TPTP Problem File: ITP067^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP067^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer HeapImperative problem prob_172__5340680_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : HeapImperative/prob_172__5340680_1 [Des21]

% Status   : Theorem
% Rating   : 0.38 v9.0.0, 0.60 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0
% Syntax   : Number of formulae    :  216 (  63 unt;  47 typ;   0 def)
%            Number of atoms       :  532 ( 157 equ;   0 cnn)
%            Maximal formula atoms :   12 (   3 avg)
%            Number of connectives : 2064 (  75   ~;   8   |;  42   &;1668   @)
%                                         (   0 <=>; 271  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   7 avg)
%            Number of types       :    5 (   4 usr)
%            Number of type conns  :  224 ( 224   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   46 (  43 usr;  14 con; 0-3 aty)
%            Number of variables   :  553 (  40   ^; 506   !;   7   ?; 553   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:30:00.885
%------------------------------------------------------------------------------
% Could-be-implicit typings (4)
thf(ty_n_t__Multiset__Omultiset_Itf__a_J,type,
    multiset_a: $tType ).

thf(ty_n_t__Heap__OTree_Itf__a_J,type,
    tree_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (43)
thf(sy_c_Groups_Ominus__class_Ominus_001t__Multiset__Omultiset_Itf__a_J,type,
    minus_1649712171iset_a: multiset_a > multiset_a > multiset_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Multiset__Omultiset_Itf__a_J,type,
    plus_plus_multiset_a: multiset_a > multiset_a > multiset_a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_Itf__a_J,type,
    zero_zero_multiset_a: multiset_a ).

thf(sy_c_HeapImperative__Mirabelle__ksbqzsoydx_Oleft_001tf__a,type,
    heapIm1140443833left_a: tree_a > tree_a ).

thf(sy_c_HeapImperative__Mirabelle__ksbqzsoydx_Oright_001tf__a,type,
    heapIm1257206334ight_a: tree_a > tree_a ).

thf(sy_c_HeapImperative__Mirabelle__ksbqzsoydx_OsiftDown_001tf__a,type,
    heapIm1091024090Down_a: tree_a > tree_a ).

thf(sy_c_Heap_OTree_OE_001tf__a,type,
    e_a: tree_a ).

thf(sy_c_Heap_OTree_OT_001tf__a,type,
    t_a: a > tree_a > tree_a > tree_a ).

thf(sy_c_Heap_OTree_Opred__Tree_001tf__a,type,
    pred_Tree_a: ( a > $o ) > tree_a > $o ).

thf(sy_c_Heap_OTree_Oset__Tree_001tf__a,type,
    set_Tree_a: tree_a > set_a ).

thf(sy_c_Heap_Oin__tree_001tf__a,type,
    in_tree_a: a > tree_a > $o ).

thf(sy_c_Heap_Ois__heap_001tf__a,type,
    is_heap_a: tree_a > $o ).

thf(sy_c_Heap_Omultiset_001tf__a,type,
    multiset_a2: tree_a > multiset_a ).

thf(sy_c_Heap_Oval_001tf__a,type,
    val_a: tree_a > a ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001tf__a,type,
    lattic146396397_Max_a: set_a > a ).

thf(sy_c_Multiset_Oadd__mset_001tf__a,type,
    add_mset_a: a > multiset_a > multiset_a ).

thf(sy_c_Multiset_Oset__mset_001tf__a,type,
    set_mset_a: multiset_a > set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_M_062_I_Eo_Mtf__a_J_J,type,
    ord_less_eq_o_o_a: ( $o > $o > a ) > ( $o > $o > a ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mtf__a_J,type,
    ord_less_eq_o_a: ( $o > a ) > ( $o > a ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Heap__OTree_Itf__a_J_M_Eo_J,type,
    ord_less_eq_Tree_a_o: ( tree_a > $o ) > ( tree_a > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_Itf__a_M_Eo_J,type,
    ord_less_eq_a_o: ( a > $o ) > ( a > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Multiset__Omultiset_Itf__a_J,type,
    ord_le1199012836iset_a: multiset_a > multiset_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__a,type,
    ord_less_eq_a: a > a > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001_062_I_Eo_Mtf__a_J,type,
    order_Greatest_o_a: ( ( $o > a ) > $o ) > $o > a ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001tf__a,type,
    order_Greatest_a: ( a > $o ) > a ).

thf(sy_c_Set_OBall_001tf__a,type,
    ball_a: set_a > ( a > $o ) > $o ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Ois__singleton_001tf__a,type,
    is_singleton_a: set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_l1____,type,
    l1: tree_a ).

thf(sy_v_l2____,type,
    l2: tree_a ).

thf(sy_v_r1____,type,
    r1: tree_a ).

thf(sy_v_r2____,type,
    r2: tree_a ).

thf(sy_v_t,type,
    t: tree_a ).

thf(sy_v_v,type,
    v: a ).

thf(sy_v_v1____,type,
    v1: a ).

thf(sy_v_v2____,type,
    v2: a ).

thf(sy_v_v_H____,type,
    v3: a ).

% Relevant facts (168)
thf(fact_0_False,axiom,
    ~ ( ( v = v3 )
      | ( v = v1 )
      | ( v = v2 ) ) ).

% False
thf(fact_1__092_060open_062in__tree_Av_A_IsiftDown_At_J_092_060close_062,axiom,
    in_tree_a @ v @ ( heapIm1091024090Down_a @ t ) ).

% \<open>in_tree v (siftDown t)\<close>
thf(fact_2_True,axiom,
    ord_less_eq_a @ v2 @ v1 ).

% True
thf(fact_3__C5__1_Oprems_C,axiom,
    in_tree_a @ v @ ( heapIm1091024090Down_a @ ( t_a @ v3 @ ( t_a @ v1 @ l1 @ r1 ) @ ( t_a @ v2 @ l2 @ r2 ) ) ) ).

% "5_1.prems"
thf(fact_4_Tree_Oinject,axiom,
    ! [X21: a,X22: tree_a,X23: tree_a,Y21: a,Y22: tree_a,Y23: tree_a] :
      ( ( ( t_a @ X21 @ X22 @ X23 )
        = ( t_a @ Y21 @ Y22 @ Y23 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 )
        & ( X23 = Y23 ) ) ) ).

% Tree.inject
thf(fact_5_in__tree_Osimps_I2_J,axiom,
    ! [V: a,V2: a,L: tree_a,R: tree_a] :
      ( ( in_tree_a @ V @ ( t_a @ V2 @ L @ R ) )
      = ( ( V = V2 )
        | ( in_tree_a @ V @ L )
        | ( in_tree_a @ V @ R ) ) ) ).

