TPTP Problem File: ITP034^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP034^1 : TPTP v9.0.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer BinaryTree problem prob_562__3255854_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : BinaryTree/prob_562__3255854_1 [Des21]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.30 v8.2.0, 0.15 v8.1.0, 0.18 v7.5.0
% Syntax   : Number of formulae    :  389 ( 192 unt;  36 typ;   0 def)
%            Number of atoms       :  955 ( 354 equ;   0 cnn)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives : 2500 (  83   ~;  18   |;  75   &;2043   @)
%                                         (   0 <=>; 281  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   6 avg)
%            Number of types       :    5 (   4 usr)
%            Number of type conns  :  314 ( 314   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   34 (  32 usr;   8 con; 0-4 aty)
%            Number of variables   :  944 ( 112   ^; 801   !;  31   ?; 944   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:31:47.772
%------------------------------------------------------------------------------
% Could-be-implicit typings (4)
thf(ty_n_t__BinaryTree____Mirabelle____mlzyzwgbkd__OTree_Itf__a_J,type,
    binary1439146945Tree_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (32)
thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_OTree_OT_001tf__a,type,
    binary717961607le_T_a: binary1439146945Tree_a > a > binary1439146945Tree_a > binary1439146945Tree_a ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_OTree_OTip_001tf__a,type,
    binary476621312_Tip_a: binary1439146945Tree_a ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_Obinsert_001tf__a,type,
    binary1226383794sert_a: ( a > int ) > a > binary1439146945Tree_a > binary1439146945Tree_a ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_Omemb_001tf__a,type,
    binary2053421120memb_a: ( a > int ) > a > binary1439146945Tree_a > $o ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_Oremove_001tf__a,type,
    binary1804682569move_a: ( a > int ) > a > binary1439146945Tree_a > binary1439146945Tree_a ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_Orm_001tf__a,type,
    binary339557810e_rm_a: ( a > int ) > binary1439146945Tree_a > a ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_OsetOf_001tf__a,type,
    binary945792244etOf_a: binary1439146945Tree_a > set_a ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_OsortedTree_001tf__a,type,
    binary1721989714Tree_a: ( a > int ) > binary1439146945Tree_a > $o ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_Osorted__distinct__pred_001tf__a,type,
    binary670562003pred_a: ( a > int ) > a > a > binary1439146945Tree_a > $o ).

thf(sy_c_BinaryTree__Mirabelle__mlzyzwgbkd_Owrm_001tf__a,type,
    binary1217730267_wrm_a: ( a > int ) > binary1439146945Tree_a > binary1439146945Tree_a ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_Itf__a_M_Eo_J,type,
    sup_sup_a_o: ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_Eo,type,
    sup_sup_o: $o > $o > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
    sup_sup_int: int > int > int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_Eo,type,
    bot_bot_o: $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_Itf__a_M_Eo_J,type,
    ord_less_a_o: ( a > $o ) > ( a > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_Itf__a_M_Eo_J,type,
    ord_less_eq_a_o: ( a > $o ) > ( a > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Othe__elem_001tf__a,type,
    the_elem_a: set_a > a ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_h,type,
    h: a > int ).

thf(sy_v_l____,type,
    l: a ).

thf(sy_v_t1____,type,
    t1: binary1439146945Tree_a ).

thf(sy_v_t2____,type,
    t2: binary1439146945Tree_a ).

thf(sy_v_x____,type,
    x: a ).

% Relevant facts (352)
thf(fact_0_hLess,axiom,
    ord_less_int @ ( h @ l ) @ ( h @ ( binary339557810e_rm_a @ h @ t2 ) ) ).

% hLess
thf(fact_1_rm__res,axiom,
    ( ( binary339557810e_rm_a @ h @ ( binary717961607le_T_a @ t1 @ x @ t2 ) )
    = ( binary339557810e_rm_a @ h @ t2 ) ) ).

% rm_res
thf(fact_2_t2nTip,axiom,
    t2 != binary476621312_Tip_a ).

% t2nTip
thf(fact_3_Tree_Oinject,axiom,
    ! [X21: binary1439146945Tree_a,X22: a,X23: binary1439146945Tree_a,Y21: binary1439146945Tree_a,Y22: a,Y23: binary1439146945Tree_a] :
      ( ( ( binary717961607le_T_a @ X21 @ X22 @ X23 )
        = ( binary717961607le_T_a @ Y21 @ Y22 @ Y23 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 )
        & ( X23 = Y23 ) ) ) ).

% Tree.inject
thf(fact_4_s,axiom,
    binary1721989714Tree_a @ h @ ( binary717961607le_T_a @ t1 @ x @ t2 ) ).

% s
thf(fact_5_wrm__res,axiom,
    ( ( binary1217730267_wrm_a @ h @ ( binary717961607le_T_a @ t1 @ x @ t2 ) )
    = ( binary717961607le_T_a @ t1 @ x @ ( binary1217730267_wrm_a @ h @ t2 ) ) ) ).

% wrm_res
thf(fact_6_ldef,axiom,
    member_a @ l @ ( binary945792244etOf_a @ ( binary1217730267_wrm_a @ h @ ( binary717961607le_T_a @ t1 @ x @ t2 ) ) ) ).

% ldef
thf(fact_7_s1,axiom,
    binary1721989714Tree_a @ h @ t1 ).

% s1
thf(fact_8_s2,axiom,
    binary1721989714Tree_a @ h @ t2 ).

% s2
thf(fact_9_binsert_Osimps_I2_J,axiom,
    ! [H: a > int,E: a,X: a,T1: binary1439146945Tree_a,T2: binary1439146945Tree_a] :
      ( ( ( ord_less_int @ ( H @ E ) @ ( H @ X ) )
       => ( ( binary1226383794sert_a @ H @ E @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
          = ( binary717961607le_T_a @ ( binary1226383794sert_a @ H @ E @ T1 ) @ X @ T2 ) ) )
      & ( ~ ( ord_less_int @ ( H @ E ) @ ( H @ X ) )
       => ( ( ( ord_less_int @ ( H @ X ) @ ( H @ E ) )
           => ( ( binary1226383794sert_a @ H @ E @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
              = ( binary717961607le_T_a @ T1 @ X @ ( binary1226383794sert_a @ H @ E @ T2 ) ) ) )
          & ( ~ ( ord_less_int @ ( H @ X ) @ ( H @ E ) )
           => ( ( binary1226383794sert_a @ H @ E @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
              = ( binary717961607le_T_a @ T1 @ E @ T2 ) ) ) ) ) ) ).

% binsert.simps(2)
thf(fact_10_rm_Osimps,axiom,
    ! [T2: binary1439146945Tree_a,H: a > int,T1: binary1439146945Tree_a,X: a] :
      ( ( ( T2 = binary476621312_Tip_a )
       => ( ( binary339557810e_rm_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
          = X ) )
      & ( ( T2 != binary476621312_Tip_a )
       => ( ( binary339557810e_rm_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
          = ( binary339557810e_rm_a @ H @ T2 ) ) ) ) ).

% rm.simps
thf(fact_11_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ~ ( ord_less_int @ T @ X2 ) ) ).

% minf(7)
thf(fact_12_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( ord_less_int @ X2 @ T ) ) ).

% minf(5)
thf(fact_13_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_14_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_15_minf_I2_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z2: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z2 )
         => ( ( P @ X3 )
            = ( P2 @ X3 ) ) )
     => ( ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z2 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P2 @ X2 )
                | ( Q2 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_16_sortedTree_Osimps_I1_J,axiom,
    ! [H: a > int] : ( binary1721989714Tree_a @ H @ binary476621312_Tip_a ) ).

% sortedTree.simps(1)
thf(fact_17_wrm__sort,axiom,
    ! [T: binary1439146945Tree_a,H: a > int] :
      ( ( ( T != binary476621312_Tip_a )
        & ( binary1721989714Tree_a @ H @ T ) )
     => ( binary1721989714Tree_a @ H @ ( binary1217730267_wrm_a @ H @ T ) ) ) ).

% wrm_sort
thf(fact_18_binsert__sorted,axiom,
    ! [H: a > int,T: binary1439146945Tree_a,X: a] :
      ( ( binary1721989714Tree_a @ H @ T )
     => ( binary1721989714Tree_a @ H @ ( binary1226383794sert_a @ H @ X @ T ) ) ) ).

