TPTP Problem File: ITP062^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP062^1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer GenClock problem prob_249__3245100_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : GenClock/prob_249__3245100_1 [Des21]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0
% Syntax : Number of formulae : 391 ( 209 unt; 38 typ; 0 def)
% Number of atoms : 814 ( 343 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 3187 ( 36 ~; 10 |; 23 &;2807 @)
% ( 0 <=>; 311 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Number of types : 5 ( 4 usr)
% Number of type conns : 104 ( 104 >; 0 *; 0 +; 0 <<)
% Number of symbols : 35 ( 34 usr; 8 con; 0-4 aty)
% Number of variables : 975 ( 33 ^; 937 !; 5 ?; 975 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 15:29:52.030
%------------------------------------------------------------------------------
% Could-be-implicit typings (4)
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
% Explicit typings (34)
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_OPC,type,
genClo1161277105lle_PC: nat > real > real ).
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_O_092_060rho_062,type,
genClo1144207539le_rho: real ).
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_Ocorrect,type,
genClo1015804716orrect: nat > real > $o ).
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_OokRead1,type,
genClo293725281kRead1: ( nat > real ) > real > ( nat > $o ) > $o ).
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_OokRead2,type,
genClo293725282kRead2: ( nat > real ) > ( nat > real ) > real > ( nat > $o ) > $o ).
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_Orho__bound1,type,
genClo2108747022bound1: ( nat > real > real ) > $o ).
thf(sy_c_GenClock__Mirabelle__bsvkzpgbls_Orho__bound2,type,
genClo2108747023bound2: ( nat > real > real ) > $o ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
abs_abs_real: real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_C,type,
c: nat > real > real ).
thf(sy_v_D,type,
d: nat > real > real ).
thf(sy_v_p,type,
p: nat ).
thf(sy_v_q,type,
q: nat ).
thf(sy_v_s,type,
s: real ).
thf(sy_v_t,type,
t: real ).
% Relevant facts (352)
thf(fact_0_rb2,axiom,
genClo2108747023bound2 @ d ).
% rb2
thf(fact_1_rb1,axiom,
genClo2108747022bound1 @ c ).
% rb1
thf(fact_2_ie,axiom,
ord_less_eq_real @ s @ t ).
% ie
thf(fact_3_Eq1,axiom,
( ( abs_abs_real @ ( minus_minus_real @ ( minus_minus_real @ ( c @ p @ t ) @ ( c @ p @ s ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ) )
= ( minus_minus_real @ ( minus_minus_real @ ( c @ p @ t ) @ ( c @ p @ s ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ) ) ).
% Eq1
thf(fact_4_Eq4,axiom,
( ( minus_minus_real @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( plus_plus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( minus_minus_real @ one_one_real @ genClo1144207539le_rho ) ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ genClo1144207539le_rho ) @ ( minus_minus_real @ t @ s ) ) ) ).
% Eq4
thf(fact_5_Eq3,axiom,
ord_less_eq_real @ ( minus_minus_real @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( plus_plus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ) @ ( minus_minus_real @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( plus_plus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( minus_minus_real @ one_one_real @ genClo1144207539le_rho ) ) ) ).
% Eq3
thf(fact_6_corr__q,axiom,
genClo1015804716orrect @ q @ t ).
% corr_q
thf(fact_7_PC__ie,axiom,
ord_less_eq_real @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) @ ( minus_minus_real @ ( c @ p @ t ) @ ( c @ p @ s ) ) ).
% PC_ie
thf(fact_8_corr__p,axiom,
genClo1015804716orrect @ p @ t ).
% corr_p
thf(fact_9_Eq2,axiom,
ord_less_eq_real @ ( minus_minus_real @ ( minus_minus_real @ ( c @ p @ t ) @ ( c @ p @ s ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ) @ ( minus_minus_real @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( plus_plus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ) ).
% Eq2
thf(fact_10__092_060open_062_It_A_N_As_J_A_K_A_I1_A_N_A_092_060rho_062_J_A_092_060le_062_AD_Aq_At_A_N_AD_Aq_As_092_060close_062,axiom,
ord_less_eq_real @ ( times_times_real @ ( minus_minus_real @ t @ s ) @ ( minus_minus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ).
