nat] :
          ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
         => ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ord_less_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Xs2 @ J ) ) ) ) ) ) ).

% list_strict_asc_trans
thf(fact_131_list__asc__trans,axiom,
    ( list_asc_nat
    = ( ^ [Xs2: list_nat] :
        ! [J: nat] :
          ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
         => ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Xs2 @ J ) ) ) ) ) ) ).

% list_asc_trans
thf(fact_132_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M2: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M2 ) ) ) ).

% nat_descend_induct
thf(fact_133_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X5: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X5 )
                    & ( ord_less_nat @ X5 @ C2 ) )
                 => ( P @ X5 ) )
              & ! [D: nat] :
                  ( ! [X4: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X4 )
                        & ( ord_less_nat @ X4 @ D ) )
                     => ( P @ X4 ) )
                 => ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_134_le__greater__neq__conv,axiom,
    ( ord_less_eq_nat
    = ( ^ [N2: nat,A2: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ A2 @ X3 )
         => ( N2 != X3 ) ) ) ) ).

% le_greater_neq_conv
thf(fact_135_greater__le__neq__conv,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,N2: nat] :
        ! [X3: nat] :
          ( ( ord_less_eq_nat @ X3 @ A2 )
         => ( N2 != X3 ) ) ) ) ).

% greater_le_neq_conv
thf(fact_136_less__ge__neq__conv,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat,A2: nat] :
        ! [X3: nat] :
          ( ( ord_less_eq_nat @ A2 @ X3 )
         => ( N2 != X3 ) ) ) ) ).

% less_ge_neq_conv
thf(fact_137_list__strict__asc__imp__list__asc,axiom,
    ! [Xs: list_nat] :
      ( ( list_strict_asc_nat @ Xs )
     => ( list_asc_nat @ Xs ) ) ).

% list_strict_asc_imp_list_asc
thf(fact_138_list__strict__desc__imp__list__desc,axiom,
    ! [Xs: list_nat] :
      ( ( list_strict_desc_nat @ Xs )
     => ( list_desc_nat @ Xs ) ) ).

% list_strict_desc_imp_list_desc
thf(fact_139_ge__less__neq__conv,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,N2: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ A2 )
         => ( N2 != X3 ) ) ) ) ).

% ge_less_neq_conv
thf(fact_140_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z3 )
     => ~ ( ord_less_eq_nat @ T @ X5 ) ) ).

% minf(8)
thf(fact_141_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z3 )
     => ( ord_less_eq_nat @ X5 @ T ) ) ).

% minf(6)
thf(fact_142_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z3 @ X5 )
     => ( ord_less_eq_nat @ T @ X5 ) ) ).

% pinf(8)
thf(fact_143_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z3 @ X5 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_144_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z3 @ X5 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_145_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z3 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_146_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z3 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_147_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z3 @ X5 )
     => ~ ( ord_less_nat @ X5 @ T ) ) ).

% pinf(5)
thf(fact_148_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z3 @ X5 )
     => ( ord_less_nat @ T @ X5 ) ) ).

% pinf(7)
thf(fact_149_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z3 )
           => ( ( ( P @ X5 )
                & ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_150_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z3 )
           => ( ( ( P @ X5 )
                | ( Q @ X5 ) )
              = ( ( P4 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_151_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z3 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_152_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z3 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_153_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z3 )
     => ( ord_less_nat @ X5 @ T ) ) ).

% minf(5)
thf(fact_154_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z3 )
     => ~ ( ord_less_nat @ T @ X5 ) ) ).

% minf(7)
thf(fact_155_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z3 @ X5 )
     => ~ ( ord_less_eq_nat @ X5 @ T ) ) ).

% pinf(6)
thf(fact_156_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A4: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A4 ) )
      = ( ord_less_nat @ A4 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_157_sorted__iff__nth__mono,axiom,
    ( linorder_sorted_nat
    = ( ^ [Xs2: list_nat] :
        ! [I2: nat,J: nat] :
          ( ( ord_less_eq_nat @ I2 @ J )
         => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
           => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Xs2 @ J ) ) ) ) ) ) ).