% binsert_sorted
thf(fact_19_rm__set,axiom,
    ! [T: binary1439146945Tree_a,H: a > int] :
      ( ( ( T != binary476621312_Tip_a )
        & ( binary1721989714Tree_a @ H @ T ) )
     => ( member_a @ ( binary339557810e_rm_a @ H @ T ) @ ( binary945792244etOf_a @ T ) ) ) ).

% rm_set
thf(fact_20_binsert_Osimps_I1_J,axiom,
    ! [H: a > int,E: a] :
      ( ( binary1226383794sert_a @ H @ E @ binary476621312_Tip_a )
      = ( binary717961607le_T_a @ binary476621312_Tip_a @ E @ binary476621312_Tip_a ) ) ).

% binsert.simps(1)
thf(fact_21_wrm_Osimps,axiom,
    ! [T2: binary1439146945Tree_a,H: a > int,T1: binary1439146945Tree_a,X: a] :
      ( ( ( T2 = binary476621312_Tip_a )
       => ( ( binary1217730267_wrm_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
          = T1 ) )
      & ( ( T2 != binary476621312_Tip_a )
       => ( ( binary1217730267_wrm_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
          = ( binary717961607le_T_a @ T1 @ X @ ( binary1217730267_wrm_a @ H @ T2 ) ) ) ) ) ).

% wrm.simps
thf(fact_22_sortedTree_Osimps_I2_J,axiom,
    ! [H: a > int,T1: binary1439146945Tree_a,X: a,T2: binary1439146945Tree_a] :
      ( ( binary1721989714Tree_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
      = ( ( binary1721989714Tree_a @ H @ T1 )
        & ! [X4: a] :
            ( ( member_a @ X4 @ ( binary945792244etOf_a @ T1 ) )
           => ( ord_less_int @ ( H @ X4 ) @ ( H @ X ) ) )
        & ! [X4: a] :
            ( ( member_a @ X4 @ ( binary945792244etOf_a @ T2 ) )
           => ( ord_less_int @ ( H @ X ) @ ( H @ X4 ) ) )
        & ( binary1721989714Tree_a @ H @ T2 ) ) ) ).

% sortedTree.simps(2)
thf(fact_23_Tree_Oexhaust,axiom,
    ! [Y: binary1439146945Tree_a] :
      ( ( Y != binary476621312_Tip_a )
     => ~ ! [X212: binary1439146945Tree_a,X222: a,X232: binary1439146945Tree_a] :
            ( Y
           != ( binary717961607le_T_a @ X212 @ X222 @ X232 ) ) ) ).

% Tree.exhaust
thf(fact_24_Tree_Oinduct,axiom,
    ! [P: binary1439146945Tree_a > $o,Tree: binary1439146945Tree_a] :
      ( ( P @ binary476621312_Tip_a )
     => ( ! [X1: binary1439146945Tree_a,X24: a,X32: binary1439146945Tree_a] :
            ( ( P @ X1 )
           => ( ( P @ X32 )
             => ( P @ ( binary717961607le_T_a @ X1 @ X24 @ X32 ) ) ) )
       => ( P @ Tree ) ) ) ).

% Tree.induct
thf(fact_25_Tree_Odistinct_I1_J,axiom,
    ! [X21: binary1439146945Tree_a,X22: a,X23: binary1439146945Tree_a] :
      ( binary476621312_Tip_a
     != ( binary717961607le_T_a @ X21 @ X22 @ X23 ) ) ).

% Tree.distinct(1)
thf(fact_26_sortLemmaR,axiom,
    ! [H: a > int,T1: binary1439146945Tree_a,X: a,T2: binary1439146945Tree_a] :
      ( ( binary1721989714Tree_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
     => ( binary1721989714Tree_a @ H @ T2 ) ) ).

% sortLemmaR
thf(fact_27_sortLemmaL,axiom,
    ! [H: a > int,T1: binary1439146945Tree_a,X: a,T2: binary1439146945Tree_a] :
      ( ( binary1721989714Tree_a @ H @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
     => ( binary1721989714Tree_a @ H @ T1 ) ) ).

% sortLemmaL
thf(fact_28_pinf_I1_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z2: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z2 @ X3 )
         => ( ( P @ X3 )
            = ( P2 @ X3 ) ) )
     => ( ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z2 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z @ X2 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P2 @ X2 )
                & ( Q2 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_29_pinf_I2_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z2: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z2 @ X3 )
         => ( ( P @ X3 )
            = ( P2 @ X3 ) ) )
     => ( ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z2 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z @ X2 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P2 @ X2 )
                | ( Q2 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_30_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_31_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_32_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ~ ( ord_less_int @ X2 @ T ) ) ).

% pinf(5)
thf(fact_33_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( ord_less_int @ T @ X2 ) ) ).

% pinf(7)
thf(fact_34_minf_I1_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z2: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z2 )
         => ( ( P @ X3 )
            = ( P2 @ X3 ) ) )
     => ( ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z2 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P2 @ X2 )
                & ( Q2 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_35_h1,axiom,
    ( ( ( t1 != binary476621312_Tip_a )
      & ( binary1721989714Tree_a @ h @ t1 ) )
   => ! [X2: a] :
        ( ( member_a @ X2 @ ( binary945792244etOf_a @ ( binary1217730267_wrm_a @ h @ t1 ) ) )
       => ( ord_less_int @ ( h @ X2 ) @ ( h @ ( binary339557810e_rm_a @ h @ t1 ) ) ) ) ) ).

% h1
thf(fact_36_h2,axiom,
    ( ( ( t2 != binary476621312_Tip_a )
      & ( binary1721989714Tree_a @ h @ t2 ) )
   => ! [X2: a] :
        ( ( member_a @ X2 @ ( binary945792244etOf_a @ ( binary1217730267_wrm_a @ h @ t2 ) ) )
       => ( ord_less_int @ ( h @ X2 ) @ ( h @ ( binary339557810e_rm_a @ h @ t2 ) ) ) ) ) ).

% h2
thf(fact_37_memb__spec,axiom,
    ! [H: a > int,T: binary1439146945Tree_a,X: a] :
      ( ( binary1721989714Tree_a @ H @ T )
     => ( ( binary2053421120memb_a @ H @ X @ T )
        = ( member_a @ X @ ( binary945792244etOf_a @ T ) ) ) ) ).

% memb_spec
thf(fact_38_sorted__distinct__pred__def,axiom,
    ( binary670562003pred_a
    = ( ^ [H2: a > int,A: a,B: a,T3: binary1439146945Tree_a] :
          ( ( ( binary1721989714Tree_a @ H2 @ T3 )
            & ( member_a @ A @ ( binary945792244etOf_a @ T3 ) )
            & ( member_a @ B @ ( binary945792244etOf_a @ T3 ) )
            & ( ( H2 @ A )
              = ( H2 @ B ) ) )
         => ( A = B ) ) ) ) ).

% sorted_distinct_pred_def
thf(fact_39_l__scope,axiom,
    member_a @ l @ ( sup_sup_set_a @ ( sup_sup_set_a @ ( insert_a @ x @ bot_bot_set_a ) @ ( binary945792244etOf_a @ t1 ) ) @ ( binary945792244etOf_a @ ( binary1217730267_wrm_a @ h @ t2 ) ) ) ).

% l_scope
thf(fact_40_wrm__set1,axiom,
    ! [T: binary1439146945Tree_a,H: a > int] :
      ( ( ( T != binary476621312_Tip_a )
        & ( binary1721989714Tree_a @ H @ T ) )
     => ( ord_less_eq_set_a @ ( binary945792244etOf_a @ ( binary1217730267_wrm_a @ H @ T ) ) @ ( binary945792244etOf_a @ T ) ) ) ).

% wrm_set1
thf(fact_41_remove_Osimps_I1_J,axiom,
    ! [H: a > int,E: a] :
      ( ( binary1804682569move_a @ H @ E @ binary476621312_Tip_a )
      = binary476621312_Tip_a ) ).

% remove.simps(1)
thf(fact_42_mem__Collect__eq,axiom,
    ! [A2: a,P: a > $o] :
      ( ( member_a @ A2 @ ( collect_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_43_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X4: a] : ( member_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_44_Collect__cong,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_a @ P )
        = ( collect_a @ Q ) ) ) ).

