TPTP Problem File: ITP043^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP043^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer Descartes_Sign_Rule problem prob_378__5868812_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : Descartes_Sign_Rule/prob_378__5868812_1 [Des21]

% Status   : Theorem
% Rating   : 0.25 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.27 v7.5.0
% Syntax   : Number of formulae    :  399 ( 204 unt;  47 typ;   0 def)
%            Number of atoms       :  793 ( 548 equ;   0 cnn)
%            Maximal formula atoms :    5 (   2 avg)
%            Number of connectives : 2521 ( 104   ~;  15   |;  59   &;2048   @)
%                                         (   0 <=>; 295  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   6 avg)
%            Number of types       :    8 (   7 usr)
%            Number of type conns  :  160 ( 160   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   41 (  40 usr;  13 con; 0-2 aty)
%            Number of variables   : 1002 (   9   ^; 970   !;  23   ?;1002   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:40:52.257
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    list_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    list_list_a: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (40)
thf(sy_c_Descartes__Sign__Rule__Mirabelle__gwrulepwnb_Opsums_001t__Nat__Onat,type,
    descar226543321ms_nat: list_nat > list_nat ).

thf(sy_c_Descartes__Sign__Rule__Mirabelle__gwrulepwnb_Opsums_001tf__a,type,
    descar1375166517sums_a: list_a > list_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001tf__a,type,
    plus_plus_a: a > a > a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001tf__a,type,
    zero_zero_a: a ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Oappend_001tf__a,type,
    append_a: list_a > list_a > list_a ).

thf(sy_c_List_Olast_001t__Nat__Onat,type,
    last_nat: list_nat > nat ).

thf(sy_c_List_Olast_001tf__a,type,
    last_a: list_a > a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Nat__Onat_J,type,
    cons_list_nat: list_nat > list_list_nat > list_list_nat ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__a_J,type,
    cons_list_a: list_a > list_list_a > list_list_a ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001tf__a,type,
    cons_a: a > list_a > list_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Nat__Onat_J,type,
    nil_list_nat: list_list_nat ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__a_J,type,
    nil_list_a: list_list_a ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001tf__a,type,
    nth_a: list_a > nat > a ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001tf__a,type,
    replicate_a: nat > a > list_a ).

thf(sy_c_List_Otake_001tf__a,type,
    take_a: nat > list_a > list_a ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001tf__a,type,
    ord_less_a: a > a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__a,type,
    ord_less_eq_a: a > a > $o ).

thf(sy_v_p____,type,
    p: nat ).

thf(sy_v_v,type,
    v: list_a > int ).

thf(sy_v_xa____,type,
    xa: a ).

thf(sy_v_xs,type,
    xs: list_a ).

thf(sy_v_xs1____,type,
    xs1: list_a ).

thf(sy_v_xs2____,type,
    xs2: list_a ).

thf(sy_v_xsa____,type,
    xsa: list_a ).

% Relevant facts (351)
thf(fact_0_nonneg_Ohyps_I1_J,axiom,
    xsa != nil_a ).

% nonneg.hyps(1)
thf(fact_1_p__nz,axiom,
    ( ( nth_a @ xsa @ p )
   != zero_zero_a ) ).

% p_nz
thf(fact_2_nonneg_Ohyps_I2_J,axiom,
    ( ( last_a @ xsa )
   != zero_zero_a ) ).

% nonneg.hyps(2)
thf(fact_3_psums__0__Cons,axiom,
    ! [Xs: list_nat] :
      ( ( descar226543321ms_nat @ ( cons_nat @ zero_zero_nat @ Xs ) )
      = ( cons_nat @ zero_zero_nat @ ( descar226543321ms_nat @ Xs ) ) ) ).

% psums_0_Cons
thf(fact_4_psums__0__Cons,axiom,
    ! [Xs: list_a] :
      ( ( descar1375166517sums_a @ ( cons_a @ zero_zero_a @ Xs ) )
      = ( cons_a @ zero_zero_a @ ( descar1375166517sums_a @ Xs ) ) ) ).

% psums_0_Cons
thf(fact_5_xs1__def,axiom,
    ( xs1
    = ( replicate_a @ p @ zero_zero_a ) ) ).

% xs1_def
thf(fact_6_xs__decompose,axiom,
    ( xsa
    = ( append_a @ xs1 @ ( cons_a @ ( nth_a @ xsa @ p ) @ xs2 ) ) ) ).

% xs_decompose
thf(fact_7_psums__replicate__0__append,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( descar226543321ms_nat @ ( append_nat @ ( replicate_nat @ N @ zero_zero_nat ) @ Xs ) )
      = ( append_nat @ ( replicate_nat @ N @ zero_zero_nat ) @ ( descar226543321ms_nat @ Xs ) ) ) ).

% psums_replicate_0_append
thf(fact_8_psums__replicate__0__append,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( descar1375166517sums_a @ ( append_a @ ( replicate_a @ N @ zero_zero_a ) @ Xs ) )
      = ( append_a @ ( replicate_a @ N @ zero_zero_a ) @ ( descar1375166517sums_a @ Xs ) ) ) ).

% psums_replicate_0_append
thf(fact_9_less__p__zero,axiom,
    ! [Q: nat] :
      ( ( ord_less_nat @ Q @ p )
     => ( ( nth_a @ xsa @ Q )
        = zero_zero_a ) ) ).

% less_p_zero
thf(fact_10__092_060open_062take_Ap_Axs_A_061_Areplicate_Ap_A_I0_058_058_Ha_J_092_060close_062,axiom,
    ( ( take_a @ p @ xsa )
    = ( replicate_a @ p @ zero_zero_a ) ) ).

% \<open>take p xs = replicate p (0::'a)\<close>
thf(fact_11_replicate__app__Cons__same,axiom,
    ! [N: nat,X: nat,Xs: list_nat] :
      ( ( append_nat @ ( replicate_nat @ N @ X ) @ ( cons_nat @ X @ Xs ) )
      = ( cons_nat @ X @ ( append_nat @ ( replicate_nat @ N @ X ) @ Xs ) ) ) ).

% replicate_app_Cons_same
thf(fact_12_replicate__app__Cons__same,axiom,
    ! [N: nat,X: a,Xs: list_a] :
      ( ( append_a @ ( replicate_a @ N @ X ) @ ( cons_a @ X @ Xs ) )
      = ( cons_a @ X @ ( append_a @ ( replicate_a @ N @ X ) @ Xs ) ) ) ).

% replicate_app_Cons_same
thf(fact_13_append_Oassoc,axiom,
    ! [A: list_a,B: list_a,C: list_a] :
      ( ( append_a @ ( append_a @ A @ B ) @ C )
      = ( append_a @ A @ ( append_a @ B @ C ) ) ) ).

% append.assoc
thf(fact_14_append_Oassoc,axiom,
    ! [A: list_nat,B: list_nat,C: list_nat] :
      ( ( append_nat @ ( append_nat @ A @ B ) @ C )
      = ( append_nat @ A @ ( append_nat @ B @ C ) ) ) ).

% append.assoc
thf(fact_15_append__assoc,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( append_a @ ( append_a @ Xs @ Ys ) @ Zs )
      = ( append_a @ Xs @ ( append_a @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_16_append__assoc,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( append_nat @ ( append_nat @ Xs @ Ys ) @ Zs )
      = ( append_nat @ Xs @ ( append_nat @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_17_append__same__eq,axiom,
    ! [Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( append_a @ Ys @ Xs )
        = ( append_a @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_18_append__same__eq,axiom,
    ! [Ys: list_nat,Xs: list_nat,Zs: list_nat] :
      ( ( ( append_nat @ Ys @ Xs )
        = ( append_nat @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_19_same__append__eq,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_20_same__append__eq,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_21_nonneg_Ohyps_I4_J,axiom,
    ord_less_eq_a @ zero_zero_a @ xa ).