% \<open>(t - s) * (1 - \<rho>) \<le> D q t - D q s\<close>
thf(fact_11_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_12_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_13_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_numeral
thf(fact_14_abs__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
= ( times_times_real @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_15_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_16_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_17_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_18_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_19_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_20_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_21_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_22_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_23_okRead2__def,axiom,
( genClo293725282kRead2
= ( ^ [F: nat > real,G: nat > real,X: real,Ppred: nat > $o] :
! [P: nat] :
( ( Ppred @ P )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ P ) @ ( G @ P ) ) ) @ X ) ) ) ) ).
% okRead2_def
thf(fact_24_abs__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_25_abs__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_26_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_27_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_28_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_29_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_30_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_31_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_32_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_33_abs__idempotent,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_idempotent
thf(fact_34_abs__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_abs
thf(fact_35_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_36_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_37_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_38_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_39_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_40_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_41_mult_Oleft__neutral,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult.left_neutral
thf(fact_42_mult_Oleft__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult.left_neutral
thf(fact_43_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_44_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_45_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_46_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_47_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_48_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_49_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_50_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_51_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_52_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_53_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_54_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_55_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_56_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_57_abs__add__abs,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_add_abs
thf(fact_58_abs__1,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_1
thf(fact_59_mem__Collect__eq,axiom,
! [A: real,P2: real > $o] :
( ( member_real @ A @ ( collect_real @ P2 ) )
= ( P2 @ A ) ) ).
% mem_Collect_eq
thf(fact_60_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X: real] : ( member_real @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_61_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_62_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_63_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_64_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_65_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_66_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_67_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_68_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_69_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_70_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_71_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_72_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_73_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_74_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_75_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_76_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_77_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_78_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_79_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_80_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_81_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_82_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_83_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_84_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_85_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_86_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_87_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_88_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_89_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_90_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_91_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_92_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_93_one__reorient,axiom,
! [X2: real] :
( ( one_one_real = X2 )
= ( X2 = one_one_real ) ) ).
% one_reorient
thf(fact_94_one__reorient,axiom,
! [X2: nat] :
( ( one_one_nat = X2 )
= ( X2 = one_one_nat ) ) ).
% one_reorient
thf(fact_95_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_96_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_97_group__cancel_Oadd2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B2 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_98_group__cancel_Oadd2,axiom,
! [B2: nat,K: nat,B: nat,A: nat] :
( ( B2
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B2 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_99_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_100_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_101_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_102_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_103_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_104_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_105_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_106_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_107_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_108_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_109_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_110_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_111_le__num__One__iff,axiom,
! [X2: num] :
( ( ord_less_eq_num @ X2 @ one )
= ( X2 = one ) ) ).
% le_num_One_iff
thf(fact_112_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X2 ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_113_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X2 ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_114_correct__closed,axiom,
! [P3: nat,S: real,T: real] :
( ( ( ord_less_eq_real @ S @ T )
& ( genClo1015804716orrect @ P3 @ T ) )
=> ( genClo1015804716orrect @ P3 @ S ) ) ).
% correct_closed
thf(fact_115_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_116_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_117_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_118_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_119_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
? [C2: nat] :
( B3
= ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).
% le_iff_add
thf(fact_120_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_121_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_122_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_123_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_124_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_125_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_126_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_127_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_128_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_129_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_130_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_131_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_132_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_133_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_134_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_135_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_136_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_137_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_138_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_139_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_140_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_141_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_142_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_143_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_144_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_145_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_146_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_147_diff__diff__add,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_add
thf(fact_148_diff__diff__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_add
thf(fact_149_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_150_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_151_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_152_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_153_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_154_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_155_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_156_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_157_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_158_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_159_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_160_abs__one,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_one
thf(fact_161_square__diff__one__factored,axiom,
! [X2: real] :
( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ one_one_real )
= ( times_times_real @ ( plus_plus_real @ X2 @ one_one_real ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).
