TPTP Problem File: ITP043^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP043^1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer Descartes_Sign_Rule problem prob_378__5868812_1
% Version : Especial.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source : [Des21]
% Names : Descartes_Sign_Rule/prob_378__5868812_1 [Des21]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.27 v7.5.0
% Syntax : Number of formulae : 399 ( 204 unt; 47 typ; 0 def)
% Number of atoms : 793 ( 548 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 2521 ( 104 ~; 15 |; 59 &;2048 @)
% ( 0 <=>; 295 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Number of types : 8 ( 7 usr)
% Number of type conns : 160 ( 160 >; 0 *; 0 +; 0 <<)
% Number of symbols : 41 ( 40 usr; 13 con; 0-2 aty)
% Number of variables : 1002 ( 9 ^; 970 !; 23 ?;1002 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Sledgehammer 2021-02-23 15:40:52.257
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
list_list_nat: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
list_list_a: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__List__Olist_Itf__a_J,type,
list_a: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (40)
thf(sy_c_Descartes__Sign__Rule__Mirabelle__gwrulepwnb_Opsums_001t__Nat__Onat,type,
descar226543321ms_nat: list_nat > list_nat ).
thf(sy_c_Descartes__Sign__Rule__Mirabelle__gwrulepwnb_Opsums_001tf__a,type,
descar1375166517sums_a: list_a > list_a ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001tf__a,type,
plus_plus_a: a > a > a ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001tf__a,type,
zero_zero_a: a ).
thf(sy_c_List_Oappend_001t__Nat__Onat,type,
append_nat: list_nat > list_nat > list_nat ).
thf(sy_c_List_Oappend_001tf__a,type,
append_a: list_a > list_a > list_a ).
thf(sy_c_List_Olast_001t__Nat__Onat,type,
last_nat: list_nat > nat ).
thf(sy_c_List_Olast_001tf__a,type,
last_a: list_a > a ).
thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Nat__Onat_J,type,
cons_list_nat: list_nat > list_list_nat > list_list_nat ).
thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__a_J,type,
cons_list_a: list_a > list_list_a > list_list_a ).
thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
cons_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Olist_OCons_001tf__a,type,
cons_a: a > list_a > list_a ).
thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Nat__Onat_J,type,
nil_list_nat: list_list_nat ).
thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__a_J,type,
nil_list_a: list_list_a ).
thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
nil_nat: list_nat ).
thf(sy_c_List_Olist_ONil_001tf__a,type,
nil_a: list_a ).
thf(sy_c_List_Onth_001t__Nat__Onat,type,
nth_nat: list_nat > nat > nat ).
thf(sy_c_List_Onth_001tf__a,type,
nth_a: list_a > nat > a ).
thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
replicate_nat: nat > nat > list_nat ).
thf(sy_c_List_Oreplicate_001tf__a,type,
replicate_a: nat > a > list_a ).
thf(sy_c_List_Otake_001tf__a,type,
take_a: nat > list_a > list_a ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
size_size_list_a: list_a > nat ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001tf__a,type,
ord_less_a: a > a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__a,type,
ord_less_eq_a: a > a > $o ).
thf(sy_v_p____,type,
p: nat ).
thf(sy_v_v,type,
v: list_a > int ).
thf(sy_v_xa____,type,
xa: a ).
thf(sy_v_xs,type,
xs: list_a ).
thf(sy_v_xs1____,type,
xs1: list_a ).
thf(sy_v_xs2____,type,
xs2: list_a ).
thf(sy_v_xsa____,type,
xsa: list_a ).
% Relevant facts (351)
thf(fact_0_nonneg_Ohyps_I1_J,axiom,
xsa != nil_a ).
% nonneg.hyps(1)
thf(fact_1_p__nz,axiom,
( ( nth_a @ xsa @ p )
!= zero_zero_a ) ).
% p_nz
thf(fact_2_nonneg_Ohyps_I2_J,axiom,
( ( last_a @ xsa )
!= zero_zero_a ) ).
% nonneg.hyps(2)
thf(fact_3_psums__0__Cons,axiom,
! [Xs: list_nat] :
( ( descar226543321ms_nat @ ( cons_nat @ zero_zero_nat @ Xs ) )
= ( cons_nat @ zero_zero_nat @ ( descar226543321ms_nat @ Xs ) ) ) ).
% psums_0_Cons
thf(fact_4_psums__0__Cons,axiom,
! [Xs: list_a] :
( ( descar1375166517sums_a @ ( cons_a @ zero_zero_a @ Xs ) )
= ( cons_a @ zero_zero_a @ ( descar1375166517sums_a @ Xs ) ) ) ).
% psums_0_Cons
thf(fact_5_xs1__def,axiom,
( xs1
= ( replicate_a @ p @ zero_zero_a ) ) ).
% xs1_def
thf(fact_6_xs__decompose,axiom,
( xsa
= ( append_a @ xs1 @ ( cons_a @ ( nth_a @ xsa @ p ) @ xs2 ) ) ) ).
% xs_decompose
thf(fact_7_psums__replicate__0__append,axiom,
! [N: nat,Xs: list_nat] :
( ( descar226543321ms_nat @ ( append_nat @ ( replicate_nat @ N @ zero_zero_nat ) @ Xs ) )
= ( append_nat @ ( replicate_nat @ N @ zero_zero_nat ) @ ( descar226543321ms_nat @ Xs ) ) ) ).
% psums_replicate_0_append
thf(fact_8_psums__replicate__0__append,axiom,
! [N: nat,Xs: list_a] :
( ( descar1375166517sums_a @ ( append_a @ ( replicate_a @ N @ zero_zero_a ) @ Xs ) )
= ( append_a @ ( replicate_a @ N @ zero_zero_a ) @ ( descar1375166517sums_a @ Xs ) ) ) ).
% psums_replicate_0_append
thf(fact_9_less__p__zero,axiom,
! [Q: nat] :
( ( ord_less_nat @ Q @ p )
=> ( ( nth_a @ xsa @ Q )
= zero_zero_a ) ) ).
% less_p_zero
thf(fact_10__092_060open_062take_Ap_Axs_A_061_Areplicate_Ap_A_I0_058_058_Ha_J_092_060close_062,axiom,
( ( take_a @ p @ xsa )
= ( replicate_a @ p @ zero_zero_a ) ) ).
% \<open>take p xs = replicate p (0::'a)\<close>
thf(fact_11_replicate__app__Cons__same,axiom,
! [N: nat,X: nat,Xs: list_nat] :
( ( append_nat @ ( replicate_nat @ N @ X ) @ ( cons_nat @ X @ Xs ) )
= ( cons_nat @ X @ ( append_nat @ ( replicate_nat @ N @ X ) @ Xs ) ) ) ).
% replicate_app_Cons_same
thf(fact_12_replicate__app__Cons__same,axiom,
! [N: nat,X: a,Xs: list_a] :
( ( append_a @ ( replicate_a @ N @ X ) @ ( cons_a @ X @ Xs ) )
= ( cons_a @ X @ ( append_a @ ( replicate_a @ N @ X ) @ Xs ) ) ) ).
% replicate_app_Cons_same
thf(fact_13_append_Oassoc,axiom,
! [A: list_a,B: list_a,C: list_a] :
( ( append_a @ ( append_a @ A @ B ) @ C )
= ( append_a @ A @ ( append_a @ B @ C ) ) ) ).
% append.assoc
thf(fact_14_append_Oassoc,axiom,
! [A: list_nat,B: list_nat,C: list_nat] :
( ( append_nat @ ( append_nat @ A @ B ) @ C )
= ( append_nat @ A @ ( append_nat @ B @ C ) ) ) ).
% append.assoc
thf(fact_15_append__assoc,axiom,
! [Xs: list_a,Ys: list_a,Zs: list_a] :
( ( append_a @ ( append_a @ Xs @ Ys ) @ Zs )
= ( append_a @ Xs @ ( append_a @ Ys @ Zs ) ) ) ).
% append_assoc
thf(fact_16_append__assoc,axiom,
! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
( ( append_nat @ ( append_nat @ Xs @ Ys ) @ Zs )
= ( append_nat @ Xs @ ( append_nat @ Ys @ Zs ) ) ) ).
% append_assoc
thf(fact_17_append__same__eq,axiom,
! [Ys: list_a,Xs: list_a,Zs: list_a] :
( ( ( append_a @ Ys @ Xs )
= ( append_a @ Zs @ Xs ) )
= ( Ys = Zs ) ) ).
% append_same_eq
thf(fact_18_append__same__eq,axiom,
! [Ys: list_nat,Xs: list_nat,Zs: list_nat] :
( ( ( append_nat @ Ys @ Xs )
= ( append_nat @ Zs @ Xs ) )
= ( Ys = Zs ) ) ).
% append_same_eq
thf(fact_19_same__append__eq,axiom,
! [Xs: list_a,Ys: list_a,Zs: list_a] :
( ( ( append_a @ Xs @ Ys )
= ( append_a @ Xs @ Zs ) )
= ( Ys = Zs ) ) ).
% same_append_eq
thf(fact_20_same__append__eq,axiom,
! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
( ( ( append_nat @ Xs @ Ys )
= ( append_nat @ Xs @ Zs ) )
= ( Ys = Zs ) ) ).