% nonneg.hyps(4)
thf(fact_22_list_Oinject,axiom,
    ! [X21: a,X22: list_a,Y21: a,Y22: list_a] :
      ( ( ( cons_a @ X21 @ X22 )
        = ( cons_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_23_list_Oinject,axiom,
    ! [X21: nat,X22: list_nat,Y21: nat,Y22: list_nat] :
      ( ( ( cons_nat @ X21 @ X22 )
        = ( cons_nat @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_24_append__replicate__commute,axiom,
    ! [N: nat,X: a,K: nat] :
      ( ( append_a @ ( replicate_a @ N @ X ) @ ( replicate_a @ K @ X ) )
      = ( append_a @ ( replicate_a @ K @ X ) @ ( replicate_a @ N @ X ) ) ) ).

% append_replicate_commute
thf(fact_25_append__replicate__commute,axiom,
    ! [N: nat,X: nat,K: nat] :
      ( ( append_nat @ ( replicate_nat @ N @ X ) @ ( replicate_nat @ K @ X ) )
      = ( append_nat @ ( replicate_nat @ K @ X ) @ ( replicate_nat @ N @ X ) ) ) ).

% append_replicate_commute
thf(fact_26_Cons__eq__appendI,axiom,
    ! [X: a,Xs1: list_a,Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( cons_a @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_a @ Xs1 @ Zs ) )
       => ( ( cons_a @ X @ Xs )
          = ( append_a @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_27_Cons__eq__appendI,axiom,
    ! [X: nat,Xs1: list_nat,Ys: list_nat,Xs: list_nat,Zs: list_nat] :
      ( ( ( cons_nat @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_nat @ Xs1 @ Zs ) )
       => ( ( cons_nat @ X @ Xs )
          = ( append_nat @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_28_assms_I1_J,axiom,
    xs != nil_a ).

% assms(1)
thf(fact_29_assms_I2_J,axiom,
    ( ( last_a @ xs )
   != zero_zero_a ) ).

% assms(2)
thf(fact_30_replicate__eq__replicate,axiom,
    ! [M: nat,X: a,N: nat,Y: a] :
      ( ( ( replicate_a @ M @ X )
        = ( replicate_a @ N @ Y ) )
      = ( ( M = N )
        & ( ( M != zero_zero_nat )
         => ( X = Y ) ) ) ) ).

% replicate_eq_replicate
thf(fact_31_replicate__eq__replicate,axiom,
    ! [M: nat,X: nat,N: nat,Y: nat] :
      ( ( ( replicate_nat @ M @ X )
        = ( replicate_nat @ N @ Y ) )
      = ( ( M = N )
        & ( ( M != zero_zero_nat )
         => ( X = Y ) ) ) ) ).

% replicate_eq_replicate
thf(fact_32_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_33_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_34_append_Oright__neutral,axiom,
    ! [A: list_nat] :
      ( ( append_nat @ A @ nil_nat )
      = A ) ).

% append.right_neutral
thf(fact_35_append_Oright__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ A @ nil_a )
      = A ) ).

% append.right_neutral
thf(fact_36_append__is__Nil__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = nil_nat )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% append_is_Nil_conv
thf(fact_37_append__is__Nil__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% append_is_Nil_conv
thf(fact_38_Nil__is__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( nil_nat
        = ( append_nat @ Xs @ Ys ) )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% Nil_is_append_conv
thf(fact_39_Nil__is__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( nil_a
        = ( append_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_is_append_conv
thf(fact_40_self__append__conv2,axiom,
    ! [Ys: list_nat,Xs: list_nat] :
      ( ( Ys
        = ( append_nat @ Xs @ Ys ) )
      = ( Xs = nil_nat ) ) ).

% self_append_conv2
thf(fact_41_self__append__conv2,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys
        = ( append_a @ Xs @ Ys ) )
      = ( Xs = nil_a ) ) ).

% self_append_conv2
thf(fact_42_append__self__conv2,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_nat ) ) ).

% append_self_conv2
thf(fact_43_append__self__conv2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_a ) ) ).

% append_self_conv2
thf(fact_44_self__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( Xs
        = ( append_nat @ Xs @ Ys ) )
      = ( Ys = nil_nat ) ) ).

% self_append_conv
thf(fact_45_self__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs
        = ( append_a @ Xs @ Ys ) )
      = ( Ys = nil_a ) ) ).

% self_append_conv
thf(fact_46_append__self__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_nat ) ) ).

% append_self_conv
thf(fact_47_append__self__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_a ) ) ).

% append_self_conv
thf(fact_48_append__Nil2,axiom,
    ! [Xs: list_nat] :
      ( ( append_nat @ Xs @ nil_nat )
      = Xs ) ).

% append_Nil2
thf(fact_49_append__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( append_a @ Xs @ nil_a )
      = Xs ) ).

% append_Nil2
thf(fact_50_nth__Cons__0,axiom,
    ! [X: a,Xs: list_a] :
      ( ( nth_a @ ( cons_a @ X @ Xs ) @ zero_zero_nat )
      = X ) ).

% nth_Cons_0
thf(fact_51_nth__Cons__0,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( nth_nat @ ( cons_nat @ X @ Xs ) @ zero_zero_nat )
      = X ) ).

% nth_Cons_0
thf(fact_52_take0,axiom,
    ( ( take_a @ zero_zero_nat )
    = ( ^ [Xs2: list_a] : nil_a ) ) ).

% take0
thf(fact_53_take__eq__Nil,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ( take_a @ N @ Xs )
        = nil_a )
      = ( ( N = zero_zero_nat )
        | ( Xs = nil_a ) ) ) ).

% take_eq_Nil
thf(fact_54_empty__replicate,axiom,
    ! [N: nat,X: a] :
      ( ( nil_a
        = ( replicate_a @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_55_empty__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( nil_nat
        = ( replicate_nat @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_56_replicate__empty,axiom,
    ! [N: nat,X: a] :
      ( ( ( replicate_a @ N @ X )
        = nil_a )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_57_replicate__empty,axiom,
    ! [N: nat,X: nat] :
      ( ( ( replicate_nat @ N @ X )
        = nil_nat )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_58_last__replicate,axiom,
    ! [N: nat,X: a] :
      ( ( N != zero_zero_nat )
     => ( ( last_a @ ( replicate_a @ N @ X ) )
        = X ) ) ).

% last_replicate
thf(fact_59_last__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( N != zero_zero_nat )
     => ( ( last_nat @ ( replicate_nat @ N @ X ) )
        = X ) ) ).

% last_replicate
thf(fact_60_append1__eq__conv,axiom,
    ! [Xs: list_a,X: a,Ys: list_a,Y: a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X @ nil_a ) )
        = ( append_a @ Ys @ ( cons_a @ Y @ nil_a ) ) )
      = ( ( Xs = Ys )
        & ( X = Y ) ) ) ).

% append1_eq_conv
thf(fact_61_append1__eq__conv,axiom,
    ! [Xs: list_nat,X: nat,Ys: list_nat,Y: nat] :
      ( ( ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) )
        = ( append_nat @ Ys @ ( cons_nat @ Y @ nil_nat ) ) )
      = ( ( Xs = Ys )
        & ( X = Y ) ) ) ).

% append1_eq_conv
thf(fact_62_nth__take,axiom,
    ! [I: nat,N: nat,Xs: list_a] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_a @ ( take_a @ N @ Xs ) @ I )
        = ( nth_a @ Xs @ I ) ) ) ).

% nth_take
thf(fact_63_last__appendL,axiom,
    ! [Ys: list_nat,Xs: list_nat] :
      ( ( Ys = nil_nat )
     => ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
        = ( last_nat @ Xs ) ) ) ).

% last_appendL
thf(fact_64_last__appendL,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys = nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Xs ) ) ) ).