% square_diff_one_factored
thf(fact_162_rho__bound1__def,axiom,
( genClo2108747022bound1
= ( ^ [C4: nat > real > real] :
! [P: nat,S2: real,T2: real] :
( ( ( genClo1015804716orrect @ P @ T2 )
& ( ord_less_eq_real @ S2 @ T2 ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( C4 @ P @ T2 ) @ ( C4 @ P @ S2 ) ) @ ( times_times_real @ ( minus_minus_real @ T2 @ S2 ) @ ( plus_plus_real @ one_one_real @ genClo1144207539le_rho ) ) ) ) ) ) ).
% rho_bound1_def
thf(fact_163_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_164_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_165_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B3: real] : ( times_times_real @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_166_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).
% mult.commute
thf(fact_167_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_168_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_169_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_170_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_171_diff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_172_diff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_173_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_174_rho__bound2__def,axiom,
( genClo2108747023bound2
= ( ^ [C4: nat > real > real] :
! [P: nat,S2: real,T2: real] :
( ( ( genClo1015804716orrect @ P @ T2 )
& ( ord_less_eq_real @ S2 @ T2 ) )
=> ( ord_less_eq_real @ ( times_times_real @ ( minus_minus_real @ T2 @ S2 ) @ ( minus_minus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( minus_minus_real @ ( C4 @ P @ T2 ) @ ( C4 @ P @ S2 ) ) ) ) ) ) ).
% rho_bound2_def
thf(fact_175_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_176_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_177_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_178_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_179_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_180_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_181_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_182_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_183_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_184_add__le__add__imp__diff__le,axiom,
! [I: real,K: real,N: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_185_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_186_diff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% diff_add
thf(fact_187_add__le__imp__le__diff,axiom,
! [I: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_188_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_189_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_190_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_191_square__diff__square__factored,axiom,
! [X2: real,Y: real] :
( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y @ Y ) )
= ( times_times_real @ ( plus_plus_real @ X2 @ Y ) @ ( minus_minus_real @ X2 @ Y ) ) ) ).
% square_diff_square_factored
thf(fact_192_eq__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( C
= ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_193_eq__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_194_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_195_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_196_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_197_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_198_abs__triangle__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_199_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_200_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_201_ordered__ring__class_Ole__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_202_ordered__ring__class_Ole__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_203_abs__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_204_abs__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_205_abs__diff__le__iff,axiom,
! [X2: real,A: real,R: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R )
= ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R ) @ X2 )
& ( ord_less_eq_real @ X2 @ ( plus_plus_real @ A @ R ) ) ) ) ).
% abs_diff_le_iff
thf(fact_206_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_207_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_208_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_209_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_210_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_211_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_212_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_213_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_214_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_215_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_216_abs__ge__self,axiom,
! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).
% abs_ge_self
thf(fact_217_abs__le__D1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% abs_le_D1
thf(fact_218_abs__mult,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_mult
thf(fact_219_abs__minus__commute,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
= ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_220_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_221_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_222_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_223_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_224_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_225_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_226_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_227_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_228_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_229_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_230_abs__triangle__ineq2__sym,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_231_sin__bound__lemma,axiom,
! [X2: real,Y: real,U: real,V: real] :
( ( X2 = Y )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X2 @ U ) @ Y ) ) @ V ) ) ) ).
% sin_bound_lemma
thf(fact_232_rate__1,axiom,
! [P3: nat,S: real,T: real] :
( ( ( genClo1015804716orrect @ P3 @ T )
& ( ord_less_eq_real @ S @ T ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( genClo1161277105lle_PC @ P3 @ T ) @ ( genClo1161277105lle_PC @ P3 @ S ) ) @ ( times_times_real @ ( minus_minus_real @ T @ S ) @ ( plus_plus_real @ one_one_real @ genClo1144207539le_rho ) ) ) ) ).
% rate_1
thf(fact_233_rate__2,axiom,
! [P3: nat,S: real,T: real] :
( ( ( genClo1015804716orrect @ P3 @ T )
& ( ord_less_eq_real @ S @ T ) )
=> ( ord_less_eq_real @ ( times_times_real @ ( minus_minus_real @ T @ S ) @ ( minus_minus_real @ one_one_real @ genClo1144207539le_rho ) ) @ ( minus_minus_real @ ( genClo1161277105lle_PC @ P3 @ T ) @ ( genClo1161277105lle_PC @ P3 @ S ) ) ) ) ).