% same_append_eq
thf(fact_21_nonneg_Ohyps_I4_J,axiom,
ord_less_eq_a @ zero_zero_a @ xa ).
% nonneg.hyps(4)
thf(fact_22_list_Oinject,axiom,
! [X21: a,X22: list_a,Y21: a,Y22: list_a] :
( ( ( cons_a @ X21 @ X22 )
= ( cons_a @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X22 = Y22 ) ) ) ).
% list.inject
thf(fact_23_list_Oinject,axiom,
! [X21: nat,X22: list_nat,Y21: nat,Y22: list_nat] :
( ( ( cons_nat @ X21 @ X22 )
= ( cons_nat @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X22 = Y22 ) ) ) ).
% list.inject
thf(fact_24_append__replicate__commute,axiom,
! [N: nat,X: a,K: nat] :
( ( append_a @ ( replicate_a @ N @ X ) @ ( replicate_a @ K @ X ) )
= ( append_a @ ( replicate_a @ K @ X ) @ ( replicate_a @ N @ X ) ) ) ).
% append_replicate_commute
thf(fact_25_append__replicate__commute,axiom,
! [N: nat,X: nat,K: nat] :
( ( append_nat @ ( replicate_nat @ N @ X ) @ ( replicate_nat @ K @ X ) )
= ( append_nat @ ( replicate_nat @ K @ X ) @ ( replicate_nat @ N @ X ) ) ) ).
% append_replicate_commute
thf(fact_26_Cons__eq__appendI,axiom,
! [X: a,Xs1: list_a,Ys: list_a,Xs: list_a,Zs: list_a] :
( ( ( cons_a @ X @ Xs1 )
= Ys )
=> ( ( Xs
= ( append_a @ Xs1 @ Zs ) )
=> ( ( cons_a @ X @ Xs )
= ( append_a @ Ys @ Zs ) ) ) ) ).
% Cons_eq_appendI
thf(fact_27_Cons__eq__appendI,axiom,
! [X: nat,Xs1: list_nat,Ys: list_nat,Xs: list_nat,Zs: list_nat] :
( ( ( cons_nat @ X @ Xs1 )
= Ys )
=> ( ( Xs
= ( append_nat @ Xs1 @ Zs ) )
=> ( ( cons_nat @ X @ Xs )
= ( append_nat @ Ys @ Zs ) ) ) ) ).
% Cons_eq_appendI
thf(fact_28_assms_I1_J,axiom,
xs != nil_a ).
% assms(1)
thf(fact_29_assms_I2_J,axiom,
( ( last_a @ xs )
!= zero_zero_a ) ).
% assms(2)
thf(fact_30_replicate__eq__replicate,axiom,
! [M: nat,X: a,N: nat,Y: a] :
( ( ( replicate_a @ M @ X )
= ( replicate_a @ N @ Y ) )
= ( ( M = N )
& ( ( M != zero_zero_nat )
=> ( X = Y ) ) ) ) ).
% replicate_eq_replicate
thf(fact_31_replicate__eq__replicate,axiom,
! [M: nat,X: nat,N: nat,Y: nat] :
( ( ( replicate_nat @ M @ X )
= ( replicate_nat @ N @ Y ) )
= ( ( M = N )
& ( ( M != zero_zero_nat )
=> ( X = Y ) ) ) ) ).
% replicate_eq_replicate
thf(fact_32_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_33_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_34_append_Oright__neutral,axiom,
! [A: list_nat] :
( ( append_nat @ A @ nil_nat )
= A ) ).
% append.right_neutral
thf(fact_35_append_Oright__neutral,axiom,
! [A: list_a] :
( ( append_a @ A @ nil_a )
= A ) ).
% append.right_neutral
thf(fact_36_append__is__Nil__conv,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( append_nat @ Xs @ Ys )
= nil_nat )
= ( ( Xs = nil_nat )
& ( Ys = nil_nat ) ) ) ).
% append_is_Nil_conv
thf(fact_37_append__is__Nil__conv,axiom,
! [Xs: list_a,Ys: list_a] :
( ( ( append_a @ Xs @ Ys )
= nil_a )
= ( ( Xs = nil_a )
& ( Ys = nil_a ) ) ) ).
% append_is_Nil_conv
thf(fact_38_Nil__is__append__conv,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( nil_nat
= ( append_nat @ Xs @ Ys ) )
= ( ( Xs = nil_nat )
& ( Ys = nil_nat ) ) ) ).
% Nil_is_append_conv
thf(fact_39_Nil__is__append__conv,axiom,
! [Xs: list_a,Ys: list_a] :
( ( nil_a
= ( append_a @ Xs @ Ys ) )
= ( ( Xs = nil_a )
& ( Ys = nil_a ) ) ) ).
% Nil_is_append_conv
thf(fact_40_self__append__conv2,axiom,
! [Ys: list_nat,Xs: list_nat] :
( ( Ys
= ( append_nat @ Xs @ Ys ) )
= ( Xs = nil_nat ) ) ).
% self_append_conv2
thf(fact_41_self__append__conv2,axiom,
! [Ys: list_a,Xs: list_a] :
( ( Ys
= ( append_a @ Xs @ Ys ) )
= ( Xs = nil_a ) ) ).
% self_append_conv2
thf(fact_42_append__self__conv2,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( append_nat @ Xs @ Ys )
= Ys )
= ( Xs = nil_nat ) ) ).
% append_self_conv2
thf(fact_43_append__self__conv2,axiom,
! [Xs: list_a,Ys: list_a] :
( ( ( append_a @ Xs @ Ys )
= Ys )
= ( Xs = nil_a ) ) ).
% append_self_conv2
thf(fact_44_self__append__conv,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( Xs
= ( append_nat @ Xs @ Ys ) )
= ( Ys = nil_nat ) ) ).
% self_append_conv
thf(fact_45_self__append__conv,axiom,
! [Xs: list_a,Ys: list_a] :
( ( Xs
= ( append_a @ Xs @ Ys ) )
= ( Ys = nil_a ) ) ).
% self_append_conv
thf(fact_46_append__self__conv,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( append_nat @ Xs @ Ys )
= Xs )
= ( Ys = nil_nat ) ) ).
% append_self_conv
thf(fact_47_append__self__conv,axiom,
! [Xs: list_a,Ys: list_a] :
( ( ( append_a @ Xs @ Ys )
= Xs )
= ( Ys = nil_a ) ) ).
% append_self_conv
thf(fact_48_append__Nil2,axiom,
! [Xs: list_nat] :
( ( append_nat @ Xs @ nil_nat )
= Xs ) ).
% append_Nil2
thf(fact_49_append__Nil2,axiom,
! [Xs: list_a] :
( ( append_a @ Xs @ nil_a )
= Xs ) ).
% append_Nil2
thf(fact_50_nth__Cons__0,axiom,
! [X: a,Xs: list_a] :
( ( nth_a @ ( cons_a @ X @ Xs ) @ zero_zero_nat )
= X ) ).
% nth_Cons_0
thf(fact_51_nth__Cons__0,axiom,
! [X: nat,Xs: list_nat] :
( ( nth_nat @ ( cons_nat @ X @ Xs ) @ zero_zero_nat )
= X ) ).
% nth_Cons_0
thf(fact_52_take0,axiom,
( ( take_a @ zero_zero_nat )
= ( ^ [Xs2: list_a] : nil_a ) ) ).
% take0
thf(fact_53_take__eq__Nil,axiom,
! [N: nat,Xs: list_a] :
( ( ( take_a @ N @ Xs )
= nil_a )
= ( ( N = zero_zero_nat )
| ( Xs = nil_a ) ) ) ).
% take_eq_Nil
thf(fact_54_empty__replicate,axiom,
! [N: nat,X: a] :
( ( nil_a
= ( replicate_a @ N @ X ) )
= ( N = zero_zero_nat ) ) ).
% empty_replicate
thf(fact_55_empty__replicate,axiom,
! [N: nat,X: nat] :
( ( nil_nat
= ( replicate_nat @ N @ X ) )
= ( N = zero_zero_nat ) ) ).
% empty_replicate
thf(fact_56_replicate__empty,axiom,
! [N: nat,X: a] :
( ( ( replicate_a @ N @ X )
= nil_a )
= ( N = zero_zero_nat ) ) ).
% replicate_empty
thf(fact_57_replicate__empty,axiom,
! [N: nat,X: nat] :
( ( ( replicate_nat @ N @ X )
= nil_nat )
= ( N = zero_zero_nat ) ) ).
% replicate_empty
thf(fact_58_last__replicate,axiom,
! [N: nat,X: a] :
( ( N != zero_zero_nat )
=> ( ( last_a @ ( replicate_a @ N @ X ) )
= X ) ) ).
% last_replicate
thf(fact_59_last__replicate,axiom,
! [N: nat,X: nat] :
( ( N != zero_zero_nat )
=> ( ( last_nat @ ( replicate_nat @ N @ X ) )
= X ) ) ).
% last_replicate
thf(fact_60_append1__eq__conv,axiom,
! [Xs: list_a,X: a,Ys: list_a,Y: a] :
( ( ( append_a @ Xs @ ( cons_a @ X @ nil_a ) )
= ( append_a @ Ys @ ( cons_a @ Y @ nil_a ) ) )
= ( ( Xs = Ys )
& ( X = Y ) ) ) ).