% last_appendL
thf(fact_65_last__appendR,axiom,
    ! [Ys: list_nat,Xs: list_nat] :
      ( ( Ys != nil_nat )
     => ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
        = ( last_nat @ Ys ) ) ) ).

% last_appendR
thf(fact_66_last__appendR,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys != nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Ys ) ) ) ).

% last_appendR
thf(fact_67_nth__replicate,axiom,
    ! [I: nat,N: nat,X: a] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_a @ ( replicate_a @ N @ X ) @ I )
        = X ) ) ).

% nth_replicate
thf(fact_68_nth__replicate,axiom,
    ! [I: nat,N: nat,X: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_nat @ ( replicate_nat @ N @ X ) @ I )
        = X ) ) ).

% nth_replicate
thf(fact_69_last__snoc,axiom,
    ! [Xs: list_a,X: a] :
      ( ( last_a @ ( append_a @ Xs @ ( cons_a @ X @ nil_a ) ) )
      = X ) ).

% last_snoc
thf(fact_70_last__snoc,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( last_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) )
      = X ) ).

% last_snoc
thf(fact_71_take__0,axiom,
    ! [Xs: list_a] :
      ( ( take_a @ zero_zero_nat @ Xs )
      = nil_a ) ).

% take_0
thf(fact_72_last_Osimps,axiom,
    ! [Xs: list_a,X: a] :
      ( ( ( Xs = nil_a )
       => ( ( last_a @ ( cons_a @ X @ Xs ) )
          = X ) )
      & ( ( Xs != nil_a )
       => ( ( last_a @ ( cons_a @ X @ Xs ) )
          = ( last_a @ Xs ) ) ) ) ).

% last.simps
thf(fact_73_last_Osimps,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( ( Xs = nil_nat )
       => ( ( last_nat @ ( cons_nat @ X @ Xs ) )
          = X ) )
      & ( ( Xs != nil_nat )
       => ( ( last_nat @ ( cons_nat @ X @ Xs ) )
          = ( last_nat @ Xs ) ) ) ) ).

% last.simps
thf(fact_74_last__ConsL,axiom,
    ! [Xs: list_a,X: a] :
      ( ( Xs = nil_a )
     => ( ( last_a @ ( cons_a @ X @ Xs ) )
        = X ) ) ).

% last_ConsL
thf(fact_75_last__ConsL,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( Xs = nil_nat )
     => ( ( last_nat @ ( cons_nat @ X @ Xs ) )
        = X ) ) ).

% last_ConsL
thf(fact_76_last__ConsR,axiom,
    ! [Xs: list_a,X: a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ ( cons_a @ X @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_ConsR
thf(fact_77_last__ConsR,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( Xs != nil_nat )
     => ( ( last_nat @ ( cons_nat @ X @ Xs ) )
        = ( last_nat @ Xs ) ) ) ).

% last_ConsR
thf(fact_78_last__append,axiom,
    ! [Ys: list_nat,Xs: list_nat] :
      ( ( ( Ys = nil_nat )
       => ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
          = ( last_nat @ Xs ) ) )
      & ( ( Ys != nil_nat )
       => ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
          = ( last_nat @ Ys ) ) ) ) ).

% last_append
thf(fact_79_last__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Ys ) ) ) ) ).

% last_append
thf(fact_80_take__Nil,axiom,
    ! [N: nat] :
      ( ( take_a @ N @ nil_a )
      = nil_a ) ).

% take_Nil
thf(fact_81_take__equalityI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ! [I2: nat] :
          ( ( take_a @ I2 @ Xs )
          = ( take_a @ I2 @ Ys ) )
     => ( Xs = Ys ) ) ).

% take_equalityI
thf(fact_82_transpose_Ocases,axiom,
    ! [X: list_list_a] :
      ( ( X != nil_list_a )
     => ( ! [Xss: list_list_a] :
            ( X
           != ( cons_list_a @ nil_a @ Xss ) )
       => ~ ! [X2: a,Xs3: list_a,Xss: list_list_a] :
              ( X
             != ( cons_list_a @ ( cons_a @ X2 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_83_transpose_Ocases,axiom,
    ! [X: list_list_nat] :
      ( ( X != nil_list_nat )
     => ( ! [Xss: list_list_nat] :
            ( X
           != ( cons_list_nat @ nil_nat @ Xss ) )
       => ~ ! [X2: nat,Xs3: list_nat,Xss: list_list_nat] :
              ( X
             != ( cons_list_nat @ ( cons_nat @ X2 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_84_longest__common__suffix,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
    ? [Ss: list_nat,Xs4: list_nat,Ys2: list_nat] :
      ( ( Xs
        = ( append_nat @ Xs4 @ Ss ) )
      & ( Ys
        = ( append_nat @ Ys2 @ Ss ) )
      & ( ( Xs4 = nil_nat )
        | ( Ys2 = nil_nat )
        | ( ( last_nat @ Xs4 )
         != ( last_nat @ Ys2 ) ) ) ) ).

% longest_common_suffix
thf(fact_85_longest__common__suffix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ss: list_a,Xs4: list_a,Ys2: list_a] :
      ( ( Xs
        = ( append_a @ Xs4 @ Ss ) )
      & ( Ys
        = ( append_a @ Ys2 @ Ss ) )
      & ( ( Xs4 = nil_a )
        | ( Ys2 = nil_a )
        | ( ( last_a @ Xs4 )
         != ( last_a @ Ys2 ) ) ) ) ).

% longest_common_suffix
thf(fact_86_replicate__0,axiom,
    ! [X: a] :
      ( ( replicate_a @ zero_zero_nat @ X )
      = nil_a ) ).

% replicate_0
thf(fact_87_replicate__0,axiom,
    ! [X: nat] :
      ( ( replicate_nat @ zero_zero_nat @ X )
      = nil_nat ) ).

% replicate_0
thf(fact_88_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_89_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_90_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_91_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_92_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_93_strict__sorted_Oinduct,axiom,
    ! [P: list_a > $o,A0: list_a] :
      ( ( P @ nil_a )
     => ( ! [X2: a,Ys3: list_a] :
            ( ( P @ Ys3 )
           => ( P @ ( cons_a @ X2 @ Ys3 ) ) )
       => ( P @ A0 ) ) ) ).

% strict_sorted.induct
thf(fact_94_strict__sorted_Oinduct,axiom,
    ! [P: list_nat > $o,A0: list_nat] :
      ( ( P @ nil_nat )
     => ( ! [X2: nat,Ys3: list_nat] :
            ( ( P @ Ys3 )
           => ( P @ ( cons_nat @ X2 @ Ys3 ) ) )
       => ( P @ A0 ) ) ) ).

% strict_sorted.induct
thf(fact_95_strict__sorted_Ocases,axiom,
    ! [X: list_a] :
      ( ( X != nil_a )
     => ~ ! [X2: a,Ys3: list_a] :
            ( X
           != ( cons_a @ X2 @ Ys3 ) ) ) ).

% strict_sorted.cases
thf(fact_96_strict__sorted_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ~ ! [X2: nat,Ys3: list_nat] :
            ( X
           != ( cons_nat @ X2 @ Ys3 ) ) ) ).

% strict_sorted.cases
thf(fact_97_map__tailrec__rev_Oinduct,axiom,
    ! [P: ( a > a ) > list_a > list_a > $o,A0: a > a,A1: list_a,A2: list_a] :
      ( ! [F: a > a,X_1: list_a] : ( P @ F @ nil_a @ X_1 )
     => ( ! [F: a > a,A3: a,As: list_a,Bs: list_a] :
            ( ( P @ F @ As @ ( cons_a @ ( F @ A3 ) @ Bs ) )
           => ( P @ F @ ( cons_a @ A3 @ As ) @ Bs ) )
       => ( P @ A0 @ A1 @ A2 ) ) ) ).