% in_tree.simps(2)
thf(fact_6__C5__1_Ohyps_C_I2_J,axiom,
    ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ v2 @ l2 @ r2 ) ) @ ( val_a @ ( t_a @ v1 @ l1 @ r1 ) ) )
   => ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ v2 @ l2 @ r2 ) ) @ v3 )
     => ( ( in_tree_a @ v @ ( heapIm1091024090Down_a @ ( t_a @ v3 @ ( heapIm1140443833left_a @ ( t_a @ v2 @ l2 @ r2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ v2 @ l2 @ r2 ) ) ) ) )
       => ( in_tree_a @ v @ ( t_a @ v3 @ ( heapIm1140443833left_a @ ( t_a @ v2 @ l2 @ r2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ v2 @ l2 @ r2 ) ) ) ) ) ) ) ).

% "5_1.hyps"(2)
thf(fact_7__C5__1_Ohyps_C_I1_J,axiom,
    ( ( ord_less_eq_a @ ( val_a @ ( t_a @ v2 @ l2 @ r2 ) ) @ ( val_a @ ( t_a @ v1 @ l1 @ r1 ) ) )
   => ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ v1 @ l1 @ r1 ) ) @ v3 )
     => ( ( in_tree_a @ v @ ( heapIm1091024090Down_a @ ( t_a @ v3 @ ( heapIm1140443833left_a @ ( t_a @ v1 @ l1 @ r1 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ v1 @ l1 @ r1 ) ) ) ) )
       => ( in_tree_a @ v @ ( t_a @ v3 @ ( heapIm1140443833left_a @ ( t_a @ v1 @ l1 @ r1 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ v1 @ l1 @ r1 ) ) ) ) ) ) ) ).

% "5_1.hyps"(1)
thf(fact_8_left_Osimps,axiom,
    ! [V: a,L: tree_a,R: tree_a] :
      ( ( heapIm1140443833left_a @ ( t_a @ V @ L @ R ) )
      = L ) ).

% left.simps
thf(fact_9_right_Osimps,axiom,
    ! [V: a,L: tree_a,R: tree_a] :
      ( ( heapIm1257206334ight_a @ ( t_a @ V @ L @ R ) )
      = R ) ).

% right.simps
thf(fact_10_siftDown_Ocases,axiom,
    ! [X: tree_a] :
      ( ( X != e_a )
     => ( ! [V3: a] :
            ( X
           != ( t_a @ V3 @ e_a @ e_a ) )
       => ( ! [V3: a,Va: a,Vb: tree_a,Vc: tree_a] :
              ( X
             != ( t_a @ V3 @ ( t_a @ Va @ Vb @ Vc ) @ e_a ) )
         => ( ! [V3: a,Va: a,Vb: tree_a,Vc: tree_a] :
                ( X
               != ( t_a @ V3 @ e_a @ ( t_a @ Va @ Vb @ Vc ) ) )
           => ~ ! [V3: a,Va: a,Vb: tree_a,Vc: tree_a,Vd: a,Ve: tree_a,Vf: tree_a] :
                  ( X
                 != ( t_a @ V3 @ ( t_a @ Va @ Vb @ Vc ) @ ( t_a @ Vd @ Ve @ Vf ) ) ) ) ) ) ) ).

% siftDown.cases
thf(fact_11_Tree_Opred__inject_I2_J,axiom,
    ! [P: a > $o,A: a,Aa: tree_a,Ab: tree_a] :
      ( ( pred_Tree_a @ P @ ( t_a @ A @ Aa @ Ab ) )
      = ( ( P @ A )
        & ( pred_Tree_a @ P @ Aa )
        & ( pred_Tree_a @ P @ Ab ) ) ) ).

% Tree.pred_inject(2)
thf(fact_12_in__tree_Osimps_I1_J,axiom,
    ! [V: a] :
      ~ ( in_tree_a @ V @ e_a ) ).

% in_tree.simps(1)
thf(fact_13_Tree_Oset__intros_I3_J,axiom,
    ! [Ya: a,X23: tree_a,X21: a,X22: tree_a] :
      ( ( member_a @ Ya @ ( set_Tree_a @ X23 ) )
     => ( member_a @ Ya @ ( set_Tree_a @ ( t_a @ X21 @ X22 @ X23 ) ) ) ) ).

% Tree.set_intros(3)
thf(fact_14_Tree_Opred__inject_I1_J,axiom,
    ! [P: a > $o] : ( pred_Tree_a @ P @ e_a ) ).

% Tree.pred_inject(1)
thf(fact_15_siftDown_Osimps_I6_J,axiom,
    ! [Va2: a,Vb2: tree_a,Vc2: tree_a,Vd2: a,Ve2: tree_a,Vf2: tree_a,V: a] :
      ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
       => ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
              = ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) )
          & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
              = ( t_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ ( heapIm1091024090Down_a @ ( t_a @ V @ ( heapIm1140443833left_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) ) ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) )
      & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
       => ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
              = ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) )
          & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
              = ( t_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( heapIm1091024090Down_a @ ( t_a @ V @ ( heapIm1140443833left_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).

% siftDown.simps(6)
thf(fact_16_siftDown_Osimps_I5_J,axiom,
    ! [Vd2: a,Ve2: tree_a,Vf2: tree_a,Va2: a,Vb2: tree_a,Vc2: tree_a,V: a] :
      ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
       => ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
              = ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) ) )
          & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
              = ( t_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( heapIm1091024090Down_a @ ( t_a @ V @ ( heapIm1140443833left_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) ) ) ) )
      & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
       => ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
              = ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) ) )
          & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ V )
           => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
              = ( t_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( heapIm1091024090Down_a @ ( t_a @ V @ ( heapIm1140443833left_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) ) ) ) ) ) ) ) ) ).

% siftDown.simps(5)
thf(fact_17_siftDown_Osimps_I4_J,axiom,
    ! [Va2: a,Vb2: tree_a,Vc2: tree_a,V: a] :
      ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
       => ( ( heapIm1091024090Down_a @ ( t_a @ V @ e_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
          = ( t_a @ V @ e_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) )
      & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
       => ( ( heapIm1091024090Down_a @ ( t_a @ V @ e_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
          = ( t_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ e_a @ ( heapIm1091024090Down_a @ ( t_a @ V @ ( heapIm1140443833left_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ).