% sorted_iff_nth_mono
thf(fact_158_sorted__nth__mono,axiom,
    ! [Xs: list_nat,I3: nat,J2: nat] :
      ( ( linorder_sorted_nat @ Xs )
     => ( ( ord_less_eq_nat @ I3 @ J2 )
       => ( ( ord_less_nat @ J2 @ ( size_size_list_nat @ Xs ) )
         => ( ord_less_eq_nat @ ( nth_nat @ Xs @ I3 ) @ ( nth_nat @ Xs @ J2 ) ) ) ) ) ).

% sorted_nth_mono
thf(fact_159_list__ord__le__sorted__eq,axiom,
    list_asc_nat = linorder_sorted_nat ).

% list_ord_le_sorted_eq
thf(fact_160_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_161_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_162_sorted__iff__nth__mono__less,axiom,
    ( linorder_sorted_nat
    = ( ^ [Xs2: list_nat] :
        ! [I2: nat,J: nat] :
          ( ( ord_less_nat @ I2 @ J )
         => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
           => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Xs2 @ J ) ) ) ) ) ) ).

% sorted_iff_nth_mono_less
thf(fact_163_sorted__rev__nth__mono,axiom,
    ! [Xs: list_nat,I3: nat,J2: nat] :
      ( ( linorder_sorted_nat @ ( rev_nat @ Xs ) )
     => ( ( ord_less_eq_nat @ I3 @ J2 )
       => ( ( ord_less_nat @ J2 @ ( size_size_list_nat @ Xs ) )
         => ( ord_less_eq_nat @ ( nth_nat @ Xs @ J2 ) @ ( nth_nat @ Xs @ I3 ) ) ) ) ) ).

% sorted_rev_nth_mono
thf(fact_164_sorted__rev__iff__nth__mono,axiom,
    ! [Xs: list_nat] :
      ( ( linorder_sorted_nat @ ( rev_nat @ Xs ) )
      = ( ! [I2: nat,J: nat] :
            ( ( ord_less_eq_nat @ I2 @ J )
           => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs ) )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs @ J ) @ ( nth_nat @ Xs @ I2 ) ) ) ) ) ) ).

% sorted_rev_iff_nth_mono
thf(fact_165_sorted__iff__nth__Suc,axiom,
    ( linorder_sorted_nat
    = ( ^ [Xs2: list_nat] :
        ! [I2: nat] :
          ( ( ord_less_nat @ ( suc @ I2 ) @ ( size_size_list_nat @ Xs2 ) )
         => ( ord_less_eq_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Xs2 @ ( suc @ I2 ) ) ) ) ) ) ).

% sorted_iff_nth_Suc
thf(fact_166_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_167_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_168_rev__is__rev__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( rev_nat @ Xs )
        = ( rev_nat @ Ys ) )
      = ( Xs = Ys ) ) ).

% rev_is_rev_conv
thf(fact_169_rev__is__rev__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = ( rev_a @ Ys ) )
      = ( Xs = Ys ) ) ).

% rev_is_rev_conv
thf(fact_170_rev__rev__ident,axiom,
    ! [Xs: list_nat] :
      ( ( rev_nat @ ( rev_nat @ Xs ) )
      = Xs ) ).

% rev_rev_ident
thf(fact_171_rev__rev__ident,axiom,
    ! [Xs: list_a] :
      ( ( rev_a @ ( rev_a @ Xs ) )
      = Xs ) ).

% rev_rev_ident
thf(fact_172_Suc__less__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% Suc_less_eq
thf(fact_173_Suc__mono,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_174_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_175_Suc__le__mono,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M2 ) )
      = ( ord_less_eq_nat @ N @ M2 ) ) ).

% Suc_le_mono
thf(fact_176_length__rev,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( rev_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rev
thf(fact_177_length__rev,axiom,
    ! [Xs: list_nat] :
      ( ( size_size_list_nat @ ( rev_nat @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_rev
thf(fact_178_Suc__leD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% Suc_leD
thf(fact_179_le__SucE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M2 @ N )
       => ( M2
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_180_le__SucI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_181_Suc__le__D,axiom,
    ! [N: nat,M4: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
     => ? [M5: nat] :
          ( M4
          = ( suc @ M5 ) ) ) ).