% Collect_cong
thf(fact_45_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_46_complete__interval,axiom,
    ! [A2: int,B2: int,P: int > $o] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( P @ A2 )
       => ( ~ ( P @ B2 )
         => ? [C: int] :
              ( ( ord_less_eq_int @ A2 @ C )
              & ( ord_less_eq_int @ C @ B2 )
              & ! [X2: int] :
                  ( ( ( ord_less_eq_int @ A2 @ X2 )
                    & ( ord_less_int @ X2 @ C ) )
                 => ( P @ X2 ) )
              & ! [D: int] :
                  ( ! [X3: int] :
                      ( ( ( ord_less_eq_int @ A2 @ X3 )
                        & ( ord_less_int @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_int @ D @ C ) ) ) ) ) ) ).

% complete_interval
thf(fact_47_setOf_Osimps_I2_J,axiom,
    ! [T1: binary1439146945Tree_a,X: a,T2: binary1439146945Tree_a] :
      ( ( binary945792244etOf_a @ ( binary717961607le_T_a @ T1 @ X @ T2 ) )
      = ( sup_sup_set_a @ ( sup_sup_set_a @ ( binary945792244etOf_a @ T1 ) @ ( binary945792244etOf_a @ T2 ) ) @ ( insert_a @ X @ bot_bot_set_a ) ) ) ).

% setOf.simps(2)
thf(fact_48_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ~ ( ord_less_eq_int @ T @ X2 ) ) ).

% minf(8)
thf(fact_49_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z )
     => ( ord_less_eq_int @ X2 @ T ) ) ).

% minf(6)
thf(fact_50_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ( ord_less_eq_int @ T @ X2 ) ) ).

% pinf(8)
thf(fact_51_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z @ X2 )
     => ~ ( ord_less_eq_int @ X2 @ T ) ) ).

% pinf(6)
thf(fact_52_sorted__distinct,axiom,
    ! [H: a > int,A2: a,B2: a,T: binary1439146945Tree_a] : ( binary670562003pred_a @ H @ A2 @ B2 @ T ) ).

% sorted_distinct
thf(fact_53_setOf_Osimps_I1_J,axiom,
    ( ( binary945792244etOf_a @ binary476621312_Tip_a )
    = bot_bot_set_a ) ).

% setOf.simps(1)
thf(fact_54_singleton__insert__inj__eq_H,axiom,
    ! [A2: a,A3: set_a,B2: a] :
      ( ( ( insert_a @ A2 @ A3 )
        = ( insert_a @ B2 @ bot_bot_set_a ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B2 @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_55_singleton__insert__inj__eq,axiom,
    ! [B2: a,A2: a,A3: set_a] :
      ( ( ( insert_a @ B2 @ bot_bot_set_a )
        = ( insert_a @ A2 @ A3 ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B2 @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_56_singleton__conv2,axiom,
    ! [A2: a] :
      ( ( collect_a
        @ ( ^ [Y2: a,Z3: a] : ( Y2 = Z3 )
          @ A2 ) )
      = ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singleton_conv2
thf(fact_57_singleton__conv,axiom,
    ! [A2: a] :
      ( ( collect_a
        @ ^ [X4: a] : ( X4 = A2 ) )
      = ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singleton_conv
thf(fact_58_Un__insert__right,axiom,
    ! [A3: set_a,A2: a,B3: set_a] :
      ( ( sup_sup_set_a @ A3 @ ( insert_a @ A2 @ B3 ) )
      = ( insert_a @ A2 @ ( sup_sup_set_a @ A3 @ B3 ) ) ) ).

% Un_insert_right
thf(fact_59_Un__insert__left,axiom,
    ! [A2: a,B3: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( insert_a @ A2 @ B3 ) @ C2 )
      = ( insert_a @ A2 @ ( sup_sup_set_a @ B3 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_60_Un__subset__iff,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ C2 )
      = ( ( ord_less_eq_set_a @ A3 @ C2 )
        & ( ord_less_eq_set_a @ B3 @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_61_Un__empty,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ( sup_sup_set_a @ A3 @ B3 )
        = bot_bot_set_a )
      = ( ( A3 = bot_bot_set_a )
        & ( B3 = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_62_empty__iff,axiom,
    ! [C3: a] :
      ~ ( member_a @ C3 @ bot_bot_set_a ) ).

% empty_iff
thf(fact_63_all__not__in__conv,axiom,
    ! [A3: set_a] :
      ( ( ! [X4: a] :
            ~ ( member_a @ X4 @ A3 ) )
      = ( A3 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_64_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X4: a] :
            ~ ( P @ X4 ) ) ) ).

% Collect_empty_eq
thf(fact_65_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X4: a] :
            ~ ( P @ X4 ) ) ) ).

% empty_Collect_eq
thf(fact_66_subsetI,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A3 )
         => ( member_a @ X3 @ B3 ) )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_67_subset__antisym,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ A3 )
       => ( A3 = B3 ) ) ) ).

% subset_antisym
thf(fact_68_psubsetI,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( A3 != B3 )
       => ( ord_less_set_a @ A3 @ B3 ) ) ) ).

% psubsetI
thf(fact_69_insertCI,axiom,
    ! [A2: a,B3: set_a,B2: a] :
      ( ( ~ ( member_a @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member_a @ A2 @ ( insert_a @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_70_insert__iff,axiom,
    ! [A2: a,B2: a,A3: set_a] :
      ( ( member_a @ A2 @ ( insert_a @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member_a @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_71_insert__absorb2,axiom,
    ! [X: a,A3: set_a] :
      ( ( insert_a @ X @ ( insert_a @ X @ A3 ) )
      = ( insert_a @ X @ A3 ) ) ).

% insert_absorb2
thf(fact_72_UnCI,axiom,
    ! [C3: a,B3: set_a,A3: set_a] :
      ( ( ~ ( member_a @ C3 @ B3 )
       => ( member_a @ C3 @ A3 ) )
     => ( member_a @ C3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_73_Un__iff,axiom,
    ! [C3: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C3 @ ( sup_sup_set_a @ A3 @ B3 ) )
      = ( ( member_a @ C3 @ A3 )
        | ( member_a @ C3 @ B3 ) ) ) ).

% Un_iff
thf(fact_74_subset__empty,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ bot_bot_set_a )
      = ( A3 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_75_empty__subsetI,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A3 ) ).

% empty_subsetI
thf(fact_76_singletonI,axiom,
    ! [A2: a] : ( member_a @ A2 @ ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_77_insert__subset,axiom,
    ! [X: a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A3 ) @ B3 )
      = ( ( member_a @ X @ B3 )
        & ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_78_less__eq__set__def,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ord_less_eq_a_o
          @ ^ [X4: a] : ( member_a @ X4 @ A4 )
          @ ^ [X4: a] : ( member_a @ X4 @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_79_emptyE,axiom,
    ! [A2: a] :
      ~ ( member_a @ A2 @ bot_bot_set_a ) ).

% emptyE
thf(fact_80_equals0D,axiom,
    ! [A3: set_a,A2: a] :
      ( ( A3 = bot_bot_set_a )
     => ~ ( member_a @ A2 @ A3 ) ) ).

% equals0D
thf(fact_81_equals0I,axiom,
    ! [A3: set_a] :
      ( ! [Y3: a] :
          ~ ( member_a @ Y3 @ A3 )
     => ( A3 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_82_ex__in__conv,axiom,
    ! [A3: set_a] :
      ( ( ? [X4: a] : ( member_a @ X4 @ A3 ) )
      = ( A3 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_83_not__psubset__empty,axiom,
    ! [A3: set_a] :
      ~ ( ord_less_set_a @ A3 @ bot_bot_set_a ) ).

% not_psubset_empty
thf(fact_84_in__mono,axiom,
    ! [A3: set_a,B3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( member_a @ X @ A3 )
       => ( member_a @ X @ B3 ) ) ) ).

% in_mono
thf(fact_85_subsetD,axiom,
    ! [A3: set_a,B3: set_a,C3: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( member_a @ C3 @ A3 )
       => ( member_a @ C3 @ B3 ) ) ) ).

% subsetD
thf(fact_86_equalityE,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B3 )
         => ~ ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ).

% equalityE
thf(fact_87_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
        ! [X4: a] :
          ( ( member_a @ X4 @ A4 )
         => ( member_a @ X4 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_88_equalityD1,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% equalityD1
thf(fact_89_equalityD2,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_a @ B3 @ A3 ) ) ).

% equalityD2
thf(fact_90_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
        ! [T3: a] :
          ( ( member_a @ T3 @ A4 )
         => ( member_a @ T3 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_91_subset__refl,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_92_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_93_subset__trans,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ord_less_eq_set_a @ A3 @ C2 ) ) ) ).