% siftDown.simps(4)
thf(fact_18_siftDown_Osimps_I3_J,axiom,
    ! [Va2: a,Vb2: tree_a,Vc2: tree_a,V: a] :
      ( ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
       => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ e_a ) )
          = ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ e_a ) ) )
      & ( ~ ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
       => ( ( heapIm1091024090Down_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ e_a ) )
          = ( t_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( heapIm1091024090Down_a @ ( t_a @ V @ ( heapIm1140443833left_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ ( heapIm1257206334ight_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) @ e_a ) ) ) ) ).

% siftDown.simps(3)
thf(fact_19_siftDown_Osimps_I1_J,axiom,
    ( ( heapIm1091024090Down_a @ e_a )
    = e_a ) ).

% siftDown.simps(1)
thf(fact_20_Tree_Opred__cong,axiom,
    ! [X: tree_a,Ya: tree_a,P: a > $o,Pa: a > $o] :
      ( ( X = Ya )
     => ( ! [Z: a] :
            ( ( member_a @ Z @ ( set_Tree_a @ Ya ) )
           => ( ( P @ Z )
              = ( Pa @ Z ) ) )
       => ( ( pred_Tree_a @ P @ X )
          = ( pred_Tree_a @ Pa @ Ya ) ) ) ) ).

% Tree.pred_cong
thf(fact_21_Tree_Opred__mono__strong,axiom,
    ! [P: a > $o,X: tree_a,Pa: a > $o] :
      ( ( pred_Tree_a @ P @ X )
     => ( ! [Z: a] :
            ( ( member_a @ Z @ ( set_Tree_a @ X ) )
           => ( ( P @ Z )
             => ( Pa @ Z ) ) )
       => ( pred_Tree_a @ Pa @ X ) ) ) ).

% Tree.pred_mono_strong
thf(fact_22_siftDown__in__tree,axiom,
    ! [T: tree_a] :
      ( ( T != e_a )
     => ( in_tree_a @ ( val_a @ ( heapIm1091024090Down_a @ T ) ) @ T ) ) ).

% siftDown_in_tree
thf(fact_23_siftDown__Node,axiom,
    ! [T: tree_a,V: a,L: tree_a,R: tree_a] :
      ( ( T
        = ( t_a @ V @ L @ R ) )
     => ? [L2: tree_a,V4: a,R2: tree_a] :
          ( ( ( heapIm1091024090Down_a @ T )
            = ( t_a @ V4 @ L2 @ R2 ) )
          & ( ord_less_eq_a @ V @ V4 ) ) ) ).

% siftDown_Node
thf(fact_24_is__heap_Ocases,axiom,
    ! [X: tree_a] :
      ( ( X != e_a )
     => ( ! [V3: a] :
            ( X
           != ( t_a @ V3 @ e_a @ e_a ) )
       => ( ! [V3: a,Va: a,Vb: tree_a,Vc: tree_a] :
              ( X
             != ( t_a @ V3 @ e_a @ ( t_a @ Va @ Vb @ Vc ) ) )
         => ( ! [V3: a,Va: a,Vb: tree_a,Vc: tree_a] :
                ( X
               != ( t_a @ V3 @ ( t_a @ Va @ Vb @ Vc ) @ e_a ) )
           => ~ ! [V3: a,Va: a,Vb: tree_a,Vc: tree_a,Vd: a,Ve: tree_a,Vf: tree_a] :
                  ( X
                 != ( t_a @ V3 @ ( t_a @ Va @ Vb @ Vc ) @ ( t_a @ Vd @ Ve @ Vf ) ) ) ) ) ) ) ).

% is_heap.cases
thf(fact_25_Tree_Oexhaust,axiom,
    ! [Y: tree_a] :
      ( ( Y != e_a )
     => ~ ! [X212: a,X222: tree_a,X232: tree_a] :
            ( Y
           != ( t_a @ X212 @ X222 @ X232 ) ) ) ).

% Tree.exhaust
thf(fact_26_Tree_Oinduct,axiom,
    ! [P: tree_a > $o,Tree: tree_a] :
      ( ( P @ e_a )
     => ( ! [X1: a,X2: tree_a,X3: tree_a] :
            ( ( P @ X2 )
           => ( ( P @ X3 )
             => ( P @ ( t_a @ X1 @ X2 @ X3 ) ) ) )
       => ( P @ Tree ) ) ) ).

% Tree.induct
thf(fact_27_Tree_Odistinct_I1_J,axiom,
    ! [X21: a,X22: tree_a,X23: tree_a] :
      ( e_a
     != ( t_a @ X21 @ X22 @ X23 ) ) ).

% Tree.distinct(1)
thf(fact_28_siftDown_Osimps_I2_J,axiom,
    ! [V: a] :
      ( ( heapIm1091024090Down_a @ ( t_a @ V @ e_a @ e_a ) )
      = ( t_a @ V @ e_a @ e_a ) ) ).

% siftDown.simps(2)
thf(fact_29_val_Osimps,axiom,
    ! [V: a,Uu: tree_a,Uv: tree_a] :
      ( ( val_a @ ( t_a @ V @ Uu @ Uv ) )
      = V ) ).

% val.simps
thf(fact_30_Tree_Oset__cases,axiom,
    ! [E: a,A: tree_a] :
      ( ( member_a @ E @ ( set_Tree_a @ A ) )
     => ( ! [Z2: tree_a,Z3: tree_a] :
            ( A
           != ( t_a @ E @ Z2 @ Z3 ) )
       => ( ! [Z1: a,Z2: tree_a] :
              ( ? [Z3: tree_a] :
                  ( A
                  = ( t_a @ Z1 @ Z2 @ Z3 ) )
             => ~ ( member_a @ E @ ( set_Tree_a @ Z2 ) ) )
         => ~ ! [Z1: a,Z2: tree_a,Z3: tree_a] :
                ( ( A
                  = ( t_a @ Z1 @ Z2 @ Z3 ) )
               => ~ ( member_a @ E @ ( set_Tree_a @ Z3 ) ) ) ) ) ) ).

% Tree.set_cases
thf(fact_31_Tree_Oset__intros_I1_J,axiom,
    ! [X21: a,X22: tree_a,X23: tree_a] : ( member_a @ X21 @ ( set_Tree_a @ ( t_a @ X21 @ X22 @ X23 ) ) ) ).

% Tree.set_intros(1)
thf(fact_32_Tree_Oset__intros_I2_J,axiom,
    ! [Y: a,X22: tree_a,X21: a,X23: tree_a] :
      ( ( member_a @ Y @ ( set_Tree_a @ X22 ) )
     => ( member_a @ Y @ ( set_Tree_a @ ( t_a @ X21 @ X22 @ X23 ) ) ) ) ).