% rate_2
thf(fact_234_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_235_mult__diff__mult,axiom,
! [X2: real,Y: real,A: real,B: real] :
( ( minus_minus_real @ ( times_times_real @ X2 @ Y ) @ ( times_times_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ X2 @ ( minus_minus_real @ Y @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X2 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_236_verit__eq__simplify_I8_J,axiom,
! [X22: num,Y2: num] :
( ( ( bit0 @ X22 )
= ( bit0 @ Y2 ) )
= ( X22 = Y2 ) ) ).
% verit_eq_simplify(8)
thf(fact_237_okRead1__def,axiom,
( genClo293725281kRead1
= ( ^ [F: nat > real,X: real,Ppred: nat > $o] :
! [L2: nat,M2: nat] :
( ( ( Ppred @ L2 )
& ( Ppred @ M2 ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ L2 ) @ ( F @ M2 ) ) ) @ X ) ) ) ) ).
% okRead1_def
thf(fact_238_order__refl,axiom,
! [X2: real] : ( ord_less_eq_real @ X2 @ X2 ) ).
% order_refl
thf(fact_239_order__refl,axiom,
! [X2: num] : ( ord_less_eq_num @ X2 @ X2 ) ).
% order_refl
thf(fact_240_order__refl,axiom,
! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).
% order_refl
thf(fact_241_eq__diff__eq_H,axiom,
! [X2: real,Y: real,Z: real] :
( ( X2
= ( minus_minus_real @ Y @ Z ) )
= ( Y
= ( plus_plus_real @ X2 @ Z ) ) ) ).
% eq_diff_eq'
thf(fact_242_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_243_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_244_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_245_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_246_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_247_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_248_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X: real] : ( plus_plus_real @ X @ X ) ) ) ).
% dbl_def
thf(fact_249_order__subst1,axiom,
! [A: real,F2: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_250_order__subst1,axiom,
! [A: real,F2: num > real,B: num,C: num] :
( ( ord_less_eq_real @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_251_order__subst1,axiom,
! [A: real,F2: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_252_order__subst1,axiom,
! [A: num,F2: real > num,B: real,C: real] :
( ( ord_less_eq_num @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_253_order__subst1,axiom,
! [A: num,F2: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_254_order__subst1,axiom,
! [A: num,F2: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_255_order__subst1,axiom,
! [A: nat,F2: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_256_order__subst1,axiom,
! [A: nat,F2: num > nat,B: num,C: num] :
( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_257_order__subst1,axiom,
! [A: nat,F2: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).
% order_subst1
thf(fact_258_order__subst2,axiom,
! [A: real,B: real,F2: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F2 @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_259_order__subst2,axiom,
! [A: real,B: real,F2: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_num @ ( F2 @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_260_order__subst2,axiom,
! [A: real,B: real,F2: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_261_order__subst2,axiom,
! [A: num,B: num,F2: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F2 @ B ) @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_262_order__subst2,axiom,
! [A: num,B: num,F2: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F2 @ B ) @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_263_order__subst2,axiom,
! [A: num,B: num,F2: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_264_order__subst2,axiom,
! [A: nat,B: nat,F2: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F2 @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_265_order__subst2,axiom,
! [A: nat,B: nat,F2: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_num @ ( F2 @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_266_order__subst2,axiom,
! [A: nat,B: nat,F2: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_267_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_268_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_269_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_270_ord__eq__le__subst,axiom,
! [A: real,F2: real > real,B: real,C: real] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_271_ord__eq__le__subst,axiom,
! [A: num,F2: real > num,B: real,C: real] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_272_ord__eq__le__subst,axiom,
! [A: nat,F2: real > nat,B: real,C: real] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_273_ord__eq__le__subst,axiom,
! [A: real,F2: num > real,B: num,C: num] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_274_ord__eq__le__subst,axiom,
! [A: num,F2: num > num,B: num,C: num] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_275_ord__eq__le__subst,axiom,
! [A: nat,F2: num > nat,B: num,C: num] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_276_ord__eq__le__subst,axiom,
! [A: real,F2: nat > real,B: nat,C: nat] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_277_ord__eq__le__subst,axiom,
! [A: num,F2: nat > num,B: nat,C: nat] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_278_ord__eq__le__subst,axiom,
! [A: nat,F2: nat > nat,B: nat,C: nat] :
( ( A
= ( F2 @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_279_ord__le__eq__subst,axiom,
! [A: real,B: real,F2: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_280_ord__le__eq__subst,axiom,
! [A: real,B: real,F2: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_281_ord__le__eq__subst,axiom,
! [A: real,B: real,F2: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_282_ord__le__eq__subst,axiom,
! [A: num,B: num,F2: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_283_ord__le__eq__subst,axiom,
! [A: num,B: num,F2: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_284_ord__le__eq__subst,axiom,
! [A: num,B: num,F2: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_285_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F2: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_286_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F2: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_num @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_287_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F2: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F2 @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_288_eq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [X: real,Y5: real] :
( ( ord_less_eq_real @ X @ Y5 )
& ( ord_less_eq_real @ Y5 @ X ) ) ) ) ).