% append1_eq_conv
thf(fact_61_append1__eq__conv,axiom,
! [Xs: list_nat,X: nat,Ys: list_nat,Y: nat] :
( ( ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) )
= ( append_nat @ Ys @ ( cons_nat @ Y @ nil_nat ) ) )
= ( ( Xs = Ys )
& ( X = Y ) ) ) ).
% append1_eq_conv
thf(fact_62_nth__take,axiom,
! [I: nat,N: nat,Xs: list_a] :
( ( ord_less_nat @ I @ N )
=> ( ( nth_a @ ( take_a @ N @ Xs ) @ I )
= ( nth_a @ Xs @ I ) ) ) ).
% nth_take
thf(fact_63_last__appendL,axiom,
! [Ys: list_nat,Xs: list_nat] :
( ( Ys = nil_nat )
=> ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
= ( last_nat @ Xs ) ) ) ).
% last_appendL
thf(fact_64_last__appendL,axiom,
! [Ys: list_a,Xs: list_a] :
( ( Ys = nil_a )
=> ( ( last_a @ ( append_a @ Xs @ Ys ) )
= ( last_a @ Xs ) ) ) ).
% last_appendL
thf(fact_65_last__appendR,axiom,
! [Ys: list_nat,Xs: list_nat] :
( ( Ys != nil_nat )
=> ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
= ( last_nat @ Ys ) ) ) ).
% last_appendR
thf(fact_66_last__appendR,axiom,
! [Ys: list_a,Xs: list_a] :
( ( Ys != nil_a )
=> ( ( last_a @ ( append_a @ Xs @ Ys ) )
= ( last_a @ Ys ) ) ) ).
% last_appendR
thf(fact_67_nth__replicate,axiom,
! [I: nat,N: nat,X: a] :
( ( ord_less_nat @ I @ N )
=> ( ( nth_a @ ( replicate_a @ N @ X ) @ I )
= X ) ) ).
% nth_replicate
thf(fact_68_nth__replicate,axiom,
! [I: nat,N: nat,X: nat] :
( ( ord_less_nat @ I @ N )
=> ( ( nth_nat @ ( replicate_nat @ N @ X ) @ I )
= X ) ) ).
% nth_replicate
thf(fact_69_last__snoc,axiom,
! [Xs: list_a,X: a] :
( ( last_a @ ( append_a @ Xs @ ( cons_a @ X @ nil_a ) ) )
= X ) ).
% last_snoc
thf(fact_70_last__snoc,axiom,
! [Xs: list_nat,X: nat] :
( ( last_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) )
= X ) ).
% last_snoc
thf(fact_71_take__0,axiom,
! [Xs: list_a] :
( ( take_a @ zero_zero_nat @ Xs )
= nil_a ) ).
% take_0
thf(fact_72_last_Osimps,axiom,
! [Xs: list_a,X: a] :
( ( ( Xs = nil_a )
=> ( ( last_a @ ( cons_a @ X @ Xs ) )
= X ) )
& ( ( Xs != nil_a )
=> ( ( last_a @ ( cons_a @ X @ Xs ) )
= ( last_a @ Xs ) ) ) ) ).
% last.simps
thf(fact_73_last_Osimps,axiom,
! [Xs: list_nat,X: nat] :
( ( ( Xs = nil_nat )
=> ( ( last_nat @ ( cons_nat @ X @ Xs ) )
= X ) )
& ( ( Xs != nil_nat )
=> ( ( last_nat @ ( cons_nat @ X @ Xs ) )
= ( last_nat @ Xs ) ) ) ) ).
% last.simps
thf(fact_74_last__ConsL,axiom,
! [Xs: list_a,X: a] :
( ( Xs = nil_a )
=> ( ( last_a @ ( cons_a @ X @ Xs ) )
= X ) ) ).
% last_ConsL
thf(fact_75_last__ConsL,axiom,
! [Xs: list_nat,X: nat] :
( ( Xs = nil_nat )
=> ( ( last_nat @ ( cons_nat @ X @ Xs ) )
= X ) ) ).
% last_ConsL
thf(fact_76_last__ConsR,axiom,
! [Xs: list_a,X: a] :
( ( Xs != nil_a )
=> ( ( last_a @ ( cons_a @ X @ Xs ) )
= ( last_a @ Xs ) ) ) ).
% last_ConsR
thf(fact_77_last__ConsR,axiom,
! [Xs: list_nat,X: nat] :
( ( Xs != nil_nat )
=> ( ( last_nat @ ( cons_nat @ X @ Xs ) )
= ( last_nat @ Xs ) ) ) ).
% last_ConsR
thf(fact_78_last__append,axiom,
! [Ys: list_nat,Xs: list_nat] :
( ( ( Ys = nil_nat )
=> ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
= ( last_nat @ Xs ) ) )
& ( ( Ys != nil_nat )
=> ( ( last_nat @ ( append_nat @ Xs @ Ys ) )
= ( last_nat @ Ys ) ) ) ) ).
% last_append
thf(fact_79_last__append,axiom,
! [Ys: list_a,Xs: list_a] :
( ( ( Ys = nil_a )
=> ( ( last_a @ ( append_a @ Xs @ Ys ) )
= ( last_a @ Xs ) ) )
& ( ( Ys != nil_a )
=> ( ( last_a @ ( append_a @ Xs @ Ys ) )
= ( last_a @ Ys ) ) ) ) ).
% last_append
thf(fact_80_take__Nil,axiom,
! [N: nat] :
( ( take_a @ N @ nil_a )
= nil_a ) ).
% take_Nil
thf(fact_81_take__equalityI,axiom,
! [Xs: list_a,Ys: list_a] :
( ! [I2: nat] :
( ( take_a @ I2 @ Xs )
= ( take_a @ I2 @ Ys ) )
=> ( Xs = Ys ) ) ).
% take_equalityI
thf(fact_82_transpose_Ocases,axiom,
! [X: list_list_a] :
( ( X != nil_list_a )
=> ( ! [Xss: list_list_a] :
( X
!= ( cons_list_a @ nil_a @ Xss ) )
=> ~ ! [X2: a,Xs3: list_a,Xss: list_list_a] :
( X
!= ( cons_list_a @ ( cons_a @ X2 @ Xs3 ) @ Xss ) ) ) ) ).
% transpose.cases
thf(fact_83_transpose_Ocases,axiom,
! [X: list_list_nat] :
( ( X != nil_list_nat )
=> ( ! [Xss: list_list_nat] :
( X
!= ( cons_list_nat @ nil_nat @ Xss ) )
=> ~ ! [X2: nat,Xs3: list_nat,Xss: list_list_nat] :
( X
!= ( cons_list_nat @ ( cons_nat @ X2 @ Xs3 ) @ Xss ) ) ) ) ).
% transpose.cases
thf(fact_84_longest__common__suffix,axiom,
! [Xs: list_nat,Ys: list_nat] :
? [Ss: list_nat,Xs4: list_nat,Ys2: list_nat] :
( ( Xs
= ( append_nat @ Xs4 @ Ss ) )
& ( Ys
= ( append_nat @ Ys2 @ Ss ) )
& ( ( Xs4 = nil_nat )
| ( Ys2 = nil_nat )
| ( ( last_nat @ Xs4 )
!= ( last_nat @ Ys2 ) ) ) ) ).
% longest_common_suffix
thf(fact_85_longest__common__suffix,axiom,
! [Xs: list_a,Ys: list_a] :
? [Ss: list_a,Xs4: list_a,Ys2: list_a] :
( ( Xs
= ( append_a @ Xs4 @ Ss ) )
& ( Ys
= ( append_a @ Ys2 @ Ss ) )
& ( ( Xs4 = nil_a )
| ( Ys2 = nil_a )
| ( ( last_a @ Xs4 )
!= ( last_a @ Ys2 ) ) ) ) ).
% longest_common_suffix
thf(fact_86_replicate__0,axiom,
! [X: a] :
( ( replicate_a @ zero_zero_nat @ X )
= nil_a ) ).
% replicate_0
thf(fact_87_replicate__0,axiom,
! [X: nat] :
( ( replicate_nat @ zero_zero_nat @ X )
= nil_nat ) ).
% replicate_0
thf(fact_88_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_89_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_90_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_91_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_92_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_93_strict__sorted_Oinduct,axiom,
! [P: list_a > $o,A0: list_a] :
( ( P @ nil_a )
=> ( ! [X2: a,Ys3: list_a] :
( ( P @ Ys3 )
=> ( P @ ( cons_a @ X2 @ Ys3 ) ) )
=> ( P @ A0 ) ) ) ).
% strict_sorted.induct
thf(fact_94_strict__sorted_Oinduct,axiom,
! [P: list_nat > $o,A0: list_nat] :
( ( P @ nil_nat )
=> ( ! [X2: nat,Ys3: list_nat] :
( ( P @ Ys3 )
=> ( P @ ( cons_nat @ X2 @ Ys3 ) ) )
=> ( P @ A0 ) ) ) ).
% strict_sorted.induct
thf(fact_95_strict__sorted_Ocases,axiom,
! [X: list_a] :
( ( X != nil_a )
=> ~ ! [X2: a,Ys3: list_a] :
( X
!= ( cons_a @ X2 @ Ys3 ) ) ) ).