% map_tailrec_rev.induct
thf(fact_98_map__tailrec__rev_Oinduct,axiom,
    ! [P: ( nat > a ) > list_nat > list_a > $o,A0: nat > a,A1: list_nat,A2: list_a] :
      ( ! [F: nat > a,X_1: list_a] : ( P @ F @ nil_nat @ X_1 )
     => ( ! [F: nat > a,A3: nat,As: list_nat,Bs: list_a] :
            ( ( P @ F @ As @ ( cons_a @ ( F @ A3 ) @ Bs ) )
           => ( P @ F @ ( cons_nat @ A3 @ As ) @ Bs ) )
       => ( P @ A0 @ A1 @ A2 ) ) ) ).

% map_tailrec_rev.induct
thf(fact_99_map__tailrec__rev_Oinduct,axiom,
    ! [P: ( a > nat ) > list_a > list_nat > $o,A0: a > nat,A1: list_a,A2: list_nat] :
      ( ! [F: a > nat,X_1: list_nat] : ( P @ F @ nil_a @ X_1 )
     => ( ! [F: a > nat,A3: a,As: list_a,Bs: list_nat] :
            ( ( P @ F @ As @ ( cons_nat @ ( F @ A3 ) @ Bs ) )
           => ( P @ F @ ( cons_a @ A3 @ As ) @ Bs ) )
       => ( P @ A0 @ A1 @ A2 ) ) ) ).

% map_tailrec_rev.induct
thf(fact_100_map__tailrec__rev_Oinduct,axiom,
    ! [P: ( nat > nat ) > list_nat > list_nat > $o,A0: nat > nat,A1: list_nat,A2: list_nat] :
      ( ! [F: nat > nat,X_1: list_nat] : ( P @ F @ nil_nat @ X_1 )
     => ( ! [F: nat > nat,A3: nat,As: list_nat,Bs: list_nat] :
            ( ( P @ F @ As @ ( cons_nat @ ( F @ A3 ) @ Bs ) )
           => ( P @ F @ ( cons_nat @ A3 @ As ) @ Bs ) )
       => ( P @ A0 @ A1 @ A2 ) ) ) ).

% map_tailrec_rev.induct
thf(fact_101_list__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [X2: a,Xs3: list_a] :
              ( ( Xs3 != nil_a )
             => ( ( P @ Xs3 )
               => ( P @ ( cons_a @ X2 @ Xs3 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_102_list__nonempty__induct,axiom,
    ! [Xs: list_nat,P: list_nat > $o] :
      ( ( Xs != nil_nat )
     => ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
       => ( ! [X2: nat,Xs3: list_nat] :
              ( ( Xs3 != nil_nat )
             => ( ( P @ Xs3 )
               => ( P @ ( cons_nat @ X2 @ Xs3 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_103_successively_Oinduct,axiom,
    ! [P: ( a > a > $o ) > list_a > $o,A0: a > a > $o,A1: list_a] :
      ( ! [P2: a > a > $o] : ( P @ P2 @ nil_a )
     => ( ! [P2: a > a > $o,X2: a] : ( P @ P2 @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [P2: a > a > $o,X2: a,Y2: a,Xs3: list_a] :
              ( ( P @ P2 @ ( cons_a @ Y2 @ Xs3 ) )
             => ( P @ P2 @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% successively.induct
thf(fact_104_successively_Oinduct,axiom,
    ! [P: ( nat > nat > $o ) > list_nat > $o,A0: nat > nat > $o,A1: list_nat] :
      ( ! [P2: nat > nat > $o] : ( P @ P2 @ nil_nat )
     => ( ! [P2: nat > nat > $o,X2: nat] : ( P @ P2 @ ( cons_nat @ X2 @ nil_nat ) )
       => ( ! [P2: nat > nat > $o,X2: nat,Y2: nat,Xs3: list_nat] :
              ( ( P @ P2 @ ( cons_nat @ Y2 @ Xs3 ) )
             => ( P @ P2 @ ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% successively.induct
thf(fact_105_remdups__adj_Oinduct,axiom,
    ! [P: list_a > $o,A0: list_a] :
      ( ( P @ nil_a )
     => ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [X2: a,Y2: a,Xs3: list_a] :
              ( ( ( X2 = Y2 )
               => ( P @ ( cons_a @ X2 @ Xs3 ) ) )
             => ( ( ( X2 != Y2 )
                 => ( P @ ( cons_a @ Y2 @ Xs3 ) ) )
               => ( P @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) ) )
         => ( P @ A0 ) ) ) ) ).

% remdups_adj.induct
thf(fact_106_remdups__adj_Oinduct,axiom,
    ! [P: list_nat > $o,A0: list_nat] :
      ( ( P @ nil_nat )
     => ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
       => ( ! [X2: nat,Y2: nat,Xs3: list_nat] :
              ( ( ( X2 = Y2 )
               => ( P @ ( cons_nat @ X2 @ Xs3 ) ) )
             => ( ( ( X2 != Y2 )
                 => ( P @ ( cons_nat @ Y2 @ Xs3 ) ) )
               => ( P @ ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) ) )
         => ( P @ A0 ) ) ) ) ).

% remdups_adj.induct
thf(fact_107_sorted__wrt_Oinduct,axiom,
    ! [P: ( a > a > $o ) > list_a > $o,A0: a > a > $o,A1: list_a] :
      ( ! [P2: a > a > $o] : ( P @ P2 @ nil_a )
     => ( ! [P2: a > a > $o,X2: a,Ys3: list_a] :
            ( ( P @ P2 @ Ys3 )
           => ( P @ P2 @ ( cons_a @ X2 @ Ys3 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% sorted_wrt.induct
thf(fact_108_sorted__wrt_Oinduct,axiom,
    ! [P: ( nat > nat > $o ) > list_nat > $o,A0: nat > nat > $o,A1: list_nat] :
      ( ! [P2: nat > nat > $o] : ( P @ P2 @ nil_nat )
     => ( ! [P2: nat > nat > $o,X2: nat,Ys3: list_nat] :
            ( ( P @ P2 @ Ys3 )
           => ( P @ P2 @ ( cons_nat @ X2 @ Ys3 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% sorted_wrt.induct
thf(fact_109_remdups__adj_Ocases,axiom,
    ! [X: list_a] :
      ( ( X != nil_a )
     => ( ! [X2: a] :
            ( X
           != ( cons_a @ X2 @ nil_a ) )
       => ~ ! [X2: a,Y2: a,Xs3: list_a] :
              ( X
             != ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_110_remdups__adj_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ( ! [X2: nat] :
            ( X
           != ( cons_nat @ X2 @ nil_nat ) )
       => ~ ! [X2: nat,Y2: nat,Xs3: list_nat] :
              ( X
             != ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_111_shuffles_Oinduct,axiom,
    ! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
      ( ! [X_1: list_a] : ( P @ nil_a @ X_1 )
     => ( ! [Xs3: list_a] : ( P @ Xs3 @ nil_a )
       => ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
              ( ( P @ Xs3 @ ( cons_a @ Y2 @ Ys3 ) )
             => ( ( P @ ( cons_a @ X2 @ Xs3 ) @ Ys3 )
               => ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% shuffles.induct
thf(fact_112_shuffles_Oinduct,axiom,
    ! [P: list_nat > list_nat > $o,A0: list_nat,A1: list_nat] :
      ( ! [X_1: list_nat] : ( P @ nil_nat @ X_1 )
     => ( ! [Xs3: list_nat] : ( P @ Xs3 @ nil_nat )
       => ( ! [X2: nat,Xs3: list_nat,Y2: nat,Ys3: list_nat] :
              ( ( P @ Xs3 @ ( cons_nat @ Y2 @ Ys3 ) )
             => ( ( P @ ( cons_nat @ X2 @ Xs3 ) @ Ys3 )
               => ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% shuffles.induct
thf(fact_113_min__list_Oinduct,axiom,
    ! [P: list_a > $o,A0: list_a] :
      ( ! [X2: a,Xs3: list_a] :
          ( ! [X212: a,X222: list_a] :
              ( ( Xs3
                = ( cons_a @ X212 @ X222 ) )
             => ( P @ Xs3 ) )
         => ( P @ ( cons_a @ X2 @ Xs3 ) ) )
     => ( ( P @ nil_a )
       => ( P @ A0 ) ) ) ).