% Tree.set_intros(2)
thf(fact_33_order__refl,axiom,
    ! [X: $o > a] : ( ord_less_eq_o_a @ X @ X ) ).

% order_refl
thf(fact_34_order__refl,axiom,
    ! [X: a] : ( ord_less_eq_a @ X @ X ) ).

% order_refl
thf(fact_35_is__heap_Osimps_I4_J,axiom,
    ! [V: a,Va2: a,Vb2: tree_a,Vc2: tree_a] :
      ( ( is_heap_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ e_a ) )
      = ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
        & ( is_heap_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) ).

% is_heap.simps(4)
thf(fact_36_is__heap_Osimps_I3_J,axiom,
    ! [V: a,Va2: a,Vb2: tree_a,Vc2: tree_a] :
      ( ( is_heap_a @ ( t_a @ V @ e_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
      = ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
        & ( is_heap_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) ).

% is_heap.simps(3)
thf(fact_37_is__heap__max,axiom,
    ! [V: a,T: tree_a] :
      ( ( in_tree_a @ V @ T )
     => ( ( is_heap_a @ T )
       => ( ord_less_eq_a @ V @ ( val_a @ T ) ) ) ) ).

% is_heap_max
thf(fact_38_is__heap_Osimps_I6_J,axiom,
    ! [V: a,Vd2: a,Ve2: tree_a,Vf2: tree_a,Va2: a,Vb2: tree_a,Vc2: tree_a] :
      ( ( is_heap_a @ ( t_a @ V @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) )
      = ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
        & ( is_heap_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) )
        & ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ V )
        & ( is_heap_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) ) ) ).

% is_heap.simps(6)
thf(fact_39_is__heap_Osimps_I5_J,axiom,
    ! [V: a,Va2: a,Vb2: tree_a,Vc2: tree_a,Vd2: a,Ve2: tree_a,Vf2: tree_a] :
      ( ( is_heap_a @ ( t_a @ V @ ( t_a @ Va2 @ Vb2 @ Vc2 ) @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) )
      = ( ( ord_less_eq_a @ ( val_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) ) @ V )
        & ( is_heap_a @ ( t_a @ Vd2 @ Ve2 @ Vf2 ) )
        & ( ord_less_eq_a @ ( val_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) @ V )
        & ( is_heap_a @ ( t_a @ Va2 @ Vb2 @ Vc2 ) ) ) ) ).

% is_heap.simps(5)
thf(fact_40_le__funD,axiom,
    ! [F: $o > a,G: $o > a,X: $o] :
      ( ( ord_less_eq_o_a @ F @ G )
     => ( ord_less_eq_a @ ( F @ X ) @ ( G @ X ) ) ) ).

% le_funD
thf(fact_41_le__funE,axiom,
    ! [F: $o > a,G: $o > a,X: $o] :
      ( ( ord_less_eq_o_a @ F @ G )
     => ( ord_less_eq_a @ ( F @ X ) @ ( G @ X ) ) ) ).

% le_funE
thf(fact_42_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_43_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X4: a] : ( member_a @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_44_le__funI,axiom,
    ! [F: $o > a,G: $o > a] :
      ( ! [X5: $o] : ( ord_less_eq_a @ ( F @ X5 ) @ ( G @ X5 ) )
     => ( ord_less_eq_o_a @ F @ G ) ) ).

% le_funI
thf(fact_45_le__fun__def,axiom,
    ( ord_less_eq_o_a
    = ( ^ [F2: $o > a,G2: $o > a] :
        ! [X4: $o] : ( ord_less_eq_a @ ( F2 @ X4 ) @ ( G2 @ X4 ) ) ) ) ).

% le_fun_def
thf(fact_46_Tree_Opred__mono,axiom,
    ! [P: a > $o,Pa: a > $o] :
      ( ( ord_less_eq_a_o @ P @ Pa )
     => ( ord_less_eq_Tree_a_o @ ( pred_Tree_a @ P ) @ ( pred_Tree_a @ Pa ) ) ) ).

% Tree.pred_mono
thf(fact_47_is__heap_Osimps_I1_J,axiom,
    is_heap_a @ e_a ).

% is_heap.simps(1)
thf(fact_48_is__heap_Osimps_I2_J,axiom,
    ! [V: a] : ( is_heap_a @ ( t_a @ V @ e_a @ e_a ) ) ).

% is_heap.simps(2)
thf(fact_49_dual__order_Oantisym,axiom,
    ! [B: $o > a,A: $o > a] :
      ( ( ord_less_eq_o_a @ B @ A )
     => ( ( ord_less_eq_o_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_50_dual__order_Oantisym,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_51_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: $o > a,Z4: $o > a] : ( Y2 = Z4 ) )
    = ( ^ [A3: $o > a,B2: $o > a] :
          ( ( ord_less_eq_o_a @ B2 @ A3 )
          & ( ord_less_eq_o_a @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_52_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: a,Z4: a] : ( Y2 = Z4 ) )
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_eq_a @ B2 @ A3 )
          & ( ord_less_eq_a @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_53_dual__order_Otrans,axiom,
    ! [B: $o > a,A: $o > a,C: $o > a] :
      ( ( ord_less_eq_o_a @ B @ A )
     => ( ( ord_less_eq_o_a @ C @ B )
       => ( ord_less_eq_o_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_54_dual__order_Otrans,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_eq_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_55_linorder__wlog,axiom,
    ! [P: a > a > $o,A: a,B: a] :
      ( ! [A4: a,B3: a] :
          ( ( ord_less_eq_a @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: a,B3: a] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_56_dual__order_Orefl,axiom,
    ! [A: $o > a] : ( ord_less_eq_o_a @ A @ A ) ).

% dual_order.refl
thf(fact_57_dual__order_Orefl,axiom,
    ! [A: a] : ( ord_less_eq_a @ A @ A ) ).

% dual_order.refl
thf(fact_58_order__trans,axiom,
    ! [X: $o > a,Y: $o > a,Z5: $o > a] :
      ( ( ord_less_eq_o_a @ X @ Y )
     => ( ( ord_less_eq_o_a @ Y @ Z5 )
       => ( ord_less_eq_o_a @ X @ Z5 ) ) ) ).

% order_trans
thf(fact_59_order__trans,axiom,
    ! [X: a,Y: a,Z5: a] :
      ( ( ord_less_eq_a @ X @ Y )
     => ( ( ord_less_eq_a @ Y @ Z5 )
       => ( ord_less_eq_a @ X @ Z5 ) ) ) ).