% Suc_le_D
thf(fact_182_le__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M2 @ N )
        | ( M2
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_183_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_184_not__less__eq__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M2 @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M2 ) ) ).

% not_less_eq_eq
thf(fact_185_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N3 )
             => ( P @ M3 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_186_nat__induct__at__least,axiom,
    ! [M2: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( P @ M2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M2 @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_187_transitive__stepwise__le,axiom,
    ! [M2: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ! [X4: nat] : ( R @ X4 @ X4 )
       => ( ! [X4: nat,Y4: nat,Z3: nat] :
              ( ( R @ X4 @ Y4 )
             => ( ( R @ Y4 @ Z3 )
               => ( R @ X4 @ Z3 ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M2 @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_188_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_189_Suc__inject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
     => ( X2 = Y2 ) ) ).

% Suc_inject
thf(fact_190_rev__swap,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( rev_nat @ Xs )
        = Ys )
      = ( Xs
        = ( rev_nat @ Ys ) ) ) ).

% rev_swap
thf(fact_191_rev__swap,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = Ys )
      = ( Xs
        = ( rev_a @ Ys ) ) ) ).

% rev_swap
thf(fact_192_not__less__less__Suc__eq,axiom,
    ! [N: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N @ M2 )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
        = ( N = M2 ) ) ) ).

% not_less_less_Suc_eq
thf(fact_193_strict__inc__induct,axiom,
    ! [I3: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_nat @ I3 @ J2 )
     => ( ! [I: nat] :
            ( ( J2
              = ( suc @ I ) )
           => ( P @ I ) )
       => ( ! [I: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( ( P @ ( suc @ I ) )
               => ( P @ I ) ) )
         => ( P @ I3 ) ) ) ) ).

% strict_inc_induct
thf(fact_194_less__Suc__induct,axiom,
    ! [I3: nat,J2: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I3 @ J2 )
     => ( ! [I: nat] : ( P @ I @ ( suc @ I ) )
       => ( ! [I: nat,J3: nat,K2: nat] :
              ( ( ord_less_nat @ I @ J3 )
             => ( ( ord_less_nat @ J3 @ K2 )
               => ( ( P @ I @ J3 )
                 => ( ( P @ J3 @ K2 )
                   => ( P @ I @ K2 ) ) ) ) )
         => ( P @ I3 @ J2 ) ) ) ) ).

% less_Suc_induct
thf(fact_195_less__trans__Suc,axiom,
    ! [I3: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I3 @ J2 )
     => ( ( ord_less_nat @ J2 @ K )
       => ( ord_less_nat @ ( suc @ I3 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_196_Suc__less__SucD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_less_SucD
thf(fact_197_less__antisym,axiom,
    ! [N: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N @ M2 )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
       => ( M2 = N ) ) ) ).

% less_antisym
thf(fact_198_Suc__less__eq2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M2 )
      = ( ? [M6: nat] :
            ( ( M2
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_199_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ N )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ I2 ) ) ) ) ).

% All_less_Suc
thf(fact_200_not__less__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M2 @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M2 ) ) ) ).

% not_less_eq
thf(fact_201_less__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) ) ) ).

% less_Suc_eq
thf(fact_202_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ N )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ I2 ) ) ) ) ).

% Ex_less_Suc
thf(fact_203_less__SucI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_204_less__SucE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M2 @ N )
       => ( M2 = N ) ) ) ).

% less_SucE
thf(fact_205_Suc__lessI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ( suc @ M2 )
         != N )
       => ( ord_less_nat @ ( suc @ M2 ) @ N ) ) ) ).

% Suc_lessI
thf(fact_206_Suc__lessE,axiom,
    ! [I3: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I3 ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less_nat @ I3 @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_207_Suc__lessD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_lessD
thf(fact_208_Nat_OlessE,axiom,
    ! [I3: nat,K: nat] :
      ( ( ord_less_nat @ I3 @ K )
     => ( ( K
         != ( suc @ I3 ) )
       => ~ ! [J3: nat] :
              ( ( ord_less_nat @ I3 @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% Nat.lessE
thf(fact_209_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M2: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M2 ) )
        = ( ord_less_nat @ N @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_210_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_211_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_212_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_213_le__imp__less__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_214_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_215_less__Suc__eq__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_Suc_eq_le
thf(fact_216_le__less__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
        = ( N = M2 ) ) ) ).