% strict_sorted.cases
thf(fact_96_strict__sorted_Ocases,axiom,
! [X: list_nat] :
( ( X != nil_nat )
=> ~ ! [X2: nat,Ys3: list_nat] :
( X
!= ( cons_nat @ X2 @ Ys3 ) ) ) ).
% strict_sorted.cases
thf(fact_97_map__tailrec__rev_Oinduct,axiom,
! [P: ( a > a ) > list_a > list_a > $o,A0: a > a,A1: list_a,A2: list_a] :
( ! [F: a > a,X_1: list_a] : ( P @ F @ nil_a @ X_1 )
=> ( ! [F: a > a,A3: a,As: list_a,Bs: list_a] :
( ( P @ F @ As @ ( cons_a @ ( F @ A3 ) @ Bs ) )
=> ( P @ F @ ( cons_a @ A3 @ As ) @ Bs ) )
=> ( P @ A0 @ A1 @ A2 ) ) ) ).
% map_tailrec_rev.induct
thf(fact_98_map__tailrec__rev_Oinduct,axiom,
! [P: ( nat > a ) > list_nat > list_a > $o,A0: nat > a,A1: list_nat,A2: list_a] :
( ! [F: nat > a,X_1: list_a] : ( P @ F @ nil_nat @ X_1 )
=> ( ! [F: nat > a,A3: nat,As: list_nat,Bs: list_a] :
( ( P @ F @ As @ ( cons_a @ ( F @ A3 ) @ Bs ) )
=> ( P @ F @ ( cons_nat @ A3 @ As ) @ Bs ) )
=> ( P @ A0 @ A1 @ A2 ) ) ) ).
% map_tailrec_rev.induct
thf(fact_99_map__tailrec__rev_Oinduct,axiom,
! [P: ( a > nat ) > list_a > list_nat > $o,A0: a > nat,A1: list_a,A2: list_nat] :
( ! [F: a > nat,X_1: list_nat] : ( P @ F @ nil_a @ X_1 )
=> ( ! [F: a > nat,A3: a,As: list_a,Bs: list_nat] :
( ( P @ F @ As @ ( cons_nat @ ( F @ A3 ) @ Bs ) )
=> ( P @ F @ ( cons_a @ A3 @ As ) @ Bs ) )
=> ( P @ A0 @ A1 @ A2 ) ) ) ).
% map_tailrec_rev.induct
thf(fact_100_map__tailrec__rev_Oinduct,axiom,
! [P: ( nat > nat ) > list_nat > list_nat > $o,A0: nat > nat,A1: list_nat,A2: list_nat] :
( ! [F: nat > nat,X_1: list_nat] : ( P @ F @ nil_nat @ X_1 )
=> ( ! [F: nat > nat,A3: nat,As: list_nat,Bs: list_nat] :
( ( P @ F @ As @ ( cons_nat @ ( F @ A3 ) @ Bs ) )
=> ( P @ F @ ( cons_nat @ A3 @ As ) @ Bs ) )
=> ( P @ A0 @ A1 @ A2 ) ) ) ).
% map_tailrec_rev.induct
thf(fact_101_list__nonempty__induct,axiom,
! [Xs: list_a,P: list_a > $o] :
( ( Xs != nil_a )
=> ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
=> ( ! [X2: a,Xs3: list_a] :
( ( Xs3 != nil_a )
=> ( ( P @ Xs3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% list_nonempty_induct
thf(fact_102_list__nonempty__induct,axiom,
! [Xs: list_nat,P: list_nat > $o] :
( ( Xs != nil_nat )
=> ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
=> ( ! [X2: nat,Xs3: list_nat] :
( ( Xs3 != nil_nat )
=> ( ( P @ Xs3 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% list_nonempty_induct
thf(fact_103_successively_Oinduct,axiom,
! [P: ( a > a > $o ) > list_a > $o,A0: a > a > $o,A1: list_a] :
( ! [P2: a > a > $o] : ( P @ P2 @ nil_a )
=> ( ! [P2: a > a > $o,X2: a] : ( P @ P2 @ ( cons_a @ X2 @ nil_a ) )
=> ( ! [P2: a > a > $o,X2: a,Y2: a,Xs3: list_a] :
( ( P @ P2 @ ( cons_a @ Y2 @ Xs3 ) )
=> ( P @ P2 @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% successively.induct
thf(fact_104_successively_Oinduct,axiom,
! [P: ( nat > nat > $o ) > list_nat > $o,A0: nat > nat > $o,A1: list_nat] :
( ! [P2: nat > nat > $o] : ( P @ P2 @ nil_nat )
=> ( ! [P2: nat > nat > $o,X2: nat] : ( P @ P2 @ ( cons_nat @ X2 @ nil_nat ) )
=> ( ! [P2: nat > nat > $o,X2: nat,Y2: nat,Xs3: list_nat] :
( ( P @ P2 @ ( cons_nat @ Y2 @ Xs3 ) )
=> ( P @ P2 @ ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% successively.induct
thf(fact_105_remdups__adj_Oinduct,axiom,
! [P: list_a > $o,A0: list_a] :
( ( P @ nil_a )
=> ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
=> ( ! [X2: a,Y2: a,Xs3: list_a] :
( ( ( X2 = Y2 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) ) )
=> ( ( ( X2 != Y2 )
=> ( P @ ( cons_a @ Y2 @ Xs3 ) ) )
=> ( P @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) ) )
=> ( P @ A0 ) ) ) ) ).
% remdups_adj.induct
thf(fact_106_remdups__adj_Oinduct,axiom,
! [P: list_nat > $o,A0: list_nat] :
( ( P @ nil_nat )
=> ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
=> ( ! [X2: nat,Y2: nat,Xs3: list_nat] :
( ( ( X2 = Y2 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) ) )
=> ( ( ( X2 != Y2 )
=> ( P @ ( cons_nat @ Y2 @ Xs3 ) ) )
=> ( P @ ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) ) )
=> ( P @ A0 ) ) ) ) ).
% remdups_adj.induct
thf(fact_107_sorted__wrt_Oinduct,axiom,
! [P: ( a > a > $o ) > list_a > $o,A0: a > a > $o,A1: list_a] :
( ! [P2: a > a > $o] : ( P @ P2 @ nil_a )
=> ( ! [P2: a > a > $o,X2: a,Ys3: list_a] :
( ( P @ P2 @ Ys3 )
=> ( P @ P2 @ ( cons_a @ X2 @ Ys3 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% sorted_wrt.induct
thf(fact_108_sorted__wrt_Oinduct,axiom,
! [P: ( nat > nat > $o ) > list_nat > $o,A0: nat > nat > $o,A1: list_nat] :
( ! [P2: nat > nat > $o] : ( P @ P2 @ nil_nat )
=> ( ! [P2: nat > nat > $o,X2: nat,Ys3: list_nat] :
( ( P @ P2 @ Ys3 )
=> ( P @ P2 @ ( cons_nat @ X2 @ Ys3 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% sorted_wrt.induct
thf(fact_109_remdups__adj_Ocases,axiom,
! [X: list_a] :
( ( X != nil_a )
=> ( ! [X2: a] :
( X
!= ( cons_a @ X2 @ nil_a ) )
=> ~ ! [X2: a,Y2: a,Xs3: list_a] :
( X
!= ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) ) ) ).
% remdups_adj.cases
thf(fact_110_remdups__adj_Ocases,axiom,
! [X: list_nat] :
( ( X != nil_nat )
=> ( ! [X2: nat] :
( X
!= ( cons_nat @ X2 @ nil_nat ) )
=> ~ ! [X2: nat,Y2: nat,Xs3: list_nat] :
( X
!= ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) ) ) ).
% remdups_adj.cases
thf(fact_111_shuffles_Oinduct,axiom,
! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
( ! [X_1: list_a] : ( P @ nil_a @ X_1 )
=> ( ! [Xs3: list_a] : ( P @ Xs3 @ nil_a )
=> ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
( ( P @ Xs3 @ ( cons_a @ Y2 @ Ys3 ) )
=> ( ( P @ ( cons_a @ X2 @ Xs3 ) @ Ys3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% shuffles.induct
thf(fact_112_shuffles_Oinduct,axiom,
! [P: list_nat > list_nat > $o,A0: list_nat,A1: list_nat] :
( ! [X_1: list_nat] : ( P @ nil_nat @ X_1 )
=> ( ! [Xs3: list_nat] : ( P @ Xs3 @ nil_nat )
=> ( ! [X2: nat,Xs3: list_nat,Y2: nat,Ys3: list_nat] :
( ( P @ Xs3 @ ( cons_nat @ Y2 @ Ys3 ) )
=> ( ( P @ ( cons_nat @ X2 @ Xs3 ) @ Ys3 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% shuffles.induct
thf(fact_113_min__list_Oinduct,axiom,
! [P: list_a > $o,A0: list_a] :
( ! [X2: a,Xs3: list_a] :
( ! [X212: a,X222: list_a] :
( ( Xs3
= ( cons_a @ X212 @ X222 ) )
=> ( P @ Xs3 ) )
=> ( P @ ( cons_a @ X2 @ Xs3 ) ) )
=> ( ( P @ nil_a )
=> ( P @ A0 ) ) ) ).