% order_trans
thf(fact_60_order__class_Oorder_Oantisym,axiom,
    ! [A: $o > a,B: $o > a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( ord_less_eq_o_a @ B @ A )
       => ( A = B ) ) ) ).

% order_class.order.antisym
thf(fact_61_order__class_Oorder_Oantisym,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ A )
       => ( A = B ) ) ) ).

% order_class.order.antisym
thf(fact_62_ord__le__eq__trans,axiom,
    ! [A: $o > a,B: $o > a,C: $o > a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_o_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_63_ord__le__eq__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_64_ord__eq__le__trans,axiom,
    ! [A: $o > a,B: $o > a,C: $o > a] :
      ( ( A = B )
     => ( ( ord_less_eq_o_a @ B @ C )
       => ( ord_less_eq_o_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_65_ord__eq__le__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A = B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_66_order__class_Oorder_Oeq__iff,axiom,
    ( ( ^ [Y2: $o > a,Z4: $o > a] : ( Y2 = Z4 ) )
    = ( ^ [A3: $o > a,B2: $o > a] :
          ( ( ord_less_eq_o_a @ A3 @ B2 )
          & ( ord_less_eq_o_a @ B2 @ A3 ) ) ) ) ).

% order_class.order.eq_iff
thf(fact_67_order__class_Oorder_Oeq__iff,axiom,
    ( ( ^ [Y2: a,Z4: a] : ( Y2 = Z4 ) )
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_eq_a @ A3 @ B2 )
          & ( ord_less_eq_a @ B2 @ A3 ) ) ) ) ).

% order_class.order.eq_iff
thf(fact_68_antisym__conv,axiom,
    ! [Y: $o > a,X: $o > a] :
      ( ( ord_less_eq_o_a @ Y @ X )
     => ( ( ord_less_eq_o_a @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv
thf(fact_69_antisym__conv,axiom,
    ! [Y: a,X: a] :
      ( ( ord_less_eq_a @ Y @ X )
     => ( ( ord_less_eq_a @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv
thf(fact_70_le__cases3,axiom,
    ! [X: a,Y: a,Z5: a] :
      ( ( ( ord_less_eq_a @ X @ Y )
       => ~ ( ord_less_eq_a @ Y @ Z5 ) )
     => ( ( ( ord_less_eq_a @ Y @ X )
         => ~ ( ord_less_eq_a @ X @ Z5 ) )
       => ( ( ( ord_less_eq_a @ X @ Z5 )
           => ~ ( ord_less_eq_a @ Z5 @ Y ) )
         => ( ( ( ord_less_eq_a @ Z5 @ Y )
             => ~ ( ord_less_eq_a @ Y @ X ) )
           => ( ( ( ord_less_eq_a @ Y @ Z5 )
               => ~ ( ord_less_eq_a @ Z5 @ X ) )
             => ~ ( ( ord_less_eq_a @ Z5 @ X )
                 => ~ ( ord_less_eq_a @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_71_order_Otrans,axiom,
    ! [A: $o > a,B: $o > a,C: $o > a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( ord_less_eq_o_a @ B @ C )
       => ( ord_less_eq_o_a @ A @ C ) ) ) ).

% order.trans
thf(fact_72_order_Otrans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% order.trans
thf(fact_73_le__cases,axiom,
    ! [X: a,Y: a] :
      ( ~ ( ord_less_eq_a @ X @ Y )
     => ( ord_less_eq_a @ Y @ X ) ) ).

% le_cases
thf(fact_74_eq__refl,axiom,
    ! [X: $o > a,Y: $o > a] :
      ( ( X = Y )
     => ( ord_less_eq_o_a @ X @ Y ) ) ).

% eq_refl
thf(fact_75_eq__refl,axiom,
    ! [X: a,Y: a] :
      ( ( X = Y )
     => ( ord_less_eq_a @ X @ Y ) ) ).

% eq_refl
thf(fact_76_linear,axiom,
    ! [X: a,Y: a] :
      ( ( ord_less_eq_a @ X @ Y )
      | ( ord_less_eq_a @ Y @ X ) ) ).

% linear
thf(fact_77_antisym,axiom,
    ! [X: $o > a,Y: $o > a] :
      ( ( ord_less_eq_o_a @ X @ Y )
     => ( ( ord_less_eq_o_a @ Y @ X )
       => ( X = Y ) ) ) ).

% antisym
thf(fact_78_antisym,axiom,
    ! [X: a,Y: a] :
      ( ( ord_less_eq_a @ X @ Y )
     => ( ( ord_less_eq_a @ Y @ X )
       => ( X = Y ) ) ) ).

% antisym
thf(fact_79_eq__iff,axiom,
    ( ( ^ [Y2: $o > a,Z4: $o > a] : ( Y2 = Z4 ) )
    = ( ^ [X4: $o > a,Y3: $o > a] :
          ( ( ord_less_eq_o_a @ X4 @ Y3 )
          & ( ord_less_eq_o_a @ Y3 @ X4 ) ) ) ) ).

% eq_iff
thf(fact_80_eq__iff,axiom,
    ( ( ^ [Y2: a,Z4: a] : ( Y2 = Z4 ) )
    = ( ^ [X4: a,Y3: a] :
          ( ( ord_less_eq_a @ X4 @ Y3 )
          & ( ord_less_eq_a @ Y3 @ X4 ) ) ) ) ).