% subset_trans
thf(fact_94_set__eq__subset,axiom,
    ( ( ^ [Y2: set_a,Z3: set_a] : ( Y2 = Z3 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% set_eq_subset
thf(fact_95_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X4: a] :
            ( ( P @ X4 )
           => ( Q @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_96_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_set_a @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_97_subset__psubset__trans,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_set_a @ B3 @ C2 )
       => ( ord_less_set_a @ A3 @ C2 ) ) ) ).

% subset_psubset_trans
thf(fact_98_subset__not__subset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ~ ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_99_psubset__subset__trans,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ord_less_set_a @ A3 @ C2 ) ) ) ).

% psubset_subset_trans
thf(fact_100_psubset__imp__subset,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_set_a @ A3 @ B3 )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% psubset_imp_subset
thf(fact_101_psubset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% psubset_eq
thf(fact_102_psubsetE,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_set_a @ A3 @ B3 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B3 )
         => ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ).

% psubsetE
thf(fact_103_insertE,axiom,
    ! [A2: a,B2: a,A3: set_a] :
      ( ( member_a @ A2 @ ( insert_a @ B2 @ A3 ) )
     => ( ( A2 != B2 )
       => ( member_a @ A2 @ A3 ) ) ) ).

% insertE
thf(fact_104_insertI1,axiom,
    ! [A2: a,B3: set_a] : ( member_a @ A2 @ ( insert_a @ A2 @ B3 ) ) ).

% insertI1
thf(fact_105_insertI2,axiom,
    ! [A2: a,B3: set_a,B2: a] :
      ( ( member_a @ A2 @ B3 )
     => ( member_a @ A2 @ ( insert_a @ B2 @ B3 ) ) ) ).

% insertI2
thf(fact_106_Set_Oset__insert,axiom,
    ! [X: a,A3: set_a] :
      ( ( member_a @ X @ A3 )
     => ~ ! [B5: set_a] :
            ( ( A3
              = ( insert_a @ X @ B5 ) )
           => ( member_a @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_107_insert__ident,axiom,
    ! [X: a,A3: set_a,B3: set_a] :
      ( ~ ( member_a @ X @ A3 )
     => ( ~ ( member_a @ X @ B3 )
       => ( ( ( insert_a @ X @ A3 )
            = ( insert_a @ X @ B3 ) )
          = ( A3 = B3 ) ) ) ) ).

% insert_ident
thf(fact_108_insert__absorb,axiom,
    ! [A2: a,A3: set_a] :
      ( ( member_a @ A2 @ A3 )
     => ( ( insert_a @ A2 @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_109_insert__eq__iff,axiom,
    ! [A2: a,A3: set_a,B2: a,B3: set_a] :
      ( ~ ( member_a @ A2 @ A3 )
     => ( ~ ( member_a @ B2 @ B3 )
       => ( ( ( insert_a @ A2 @ A3 )
            = ( insert_a @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C4: set_a] :
                  ( ( A3
                    = ( insert_a @ B2 @ C4 ) )
                  & ~ ( member_a @ B2 @ C4 )
                  & ( B3
                    = ( insert_a @ A2 @ C4 ) )
                  & ~ ( member_a @ A2 @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_110_insert__commute,axiom,
    ! [X: a,Y: a,A3: set_a] :
      ( ( insert_a @ X @ ( insert_a @ Y @ A3 ) )
      = ( insert_a @ Y @ ( insert_a @ X @ A3 ) ) ) ).

% insert_commute
thf(fact_111_mk__disjoint__insert,axiom,
    ! [A2: a,A3: set_a] :
      ( ( member_a @ A2 @ A3 )
     => ? [B5: set_a] :
          ( ( A3
            = ( insert_a @ A2 @ B5 ) )
          & ~ ( member_a @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_112_UnE,axiom,
    ! [C3: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C3 @ ( sup_sup_set_a @ A3 @ B3 ) )
     => ( ~ ( member_a @ C3 @ A3 )
       => ( member_a @ C3 @ B3 ) ) ) ).

% UnE
thf(fact_113_UnI1,axiom,
    ! [C3: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C3 @ A3 )
     => ( member_a @ C3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ) ).

% UnI1
thf(fact_114_UnI2,axiom,
    ! [C3: a,B3: set_a,A3: set_a] :
      ( ( member_a @ C3 @ B3 )
     => ( member_a @ C3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ) ).

% UnI2
thf(fact_115_bex__Un,axiom,
    ! [A3: set_a,B3: set_a,P: a > $o] :
      ( ( ? [X4: a] :
            ( ( member_a @ X4 @ ( sup_sup_set_a @ A3 @ B3 ) )
            & ( P @ X4 ) ) )
      = ( ? [X4: a] :
            ( ( member_a @ X4 @ A3 )
            & ( P @ X4 ) )
        | ? [X4: a] :
            ( ( member_a @ X4 @ B3 )
            & ( P @ X4 ) ) ) ) ).

% bex_Un
thf(fact_116_ball__Un,axiom,
    ! [A3: set_a,B3: set_a,P: a > $o] :
      ( ( ! [X4: a] :
            ( ( member_a @ X4 @ ( sup_sup_set_a @ A3 @ B3 ) )
           => ( P @ X4 ) ) )
      = ( ! [X4: a] :
            ( ( member_a @ X4 @ A3 )
           => ( P @ X4 ) )
        & ! [X4: a] :
            ( ( member_a @ X4 @ B3 )
           => ( P @ X4 ) ) ) ) ).

% ball_Un
thf(fact_117_Un__assoc,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ C2 )
      = ( sup_sup_set_a @ A3 @ ( sup_sup_set_a @ B3 @ C2 ) ) ) ).

% Un_assoc
thf(fact_118_Un__absorb,axiom,
    ! [A3: set_a] :
      ( ( sup_sup_set_a @ A3 @ A3 )
      = A3 ) ).

% Un_absorb
thf(fact_119_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( sup_sup_set_a @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_120_Un__left__absorb,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( sup_sup_set_a @ A3 @ ( sup_sup_set_a @ A3 @ B3 ) )
      = ( sup_sup_set_a @ A3 @ B3 ) ) ).

% Un_left_absorb
thf(fact_121_Un__left__commute,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A3 @ ( sup_sup_set_a @ B3 @ C2 ) )
      = ( sup_sup_set_a @ B3 @ ( sup_sup_set_a @ A3 @ C2 ) ) ) ).

% Un_left_commute
thf(fact_122_empty__def,axiom,
    ( bot_bot_set_a
    = ( collect_a
      @ ^ [X4: a] : $false ) ) ).

% empty_def
thf(fact_123_Collect__subset,axiom,
    ! [A3: set_a,P: a > $o] :
      ( ord_less_eq_set_a
      @ ( collect_a
        @ ^ [X4: a] :
            ( ( member_a @ X4 @ A3 )
            & ( P @ X4 ) ) )
      @ A3 ) ).

% Collect_subset
thf(fact_124_insert__compr,axiom,
    ( insert_a
    = ( ^ [A: a,B4: set_a] :
          ( collect_a
          @ ^ [X4: a] :
              ( ( X4 = A )
              | ( member_a @ X4 @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_125_insert__Collect,axiom,
    ! [A2: a,P: a > $o] :
      ( ( insert_a @ A2 @ ( collect_a @ P ) )
      = ( collect_a
        @ ^ [U: a] :
            ( ( U != A2 )
           => ( P @ U ) ) ) ) ).

% insert_Collect
thf(fact_126_Un__def,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( collect_a
          @ ^ [X4: a] :
              ( ( member_a @ X4 @ A4 )
              | ( member_a @ X4 @ B4 ) ) ) ) ) ).

% Un_def
thf(fact_127_Collect__disj__eq,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( collect_a
        @ ^ [X4: a] :
            ( ( P @ X4 )
            | ( Q @ X4 ) ) )
      = ( sup_sup_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_disj_eq
thf(fact_128_singletonD,axiom,
    ! [B2: a,A2: a] :
      ( ( member_a @ B2 @ ( insert_a @ A2 @ bot_bot_set_a ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_129_singleton__iff,axiom,
    ! [B2: a,A2: a] :
      ( ( member_a @ B2 @ ( insert_a @ A2 @ bot_bot_set_a ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_130_doubleton__eq__iff,axiom,
    ! [A2: a,B2: a,C3: a,D2: a] :
      ( ( ( insert_a @ A2 @ ( insert_a @ B2 @ bot_bot_set_a ) )
        = ( insert_a @ C3 @ ( insert_a @ D2 @ bot_bot_set_a ) ) )
      = ( ( ( A2 = C3 )
          & ( B2 = D2 ) )
        | ( ( A2 = D2 )
          & ( B2 = C3 ) ) ) ) ).