% min_list.induct
thf(fact_114_min__list_Oinduct,axiom,
! [P: list_nat > $o,A0: list_nat] :
( ! [X2: nat,Xs3: list_nat] :
( ! [X212: nat,X222: list_nat] :
( ( Xs3
= ( cons_nat @ X212 @ X222 ) )
=> ( P @ Xs3 ) )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) ) )
=> ( ( P @ nil_nat )
=> ( P @ A0 ) ) ) ).
% min_list.induct
thf(fact_115_min__list_Ocases,axiom,
! [X: list_a] :
( ! [X2: a,Xs3: list_a] :
( X
!= ( cons_a @ X2 @ Xs3 ) )
=> ( X = nil_a ) ) ).
% min_list.cases
thf(fact_116_min__list_Ocases,axiom,
! [X: list_nat] :
( ! [X2: nat,Xs3: list_nat] :
( X
!= ( cons_nat @ X2 @ Xs3 ) )
=> ( X = nil_nat ) ) ).
% min_list.cases
thf(fact_117_induct__list012,axiom,
! [P: list_a > $o,Xs: list_a] :
( ( P @ nil_a )
=> ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
=> ( ! [X2: a,Y2: a,Zs2: list_a] :
( ( P @ Zs2 )
=> ( ( P @ ( cons_a @ Y2 @ Zs2 ) )
=> ( P @ ( cons_a @ X2 @ ( cons_a @ Y2 @ Zs2 ) ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% induct_list012
thf(fact_118_induct__list012,axiom,
! [P: list_nat > $o,Xs: list_nat] :
( ( P @ nil_nat )
=> ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
=> ( ! [X2: nat,Y2: nat,Zs2: list_nat] :
( ( P @ Zs2 )
=> ( ( P @ ( cons_nat @ Y2 @ Zs2 ) )
=> ( P @ ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Zs2 ) ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% induct_list012
thf(fact_119_splice_Oinduct,axiom,
! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
( ! [X_1: list_a] : ( P @ nil_a @ X_1 )
=> ( ! [X2: a,Xs3: list_a,Ys3: list_a] :
( ( P @ Ys3 @ Xs3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) @ Ys3 ) )
=> ( P @ A0 @ A1 ) ) ) ).
% splice.induct
thf(fact_120_splice_Oinduct,axiom,
! [P: list_nat > list_nat > $o,A0: list_nat,A1: list_nat] :
( ! [X_1: list_nat] : ( P @ nil_nat @ X_1 )
=> ( ! [X2: nat,Xs3: list_nat,Ys3: list_nat] :
( ( P @ Ys3 @ Xs3 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) @ Ys3 ) )
=> ( P @ A0 @ A1 ) ) ) ).
% splice.induct
thf(fact_121_list__induct2_H,axiom,
! [P: list_a > list_a > $o,Xs: list_a,Ys: list_a] :
( ( P @ nil_a @ nil_a )
=> ( ! [X2: a,Xs3: list_a] : ( P @ ( cons_a @ X2 @ Xs3 ) @ nil_a )
=> ( ! [Y2: a,Ys3: list_a] : ( P @ nil_a @ ( cons_a @ Y2 @ Ys3 ) )
=> ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
=> ( P @ Xs @ Ys ) ) ) ) ) ).
% list_induct2'
thf(fact_122_list__induct2_H,axiom,
! [P: list_a > list_nat > $o,Xs: list_a,Ys: list_nat] :
( ( P @ nil_a @ nil_nat )
=> ( ! [X2: a,Xs3: list_a] : ( P @ ( cons_a @ X2 @ Xs3 ) @ nil_nat )
=> ( ! [Y2: nat,Ys3: list_nat] : ( P @ nil_a @ ( cons_nat @ Y2 @ Ys3 ) )
=> ( ! [X2: a,Xs3: list_a,Y2: nat,Ys3: list_nat] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) )
=> ( P @ Xs @ Ys ) ) ) ) ) ).
% list_induct2'
thf(fact_123_list__induct2_H,axiom,
! [P: list_nat > list_a > $o,Xs: list_nat,Ys: list_a] :
( ( P @ nil_nat @ nil_a )
=> ( ! [X2: nat,Xs3: list_nat] : ( P @ ( cons_nat @ X2 @ Xs3 ) @ nil_a )
=> ( ! [Y2: a,Ys3: list_a] : ( P @ nil_nat @ ( cons_a @ Y2 @ Ys3 ) )
=> ( ! [X2: nat,Xs3: list_nat,Y2: a,Ys3: list_a] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
=> ( P @ Xs @ Ys ) ) ) ) ) ).
% list_induct2'
thf(fact_124_list__induct2_H,axiom,
! [P: list_nat > list_nat > $o,Xs: list_nat,Ys: list_nat] :
( ( P @ nil_nat @ nil_nat )
=> ( ! [X2: nat,Xs3: list_nat] : ( P @ ( cons_nat @ X2 @ Xs3 ) @ nil_nat )
=> ( ! [Y2: nat,Ys3: list_nat] : ( P @ nil_nat @ ( cons_nat @ Y2 @ Ys3 ) )
=> ( ! [X2: nat,Xs3: list_nat,Y2: nat,Ys3: list_nat] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) )
=> ( P @ Xs @ Ys ) ) ) ) ) ).
% list_induct2'
thf(fact_125_neq__Nil__conv,axiom,
! [Xs: list_a] :
( ( Xs != nil_a )
= ( ? [Y3: a,Ys4: list_a] :
( Xs
= ( cons_a @ Y3 @ Ys4 ) ) ) ) ).
% neq_Nil_conv
thf(fact_126_neq__Nil__conv,axiom,
! [Xs: list_nat] :
( ( Xs != nil_nat )
= ( ? [Y3: nat,Ys4: list_nat] :
( Xs
= ( cons_nat @ Y3 @ Ys4 ) ) ) ) ).
% neq_Nil_conv
thf(fact_127_list_Oinducts,axiom,
! [P: list_a > $o,List: list_a] :
( ( P @ nil_a )
=> ( ! [X1: a,X23: list_a] :
( ( P @ X23 )
=> ( P @ ( cons_a @ X1 @ X23 ) ) )
=> ( P @ List ) ) ) ).
% list.inducts
thf(fact_128_list_Oinducts,axiom,
! [P: list_nat > $o,List: list_nat] :
( ( P @ nil_nat )
=> ( ! [X1: nat,X23: list_nat] :
( ( P @ X23 )
=> ( P @ ( cons_nat @ X1 @ X23 ) ) )
=> ( P @ List ) ) ) ).
% list.inducts
thf(fact_129_list_Oexhaust,axiom,
! [Y: list_a] :
( ( Y != nil_a )
=> ~ ! [X213: a,X223: list_a] :
( Y
!= ( cons_a @ X213 @ X223 ) ) ) ).
% list.exhaust
thf(fact_130_list_Oexhaust,axiom,
! [Y: list_nat] :
( ( Y != nil_nat )
=> ~ ! [X213: nat,X223: list_nat] :
( Y
!= ( cons_nat @ X213 @ X223 ) ) ) ).
% list.exhaust
thf(fact_131_list_OdiscI,axiom,
! [List: list_a,X21: a,X22: list_a] :
( ( List
= ( cons_a @ X21 @ X22 ) )
=> ( List != nil_a ) ) ).
% list.discI
thf(fact_132_list_OdiscI,axiom,
! [List: list_nat,X21: nat,X22: list_nat] :
( ( List
= ( cons_nat @ X21 @ X22 ) )
=> ( List != nil_nat ) ) ).
% list.discI
thf(fact_133_list_Odistinct_I1_J,axiom,
! [X21: a,X22: list_a] :
( nil_a
!= ( cons_a @ X21 @ X22 ) ) ).
% list.distinct(1)
thf(fact_134_list_Odistinct_I1_J,axiom,
! [X21: nat,X22: list_nat] :
( nil_nat
!= ( cons_nat @ X21 @ X22 ) ) ).
% list.distinct(1)
thf(fact_135_append_Oleft__neutral,axiom,
! [A: list_nat] :
( ( append_nat @ nil_nat @ A )
= A ) ).
% append.left_neutral
thf(fact_136_append_Oleft__neutral,axiom,
! [A: list_a] :
( ( append_a @ nil_a @ A )
= A ) ).
% append.left_neutral
thf(fact_137_append__Nil,axiom,
! [Ys: list_nat] :
( ( append_nat @ nil_nat @ Ys )
= Ys ) ).
% append_Nil
thf(fact_138_append__Nil,axiom,
! [Ys: list_a] :
( ( append_a @ nil_a @ Ys )
= Ys ) ).
% append_Nil
thf(fact_139_eq__Nil__appendI,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( Xs = Ys )
=> ( Xs
= ( append_nat @ nil_nat @ Ys ) ) ) ).
% eq_Nil_appendI
thf(fact_140_eq__Nil__appendI,axiom,
! [Xs: list_a,Ys: list_a] :
( ( Xs = Ys )
=> ( Xs
= ( append_a @ nil_a @ Ys ) ) ) ).
% eq_Nil_appendI
thf(fact_141_psums_Ocases,axiom,
! [X: list_a] :
( ( X != nil_a )
=> ( ! [X2: a] :
( X
!= ( cons_a @ X2 @ nil_a ) )
=> ~ ! [X2: a,Y2: a,Xs3: list_a] :
( X
!= ( cons_a @ X2 @ ( cons_a @ Y2 @ Xs3 ) ) ) ) ) ).