% eq_iff
thf(fact_81_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F: a > $o > a,C: $o > a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_82_ord__le__eq__subst,axiom,
    ! [A: $o > a,B: $o > a,F: ( $o > a ) > a,C: a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_83_ord__le__eq__subst,axiom,
    ! [A: $o > a,B: $o > a,F: ( $o > a ) > $o > a,C: $o > a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_84_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_85_ord__eq__le__subst,axiom,
    ! [A: $o > a,F: a > $o > a,B: a,C: a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_86_ord__eq__le__subst,axiom,
    ! [A: a,F: ( $o > a ) > a,B: $o > a,C: $o > a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_o_a @ B @ C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_87_ord__eq__le__subst,axiom,
    ! [A: $o > a,F: ( $o > a ) > $o > a,B: $o > a,C: $o > a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_o_a @ B @ C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_88_ord__eq__le__subst,axiom,
    ! [A: a,F: a > a,B: a,C: a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_89_order__subst2,axiom,
    ! [A: a,B: a,F: a > $o > a,C: $o > a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_o_a @ ( F @ B ) @ C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_90_order__subst2,axiom,
    ! [A: $o > a,B: $o > a,F: ( $o > a ) > a,C: a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( ord_less_eq_a @ ( F @ B ) @ C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_91_order__subst2,axiom,
    ! [A: $o > a,B: $o > a,F: ( $o > a ) > $o > a,C: $o > a] :
      ( ( ord_less_eq_o_a @ A @ B )
     => ( ( ord_less_eq_o_a @ ( F @ B ) @ C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_92_order__subst2,axiom,
    ! [A: a,B: a,F: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ ( F @ B ) @ C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_93_order__subst1,axiom,
    ! [A: a,F: ( $o > a ) > a,B: $o > a,C: $o > a] :
      ( ( ord_less_eq_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_o_a @ B @ C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_94_order__subst1,axiom,
    ! [A: $o > a,F: a > $o > a,B: a,C: a] :
      ( ( ord_less_eq_o_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_95_order__subst1,axiom,
    ! [A: $o > a,F: ( $o > a ) > $o > a,B: $o > a,C: $o > a] :
      ( ( ord_less_eq_o_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_o_a @ B @ C )
       => ( ! [X5: $o > a,Y4: $o > a] :
              ( ( ord_less_eq_o_a @ X5 @ Y4 )
             => ( ord_less_eq_o_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_o_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_96_order__subst1,axiom,
    ! [A: a,F: a > a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X5: a,Y4: a] :
              ( ( ord_less_eq_a @ X5 @ Y4 )
             => ( ord_less_eq_a @ ( F @ X5 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_97_Greatest__equality,axiom,
    ! [P: ( $o > a ) > $o,X: $o > a] :
      ( ( P @ X )
     => ( ! [Y4: $o > a] :
            ( ( P @ Y4 )
           => ( ord_less_eq_o_a @ Y4 @ X ) )
       => ( ( order_Greatest_o_a @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_98_Greatest__equality,axiom,
    ! [P: a > $o,X: a] :
      ( ( P @ X )
     => ( ! [Y4: a] :
            ( ( P @ Y4 )
           => ( ord_less_eq_a @ Y4 @ X ) )
       => ( ( order_Greatest_a @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_99_GreatestI2__order,axiom,
    ! [P: ( $o > a ) > $o,X: $o > a,Q: ( $o > a ) > $o] :
      ( ( P @ X )
     => ( ! [Y4: $o > a] :
            ( ( P @ Y4 )
           => ( ord_less_eq_o_a @ Y4 @ X ) )
       => ( ! [X5: $o > a] :
              ( ( P @ X5 )
             => ( ! [Y5: $o > a] :
                    ( ( P @ Y5 )
                   => ( ord_less_eq_o_a @ Y5 @ X5 ) )
               => ( Q @ X5 ) ) )
         => ( Q @ ( order_Greatest_o_a @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_100_GreatestI2__order,axiom,
    ! [P: a > $o,X: a,Q: a > $o] :
      ( ( P @ X )
     => ( ! [Y4: a] :
            ( ( P @ Y4 )
           => ( ord_less_eq_a @ Y4 @ X ) )
       => ( ! [X5: a] :
              ( ( P @ X5 )
             => ( ! [Y5: a] :
                    ( ( P @ Y5 )
                   => ( ord_less_eq_a @ Y5 @ X5 ) )
               => ( Q @ X5 ) ) )
         => ( Q @ ( order_Greatest_a @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_101_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_o_a
    = ( ^ [X6: $o > $o > a,Y6: $o > $o > a] :
          ( ( ord_less_eq_o_a @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_o_a @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_102_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_a
    = ( ^ [X6: $o > a,Y6: $o > a] :
          ( ( ord_less_eq_a @ ( X6 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_a @ ( X6 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_103_verit__la__disequality,axiom,
    ! [A: a,B: a] :
      ( ( A = B )
      | ~ ( ord_less_eq_a @ A @ B )
      | ~ ( ord_less_eq_a @ B @ A ) ) ).

% verit_la_disequality
thf(fact_104_Tree_Osimps_I14_J,axiom,
    ( ( set_Tree_a @ e_a )
    = bot_bot_set_a ) ).

% Tree.simps(14)
thf(fact_105_Tree_Opred__set,axiom,
    ( pred_Tree_a
    = ( ^ [P2: a > $o,X4: tree_a] :
        ! [Y3: a] :
          ( ( member_a @ Y3 @ ( set_Tree_a @ X4 ) )
         => ( P2 @ Y3 ) ) ) ) ).

% Tree.pred_set
thf(fact_106_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_107_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X4: a] :
            ~ ( member_a @ X4 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_108_subsetI,axiom,
    ! [A2: set_a,B4: set_a] :
      ( ! [X5: a] :
          ( ( member_a @ X5 @ A2 )
         => ( member_a @ X5 @ B4 ) )
     => ( ord_less_eq_set_a @ A2 @ B4 ) ) ).

% subsetI
thf(fact_109_in__mono,axiom,
    ! [A2: set_a,B4: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ B4 )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ X @ B4 ) ) ) ).

% in_mono
thf(fact_110_subsetD,axiom,
    ! [A2: set_a,B4: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A2 @ B4 )
     => ( ( member_a @ C @ A2 )
       => ( member_a @ C @ B4 ) ) ) ).

% subsetD
thf(fact_111_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [X4: a] :
          ( ( member_a @ X4 @ A5 )
         => ( member_a @ X4 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_112_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [T2: a] :
          ( ( member_a @ T2 @ A5 )
         => ( member_a @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_113_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X4: a] : ( member_a @ X4 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_114_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y4: a] :
          ~ ( member_a @ Y4 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_115_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_116_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_117_Ball__def,axiom,
    ( ball_a
    = ( ^ [A5: set_a,P2: a > $o] :
        ! [X4: a] :
          ( ( member_a @ X4 @ A5 )
         => ( P2 @ X4 ) ) ) ) ).

% Ball_def
thf(fact_118_subset__emptyI,axiom,
    ! [A2: set_a] :
      ( ! [X5: a] :
          ~ ( member_a @ X5 @ A2 )
     => ( ord_less_eq_set_a @ A2 @ bot_bot_set_a ) ) ).

% subset_emptyI
thf(fact_119_ball__reg,axiom,
    ! [R3: set_a,P: a > $o,Q: a > $o] :
      ( ! [X5: a] :
          ( ( member_a @ X5 @ R3 )
         => ( ( P @ X5 )
           => ( Q @ X5 ) ) )
     => ( ! [X5: a] :
            ( ( member_a @ X5 @ R3 )
           => ( P @ X5 ) )
       => ! [X7: a] :
            ( ( member_a @ X7 @ R3 )
           => ( Q @ X7 ) ) ) ) ).