% doubleton_eq_iff
thf(fact_131_insert__not__empty,axiom,
    ! [A2: a,A3: set_a] :
      ( ( insert_a @ A2 @ A3 )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_132_singleton__inject,axiom,
    ! [A2: a,B2: a] :
      ( ( ( insert_a @ A2 @ bot_bot_set_a )
        = ( insert_a @ B2 @ bot_bot_set_a ) )
     => ( A2 = B2 ) ) ).

% singleton_inject
thf(fact_133_insert__mono,axiom,
    ! [C2: set_a,D3: set_a,A2: a] :
      ( ( ord_less_eq_set_a @ C2 @ D3 )
     => ( ord_less_eq_set_a @ ( insert_a @ A2 @ C2 ) @ ( insert_a @ A2 @ D3 ) ) ) ).

% insert_mono
thf(fact_134_subset__insert,axiom,
    ! [X: a,A3: set_a,B3: set_a] :
      ( ~ ( member_a @ X @ A3 )
     => ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B3 ) )
        = ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_135_subset__insertI,axiom,
    ! [B3: set_a,A2: a] : ( ord_less_eq_set_a @ B3 @ ( insert_a @ A2 @ B3 ) ) ).

% subset_insertI
thf(fact_136_subset__insertI2,axiom,
    ! [A3: set_a,B3: set_a,B2: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_less_eq_set_a @ A3 @ ( insert_a @ B2 @ B3 ) ) ) ).

% subset_insertI2
thf(fact_137_Un__empty__left,axiom,
    ! [B3: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ B3 )
      = B3 ) ).

% Un_empty_left
thf(fact_138_Un__empty__right,axiom,
    ! [A3: set_a] :
      ( ( sup_sup_set_a @ A3 @ bot_bot_set_a )
      = A3 ) ).

% Un_empty_right
thf(fact_139_Un__mono,axiom,
    ! [A3: set_a,C2: set_a,B3: set_a,D3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ B3 @ D3 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ ( sup_sup_set_a @ C2 @ D3 ) ) ) ) ).

% Un_mono
thf(fact_140_Un__least,axiom,
    ! [A3: set_a,C2: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ C2 ) ) ) ).

% Un_least
thf(fact_141_Un__upper1,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ A3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ).

% Un_upper1
thf(fact_142_Un__upper2,axiom,
    ! [B3: set_a,A3: set_a] : ( ord_less_eq_set_a @ B3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ).

% Un_upper2
thf(fact_143_Un__absorb1,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( sup_sup_set_a @ A3 @ B3 )
        = B3 ) ) ).

% Un_absorb1
thf(fact_144_Un__absorb2,axiom,
    ! [B3: set_a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B3 @ A3 )
     => ( ( sup_sup_set_a @ A3 @ B3 )
        = A3 ) ) ).

% Un_absorb2
thf(fact_145_subset__UnE,axiom,
    ! [C2: set_a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A3 @ B3 ) )
     => ~ ! [A5: set_a] :
            ( ( ord_less_eq_set_a @ A5 @ A3 )
           => ! [B6: set_a] :
                ( ( ord_less_eq_set_a @ B6 @ B3 )
               => ( C2
                 != ( sup_sup_set_a @ A5 @ B6 ) ) ) ) ) ).

% subset_UnE
thf(fact_146_subset__Un__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B4 )
          = B4 ) ) ) ).

% subset_Un_eq
thf(fact_147_Collect__conv__if,axiom,
    ! [P: a > $o,A2: a] :
      ( ( ( P @ A2 )
       => ( ( collect_a
            @ ^ [X4: a] :
                ( ( X4 = A2 )
                & ( P @ X4 ) ) )
          = ( insert_a @ A2 @ bot_bot_set_a ) ) )
      & ( ~ ( P @ A2 )
       => ( ( collect_a
            @ ^ [X4: a] :
                ( ( X4 = A2 )
                & ( P @ X4 ) ) )
          = bot_bot_set_a ) ) ) ).

% Collect_conv_if
thf(fact_148_Collect__conv__if2,axiom,
    ! [P: a > $o,A2: a] :
      ( ( ( P @ A2 )
       => ( ( collect_a
            @ ^ [X4: a] :
                ( ( A2 = X4 )
                & ( P @ X4 ) ) )
          = ( insert_a @ A2 @ bot_bot_set_a ) ) )
      & ( ~ ( P @ A2 )
       => ( ( collect_a
            @ ^ [X4: a] :
                ( ( A2 = X4 )
                & ( P @ X4 ) ) )
          = bot_bot_set_a ) ) ) ).

% Collect_conv_if2
thf(fact_149_insert__def,axiom,
    ( insert_a
    = ( ^ [A: a] :
          ( sup_sup_set_a
          @ ( collect_a
            @ ^ [X4: a] : ( X4 = A ) ) ) ) ) ).

% insert_def
thf(fact_150_subset__singletonD,axiom,
    ! [A3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) )
     => ( ( A3 = bot_bot_set_a )
        | ( A3
          = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_151_subset__singleton__iff,axiom,
    ! [X5: set_a,A2: a] :
      ( ( ord_less_eq_set_a @ X5 @ ( insert_a @ A2 @ bot_bot_set_a ) )
      = ( ( X5 = bot_bot_set_a )
        | ( X5
          = ( insert_a @ A2 @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_152_insert__is__Un,axiom,
    ( insert_a
    = ( ^ [A: a] : ( sup_sup_set_a @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% insert_is_Un
thf(fact_153_Un__singleton__iff,axiom,
    ! [A3: set_a,B3: set_a,X: a] :
      ( ( ( sup_sup_set_a @ A3 @ B3 )
        = ( insert_a @ X @ bot_bot_set_a ) )
      = ( ( ( A3 = bot_bot_set_a )
          & ( B3
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A3
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B3 = bot_bot_set_a ) )
        | ( ( A3
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B3
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_154_singleton__Un__iff,axiom,
    ! [X: a,A3: set_a,B3: set_a] :
      ( ( ( insert_a @ X @ bot_bot_set_a )
        = ( sup_sup_set_a @ A3 @ B3 ) )
      = ( ( ( A3 = bot_bot_set_a )
          & ( B3
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A3
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B3 = bot_bot_set_a ) )
        | ( ( A3
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B3
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_155_sup__bot__left,axiom,
    ! [X: a > $o] :
      ( ( sup_sup_a_o @ bot_bot_a_o @ X )
      = X ) ).

% sup_bot_left
thf(fact_156_sup__bot__left,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ X )
      = X ) ).

% sup_bot_left
thf(fact_157_sup__bot__right,axiom,
    ! [X: a > $o] :
      ( ( sup_sup_a_o @ X @ bot_bot_a_o )
      = X ) ).

% sup_bot_right
thf(fact_158_sup__bot__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% sup_bot_right
thf(fact_159_bot__eq__sup__iff,axiom,
    ! [X: a > $o,Y: a > $o] :
      ( ( bot_bot_a_o
        = ( sup_sup_a_o @ X @ Y ) )
      = ( ( X = bot_bot_a_o )
        & ( Y = bot_bot_a_o ) ) ) ).

% bot_eq_sup_iff
thf(fact_160_bot__eq__sup__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ X @ Y ) )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% bot_eq_sup_iff
thf(fact_161_sup__eq__bot__iff,axiom,
    ! [X: a > $o,Y: a > $o] :
      ( ( ( sup_sup_a_o @ X @ Y )
        = bot_bot_a_o )
      = ( ( X = bot_bot_a_o )
        & ( Y = bot_bot_a_o ) ) ) ).