% psums.cases
thf(fact_142_psums_Ocases,axiom,
! [X: list_nat] :
( ( X != nil_nat )
=> ( ! [X2: nat] :
( X
!= ( cons_nat @ X2 @ nil_nat ) )
=> ~ ! [X2: nat,Y2: nat,Xs3: list_nat] :
( X
!= ( cons_nat @ X2 @ ( cons_nat @ Y2 @ Xs3 ) ) ) ) ) ).
% psums.cases
thf(fact_143_rev__nonempty__induct,axiom,
! [Xs: list_a,P: list_a > $o] :
( ( Xs != nil_a )
=> ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
=> ( ! [X2: a,Xs3: list_a] :
( ( Xs3 != nil_a )
=> ( ( P @ Xs3 )
=> ( P @ ( append_a @ Xs3 @ ( cons_a @ X2 @ nil_a ) ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% rev_nonempty_induct
thf(fact_144_rev__nonempty__induct,axiom,
! [Xs: list_nat,P: list_nat > $o] :
( ( Xs != nil_nat )
=> ( ! [X2: nat] : ( P @ ( cons_nat @ X2 @ nil_nat ) )
=> ( ! [X2: nat,Xs3: list_nat] :
( ( Xs3 != nil_nat )
=> ( ( P @ Xs3 )
=> ( P @ ( append_nat @ Xs3 @ ( cons_nat @ X2 @ nil_nat ) ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% rev_nonempty_induct
thf(fact_145_append__eq__Cons__conv,axiom,
! [Ys: list_a,Zs: list_a,X: a,Xs: list_a] :
( ( ( append_a @ Ys @ Zs )
= ( cons_a @ X @ Xs ) )
= ( ( ( Ys = nil_a )
& ( Zs
= ( cons_a @ X @ Xs ) ) )
| ? [Ys5: list_a] :
( ( Ys
= ( cons_a @ X @ Ys5 ) )
& ( ( append_a @ Ys5 @ Zs )
= Xs ) ) ) ) ).
% append_eq_Cons_conv
thf(fact_146_append__eq__Cons__conv,axiom,
! [Ys: list_nat,Zs: list_nat,X: nat,Xs: list_nat] :
( ( ( append_nat @ Ys @ Zs )
= ( cons_nat @ X @ Xs ) )
= ( ( ( Ys = nil_nat )
& ( Zs
= ( cons_nat @ X @ Xs ) ) )
| ? [Ys5: list_nat] :
( ( Ys
= ( cons_nat @ X @ Ys5 ) )
& ( ( append_nat @ Ys5 @ Zs )
= Xs ) ) ) ) ).
% append_eq_Cons_conv
thf(fact_147_Cons__eq__append__conv,axiom,
! [X: a,Xs: list_a,Ys: list_a,Zs: list_a] :
( ( ( cons_a @ X @ Xs )
= ( append_a @ Ys @ Zs ) )
= ( ( ( Ys = nil_a )
& ( ( cons_a @ X @ Xs )
= Zs ) )
| ? [Ys5: list_a] :
( ( ( cons_a @ X @ Ys5 )
= Ys )
& ( Xs
= ( append_a @ Ys5 @ Zs ) ) ) ) ) ).
% Cons_eq_append_conv
thf(fact_148_Cons__eq__append__conv,axiom,
! [X: nat,Xs: list_nat,Ys: list_nat,Zs: list_nat] :
( ( ( cons_nat @ X @ Xs )
= ( append_nat @ Ys @ Zs ) )
= ( ( ( Ys = nil_nat )
& ( ( cons_nat @ X @ Xs )
= Zs ) )
| ? [Ys5: list_nat] :
( ( ( cons_nat @ X @ Ys5 )
= Ys )
& ( Xs
= ( append_nat @ Ys5 @ Zs ) ) ) ) ) ).
% Cons_eq_append_conv
thf(fact_149_rev__exhaust,axiom,
! [Xs: list_a] :
( ( Xs != nil_a )
=> ~ ! [Ys3: list_a,Y2: a] :
( Xs
!= ( append_a @ Ys3 @ ( cons_a @ Y2 @ nil_a ) ) ) ) ).
% rev_exhaust
thf(fact_150_rev__exhaust,axiom,
! [Xs: list_nat] :
( ( Xs != nil_nat )
=> ~ ! [Ys3: list_nat,Y2: nat] :
( Xs
!= ( append_nat @ Ys3 @ ( cons_nat @ Y2 @ nil_nat ) ) ) ) ).
% rev_exhaust
thf(fact_151_rev__induct,axiom,
! [P: list_a > $o,Xs: list_a] :
( ( P @ nil_a )
=> ( ! [X2: a,Xs3: list_a] :
( ( P @ Xs3 )
=> ( P @ ( append_a @ Xs3 @ ( cons_a @ X2 @ nil_a ) ) ) )
=> ( P @ Xs ) ) ) ).
% rev_induct
thf(fact_152_rev__induct,axiom,
! [P: list_nat > $o,Xs: list_nat] :
( ( P @ nil_nat )
=> ( ! [X2: nat,Xs3: list_nat] :
( ( P @ Xs3 )
=> ( P @ ( append_nat @ Xs3 @ ( cons_nat @ X2 @ nil_nat ) ) ) )
=> ( P @ Xs ) ) ) ).
% rev_induct
thf(fact_153_psums_Osimps_I1_J,axiom,
( ( descar1375166517sums_a @ nil_a )
= nil_a ) ).
% psums.simps(1)
thf(fact_154_psums_Osimps_I1_J,axiom,
( ( descar226543321ms_nat @ nil_nat )
= nil_nat ) ).
% psums.simps(1)
thf(fact_155_replicate__append__same,axiom,
! [I: nat,X: a] :
( ( append_a @ ( replicate_a @ I @ X ) @ ( cons_a @ X @ nil_a ) )
= ( cons_a @ X @ ( replicate_a @ I @ X ) ) ) ).
% replicate_append_same
thf(fact_156_replicate__append__same,axiom,
! [I: nat,X: nat] :
( ( append_nat @ ( replicate_nat @ I @ X ) @ ( cons_nat @ X @ nil_nat ) )
= ( cons_nat @ X @ ( replicate_nat @ I @ X ) ) ) ).
% replicate_append_same
thf(fact_157_psums_Osimps_I2_J,axiom,
! [X: a] :
( ( descar1375166517sums_a @ ( cons_a @ X @ nil_a ) )
= ( cons_a @ X @ nil_a ) ) ).
% psums.simps(2)
thf(fact_158_psums_Osimps_I2_J,axiom,
! [X: nat] :
( ( descar226543321ms_nat @ ( cons_nat @ X @ nil_nat ) )
= ( cons_nat @ X @ nil_nat ) ) ).
% psums.simps(2)
thf(fact_159_zero__reorient,axiom,
! [X: a] :
( ( zero_zero_a = X )
= ( X = zero_zero_a ) ) ).
% zero_reorient
thf(fact_160_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_161_not__Cons__self2,axiom,
! [X: a,Xs: list_a] :
( ( cons_a @ X @ Xs )
!= Xs ) ).
% not_Cons_self2
thf(fact_162_not__Cons__self2,axiom,
! [X: nat,Xs: list_nat] :
( ( cons_nat @ X @ Xs )
!= Xs ) ).
% not_Cons_self2
thf(fact_163_append__eq__append__conv2,axiom,
! [Xs: list_a,Ys: list_a,Zs: list_a,Ts: list_a] :
( ( ( append_a @ Xs @ Ys )
= ( append_a @ Zs @ Ts ) )
= ( ? [Us: list_a] :
( ( ( Xs
= ( append_a @ Zs @ Us ) )
& ( ( append_a @ Us @ Ys )
= Ts ) )
| ( ( ( append_a @ Xs @ Us )
= Zs )
& ( Ys
= ( append_a @ Us @ Ts ) ) ) ) ) ) ).
% append_eq_append_conv2
thf(fact_164_append__eq__append__conv2,axiom,
! [Xs: list_nat,Ys: list_nat,Zs: list_nat,Ts: list_nat] :
( ( ( append_nat @ Xs @ Ys )
= ( append_nat @ Zs @ Ts ) )
= ( ? [Us: list_nat] :
( ( ( Xs
= ( append_nat @ Zs @ Us ) )
& ( ( append_nat @ Us @ Ys )
= Ts ) )
| ( ( ( append_nat @ Xs @ Us )
= Zs )
& ( Ys
= ( append_nat @ Us @ Ts ) ) ) ) ) ) ).
% append_eq_append_conv2
thf(fact_165_append__eq__appendI,axiom,
! [Xs: list_a,Xs1: list_a,Zs: list_a,Ys: list_a,Us2: list_a] :
( ( ( append_a @ Xs @ Xs1 )
= Zs )
=> ( ( Ys
= ( append_a @ Xs1 @ Us2 ) )
=> ( ( append_a @ Xs @ Ys )
= ( append_a @ Zs @ Us2 ) ) ) ) ).
% append_eq_appendI
thf(fact_166_append__eq__appendI,axiom,
! [Xs: list_nat,Xs1: list_nat,Zs: list_nat,Ys: list_nat,Us2: list_nat] :
( ( ( append_nat @ Xs @ Xs1 )
= Zs )
=> ( ( Ys
= ( append_nat @ Xs1 @ Us2 ) )
=> ( ( append_nat @ Xs @ Ys )
= ( append_nat @ Zs @ Us2 ) ) ) ) ).