% ball_reg
thf(fact_120_bot__empty__eq,axiom,
    ( bot_bot_a_o
    = ( ^ [X4: a] : ( member_a @ X4 @ bot_bot_set_a ) ) ) ).

% bot_empty_eq
thf(fact_121_heap__top__geq,axiom,
    ! [A: a,T: tree_a] :
      ( ( member_a @ A @ ( set_mset_a @ ( multiset_a2 @ T ) ) )
     => ( ( is_heap_a @ T )
       => ( ord_less_eq_a @ A @ ( val_a @ T ) ) ) ) ).

% heap_top_geq
thf(fact_122_heap__top__max,axiom,
    ! [T: tree_a] :
      ( ( T != e_a )
     => ( ( is_heap_a @ T )
       => ( ( val_a @ T )
          = ( lattic146396397_Max_a @ ( set_mset_a @ ( multiset_a2 @ T ) ) ) ) ) ) ).

% heap_top_max
thf(fact_123_multiset_Osimps_I1_J,axiom,
    ( ( multiset_a2 @ e_a )
    = zero_zero_multiset_a ) ).

% multiset.simps(1)
thf(fact_124_is__singletonI_H,axiom,
    ! [A2: set_a] :
      ( ( A2 != bot_bot_set_a )
     => ( ! [X5: a,Y4: a] :
            ( ( member_a @ X5 @ A2 )
           => ( ( member_a @ Y4 @ A2 )
             => ( X5 = Y4 ) ) )
       => ( is_singleton_a @ A2 ) ) ) ).

% is_singletonI'
thf(fact_125_Diff__iff,axiom,
    ! [C: a,A2: set_a,B4: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B4 ) )
      = ( ( member_a @ C @ A2 )
        & ~ ( member_a @ C @ B4 ) ) ) ).

% Diff_iff
thf(fact_126_DiffI,axiom,
    ! [C: a,A2: set_a,B4: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ~ ( member_a @ C @ B4 )
       => ( member_a @ C @ ( minus_minus_set_a @ A2 @ B4 ) ) ) ) ).

% DiffI
thf(fact_127_DiffD2,axiom,
    ! [C: a,A2: set_a,B4: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B4 ) )
     => ~ ( member_a @ C @ B4 ) ) ).

% DiffD2
thf(fact_128_DiffD1,axiom,
    ! [C: a,A2: set_a,B4: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B4 ) )
     => ( member_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_129_DiffE,axiom,
    ! [C: a,A2: set_a,B4: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B4 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ( member_a @ C @ B4 ) ) ) ).

% DiffE
thf(fact_130_set__mset__eq__empty__iff,axiom,
    ! [M: multiset_a] :
      ( ( ( set_mset_a @ M )
        = bot_bot_set_a )
      = ( M = zero_zero_multiset_a ) ) ).

% set_mset_eq_empty_iff
thf(fact_131_set__mset__empty,axiom,
    ( ( set_mset_a @ zero_zero_multiset_a )
    = bot_bot_set_a ) ).

% set_mset_empty
thf(fact_132_multiset__induct__max,axiom,
    ! [P: multiset_a > $o,M: multiset_a] :
      ( ( P @ zero_zero_multiset_a )
     => ( ! [X5: a,M2: multiset_a] :
            ( ( P @ M2 )
           => ( ! [Xa: a] :
                  ( ( member_a @ Xa @ ( set_mset_a @ M2 ) )
                 => ( ord_less_eq_a @ Xa @ X5 ) )
             => ( P @ ( add_mset_a @ X5 @ M2 ) ) ) )
       => ( P @ M ) ) ) ).

% multiset_induct_max
thf(fact_133_multiset__induct__min,axiom,
    ! [P: multiset_a > $o,M: multiset_a] :
      ( ( P @ zero_zero_multiset_a )
     => ( ! [X5: a,M2: multiset_a] :
            ( ( P @ M2 )
           => ( ! [Xa: a] :
                  ( ( member_a @ Xa @ ( set_mset_a @ M2 ) )
                 => ( ord_less_eq_a @ X5 @ Xa ) )
             => ( P @ ( add_mset_a @ X5 @ M2 ) ) ) )
       => ( P @ M ) ) ) ).

% multiset_induct_min
thf(fact_134_at__most__one__mset__mset__diff,axiom,
    ! [A: a,M: multiset_a] :
      ( ~ ( member_a @ A @ ( set_mset_a @ ( minus_1649712171iset_a @ M @ ( add_mset_a @ A @ zero_zero_multiset_a ) ) ) )
     => ( ( set_mset_a @ ( minus_1649712171iset_a @ M @ ( add_mset_a @ A @ zero_zero_multiset_a ) ) )
        = ( minus_minus_set_a @ ( set_mset_a @ M ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% at_most_one_mset_mset_diff
thf(fact_135_multiset_Osimps_I2_J,axiom,
    ! [V: a,L: tree_a,R: tree_a] :
      ( ( multiset_a2 @ ( t_a @ V @ L @ R ) )
      = ( plus_plus_multiset_a @ ( plus_plus_multiset_a @ ( multiset_a2 @ L ) @ ( add_mset_a @ V @ zero_zero_multiset_a ) ) @ ( multiset_a2 @ R ) ) ) ).

% multiset.simps(2)
thf(fact_136_insert__iff,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
      = ( ( A = B )
        | ( member_a @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_137_insertCI,axiom,
    ! [A: a,B4: set_a,B: a] :
      ( ( ~ ( member_a @ A @ B4 )
       => ( A = B ) )
     => ( member_a @ A @ ( insert_a @ B @ B4 ) ) ) ).

% insertCI
thf(fact_138_singletonI,axiom,
    ! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_139_insert__subset,axiom,
    ! [X: a,A2: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B4 )
      = ( ( member_a @ X @ B4 )
        & ( ord_less_eq_set_a @ A2 @ B4 ) ) ) ).

% insert_subset
thf(fact_140_insert__Diff1,axiom,
    ! [X: a,B4: set_a,A2: set_a] :
      ( ( member_a @ X @ B4 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B4 )
        = ( minus_minus_set_a @ A2 @ B4 ) ) ) ).

% insert_Diff1
thf(fact_141_Diff__insert0,axiom,
    ! [X: a,A2: set_a,B4: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ A2 @ ( insert_a @ X @ B4 ) )
        = ( minus_minus_set_a @ A2 @ B4 ) ) ) ).