% eq_iff
thf(fact_289_eq__iff,axiom,
( ( ^ [Y4: num,Z2: num] : ( Y4 = Z2 ) )
= ( ^ [X: num,Y5: num] :
( ( ord_less_eq_num @ X @ Y5 )
& ( ord_less_eq_num @ Y5 @ X ) ) ) ) ).
% eq_iff
thf(fact_290_eq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [X: nat,Y5: nat] :
( ( ord_less_eq_nat @ X @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X ) ) ) ) ).
% eq_iff
thf(fact_291_antisym,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% antisym
thf(fact_292_antisym,axiom,
! [X2: num,Y: num] :
( ( ord_less_eq_num @ X2 @ Y )
=> ( ( ord_less_eq_num @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% antisym
thf(fact_293_antisym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% antisym
thf(fact_294_linear,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
| ( ord_less_eq_real @ Y @ X2 ) ) ).
% linear
thf(fact_295_linear,axiom,
! [X2: num,Y: num] :
( ( ord_less_eq_num @ X2 @ Y )
| ( ord_less_eq_num @ Y @ X2 ) ) ).
% linear
thf(fact_296_linear,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
| ( ord_less_eq_nat @ Y @ X2 ) ) ).
% linear
thf(fact_297_eq__refl,axiom,
! [X2: real,Y: real] :
( ( X2 = Y )
=> ( ord_less_eq_real @ X2 @ Y ) ) ).
% eq_refl
thf(fact_298_eq__refl,axiom,
! [X2: num,Y: num] :
( ( X2 = Y )
=> ( ord_less_eq_num @ X2 @ Y ) ) ).
% eq_refl
thf(fact_299_eq__refl,axiom,
! [X2: nat,Y: nat] :
( ( X2 = Y )
=> ( ord_less_eq_nat @ X2 @ Y ) ) ).
% eq_refl
thf(fact_300_le__cases,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ Y @ X2 ) ) ).
% le_cases
thf(fact_301_le__cases,axiom,
! [X2: num,Y: num] :
( ~ ( ord_less_eq_num @ X2 @ Y )
=> ( ord_less_eq_num @ Y @ X2 ) ) ).
% le_cases
thf(fact_302_le__cases,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ Y @ X2 ) ) ).