% sup_eq_bot_iff
thf(fact_162_sup__eq__bot__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( sup_sup_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% sup_eq_bot_iff
thf(fact_163_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: a > $o,B2: a > $o] :
      ( ( ( sup_sup_a_o @ A2 @ B2 )
        = bot_bot_a_o )
      = ( ( A2 = bot_bot_a_o )
        & ( B2 = bot_bot_a_o ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_164_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_165_sup__bot_Oleft__neutral,axiom,
    ! [A2: a > $o] :
      ( ( sup_sup_a_o @ bot_bot_a_o @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_166_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_167_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: a > $o,B2: a > $o] :
      ( ( bot_bot_a_o
        = ( sup_sup_a_o @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_a_o )
        & ( B2 = bot_bot_a_o ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_168_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_169_sup_Oright__idem,axiom,
    ! [A2: a > $o,B2: a > $o] :
      ( ( sup_sup_a_o @ ( sup_sup_a_o @ A2 @ B2 ) @ B2 )
      = ( sup_sup_a_o @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_170_sup_Oright__idem,axiom,
    ! [A2: int,B2: int] :
      ( ( sup_sup_int @ ( sup_sup_int @ A2 @ B2 ) @ B2 )
      = ( sup_sup_int @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_171_sup_Oright__idem,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ B2 )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_172_sup__left__idem,axiom,
    ! [X: a > $o,Y: a > $o] :
      ( ( sup_sup_a_o @ X @ ( sup_sup_a_o @ X @ Y ) )
      = ( sup_sup_a_o @ X @ Y ) ) ).

% sup_left_idem
thf(fact_173_sup__left__idem,axiom,
    ! [X: int,Y: int] :
      ( ( sup_sup_int @ X @ ( sup_sup_int @ X @ Y ) )
      = ( sup_sup_int @ X @ Y ) ) ).

% sup_left_idem
thf(fact_174_sup__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% sup_left_idem
thf(fact_175_sup_Oleft__idem,axiom,
    ! [A2: a > $o,B2: a > $o] :
      ( ( sup_sup_a_o @ A2 @ ( sup_sup_a_o @ A2 @ B2 ) )
      = ( sup_sup_a_o @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_176_sup_Oleft__idem,axiom,
    ! [A2: int,B2: int] :
      ( ( sup_sup_int @ A2 @ ( sup_sup_int @ A2 @ B2 ) )
      = ( sup_sup_int @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_177_sup_Oleft__idem,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_178_sup__idem,axiom,
    ! [X: a > $o] :
      ( ( sup_sup_a_o @ X @ X )
      = X ) ).

% sup_idem
thf(fact_179_sup__idem,axiom,
    ! [X: int] :
      ( ( sup_sup_int @ X @ X )
      = X ) ).

% sup_idem
thf(fact_180_sup__idem,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ X )
      = X ) ).

% sup_idem
thf(fact_181_sup_Oidem,axiom,
    ! [A2: a > $o] :
      ( ( sup_sup_a_o @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_182_sup_Oidem,axiom,
    ! [A2: int] :
      ( ( sup_sup_int @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_183_sup_Oidem,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_184_sup__apply,axiom,
    ( sup_sup_a_o
    = ( ^ [F: a > $o,G: a > $o,X4: a] : ( sup_sup_o @ ( F @ X4 ) @ ( G @ X4 ) ) ) ) ).

% sup_apply
thf(fact_185_sup_Obounded__iff,axiom,
    ! [B2: int,C3: int,A2: int] :
      ( ( ord_less_eq_int @ ( sup_sup_int @ B2 @ C3 ) @ A2 )
      = ( ( ord_less_eq_int @ B2 @ A2 )
        & ( ord_less_eq_int @ C3 @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_186_sup_Obounded__iff,axiom,
    ! [B2: a > $o,C3: a > $o,A2: a > $o] :
      ( ( ord_less_eq_a_o @ ( sup_sup_a_o @ B2 @ C3 ) @ A2 )
      = ( ( ord_less_eq_a_o @ B2 @ A2 )
        & ( ord_less_eq_a_o @ C3 @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_187_sup_Obounded__iff,axiom,
    ! [B2: set_a,C3: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C3 ) @ A2 )
      = ( ( ord_less_eq_set_a @ B2 @ A2 )
        & ( ord_less_eq_set_a @ C3 @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_188_le__sup__iff,axiom,
    ! [X: int,Y: int,Z4: int] :
      ( ( ord_less_eq_int @ ( sup_sup_int @ X @ Y ) @ Z4 )
      = ( ( ord_less_eq_int @ X @ Z4 )
        & ( ord_less_eq_int @ Y @ Z4 ) ) ) ).

% le_sup_iff
thf(fact_189_le__sup__iff,axiom,
    ! [X: a > $o,Y: a > $o,Z4: a > $o] :
      ( ( ord_less_eq_a_o @ ( sup_sup_a_o @ X @ Y ) @ Z4 )
      = ( ( ord_less_eq_a_o @ X @ Z4 )
        & ( ord_less_eq_a_o @ Y @ Z4 ) ) ) ).

% le_sup_iff
thf(fact_190_le__sup__iff,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z4 )
      = ( ( ord_less_eq_set_a @ X @ Z4 )
        & ( ord_less_eq_set_a @ Y @ Z4 ) ) ) ).

% le_sup_iff
thf(fact_191_sup__bot_Oright__neutral,axiom,
    ! [A2: a > $o] :
      ( ( sup_sup_a_o @ A2 @ bot_bot_a_o )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_192_sup__bot_Oright__neutral,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_193_less__set__def,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ord_less_a_o
          @ ^ [X4: a] : ( member_a @ X4 @ A4 )
          @ ^ [X4: a] : ( member_a @ X4 @ B4 ) ) ) ) ).

% less_set_def
thf(fact_194_psubset__trans,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_set_a @ A3 @ B3 )
     => ( ( ord_less_set_a @ B3 @ C2 )
       => ( ord_less_set_a @ A3 @ C2 ) ) ) ).

% psubset_trans
thf(fact_195_psubsetD,axiom,
    ! [A3: set_a,B3: set_a,C3: a] :
      ( ( ord_less_set_a @ A3 @ B3 )
     => ( ( member_a @ C3 @ A3 )
       => ( member_a @ C3 @ B3 ) ) ) ).

% psubsetD
thf(fact_196_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_197_sup__set__def,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( collect_a
          @ ( sup_sup_a_o
            @ ^ [X4: a] : ( member_a @ X4 @ A4 )
            @ ^ [X4: a] : ( member_a @ X4 @ B4 ) ) ) ) ) ).

% sup_set_def
thf(fact_198_sup__left__commute,axiom,
    ! [X: a > $o,Y: a > $o,Z4: a > $o] :
      ( ( sup_sup_a_o @ X @ ( sup_sup_a_o @ Y @ Z4 ) )
      = ( sup_sup_a_o @ Y @ ( sup_sup_a_o @ X @ Z4 ) ) ) ).

% sup_left_commute
thf(fact_199_sup__left__commute,axiom,
    ! [X: int,Y: int,Z4: int] :
      ( ( sup_sup_int @ X @ ( sup_sup_int @ Y @ Z4 ) )
      = ( sup_sup_int @ Y @ ( sup_sup_int @ X @ Z4 ) ) ) ).

% sup_left_commute
thf(fact_200_sup__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% sup_left_commute
thf(fact_201_sup_Oleft__commute,axiom,
    ! [B2: a > $o,A2: a > $o,C3: a > $o] :
      ( ( sup_sup_a_o @ B2 @ ( sup_sup_a_o @ A2 @ C3 ) )
      = ( sup_sup_a_o @ A2 @ ( sup_sup_a_o @ B2 @ C3 ) ) ) ).

% sup.left_commute
thf(fact_202_sup_Oleft__commute,axiom,
    ! [B2: int,A2: int,C3: int] :
      ( ( sup_sup_int @ B2 @ ( sup_sup_int @ A2 @ C3 ) )
      = ( sup_sup_int @ A2 @ ( sup_sup_int @ B2 @ C3 ) ) ) ).

% sup.left_commute
thf(fact_203_sup_Oleft__commute,axiom,
    ! [B2: set_a,A2: set_a,C3: set_a] :
      ( ( sup_sup_set_a @ B2 @ ( sup_sup_set_a @ A2 @ C3 ) )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C3 ) ) ) ).

% sup.left_commute
thf(fact_204_sup__commute,axiom,
    ( sup_sup_a_o
    = ( ^ [X4: a > $o,Y4: a > $o] : ( sup_sup_a_o @ Y4 @ X4 ) ) ) ).

% sup_commute
thf(fact_205_sup__commute,axiom,
    ( sup_sup_int
    = ( ^ [X4: int,Y4: int] : ( sup_sup_int @ Y4 @ X4 ) ) ) ).

% sup_commute
thf(fact_206_sup__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [X4: set_a,Y4: set_a] : ( sup_sup_set_a @ Y4 @ X4 ) ) ) ).