% le_less_Suc_eq
thf(fact_217_Suc__le__lessD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_le_lessD
thf(fact_218_inc__induct,axiom,
    ! [I3: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( P @ J2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N3 )
             => ( ( ord_less_nat @ N3 @ J2 )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I3 ) ) ) ) ).

% inc_induct
thf(fact_219_dec__induct,axiom,
    ! [I3: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I3 @ J2 )
     => ( ( P @ I3 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N3 )
             => ( ( ord_less_nat @ N3 @ J2 )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J2 ) ) ) ) ).

% dec_induct
thf(fact_220_Suc__le__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
      = ( ord_less_nat @ M2 @ N ) ) ).

% Suc_le_eq
thf(fact_221_Suc__leI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( suc @ M2 ) @ N ) ) ).

% Suc_leI
thf(fact_222_sorted__rev__iff__nth__Suc,axiom,
    ! [Xs: list_nat] :
      ( ( linorder_sorted_nat @ ( rev_nat @ Xs ) )
      = ( ! [I2: nat] :
            ( ( ord_less_nat @ ( suc @ I2 ) @ ( size_size_list_nat @ Xs ) )
           => ( ord_less_eq_nat @ ( nth_nat @ Xs @ ( suc @ I2 ) ) @ ( nth_nat @ Xs @ I2 ) ) ) ) ) ).

% sorted_rev_iff_nth_Suc
thf(fact_223_nat__induct_H,axiom,
    ! [P: nat > $o,N0: nat,N: nat] :
      ( ( P @ N0 )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ N0 @ N3 )
           => ( ( P @ N3 )
             => ( P @ ( suc @ N3 ) ) ) )
       => ( ( ord_less_eq_nat @ N0 @ N )
         => ( P @ N ) ) ) ) ).

% nat_induct'
thf(fact_224_rev__nth,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( rev_a @ Xs ) @ N )
        = ( nth_a @ Xs @ ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ ( suc @ N ) ) ) ) ) ).

% rev_nth
thf(fact_225_rev__nth,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_nat @ ( rev_nat @ Xs ) @ N )
        = ( nth_nat @ Xs @ ( minus_minus_nat @ ( size_size_list_nat @ Xs ) @ ( suc @ N ) ) ) ) ) ).

% rev_nth
thf(fact_226_list__ex__length,axiom,
    ( list_ex_a
    = ( ^ [P3: a > $o,Xs2: list_a] :
        ? [N2: nat] :
          ( ( ord_less_nat @ N2 @ ( size_size_list_a @ Xs2 ) )
          & ( P3 @ ( nth_a @ Xs2 @ N2 ) ) ) ) ) ).

% list_ex_length
thf(fact_227_list__ex__length,axiom,
    ( list_ex_nat
    = ( ^ [P3: nat > $o,Xs2: list_nat] :
        ? [N2: nat] :
          ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
          & ( P3 @ ( nth_nat @ Xs2 @ N2 ) ) ) ) ) ).

% list_ex_length
thf(fact_228_Suc__diff__diff,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_229_diff__Suc__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% diff_Suc_Suc
thf(fact_230_diff__diff__cancel,axiom,
    ! [I3: nat,N: nat] :
      ( ( ord_less_eq_nat @ I3 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I3 ) )
        = I3 ) ) ).

% diff_diff_cancel
thf(fact_231_list__ex__rev,axiom,
    ! [P: nat > $o,Xs: list_nat] :
      ( ( list_ex_nat @ P @ ( rev_nat @ Xs ) )
      = ( list_ex_nat @ P @ Xs ) ) ).

% list_ex_rev
thf(fact_232_list__ex__rev,axiom,
    ! [P: a > $o,Xs: list_a] :
      ( ( list_ex_a @ P @ ( rev_a @ Xs ) )
      = ( list_ex_a @ P @ Xs ) ) ).