% le_cases
thf(fact_303_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_304_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_305_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_306_le__cases3,axiom,
! [X2: real,Y: real,Z: real] :
( ( ( ord_less_eq_real @ X2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z ) )
=> ( ( ( ord_less_eq_real @ Y @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ Z ) )
=> ( ( ( ord_less_eq_real @ X2 @ Z )
=> ~ ( ord_less_eq_real @ Z @ Y ) )
=> ( ( ( ord_less_eq_real @ Z @ Y )
=> ~ ( ord_less_eq_real @ Y @ X2 ) )
=> ( ( ( ord_less_eq_real @ Y @ Z )
=> ~ ( ord_less_eq_real @ Z @ X2 ) )
=> ~ ( ( ord_less_eq_real @ Z @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_307_le__cases3,axiom,
! [X2: num,Y: num,Z: num] :
( ( ( ord_less_eq_num @ X2 @ Y )
=> ~ ( ord_less_eq_num @ Y @ Z ) )
=> ( ( ( ord_less_eq_num @ Y @ X2 )
=> ~ ( ord_less_eq_num @ X2 @ Z ) )
=> ( ( ( ord_less_eq_num @ X2 @ Z )
=> ~ ( ord_less_eq_num @ Z @ Y ) )
=> ( ( ( ord_less_eq_num @ Z @ Y )
=> ~ ( ord_less_eq_num @ Y @ X2 ) )
=> ( ( ( ord_less_eq_num @ Y @ Z )
=> ~ ( ord_less_eq_num @ Z @ X2 ) )
=> ~ ( ( ord_less_eq_num @ Z @ X2 )
=> ~ ( ord_less_eq_num @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_308_le__cases3,axiom,
! [X2: nat,Y: nat,Z: nat] :
( ( ( ord_less_eq_nat @ X2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z ) )
=> ( ( ( ord_less_eq_nat @ Y @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ Z ) )
=> ( ( ( ord_less_eq_nat @ X2 @ Z )
=> ~ ( ord_less_eq_nat @ Z @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z )
=> ~ ( ord_less_eq_nat @ Z @ X2 ) )
=> ~ ( ( ord_less_eq_nat @ Z @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_309_antisym__conv,axiom,
! [Y: num,X2: num] :
( ( ord_less_eq_num @ Y @ X2 )
=> ( ( ord_less_eq_num @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv
thf(fact_310_antisym__conv,axiom,
! [Y: nat,X2: nat] :
( ( ord_less_eq_nat @ Y @ X2 )
=> ( ( ord_less_eq_nat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv
thf(fact_311_complete__real,axiom,
! [S3: set_real] :
( ? [X4: real] : ( member_real @ X4 @ S3 )
=> ( ? [Z3: real] :
! [X3: real] :
( ( member_real @ X3 @ S3 )
=> ( ord_less_eq_real @ X3 @ Z3 ) )
=> ? [Y3: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S3 )
=> ( ord_less_eq_real @ X4 @ Y3 ) )
& ! [Z3: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S3 )
=> ( ord_less_eq_real @ X3 @ Z3 ) )
=> ( ord_less_eq_real @ Y3 @ Z3 ) ) ) ) ) ).
% complete_real
thf(fact_312_PC__monotone,axiom,
! [P3: nat,S: real,T: real] :
( ( ( genClo1015804716orrect @ P3 @ T )
& ( ord_less_eq_real @ S @ T ) )
=> ( ord_less_eq_real @ ( genClo1161277105lle_PC @ P3 @ S ) @ ( genClo1161277105lle_PC @ P3 @ T ) ) ) ).
% PC_monotone
thf(fact_313_verit__eq__simplify_I10_J,axiom,
! [X22: num] :
( one
!= ( bit0 @ X22 ) ) ).
% verit_eq_simplify(10)
thf(fact_314_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_315_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_316_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_317_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_318_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_319_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_320_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_321_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_322_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_323_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_324_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_325_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_326_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_327_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_328_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_329_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_330_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_331_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_332_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_333_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_334_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_335_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_336_Nat_Oex__has__greatest__nat,axiom,
! [P2: nat > $o,K: nat,B: nat] :
( ( P2 @ K )
=> ( ! [Y3: nat] :
( ( P2 @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X3: nat] :
( ( P2 @ X3 )
& ! [Y6: nat] :
( ( P2 @ Y6 )
=> ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_337_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_338_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_339_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_340_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_341_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_342_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_343_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_344_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_345_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_346_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_347_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_348_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_349_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_350_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_351_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( minus_minus_real @ ( c @ p @ t ) @ ( c @ p @ s ) ) @ ( minus_minus_real @ ( d @ q @ t ) @ ( d @ q @ s ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ genClo1144207539le_rho ) @ ( minus_minus_real @ t @ s ) ) ).
%------------------------------------------------------------------------------