% sup_commute
thf(fact_207_sup_Ocommute,axiom,
    ( sup_sup_a_o
    = ( ^ [A: a > $o,B: a > $o] : ( sup_sup_a_o @ B @ A ) ) ) ).

% sup.commute
thf(fact_208_sup_Ocommute,axiom,
    ( sup_sup_int
    = ( ^ [A: int,B: int] : ( sup_sup_int @ B @ A ) ) ) ).

% sup.commute
thf(fact_209_sup_Ocommute,axiom,
    ( sup_sup_set_a
    = ( ^ [A: set_a,B: set_a] : ( sup_sup_set_a @ B @ A ) ) ) ).

% sup.commute
thf(fact_210_sup__assoc,axiom,
    ! [X: a > $o,Y: a > $o,Z4: a > $o] :
      ( ( sup_sup_a_o @ ( sup_sup_a_o @ X @ Y ) @ Z4 )
      = ( sup_sup_a_o @ X @ ( sup_sup_a_o @ Y @ Z4 ) ) ) ).

% sup_assoc
thf(fact_211_sup__assoc,axiom,
    ! [X: int,Y: int,Z4: int] :
      ( ( sup_sup_int @ ( sup_sup_int @ X @ Y ) @ Z4 )
      = ( sup_sup_int @ X @ ( sup_sup_int @ Y @ Z4 ) ) ) ).

% sup_assoc
thf(fact_212_sup__assoc,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z4 )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) ) ) ).

% sup_assoc
thf(fact_213_sup_Oassoc,axiom,
    ! [A2: a > $o,B2: a > $o,C3: a > $o] :
      ( ( sup_sup_a_o @ ( sup_sup_a_o @ A2 @ B2 ) @ C3 )
      = ( sup_sup_a_o @ A2 @ ( sup_sup_a_o @ B2 @ C3 ) ) ) ).

% sup.assoc
thf(fact_214_sup_Oassoc,axiom,
    ! [A2: int,B2: int,C3: int] :
      ( ( sup_sup_int @ ( sup_sup_int @ A2 @ B2 ) @ C3 )
      = ( sup_sup_int @ A2 @ ( sup_sup_int @ B2 @ C3 ) ) ) ).

% sup.assoc
thf(fact_215_sup_Oassoc,axiom,
    ! [A2: set_a,B2: set_a,C3: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C3 )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C3 ) ) ) ).

% sup.assoc
thf(fact_216_boolean__algebra__cancel_Osup2,axiom,
    ! [B3: a > $o,K: a > $o,B2: a > $o,A2: a > $o] :
      ( ( B3
        = ( sup_sup_a_o @ K @ B2 ) )
     => ( ( sup_sup_a_o @ A2 @ B3 )
        = ( sup_sup_a_o @ K @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_217_boolean__algebra__cancel_Osup2,axiom,
    ! [B3: int,K: int,B2: int,A2: int] :
      ( ( B3
        = ( sup_sup_int @ K @ B2 ) )
     => ( ( sup_sup_int @ A2 @ B3 )
        = ( sup_sup_int @ K @ ( sup_sup_int @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_218_boolean__algebra__cancel_Osup2,axiom,
    ! [B3: set_a,K: set_a,B2: set_a,A2: set_a] :
      ( ( B3
        = ( sup_sup_set_a @ K @ B2 ) )
     => ( ( sup_sup_set_a @ A2 @ B3 )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_219_boolean__algebra__cancel_Osup1,axiom,
    ! [A3: a > $o,K: a > $o,A2: a > $o,B2: a > $o] :
      ( ( A3
        = ( sup_sup_a_o @ K @ A2 ) )
     => ( ( sup_sup_a_o @ A3 @ B2 )
        = ( sup_sup_a_o @ K @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_220_boolean__algebra__cancel_Osup1,axiom,
    ! [A3: int,K: int,A2: int,B2: int] :
      ( ( A3
        = ( sup_sup_int @ K @ A2 ) )
     => ( ( sup_sup_int @ A3 @ B2 )
        = ( sup_sup_int @ K @ ( sup_sup_int @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_221_boolean__algebra__cancel_Osup1,axiom,
    ! [A3: set_a,K: set_a,A2: set_a,B2: set_a] :
      ( ( A3
        = ( sup_sup_set_a @ K @ A2 ) )
     => ( ( sup_sup_set_a @ A3 @ B2 )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_222_sup__fun__def,axiom,
    ( sup_sup_a_o
    = ( ^ [F: a > $o,G: a > $o,X4: a] : ( sup_sup_o @ ( F @ X4 ) @ ( G @ X4 ) ) ) ) ).

% sup_fun_def
thf(fact_223_inf__sup__aci_I5_J,axiom,
    ( sup_sup_a_o
    = ( ^ [X4: a > $o,Y4: a > $o] : ( sup_sup_a_o @ Y4 @ X4 ) ) ) ).

% inf_sup_aci(5)
thf(fact_224_inf__sup__aci_I5_J,axiom,
    ( sup_sup_int
    = ( ^ [X4: int,Y4: int] : ( sup_sup_int @ Y4 @ X4 ) ) ) ).

% inf_sup_aci(5)
thf(fact_225_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_a
    = ( ^ [X4: set_a,Y4: set_a] : ( sup_sup_set_a @ Y4 @ X4 ) ) ) ).

% inf_sup_aci(5)
thf(fact_226_inf__sup__aci_I6_J,axiom,
    ! [X: a > $o,Y: a > $o,Z4: a > $o] :
      ( ( sup_sup_a_o @ ( sup_sup_a_o @ X @ Y ) @ Z4 )
      = ( sup_sup_a_o @ X @ ( sup_sup_a_o @ Y @ Z4 ) ) ) ).

% inf_sup_aci(6)
thf(fact_227_inf__sup__aci_I6_J,axiom,
    ! [X: int,Y: int,Z4: int] :
      ( ( sup_sup_int @ ( sup_sup_int @ X @ Y ) @ Z4 )
      = ( sup_sup_int @ X @ ( sup_sup_int @ Y @ Z4 ) ) ) ).

% inf_sup_aci(6)
thf(fact_228_inf__sup__aci_I6_J,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z4 )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) ) ) ).

% inf_sup_aci(6)
thf(fact_229_inf__sup__aci_I7_J,axiom,
    ! [X: a > $o,Y: a > $o,Z4: a > $o] :
      ( ( sup_sup_a_o @ X @ ( sup_sup_a_o @ Y @ Z4 ) )
      = ( sup_sup_a_o @ Y @ ( sup_sup_a_o @ X @ Z4 ) ) ) ).

% inf_sup_aci(7)
thf(fact_230_inf__sup__aci_I7_J,axiom,
    ! [X: int,Y: int,Z4: int] :
      ( ( sup_sup_int @ X @ ( sup_sup_int @ Y @ Z4 ) )
      = ( sup_sup_int @ Y @ ( sup_sup_int @ X @ Z4 ) ) ) ).

% inf_sup_aci(7)
thf(fact_231_inf__sup__aci_I7_J,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% inf_sup_aci(7)
thf(fact_232_inf__sup__aci_I8_J,axiom,
    ! [X: a > $o,Y: a > $o] :
      ( ( sup_sup_a_o @ X @ ( sup_sup_a_o @ X @ Y ) )
      = ( sup_sup_a_o @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_233_inf__sup__aci_I8_J,axiom,
    ! [X: int,Y: int] :
      ( ( sup_sup_int @ X @ ( sup_sup_int @ X @ Y ) )
      = ( sup_sup_int @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_234_inf__sup__aci_I8_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_235_sup_OcoboundedI2,axiom,
    ! [C3: int,B2: int,A2: int] :
      ( ( ord_less_eq_int @ C3 @ B2 )
     => ( ord_less_eq_int @ C3 @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_236_sup_OcoboundedI2,axiom,
    ! [C3: a > $o,B2: a > $o,A2: a > $o] :
      ( ( ord_less_eq_a_o @ C3 @ B2 )
     => ( ord_less_eq_a_o @ C3 @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_237_sup_OcoboundedI2,axiom,
    ! [C3: set_a,B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ C3 @ B2 )
     => ( ord_less_eq_set_a @ C3 @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_238_sup_OcoboundedI1,axiom,
    ! [C3: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ C3 @ A2 )
     => ( ord_less_eq_int @ C3 @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_239_sup_OcoboundedI1,axiom,
    ! [C3: a > $o,A2: a > $o,B2: a > $o] :
      ( ( ord_less_eq_a_o @ C3 @ A2 )
     => ( ord_less_eq_a_o @ C3 @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_240_sup_OcoboundedI1,axiom,
    ! [C3: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C3 @ A2 )
     => ( ord_less_eq_set_a @ C3 @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_241_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_int
    = ( ^ [A: int,B: int] :
          ( ( sup_sup_int @ A @ B )
          = B ) ) ) ).