% Diff_insert0
thf(fact_142_insert__Diff__if,axiom,
    ! [X: a,B4: set_a,A2: set_a] :
      ( ( ( member_a @ X @ B4 )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B4 )
          = ( minus_minus_set_a @ A2 @ B4 ) ) )
      & ( ~ ( member_a @ X @ B4 )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B4 )
          = ( insert_a @ X @ ( minus_minus_set_a @ A2 @ B4 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_143_verit__sum__simplify,axiom,
    ! [A: multiset_a] :
      ( ( plus_plus_multiset_a @ A @ zero_zero_multiset_a )
      = A ) ).

% verit_sum_simplify
thf(fact_144_add__right__mono,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a] :
      ( ( ord_le1199012836iset_a @ A @ B )
     => ( ord_le1199012836iset_a @ ( plus_plus_multiset_a @ A @ C ) @ ( plus_plus_multiset_a @ B @ C ) ) ) ).

% add_right_mono
thf(fact_145_add__left__mono,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a] :
      ( ( ord_le1199012836iset_a @ A @ B )
     => ( ord_le1199012836iset_a @ ( plus_plus_multiset_a @ C @ A ) @ ( plus_plus_multiset_a @ C @ B ) ) ) ).

% add_left_mono
thf(fact_146_add__mono,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a,D: multiset_a] :
      ( ( ord_le1199012836iset_a @ A @ B )
     => ( ( ord_le1199012836iset_a @ C @ D )
       => ( ord_le1199012836iset_a @ ( plus_plus_multiset_a @ A @ C ) @ ( plus_plus_multiset_a @ B @ D ) ) ) ) ).

% add_mono
thf(fact_147_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: multiset_a,J: multiset_a,K: multiset_a,L: multiset_a] :
      ( ( ( ord_le1199012836iset_a @ I @ J )
        & ( ord_le1199012836iset_a @ K @ L ) )
     => ( ord_le1199012836iset_a @ ( plus_plus_multiset_a @ I @ K ) @ ( plus_plus_multiset_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_148_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: multiset_a,J: multiset_a,K: multiset_a,L: multiset_a] :
      ( ( ( I = J )
        & ( ord_le1199012836iset_a @ K @ L ) )
     => ( ord_le1199012836iset_a @ ( plus_plus_multiset_a @ I @ K ) @ ( plus_plus_multiset_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_149_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: multiset_a,J: multiset_a,K: multiset_a,L: multiset_a] :
      ( ( ( ord_le1199012836iset_a @ I @ J )
        & ( K = L ) )
     => ( ord_le1199012836iset_a @ ( plus_plus_multiset_a @ I @ K ) @ ( plus_plus_multiset_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_150_mk__disjoint__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ? [B6: set_a] :
          ( ( A2
            = ( insert_a @ A @ B6 ) )
          & ~ ( member_a @ A @ B6 ) ) ) ).

% mk_disjoint_insert
thf(fact_151_insert__eq__iff,axiom,
    ! [A: a,A2: set_a,B: a,B4: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ~ ( member_a @ B @ B4 )
       => ( ( ( insert_a @ A @ A2 )
            = ( insert_a @ B @ B4 ) )
          = ( ( ( A = B )
             => ( A2 = B4 ) )
            & ( ( A != B )
             => ? [C2: set_a] :
                  ( ( A2
                    = ( insert_a @ B @ C2 ) )
                  & ~ ( member_a @ B @ C2 )
                  & ( B4
                    = ( insert_a @ A @ C2 ) )
                  & ~ ( member_a @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_152_insert__absorb,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_153_insert__ident,axiom,
    ! [X: a,A2: set_a,B4: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ~ ( member_a @ X @ B4 )
       => ( ( ( insert_a @ X @ A2 )
            = ( insert_a @ X @ B4 ) )
          = ( A2 = B4 ) ) ) ) ).

% insert_ident
thf(fact_154_Set_Oset__insert,axiom,
    ! [X: a,A2: set_a] :
      ( ( member_a @ X @ A2 )
     => ~ ! [B6: set_a] :
            ( ( A2
              = ( insert_a @ X @ B6 ) )
           => ( member_a @ X @ B6 ) ) ) ).

% Set.set_insert
thf(fact_155_insertI2,axiom,
    ! [A: a,B4: set_a,B: a] :
      ( ( member_a @ A @ B4 )
     => ( member_a @ A @ ( insert_a @ B @ B4 ) ) ) ).

% insertI2
thf(fact_156_insertI1,axiom,
    ! [A: a,B4: set_a] : ( member_a @ A @ ( insert_a @ A @ B4 ) ) ).

% insertI1
thf(fact_157_insertE,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
     => ( ( A != B )
       => ( member_a @ A @ A2 ) ) ) ).

% insertE
thf(fact_158_singletonD,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_159_singleton__iff,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_160_insert__subsetI,axiom,
    ! [X: a,A2: set_a,X8: set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ X8 @ A2 )
       => ( ord_less_eq_set_a @ ( insert_a @ X @ X8 ) @ A2 ) ) ) ).

% insert_subsetI
thf(fact_161_subset__insert,axiom,
    ! [X: a,A2: set_a,B4: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B4 ) )
        = ( ord_less_eq_set_a @ A2 @ B4 ) ) ) ).

% subset_insert
thf(fact_162_Diff__insert__absorb,axiom,
    ! [X: a,A2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_163_insert__Diff,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_164_subset__Diff__insert,axiom,
    ! [A2: set_a,B4: set_a,X: a,C3: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B4 @ ( insert_a @ X @ C3 ) ) )
      = ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B4 @ C3 ) )
        & ~ ( member_a @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_165_subset__insert__iff,axiom,
    ! [A2: set_a,X: a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B4 ) )
      = ( ( ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B4 ) )
        & ( ~ ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ A2 @ B4 ) ) ) ) ).

% subset_insert_iff
thf(fact_166_set__mset__single,axiom,
    ! [B: a] :
      ( ( set_mset_a @ ( add_mset_a @ B @ zero_zero_multiset_a ) )
      = ( insert_a @ B @ bot_bot_set_a ) ) ).

% set_mset_single
thf(fact_167_Max__singleton,axiom,
    ! [X: a] :
      ( ( lattic146396397_Max_a @ ( insert_a @ X @ bot_bot_set_a ) )
      = X ) ).

% Max_singleton

% Conjectures (1)
thf(conj_0,conjecture,
    in_tree_a @ v @ ( t_a @ v3 @ ( t_a @ v1 @ l1 @ r1 ) @ ( t_a @ v2 @ l2 @ r2 ) ) ).

%------------------------------------------------------------------------------