% append_eq_appendI
thf(fact_167_append__Cons,axiom,
! [X: a,Xs: list_a,Ys: list_a] :
( ( append_a @ ( cons_a @ X @ Xs ) @ Ys )
= ( cons_a @ X @ ( append_a @ Xs @ Ys ) ) ) ).
% append_Cons
thf(fact_168_append__Cons,axiom,
! [X: nat,Xs: list_nat,Ys: list_nat] :
( ( append_nat @ ( cons_nat @ X @ Xs ) @ Ys )
= ( cons_nat @ X @ ( append_nat @ Xs @ Ys ) ) ) ).
% append_Cons
thf(fact_169_v__decompose,axiom,
! [Xs5: list_a] :
( ( v @ ( append_a @ Xs5 @ xsa ) )
= ( plus_plus_int @ ( v @ ( append_a @ Xs5 @ ( cons_a @ ( nth_a @ xsa @ p ) @ nil_a ) ) ) @ ( v @ ( cons_a @ ( nth_a @ xsa @ p ) @ xs2 ) ) ) ) ).
% v_decompose
thf(fact_170_p__less__length,axiom,
ord_less_nat @ p @ ( size_size_list_a @ xsa ) ).
% p_less_length
thf(fact_171_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_172_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_173_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_174_order__refl,axiom,
! [X: a] : ( ord_less_eq_a @ X @ X ) ).
% order_refl
thf(fact_175_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_176_minus__poly__rev__list_Oinduct,axiom,
! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
=> ( ! [Xs3: list_a] : ( P @ Xs3 @ nil_a )
=> ( ! [Y2: a,Ys3: list_a] : ( P @ nil_a @ ( cons_a @ Y2 @ Ys3 ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% minus_poly_rev_list.induct
thf(fact_177_plus__coeffs_Oinduct,axiom,
! [P: list_a > list_a > $o,A0: list_a,A1: list_a] :
( ! [Xs3: list_a] : ( P @ Xs3 @ nil_a )
=> ( ! [V: a,Va: list_a] : ( P @ nil_a @ ( cons_a @ V @ Va ) )
=> ( ! [X2: a,Xs3: list_a,Y2: a,Ys3: list_a] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_a @ X2 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% plus_coeffs.induct
thf(fact_178_plus__coeffs_Oinduct,axiom,
! [P: list_nat > list_nat > $o,A0: list_nat,A1: list_nat] :
( ! [Xs3: list_nat] : ( P @ Xs3 @ nil_nat )
=> ( ! [V: nat,Va: list_nat] : ( P @ nil_nat @ ( cons_nat @ V @ Va ) )
=> ( ! [X2: nat,Xs3: list_nat,Y2: nat,Ys3: list_nat] :
( ( P @ Xs3 @ Ys3 )
=> ( P @ ( cons_nat @ X2 @ Xs3 ) @ ( cons_nat @ Y2 @ Ys3 ) ) )
=> ( P @ A0 @ A1 ) ) ) ) ).
% plus_coeffs.induct
thf(fact_179_minf_I8_J,axiom,
! [T: a] :
? [Z: a] :
! [X3: a] :
( ( ord_less_a @ X3 @ Z )
=> ~ ( ord_less_eq_a @ T @ X3 ) ) ).
% minf(8)
thf(fact_180_minf_I8_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ~ ( ord_less_eq_nat @ T @ X3 ) ) ).
% minf(8)
thf(fact_181_minf_I6_J,axiom,
! [T: a] :
? [Z: a] :
! [X3: a] :
( ( ord_less_a @ X3 @ Z )
=> ( ord_less_eq_a @ X3 @ T ) ) ).
% minf(6)
thf(fact_182_minf_I6_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ord_less_eq_nat @ X3 @ T ) ) ).
% minf(6)
thf(fact_183_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_184_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_185_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_186_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_187_add_Oleft__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.left_neutral
thf(fact_188_add_Oleft__neutral,axiom,
! [A: a] :
( ( plus_plus_a @ zero_zero_a @ A )
= A ) ).
% add.left_neutral
thf(fact_189_add_Oleft__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add.left_neutral
thf(fact_190_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_191_add_Oright__neutral,axiom,
! [A: a] :
( ( plus_plus_a @ A @ zero_zero_a )
= A ) ).
% add.right_neutral
thf(fact_192_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_193_double__zero,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_zero
thf(fact_194_double__zero,axiom,
! [A: a] :
( ( ( plus_plus_a @ A @ A )
= zero_zero_a )
= ( A = zero_zero_a ) ) ).
% double_zero
thf(fact_195_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_196_double__zero__sym,axiom,
! [A: a] :
( ( zero_zero_a
= ( plus_plus_a @ A @ A ) )
= ( A = zero_zero_a ) ) ).
% double_zero_sym
thf(fact_197_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_198_add__cancel__left__left,axiom,
! [B: a,A: a] :
( ( ( plus_plus_a @ B @ A )
= A )
= ( B = zero_zero_a ) ) ).
% add_cancel_left_left
thf(fact_199_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_200_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_201_add__cancel__left__right,axiom,
! [A: a,B: a] :
( ( ( plus_plus_a @ A @ B )
= A )
= ( B = zero_zero_a ) ) ).
% add_cancel_left_right
thf(fact_202_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_203_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_204_add__cancel__right__left,axiom,
! [A: a,B: a] :
( ( A
= ( plus_plus_a @ B @ A ) )
= ( B = zero_zero_a ) ) ).
% add_cancel_right_left
thf(fact_205_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_206_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_207_add__cancel__right__right,axiom,
! [A: a,B: a] :
( ( A
= ( plus_plus_a @ A @ B ) )
= ( B = zero_zero_a ) ) ).
% add_cancel_right_right
thf(fact_208_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_209_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_210_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_211_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_212_add__le__cancel__right,axiom,
! [A: a,C: a,B: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
= ( ord_less_eq_a @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_213_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_214_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_215_add__le__cancel__left,axiom,
! [C: a,A: a,B: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
= ( ord_less_eq_a @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_216_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_217_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_218_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_219_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_220_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_221_append__eq__append__conv,axiom,
! [Xs: list_nat,Ys: list_nat,Us2: list_nat,Vs: list_nat] :
( ( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) )
| ( ( size_size_list_nat @ Us2 )
= ( size_size_list_nat @ Vs ) ) )
=> ( ( ( append_nat @ Xs @ Us2 )
= ( append_nat @ Ys @ Vs ) )
= ( ( Xs = Ys )
& ( Us2 = Vs ) ) ) ) ).
% append_eq_append_conv
thf(fact_222_append__eq__append__conv,axiom,
! [Xs: list_a,Ys: list_a,Us2: list_a,Vs: list_a] :
( ( ( ( size_size_list_a @ Xs )
= ( size_size_list_a @ Ys ) )
| ( ( size_size_list_a @ Us2 )
= ( size_size_list_a @ Vs ) ) )
=> ( ( ( append_a @ Xs @ Us2 )
= ( append_a @ Ys @ Vs ) )
= ( ( Xs = Ys )
& ( Us2 = Vs ) ) ) ) ).
% append_eq_append_conv
thf(fact_223_take__all__iff,axiom,
! [N: nat,Xs: list_a] :
( ( ( take_a @ N @ Xs )
= Xs )
= ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N ) ) ).
% take_all_iff
thf(fact_224_take__all,axiom,
! [Xs: list_a,N: nat] :
( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N )
=> ( ( take_a @ N @ Xs )
= Xs ) ) ).
% take_all
thf(fact_225_length__replicate,axiom,
! [N: nat,X: nat] :
( ( size_size_list_nat @ ( replicate_nat @ N @ X ) )
= N ) ).
% length_replicate
thf(fact_226_length__replicate,axiom,
! [N: nat,X: a] :
( ( size_size_list_a @ ( replicate_a @ N @ X ) )
= N ) ).
% length_replicate
thf(fact_227_length__psums,axiom,
! [Xs: list_a] :
( ( size_size_list_a @ ( descar1375166517sums_a @ Xs ) )
= ( size_size_list_a @ Xs ) ) ).
% length_psums
thf(fact_228_length__psums,axiom,
! [Xs: list_nat] :
( ( size_size_list_nat @ ( descar226543321ms_nat @ Xs ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_psums
thf(fact_229_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_230_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: a] :
( ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ A @ A ) )
= ( ord_less_eq_a @ zero_zero_a @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_231_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_232_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ A @ A ) @ zero_zero_a )
= ( ord_less_eq_a @ A @ zero_zero_a ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_233_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_234_le__add__same__cancel2,axiom,
! [A: a,B: a] :
( ( ord_less_eq_a @ A @ ( plus_plus_a @ B @ A ) )
= ( ord_less_eq_a @ zero_zero_a @ B ) ) ).
% le_add_same_cancel2
thf(fact_235_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_236_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_237_le__add__same__cancel1,axiom,
! [A: a,B: a] :
( ( ord_less_eq_a @ A @ ( plus_plus_a @ A @ B ) )
= ( ord_less_eq_a @ zero_zero_a @ B ) ) ).