% min_list.induct
thf(fact_114_min__list_Oinduct,axiom,
    ! [P: list_nat > $o,A0: list_nat] :
      ( ! [X2: nat,Xs3: list_nat] :
          ( ! [X212: nat,X222: list_nat] :
              ( ( Xs3
                = ( cons_nat @ X212 @ X222 ) )
             => ( P @ Xs3 ) )
         => ( P @ ( cons_nat @ X2 @ Xs3 ) ) )
     => ( ( P @ nil_nat )
       => ( P @ A0 ) ) ) ).

% min_list.induct
thf(fact_115_min__list_Ocases,axiom,
    ! [X: list_a] :
      ( ! [X2: a,Xs3: list_a] :
          ( X
         != ( cons_a @ X2 @ Xs3 ) )
     => ( X = nil_a ) ) ).

% min_list.cases
thf(fact_116_min__list_Ocases,axiom,
    ! [X: list_nat] :
      ( ! [X2: nat,Xs3: list_nat] :
          ( X
         != ( cons_nat @ X2 @ Xs3 ) )
     => ( X = nil_nat ) ) ).

% min_list.cases
thf(fact_117_induct__list012,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ( P @ nil_a )
     => ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [X2: a,Y2: a,Zs2: list_a] :
              ( ( P @ Zs2 )
             => ( ( P @ ( cons_a @ Y2 @ Zs2 ) )
               => ( P @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Zs2 ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% induct_list012
thf(fact_118_induct__list012,axiom,
    ! [P: list_nat > $o,Xs: list_nat] :
      ( ( P @ nil_nat )
     => ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
       => ( ! [X2: nat,Y2: nat,Zs2: list_nat] :
              ( ( P @ Zs2 )
             => ( ( P @ ( cons_nat @ Y2 @ Zs2 ) )
               => ( P @ ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Zs2 ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% induct_list012
thf(fact_119_splice_Oinduct,axiom,
    ! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
      ( ! [X_1: list_a] : ( P @ nil_a @ X_1 )
     => ( ! [X2: a,Xs3: list_a,Ys3: list_a] :
            ( ( P @ Ys3 @ Xs3 )
           => ( P @ ( cons_a @ X2 @ Xs3 ) @ Ys3 ) )
       => ( P @ A0 @ A1 ) ) ) ).

% splice.induct
thf(fact_120_splice_Oinduct,axiom,
    ! [P: list_nat > list_nat > $o,A0: list_nat,A1: list_nat] :
      ( ! [X_1: list_nat] : ( P @ nil_nat @ X_1 )
     => ( ! [X2: nat,Xs3: list_nat,Ys3: list_nat] :
            ( ( P @ Ys3 @ Xs3 )
           => ( P @ ( cons_nat @ X2 @ Xs3 ) @ Ys3 ) )
       => ( P @ A0 @ A1 ) ) ) ).

% splice.induct
thf(fact_121_list__induct2_H,axiom,
    ! [P: list_a > list_a > $o,Xs: list_a,Ys: list_a] :
      ( ( P @ nil_a @ nil_a )
     => ( ! [X2: a,Xs3: list_a] : ( P @ ( cons_a @ X2 @ Xs3 ) @ nil_a )
       => ( ! [Y2: a,Ys3: list_a] : ( P @ nil_a @ ( cons_a @ Y2 @ Ys3 ) )
         => ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
                ( ( P @ Xs3 @ Ys3 )
               => ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_122_list__induct2_H,axiom,
    ! [P: list_a > list_nat > $o,Xs: list_a,Ys: list_nat] :
      ( ( P @ nil_a @ nil_nat )
     => ( ! [X2: a,Xs3: list_a] : ( P @ ( cons_a @ X2 @ Xs3 ) @ nil_nat )
       => ( ! [Y2: nat,Ys3: list_nat] : ( P @ nil_a @ ( cons_nat @ Y2 @ Ys3 ) )
         => ( ! [X2: a,Xs3: list_a,Y2: nat,Ys3: list_nat] :
                ( ( P @ Xs3 @ Ys3 )
               => ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_123_list__induct2_H,axiom,
    ! [P: list_nat > list_a > $o,Xs: list_nat,Ys: list_a] :
      ( ( P @ nil_nat @ nil_a )
     => ( ! [X2: nat,Xs3: list_nat] : ( P @ ( cons_nat @ X2 @ Xs3 ) @ nil_a )
       => ( ! [Y2: a,Ys3: list_a] : ( P @ nil_nat @ ( cons_a @ Y2 @ Ys3 ) )
         => ( ! [X2: nat,Xs3: list_nat,Y2: a,Ys3: list_a] :
                ( ( P @ Xs3 @ Ys3 )
               => ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_124_list__induct2_H,axiom,
    ! [P: list_nat > list_nat > $o,Xs: list_nat,Ys: list_nat] :
      ( ( P @ nil_nat @ nil_nat )
     => ( ! [X2: nat,Xs3: list_nat] : ( P @ ( cons_nat @ X2 @ Xs3 ) @ nil_nat )
       => ( ! [Y2: nat,Ys3: list_nat] : ( P @ nil_nat @ ( cons_nat @ Y2 @ Ys3 ) )
         => ( ! [X2: nat,Xs3: list_nat,Y2: nat,Ys3: list_nat] :
                ( ( P @ Xs3 @ Ys3 )
               => ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_125_neq__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
      = ( ? [Y3: a,Ys4: list_a] :
            ( Xs
            = ( cons_a @ Y3 @ Ys4 ) ) ) ) ).

% neq_Nil_conv
thf(fact_126_neq__Nil__conv,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
      = ( ? [Y3: nat,Ys4: list_nat] :
            ( Xs
            = ( cons_nat @ Y3 @ Ys4 ) ) ) ) ).

% neq_Nil_conv
thf(fact_127_list_Oinducts,axiom,
    ! [P: list_a > $o,List: list_a] :
      ( ( P @ nil_a )
     => ( ! [X1: a,X23: list_a] :
            ( ( P @ X23 )
           => ( P @ ( cons_a @ X1 @ X23 ) ) )
       => ( P @ List ) ) ) ).

% list.inducts
thf(fact_128_list_Oinducts,axiom,
    ! [P: list_nat > $o,List: list_nat] :
      ( ( P @ nil_nat )
     => ( ! [X1: nat,X23: list_nat] :
            ( ( P @ X23 )
           => ( P @ ( cons_nat @ X1 @ X23 ) ) )
       => ( P @ List ) ) ) ).

% list.inducts
thf(fact_129_list_Oexhaust,axiom,
    ! [Y: list_a] :
      ( ( Y != nil_a )
     => ~ ! [X213: a,X223: list_a] :
            ( Y
           != ( cons_a @ X213 @ X223 ) ) ) ).

% list.exhaust
thf(fact_130_list_Oexhaust,axiom,
    ! [Y: list_nat] :
      ( ( Y != nil_nat )
     => ~ ! [X213: nat,X223: list_nat] :
            ( Y
           != ( cons_nat @ X213 @ X223 ) ) ) ).

% list.exhaust
thf(fact_131_list_OdiscI,axiom,
    ! [List: list_a,X21: a,X22: list_a] :
      ( ( List
        = ( cons_a @ X21 @ X22 ) )
     => ( List != nil_a ) ) ).