% list_ex_rev
thf(fact_233_i__append__nth2,axiom,
    ! [Xs: list_nat,N: nat,F: nat > nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N )
     => ( ( listIn923761578nd_nat @ Xs @ F @ N )
        = ( F @ ( minus_minus_nat @ N @ ( size_size_list_nat @ Xs ) ) ) ) ) ).

% i_append_nth2
thf(fact_234_i__append__nth2,axiom,
    ! [Xs: list_a,N: nat,F: nat > a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N )
     => ( ( listIn1312259492pend_a @ Xs @ F @ N )
        = ( F @ ( minus_minus_nat @ N @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% i_append_nth2
thf(fact_235_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I3: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ ( minus_minus_nat @ K @ I3 ) ) ) ) ).

% zero_induct_lemma
thf(fact_236_less__diff__imp__less,axiom,
    ! [I3: nat,J2: nat,M2: nat] :
      ( ( ord_less_nat @ I3 @ ( minus_minus_nat @ J2 @ M2 ) )
     => ( ord_less_nat @ I3 @ J2 ) ) ).

% less_diff_imp_less
thf(fact_237_nat__diff__left__cancel__eq1,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ K @ M2 )
        = ( minus_minus_nat @ K @ N ) )
     => ( ( ord_less_nat @ M2 @ K )
       => ( M2 = N ) ) ) ).

% nat_diff_left_cancel_eq1
thf(fact_238_nat__diff__left__cancel__eq2,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ K @ M2 )
        = ( minus_minus_nat @ K @ N ) )
     => ( ( ord_less_nat @ N @ K )
       => ( M2 = N ) ) ) ).

% nat_diff_left_cancel_eq2
thf(fact_239_nat__diff__left__cancel__less,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ ( minus_minus_nat @ K @ M2 ) @ ( minus_minus_nat @ K @ N ) )
     => ( ord_less_nat @ N @ M2 ) ) ).

% nat_diff_left_cancel_less
thf(fact_240_nat__diff__right__cancel__eq1,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ K )
        = ( minus_minus_nat @ N @ K ) )
     => ( ( ord_less_nat @ K @ M2 )
       => ( M2 = N ) ) ) ).

% nat_diff_right_cancel_eq1
thf(fact_241_nat__diff__right__cancel__eq2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ K )
        = ( minus_minus_nat @ N @ K ) )
     => ( ( ord_less_nat @ K @ N )
       => ( M2 = N ) ) ) ).

% nat_diff_right_cancel_eq2
thf(fact_242_nat__diff__right__cancel__less,axiom,
    ! [N: nat,K: nat,M2: nat] :
      ( ( ord_less_nat @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M2 @ K ) )
     => ( ord_less_nat @ N @ M2 ) ) ).

% nat_diff_right_cancel_less
thf(fact_243_diff__less__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ord_less_nat @ M2 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).

% diff_less_mono2
thf(fact_244_less__imp__diff__less,axiom,
    ! [J2: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J2 @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J2 @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_245_diff__commute,axiom,
    ! [I3: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J2 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I3 @ K ) @ J2 ) ) ).

% diff_commute
thf(fact_246_diff__le__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).

% diff_le_mono2
thf(fact_247_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_248_diff__le__self,axiom,
    ! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ).

% diff_le_self
thf(fact_249_diff__le__mono,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_250_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M2 @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_251_le__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M2 @ N ) ) ) ) ).

% le_diff_iff

% Conjectures (3)
thf(conj_0,hypothesis,
    ! [X5: nat] :
      ( ( listIn1312259492pend_a @ xs @ f @ X5 )
      = ( listIn1312259492pend_a @ ys @ g @ X5 ) ) ).

thf(conj_1,hypothesis,
    ord_less_eq_nat @ ( size_size_list_a @ xs ) @ ( size_size_list_a @ ys ) ).

thf(conj_2,conjecture,
    ! [I: nat] :
      ( ~ ( ord_less_nat @ I @ ( size_size_list_a @ xs ) )
      | ( ( nth_a @ xs @ I )
        = ( nth_a @ ys @ I ) ) ) ).

%------------------------------------------------------------------------------