% le_add_same_cancel1
thf(fact_238_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_239_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_240_add__le__same__cancel2,axiom,
! [A: a,B: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ B )
= ( ord_less_eq_a @ A @ zero_zero_a ) ) ).
% add_le_same_cancel2
thf(fact_241_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_242_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_243_add__le__same__cancel1,axiom,
! [B: a,A: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ B @ A ) @ B )
= ( ord_less_eq_a @ A @ zero_zero_a ) ) ).
% add_le_same_cancel1
thf(fact_244_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_245_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_246_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: a] :
( ( ord_less_a @ zero_zero_a @ ( plus_plus_a @ A @ A ) )
= ( ord_less_a @ zero_zero_a @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_247_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_248_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: a] :
( ( ord_less_a @ ( plus_plus_a @ A @ A ) @ zero_zero_a )
= ( ord_less_a @ A @ zero_zero_a ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_249_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_250_less__add__same__cancel2,axiom,
! [A: a,B: a] :
( ( ord_less_a @ A @ ( plus_plus_a @ B @ A ) )
= ( ord_less_a @ zero_zero_a @ B ) ) ).
% less_add_same_cancel2
thf(fact_251_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_252_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_253_less__add__same__cancel1,axiom,
! [A: a,B: a] :
( ( ord_less_a @ A @ ( plus_plus_a @ A @ B ) )
= ( ord_less_a @ zero_zero_a @ B ) ) ).
% less_add_same_cancel1
thf(fact_254_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_255_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_256_add__less__same__cancel2,axiom,
! [A: a,B: a] :
( ( ord_less_a @ ( plus_plus_a @ A @ B ) @ B )
= ( ord_less_a @ A @ zero_zero_a ) ) ).
% add_less_same_cancel2
thf(fact_257_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_258_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_259_add__less__same__cancel1,axiom,
! [B: a,A: a] :
( ( ord_less_a @ ( plus_plus_a @ B @ A ) @ B )
= ( ord_less_a @ A @ zero_zero_a ) ) ).
% add_less_same_cancel1
thf(fact_260_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_261_length__0__conv,axiom,
! [Xs: list_a] :
( ( ( size_size_list_a @ Xs )
= zero_zero_nat )
= ( Xs = nil_a ) ) ).
% length_0_conv
thf(fact_262_length__greater__0__conv,axiom,
! [Xs: list_a] :
( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) )
= ( Xs != nil_a ) ) ).
% length_greater_0_conv
thf(fact_263_nth__append__length,axiom,
! [Xs: list_nat,X: nat,Ys: list_nat] :
( ( nth_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ Ys ) ) @ ( size_size_list_nat @ Xs ) )
= X ) ).
% nth_append_length
thf(fact_264_nth__append__length,axiom,
! [Xs: list_a,X: a,Ys: list_a] :
( ( nth_a @ ( append_a @ Xs @ ( cons_a @ X @ Ys ) ) @ ( size_size_list_a @ Xs ) )
= X ) ).
% nth_append_length
thf(fact_265_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_266_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_267_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_268_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_269_impossible__Cons,axiom,
! [Xs: list_nat,Ys: list_nat,X: nat] :
( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_nat @ Ys ) )
=> ( Xs
!= ( cons_nat @ X @ Ys ) ) ) ).
% impossible_Cons
thf(fact_270_impossible__Cons,axiom,
! [Xs: list_a,Ys: list_a,X: a] :
( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) )
=> ( Xs
!= ( cons_a @ X @ Ys ) ) ) ).
% impossible_Cons
thf(fact_271_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_a] :
( ( size_size_list_a @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_272_neq__if__length__neq,axiom,
! [Xs: list_a,Ys: list_a] :
( ( ( size_size_list_a @ Xs )
!= ( size_size_list_a @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_273_group__cancel_Oadd1,axiom,
! [A4: int,K: int,A: int,B: int] :
( ( A4
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A4 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_274_group__cancel_Oadd2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B2 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_275_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_276_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_277_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_278_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_279_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_280_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A5: int,B3: int] : ( plus_plus_int @ B3 @ A5 ) ) ) ).
% add.commute
thf(fact_281_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_282_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_283_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_284_size__neq__size__imp__neq,axiom,
! [X: list_a,Y: list_a] :
( ( ( size_size_list_a @ X )
!= ( size_size_list_a @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_285_less__mono__imp__le__mono,axiom,
! [F2: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F2 @ I2 ) @ ( F2 @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_286_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_287_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_288_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_289_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_290_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K2 )
=> ~ ( P @ I3 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_291_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
& ( M2 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_292_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_293_comm__monoid__add__class_Oadd__0,axiom,
! [A: a] :
( ( plus_plus_a @ zero_zero_a @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_294_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_295_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_296_add_Ocomm__neutral,axiom,
! [A: a] :
( ( plus_plus_a @ A @ zero_zero_a )
= A ) ).
% add.comm_neutral
thf(fact_297_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_298_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_299_add_Ogroup__left__neutral,axiom,
! [A: a] :
( ( plus_plus_a @ zero_zero_a @ A )
= A ) ).
% add.group_left_neutral
thf(fact_300_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_301_add__le__imp__le__right,axiom,
! [A: a,C: a,B: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
=> ( ord_less_eq_a @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_302_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_303_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_304_add__le__imp__le__left,axiom,
! [C: a,A: a,B: a] :
( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
=> ( ord_less_eq_a @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_305_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_306_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A5: nat,B3: nat] :
? [C2: nat] :
( B3
= ( plus_plus_nat @ A5 @ C2 ) ) ) ) ).
% le_iff_add
thf(fact_307_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_308_add__right__mono,axiom,
! [A: a,B: a,C: a] :
( ( ord_less_eq_a @ A @ B )
=> ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) ) ) ).
% add_right_mono
thf(fact_309_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_310_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_311_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_312_add__left__mono,axiom,
! [A: a,B: a,C: a] :
( ( ord_less_eq_a @ A @ B )
=> ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) ) ) ).
% add_left_mono
thf(fact_313_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_314_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_315_add__mono,axiom,
! [A: a,B: a,C: a,D: a] :
( ( ord_less_eq_a @ A @ B )
=> ( ( ord_less_eq_a @ C @ D )
=> ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D ) ) ) ) ).
% add_mono
thf(fact_316_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_317_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_318_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: a,J: a,K: a,L: a] :
( ( ( ord_less_eq_a @ I @ J )
& ( ord_less_eq_a @ K @ L ) )
=> ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_319_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_320_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_321_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: a,J: a,K: a,L: a] :
( ( ( I = J )
& ( ord_less_eq_a @ K @ L ) )
=> ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_322_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_323_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_324_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: a,J: a,K: a,L: a] :
( ( ( ord_less_eq_a @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_325_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_326_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_327_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_328_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_329_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_330_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_331_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_332_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_333_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_334_add__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_335_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_336_add__mono__thms__linordered__field_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_337_add__mono__thms__linordered__field_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_338_add__mono__thms__linordered__field_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_339_add__mono__thms__linordered__field_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_340_add__mono__thms__linordered__field_I5_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_341_add__mono__thms__linordered__field_I5_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_342_list_Osize_I3_J,axiom,
( ( size_size_list_a @ nil_a )
= zero_zero_nat ) ).
% list.size(3)
thf(fact_343_length__induct,axiom,
! [P: list_a > $o,Xs: list_a] :
( ! [Xs3: list_a] :
( ! [Ys6: list_a] :
( ( ord_less_nat @ ( size_size_list_a @ Ys6 ) @ ( size_size_list_a @ Xs3 ) )
=> ( P @ Ys6 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_344_nth__take__lemma,axiom,
! [K: nat,Xs: list_a,Ys: list_a] :
( ( ord_less_eq_nat @ K @ ( size_size_list_a @ Xs ) )
=> ( ( ord_less_eq_nat @ K @ ( size_size_list_a @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ K )
=> ( ( nth_a @ Xs @ I2 )
= ( nth_a @ Ys @ I2 ) ) )
=> ( ( take_a @ K @ Xs )
= ( take_a @ K @ Ys ) ) ) ) ) ).
% nth_take_lemma
thf(fact_345_add__nonpos__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_346_add__nonpos__eq__0__iff,axiom,
! [X: a,Y: a] :
( ( ord_less_eq_a @ X @ zero_zero_a )
=> ( ( ord_less_eq_a @ Y @ zero_zero_a )
=> ( ( ( plus_plus_a @ X @ Y )
= zero_zero_a )
= ( ( X = zero_zero_a )
& ( Y = zero_zero_a ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_347_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_348_add__nonneg__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_349_add__nonneg__eq__0__iff,axiom,
! [X: a,Y: a] :
( ( ord_less_eq_a @ zero_zero_a @ X )
=> ( ( ord_less_eq_a @ zero_zero_a @ Y )
=> ( ( ( plus_plus_a @ X @ Y )
= zero_zero_a )
= ( ( X = zero_zero_a )
& ( Y = zero_zero_a ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_350_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
% Conjectures (1)
thf(conj_0,conjecture,
( ( descar1375166517sums_a @ xsa )
= ( append_a @ ( replicate_a @ p @ zero_zero_a ) @ ( descar1375166517sums_a @ ( cons_a @ ( nth_a @ xsa @ p ) @ xs2 ) ) ) ) ).
%------------------------------------------------------------------------------