% list.discI
thf(fact_132_list_OdiscI,axiom,
    ! [List: list_nat,X21: nat,X22: list_nat] :
      ( ( List
        = ( cons_nat @ X21 @ X22 ) )
     => ( List != nil_nat ) ) ).

% list.discI
thf(fact_133_list_Odistinct_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( nil_a
     != ( cons_a @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_134_list_Odistinct_I1_J,axiom,
    ! [X21: nat,X22: list_nat] :
      ( nil_nat
     != ( cons_nat @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_135_append_Oleft__neutral,axiom,
    ! [A: list_nat] :
      ( ( append_nat @ nil_nat @ A )
      = A ) ).

% append.left_neutral
thf(fact_136_append_Oleft__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ nil_a @ A )
      = A ) ).

% append.left_neutral
thf(fact_137_append__Nil,axiom,
    ! [Ys: list_nat] :
      ( ( append_nat @ nil_nat @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_138_append__Nil,axiom,
    ! [Ys: list_a] :
      ( ( append_a @ nil_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_139_eq__Nil__appendI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_nat @ nil_nat @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_140_eq__Nil__appendI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_a @ nil_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_141_psums_Ocases,axiom,
    ! [X: list_a] :
      ( ( X != nil_a )
     => ( ! [X2: a] :
            ( X
           != ( cons_a @ X2 @ nil_a ) )
       => ~ ! [X2: a,Y2: a,Xs3: list_a] :
              ( X
             != ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) ) ) ).

% psums.cases
thf(fact_142_psums_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ( ! [X2: nat] :
            ( X
           != ( cons_nat @ X2 @ nil_nat ) )
       => ~ ! [X2: nat,Y2: nat,Xs3: list_nat] :
              ( X
             != ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) ) ) ).

% psums.cases
thf(fact_143_rev__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [X2: a,Xs3: list_a] :
              ( ( Xs3 != nil_a )
             => ( ( P @ Xs3 )
               => ( P @ ( append_a @ Xs3 @ ( cons_a @ X2 @ nil_a ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_144_rev__nonempty__induct,axiom,
    ! [Xs: list_nat,P: list_nat > $o] :
      ( ( Xs != nil_nat )
     => ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
       => ( ! [X2: nat,Xs3: list_nat] :
              ( ( Xs3 != nil_nat )
             => ( ( P @ Xs3 )
               => ( P @ ( append_nat @ Xs3 @ ( cons_nat @ X2 @ nil_nat ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_145_append__eq__Cons__conv,axiom,
    ! [Ys: list_a,Zs: list_a,X: a,Xs: list_a] :
      ( ( ( append_a @ Ys @ Zs )
        = ( cons_a @ X @ Xs ) )
      = ( ( ( Ys = nil_a )
          & ( Zs
            = ( cons_a @ X @ Xs ) ) )
        | ? [Ys5: list_a] :
            ( ( Ys
              = ( cons_a @ X @ Ys5 ) )
            & ( ( append_a @ Ys5 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_146_append__eq__Cons__conv,axiom,
    ! [Ys: list_nat,Zs: list_nat,X: nat,Xs: list_nat] :
      ( ( ( append_nat @ Ys @ Zs )
        = ( cons_nat @ X @ Xs ) )
      = ( ( ( Ys = nil_nat )
          & ( Zs
            = ( cons_nat @ X @ Xs ) ) )
        | ? [Ys5: list_nat] :
            ( ( Ys
              = ( cons_nat @ X @ Ys5 ) )
            & ( ( append_nat @ Ys5 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_147_Cons__eq__append__conv,axiom,
    ! [X: a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( cons_a @ X @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ( ( Ys = nil_a )
          & ( ( cons_a @ X @ Xs )
            = Zs ) )
        | ? [Ys5: list_a] :
            ( ( ( cons_a @ X @ Ys5 )
              = Ys )
            & ( Xs
              = ( append_a @ Ys5 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_148_Cons__eq__append__conv,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( cons_nat @ X @ Xs )
        = ( append_nat @ Ys @ Zs ) )
      = ( ( ( Ys = nil_nat )
          & ( ( cons_nat @ X @ Xs )
            = Zs ) )
        | ? [Ys5: list_nat] :
            ( ( ( cons_nat @ X @ Ys5 )
              = Ys )
            & ( Xs
              = ( append_nat @ Ys5 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_149_rev__exhaust,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ~ ! [Ys3: list_a,Y2: a] :
            ( Xs
           != ( append_a @ Ys3 @ ( cons_a @ Y2 @ nil_a ) ) ) ) ).

% rev_exhaust
thf(fact_150_rev__exhaust,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
     => ~ ! [Ys3: list_nat,Y2: nat] :
            ( Xs
           != ( append_nat @ Ys3 @ ( cons_nat @ Y2 @ nil_nat ) ) ) ) ).

% rev_exhaust
thf(fact_151_rev__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ( P @ nil_a )
     => ( ! [X2: a,Xs3: list_a] :
            ( ( P @ Xs3 )
           => ( P @ ( append_a @ Xs3 @ ( cons_a @ X2 @ nil_a ) ) ) )
       => ( P @ Xs ) ) ) ).

% rev_induct
thf(fact_152_rev__induct,axiom,
    ! [P: list_nat > $o,Xs: list_nat] :
      ( ( P @ nil_nat )
     => ( ! [X2: nat,Xs3: list_nat] :
            ( ( P @ Xs3 )
           => ( P @ ( append_nat @ Xs3 @ ( cons_nat @ X2 @ nil_nat ) ) ) )
       => ( P @ Xs ) ) ) ).

% rev_induct
thf(fact_153_psums_Osimps_I1_J,axiom,
    ( ( descar1375166517sums_a @ nil_a )
    = nil_a ) ).

% psums.simps(1)
thf(fact_154_psums_Osimps_I1_J,axiom,
    ( ( descar226543321ms_nat @ nil_nat )
    = nil_nat ) ).

% psums.simps(1)
thf(fact_155_replicate__append__same,axiom,
    ! [I: nat,X: a] :
      ( ( append_a @ ( replicate_a @ I @ X ) @ ( cons_a @ X @ nil_a ) )
      = ( cons_a @ X @ ( replicate_a @ I @ X ) ) ) ).

% replicate_append_same
thf(fact_156_replicate__append__same,axiom,
    ! [I: nat,X: nat] :
      ( ( append_nat @ ( replicate_nat @ I @ X ) @ ( cons_nat @ X @ nil_nat ) )
      = ( cons_nat @ X @ ( replicate_nat @ I @ X ) ) ) ).

% replicate_append_same
thf(fact_157_psums_Osimps_I2_J,axiom,
    ! [X: a] :
      ( ( descar1375166517sums_a @ ( cons_a @ X @ nil_a ) )
      = ( cons_a @ X @ nil_a ) ) ).

% psums.simps(2)
thf(fact_158_psums_Osimps_I2_J,axiom,
    ! [X: nat] :
      ( ( descar226543321ms_nat @ ( cons_nat @ X @ nil_nat ) )
      = ( cons_nat @ X @ nil_nat ) ) ).

% psums.simps(2)
thf(fact_159_zero__reorient,axiom,
    ! [X: a] :
      ( ( zero_zero_a = X )
      = ( X = zero_zero_a ) ) ).

% zero_reorient
thf(fact_160_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_161_not__Cons__self2,axiom,
    ! [X: a,Xs: list_a] :
      ( ( cons_a @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_162_not__Cons__self2,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( cons_nat @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_163_append__eq__append__conv2,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ts: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Zs @ Ts ) )
      = ( ? [Us: list_a] :
            ( ( ( Xs
                = ( append_a @ Zs @ Us ) )
              & ( ( append_a @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_a @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_a @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_164_append__eq__append__conv2,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat,Ts: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Zs @ Ts ) )
      = ( ? [Us: list_nat] :
            ( ( ( Xs
                = ( append_nat @ Zs @ Us ) )
              & ( ( append_nat @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_nat @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_nat @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_165_append__eq__appendI,axiom,
    ! [Xs: list_a,Xs1: list_a,Zs: list_a,Ys: list_a,Us2: list_a] :
      ( ( ( append_a @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_a @ Xs1 @ Us2 ) )
       => ( ( append_a @ Xs @ Ys )
          = ( append_a @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_166_append__eq__appendI,axiom,
    ! [Xs: list_nat,Xs1: list_nat,Zs: list_nat,Ys: list_nat,Us2: list_nat] :
      ( ( ( append_nat @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_nat @ Xs1 @ Us2 ) )
       => ( ( append_nat @ Xs @ Ys )
          = ( append_nat @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_167_append__Cons,axiom,
    ! [X: a,Xs: list_a,Ys: list_a] :
      ( ( append_a @ ( cons_a @ X @ Xs ) @ Ys )
      = ( cons_a @ X @ ( append_a @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_168_append__Cons,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat] :
      ( ( append_nat @ ( cons_nat @ X @ Xs ) @ Ys )
      = ( cons_nat @ X @ ( append_nat @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_169_v__decompose,axiom,
    ! [Xs5: list_a] :
      ( ( v @ ( append_a @ Xs5 @ xsa ) )
      = ( plus_plus_int @ ( v @ ( append_a @ Xs5 @ ( cons_a @ ( nth_a @ xsa @ p ) @ nil_a ) ) ) @ ( v @ ( cons_a @ ( nth_a @ xsa @ p ) @ xs2 ) ) ) ) ).

% v_decompose
thf(fact_170_p__less__length,axiom,
    ord_less_nat @ p @ ( size_size_list_a @ xsa ) ).

% p_less_length
thf(fact_171_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_172_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_173_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_174_order__refl,axiom,
    ! [X: a] : ( ord_less_eq_a @ X @ X ) ).

% order_refl
thf(fact_175_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_176_minus__poly__rev__list_Oinduct,axiom,
    ! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
      ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
          ( ( P @ Xs3 @ Ys3 )
         => ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
     => ( ! [Xs3: list_a] : ( P @ Xs3 @ nil_a )
       => ( ! [Y2: a,Ys3: list_a] : ( P @ nil_a @ ( cons_a @ Y2 @ Ys3 ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% minus_poly_rev_list.induct
thf(fact_177_plus__coeffs_Oinduct,axiom,
    ! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
      ( ! [Xs3: list_a] : ( P @ Xs3 @ nil_a )
     => ( ! [V: a,Va: list_a] : ( P @ nil_a @ ( cons_a @ V @ Va ) )
       => ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
              ( ( P @ Xs3 @ Ys3 )
             => ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% plus_coeffs.induct
thf(fact_178_plus__coeffs_Oinduct,axiom,
    ! [P: list_nat > list_nat > $o,A0: list_nat,A1: list_nat] :
      ( ! [Xs3: list_nat] : ( P @ Xs3 @ nil_nat )
     => ( ! [V: nat,Va: list_nat] : ( P @ nil_nat @ ( cons_nat @ V @ Va ) )
       => ( ! [X2: nat,Xs3: list_nat,Y2: nat,Ys3: list_nat] :
              ( ( P @ Xs3 @ Ys3 )
             => ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) )
         => ( P @ A0 @ A1 ) ) ) ) ).

% plus_coeffs.induct
thf(fact_179_minf_I8_J,axiom,
    ! [T: a] :
    ? [Z: a] :
    ! [X3: a] :
      ( ( ord_less_a @ X3 @ Z )
     => ~ ( ord_less_eq_a @ T @ X3 ) ) ).

% minf(8)
thf(fact_180_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z )
     => ~ ( ord_less_eq_nat @ T @ X3 ) ) ).

% minf(8)
thf(fact_181_minf_I6_J,axiom,
    ! [T: a] :
    ? [Z: a] :
    ! [X3: a] :
      ( ( ord_less_a @ X3 @ Z )
     => ( ord_less_eq_a @ X3 @ T ) ) ).

% minf(6)
thf(fact_182_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z )
     => ( ord_less_eq_nat @ X3 @ T ) ) ).

% minf(6)
thf(fact_183_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_184_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_185_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_186_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_187_add_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.left_neutral
thf(fact_188_add_Oleft__neutral,axiom,
    ! [A: a] :
      ( ( plus_plus_a @ zero_zero_a @ A )
      = A ) ).

% add.left_neutral
thf(fact_189_add_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add.left_neutral
thf(fact_190_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_191_add_Oright__neutral,axiom,
    ! [A: a] :
      ( ( plus_plus_a @ A @ zero_zero_a )
      = A ) ).

% add.right_neutral
thf(fact_192_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_193_double__zero,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_zero
thf(fact_194_double__zero,axiom,
    ! [A: a] :
      ( ( ( plus_plus_a @ A @ A )
        = zero_zero_a )
      = ( A = zero_zero_a ) ) ).

% double_zero
thf(fact_195_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_196_double__zero__sym,axiom,
    ! [A: a] :
      ( ( zero_zero_a
        = ( plus_plus_a @ A @ A ) )
      = ( A = zero_zero_a ) ) ).

% double_zero_sym
thf(fact_197_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_198_add__cancel__left__left,axiom,
    ! [B: a,A: a] :
      ( ( ( plus_plus_a @ B @ A )
        = A )
      = ( B = zero_zero_a ) ) ).

% add_cancel_left_left
thf(fact_199_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_200_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_201_add__cancel__left__right,axiom,
    ! [A: a,B: a] :
      ( ( ( plus_plus_a @ A @ B )
        = A )
      = ( B = zero_zero_a ) ) ).

% add_cancel_left_right
thf(fact_202_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_203_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_204_add__cancel__right__left,axiom,
    ! [A: a,B: a] :
      ( ( A
        = ( plus_plus_a @ B @ A ) )
      = ( B = zero_zero_a ) ) ).

% add_cancel_right_left
thf(fact_205_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_206_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_207_add__cancel__right__right,axiom,
    ! [A: a,B: a] :
      ( ( A
        = ( plus_plus_a @ A @ B ) )
      = ( B = zero_zero_a ) ) ).

% add_cancel_right_right
thf(fact_208_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_209_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_210_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_211_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_212_add__le__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_213_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_214_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_215_add__le__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_216_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_217_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_218_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_219_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_220_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_221_append__eq__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat,Us2: list_nat,Vs: list_nat] :
      ( ( ( ( size_size_list_nat @ Xs )
          = ( size_size_list_nat @ Ys ) )
        | ( ( size_size_list_nat @ Us2 )
          = ( size_size_list_nat @ Vs ) ) )
     => ( ( ( append_nat @ Xs @ Us2 )
          = ( append_nat @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us2 = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_222_append__eq__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a,Us2: list_a,Vs: list_a] :
      ( ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
        | ( ( size_size_list_a @ Us2 )
          = ( size_size_list_a @ Vs ) ) )
     => ( ( ( append_a @ Xs @ Us2 )
          = ( append_a @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us2 = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_223_take__all__iff,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ( take_a @ N @ Xs )
        = Xs )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N ) ) ).

% take_all_iff
thf(fact_224_take__all,axiom,
    ! [Xs: list_a,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N )
     => ( ( take_a @ N @ Xs )
        = Xs ) ) ).

% take_all
thf(fact_225_length__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( size_size_list_nat @ ( replicate_nat @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_226_length__replicate,axiom,
    ! [N: nat,X: a] :
      ( ( size_size_list_a @ ( replicate_a @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_227_length__psums,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( descar1375166517sums_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_psums
thf(fact_228_length__psums,axiom,
    ! [Xs: list_nat] :
      ( ( size_size_list_nat @ ( descar226543321ms_nat @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_psums
thf(fact_229_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_230_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ A @ A ) )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_231_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_232_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ A ) @ zero_zero_a )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_233_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_234_le__add__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( plus_plus_a @ B @ A ) )
      = ( ord_less_eq_a @ zero_zero_a @ B ) ) ).

% le_add_same_cancel2
thf(fact_235_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_236_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_237_le__add__same__cancel1,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( plus_plus_a @ A @ B ) )
      = ( ord_less_eq_a @ zero_zero_a @ B ) ) ).

% le_add_same_cancel1
thf(fact_238_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_239_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_240_add__le__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ B )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% add_le_same_cancel2
thf(fact_241_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_242_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_243_add__le__same__cancel1,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ B @ A ) @ B )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% add_le_same_cancel1
thf(fact_244_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_245_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_246_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: a] :
      ( ( ord_less_a @ zero_zero_a @ ( plus_plus_a @ A @ A ) )
      = ( ord_less_a @ zero_zero_a @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_247_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_248_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: a] :
      ( ( ord_less_a @ ( plus_plus_a @ A @ A ) @ zero_zero_a )
      = ( ord_less_a @ A @ zero_zero_a ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_249_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_250_less__add__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ A @ ( plus_plus_a @ B @ A ) )
      = ( ord_less_a @ zero_zero_a @ B ) ) ).

% less_add_same_cancel2
thf(fact_251_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_252_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_253_less__add__same__cancel1,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ A @ ( plus_plus_a @ A @ B ) )
      = ( ord_less_a @ zero_zero_a @ B ) ) ).

% less_add_same_cancel1
thf(fact_254_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_255_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_256_add__less__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ ( plus_plus_a @ A @ B ) @ B )
      = ( ord_less_a @ A @ zero_zero_a ) ) ).

% add_less_same_cancel2
thf(fact_257_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_258_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_259_add__less__same__cancel1,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_a @ ( plus_plus_a @ B @ A ) @ B )
      = ( ord_less_a @ A @ zero_zero_a ) ) ).

% add_less_same_cancel1
thf(fact_260_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_261_length__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_a ) ) ).

% length_0_conv
thf(fact_262_length__greater__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) )
      = ( Xs != nil_a ) ) ).

% length_greater_0_conv
thf(fact_263_nth__append__length,axiom,
    ! [Xs: list_nat,X: nat,Ys: list_nat] :
      ( ( nth_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ Ys ) ) @ ( size_size_list_nat @ Xs ) )
      = X ) ).

% nth_append_length
thf(fact_264_nth__append__length,axiom,
    ! [Xs: list_a,X: a,Ys: list_a] :
      ( ( nth_a @ ( append_a @ Xs @ ( cons_a @ X @ Ys ) ) @ ( size_size_list_a @ Xs ) )
      = X ) ).

% nth_append_length
thf(fact_265_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_266_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_267_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_268_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_269_impossible__Cons,axiom,
    ! [Xs: list_nat,Ys: list_nat,X: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_nat @ Ys ) )
     => ( Xs
       != ( cons_nat @ X @ Ys ) ) ) ).

% impossible_Cons
thf(fact_270_impossible__Cons,axiom,
    ! [Xs: list_a,Ys: list_a,X: a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) )
     => ( Xs
       != ( cons_a @ X @ Ys ) ) ) ).

% impossible_Cons
thf(fact_271_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_a] :
      ( ( size_size_list_a @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_272_neq__if__length__neq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
       != ( size_size_list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_273_group__cancel_Oadd1,axiom,
    ! [A4: int,K: int,A: int,B: int] :
      ( ( A4
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A4 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_274_group__cancel_Oadd2,axiom,
    ! [B2: int,K: int,B: int,A: int] :
      ( ( B2
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B2 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_275_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_276_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_277_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_278_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_279_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_280_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A5: int,B3: int] : ( plus_plus_int @ B3 @ A5 ) ) ) ).

% add.commute
thf(fact_281_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_282_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_283_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_284_size__neq__size__imp__neq,axiom,
    ! [X: list_a,Y: list_a] :
      ( ( ( size_size_list_a @ X )
       != ( size_size_list_a @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_285_less__mono__imp__le__mono,axiom,
    ! [F2: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F2 @ I2 ) @ ( F2 @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_286_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_287_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_288_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
          | ( M2 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_289_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_290_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K2 )
               => ~ ( P @ I3 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_291_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M2 @ N2 )
          & ( M2 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_292_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_293_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: a] :
      ( ( plus_plus_a @ zero_zero_a @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_294_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_295_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_296_add_Ocomm__neutral,axiom,
    ! [A: a] :
      ( ( plus_plus_a @ A @ zero_zero_a )
      = A ) ).

% add.comm_neutral
thf(fact_297_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_298_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_299_add_Ogroup__left__neutral,axiom,
    ! [A: a] :
      ( ( plus_plus_a @ zero_zero_a @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_300_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_301_add__le__imp__le__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
     => ( ord_less_eq_a @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_302_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_303_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_304_add__le__imp__le__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
     => ( ord_less_eq_a @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_305_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_306_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A5: nat,B3: nat] :
        ? [C2: nat] :
          ( B3
          = ( plus_plus_nat @ A5 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_307_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_308_add__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) ) ) ).

% add_right_mono
thf(fact_309_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_310_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_311_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_312_add__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) ) ) ).

% add_left_mono
thf(fact_313_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_314_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_315_add__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D ) ) ) ) ).

% add_mono
thf(fact_316_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_317_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_318_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_319_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_320_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_321_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( I = J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_322_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_323_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_324_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_325_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_326_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_327_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_328_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_329_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_330_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_331_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_332_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_333_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_334_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_335_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_336_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_337_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_338_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_339_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_340_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_341_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_342_list_Osize_I3_J,axiom,
    ( ( size_size_list_a @ nil_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_343_length__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ! [Xs3: list_a] :
          ( ! [Ys6: list_a] :
              ( ( ord_less_nat @ ( size_size_list_a @ Ys6 ) @ ( size_size_list_a @ Xs3 ) )
             => ( P @ Ys6 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_344_nth__take__lemma,axiom,
    ! [K: nat,Xs: list_a,Ys: list_a] :
      ( ( ord_less_eq_nat @ K @ ( size_size_list_a @ Xs ) )
     => ( ( ord_less_eq_nat @ K @ ( size_size_list_a @ Ys ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ K )
             => ( ( nth_a @ Xs @ I2 )
                = ( nth_a @ Ys @ I2 ) ) )
         => ( ( take_a @ K @ Xs )
            = ( take_a @ K @ Ys ) ) ) ) ) ).

% nth_take_lemma
thf(fact_345_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_346_add__nonpos__eq__0__iff,axiom,
    ! [X: a,Y: a] :
      ( ( ord_less_eq_a @ X @ zero_zero_a )
     => ( ( ord_less_eq_a @ Y @ zero_zero_a )
       => ( ( ( plus_plus_a @ X @ Y )
            = zero_zero_a )
          = ( ( X = zero_zero_a )
            & ( Y = zero_zero_a ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_347_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_348_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_349_add__nonneg__eq__0__iff,axiom,
    ! [X: a,Y: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y )
       => ( ( ( plus_plus_a @ X @ Y )
            = zero_zero_a )
          = ( ( X = zero_zero_a )
            & ( Y = zero_zero_a ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_350_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( descar1375166517sums_a @ xsa )
    = ( append_a @ ( replicate_a @ p @ zero_zero_a ) @ ( descar1375166517sums_a @ ( cons_a @ ( nth_a @ xsa @ p ) @ xs2 ) ) ) ) ).

%------------------------------------------------------------------------------