% sup.absorb_iff2
thf(fact_242_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_a_o
    = ( ^ [A: a > $o,B: a > $o] :
          ( ( sup_sup_a_o @ A @ B )
          = B ) ) ) ).

% sup.absorb_iff2
thf(fact_243_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A: set_a,B: set_a] :
          ( ( sup_sup_set_a @ A @ B )
          = B ) ) ) ).

% sup.absorb_iff2
thf(fact_244_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_int
    = ( ^ [B: int,A: int] :
          ( ( sup_sup_int @ A @ B )
          = A ) ) ) ).

% sup.absorb_iff1
thf(fact_245_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_a_o
    = ( ^ [B: a > $o,A: a > $o] :
          ( ( sup_sup_a_o @ A @ B )
          = A ) ) ) ).

% sup.absorb_iff1
thf(fact_246_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B: set_a,A: set_a] :
          ( ( sup_sup_set_a @ A @ B )
          = A ) ) ) ).

% sup.absorb_iff1
thf(fact_247_sup_Ocobounded2,axiom,
    ! [B2: int,A2: int] : ( ord_less_eq_int @ B2 @ ( sup_sup_int @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_248_sup_Ocobounded2,axiom,
    ! [B2: a > $o,A2: a > $o] : ( ord_less_eq_a_o @ B2 @ ( sup_sup_a_o @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_249_sup_Ocobounded2,axiom,
    ! [B2: set_a,A2: set_a] : ( ord_less_eq_set_a @ B2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_250_sup_Ocobounded1,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ A2 @ ( sup_sup_int @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_251_sup_Ocobounded1,axiom,
    ! [A2: a > $o,B2: a > $o] : ( ord_less_eq_a_o @ A2 @ ( sup_sup_a_o @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_252_sup_Ocobounded1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_253_sup_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [B: int,A: int] :
          ( A
          = ( sup_sup_int @ A @ B ) ) ) ) ).

% sup.order_iff
thf(fact_254_sup_Oorder__iff,axiom,
    ( ord_less_eq_a_o
    = ( ^ [B: a > $o,A: a > $o] :
          ( A
          = ( sup_sup_a_o @ A @ B ) ) ) ) ).

% sup.order_iff
thf(fact_255_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B: set_a,A: set_a] :
          ( A
          = ( sup_sup_set_a @ A @ B ) ) ) ) ).

% sup.order_iff
thf(fact_256_sup_OboundedI,axiom,
    ! [B2: int,A2: int,C3: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C3 @ A2 )
       => ( ord_less_eq_int @ ( sup_sup_int @ B2 @ C3 ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_257_sup_OboundedI,axiom,
    ! [B2: a > $o,A2: a > $o,C3: a > $o] :
      ( ( ord_less_eq_a_o @ B2 @ A2 )
     => ( ( ord_less_eq_a_o @ C3 @ A2 )
       => ( ord_less_eq_a_o @ ( sup_sup_a_o @ B2 @ C3 ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_258_sup_OboundedI,axiom,
    ! [B2: set_a,A2: set_a,C3: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( ord_less_eq_set_a @ C3 @ A2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C3 ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_259_sup_OboundedE,axiom,
    ! [B2: int,C3: int,A2: int] :
      ( ( ord_less_eq_int @ ( sup_sup_int @ B2 @ C3 ) @ A2 )
     => ~ ( ( ord_less_eq_int @ B2 @ A2 )
         => ~ ( ord_less_eq_int @ C3 @ A2 ) ) ) ).

% sup.boundedE
thf(fact_260_sup_OboundedE,axiom,
    ! [B2: a > $o,C3: a > $o,A2: a > $o] :
      ( ( ord_less_eq_a_o @ ( sup_sup_a_o @ B2 @ C3 ) @ A2 )
     => ~ ( ( ord_less_eq_a_o @ B2 @ A2 )
         => ~ ( ord_less_eq_a_o @ C3 @ A2 ) ) ) ).

% sup.boundedE
thf(fact_261_sup_OboundedE,axiom,
    ! [B2: set_a,C3: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C3 ) @ A2 )
     => ~ ( ( ord_less_eq_set_a @ B2 @ A2 )
         => ~ ( ord_less_eq_set_a @ C3 @ A2 ) ) ) ).

% sup.boundedE
thf(fact_262_sup__absorb2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( sup_sup_int @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_263_sup__absorb2,axiom,
    ! [X: a > $o,Y: a > $o] :
      ( ( ord_less_eq_a_o @ X @ Y )
     => ( ( sup_sup_a_o @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_264_sup__absorb2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( sup_sup_set_a @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_265_sup__absorb1,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( sup_sup_int @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_266_sup__absorb1,axiom,
    ! [Y: a > $o,X: a > $o] :
      ( ( ord_less_eq_a_o @ Y @ X )
     => ( ( sup_sup_a_o @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_267_sup__absorb1,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( sup_sup_set_a @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_268_sup_Oabsorb2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( sup_sup_int @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_269_sup_Oabsorb2,axiom,
    ! [A2: a > $o,B2: a > $o] :
      ( ( ord_less_eq_a_o @ A2 @ B2 )
     => ( ( sup_sup_a_o @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_270_sup_Oabsorb2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_271_sup_Oabsorb1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( sup_sup_int @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_272_sup_Oabsorb1,axiom,
    ! [B2: a > $o,A2: a > $o] :
      ( ( ord_less_eq_a_o @ B2 @ A2 )
     => ( ( sup_sup_a_o @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_273_sup_Oabsorb1,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_274_sup__unique,axiom,
    ! [F2: int > int > int,X: int,Y: int] :
      ( ! [X3: int,Y3: int] : ( ord_less_eq_int @ X3 @ ( F2 @ X3 @ Y3 ) )
     => ( ! [X3: int,Y3: int] : ( ord_less_eq_int @ Y3 @ ( F2 @ X3 @ Y3 ) )
       => ( ! [X3: int,Y3: int,Z: int] :
              ( ( ord_less_eq_int @ Y3 @ X3 )
             => ( ( ord_less_eq_int @ Z @ X3 )
               => ( ord_less_eq_int @ ( F2 @ Y3 @ Z ) @ X3 ) ) )
         => ( ( sup_sup_int @ X @ Y )
            = ( F2 @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_275_sup__unique,axiom,
    ! [F2: ( a > $o ) > ( a > $o ) > a > $o,X: a > $o,Y: a > $o] :
      ( ! [X3: a > $o,Y3: a > $o] : ( ord_less_eq_a_o @ X3 @ ( F2 @ X3 @ Y3 ) )
     => ( ! [X3: a > $o,Y3: a > $o] : ( ord_less_eq_a_o @ Y3 @ ( F2 @ X3 @ Y3 ) )
       => ( ! [X3: a > $o,Y3: a > $o,Z: a > $o] :
              ( ( ord_less_eq_a_o @ Y3 @ X3 )
             => ( ( ord_less_eq_a_o @ Z @ X3 )
               => ( ord_less_eq_a_o @ ( F2 @ Y3 @ Z ) @ X3 ) ) )
         => ( ( sup_sup_a_o @ X @ Y )
            = ( F2 @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_276_sup__unique,axiom,
    ! [F2: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ X3 @ ( F2 @ X3 @ Y3 ) )
     => ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ Y3 @ ( F2 @ X3 @ Y3 ) )
       => ( ! [X3: set_a,Y3: set_a,Z: set_a] :
              ( ( ord_less_eq_set_a @ Y3 @ X3 )
             => ( ( ord_less_eq_set_a @ Z @ X3 )
               => ( ord_less_eq_set_a @ ( F2 @ Y3 @ Z ) @ X3 ) ) )
         => ( ( sup_sup_set_a @ X @ Y )
            = ( F2 @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_277_sup_OorderI,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( sup_sup_int @ A2 @ B2 ) )
     => ( ord_less_eq_int @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_278_sup_OorderI,axiom,
    ! [A2: a > $o,B2: a > $o] :
      ( ( A2
        = ( sup_sup_a_o @ A2 @ B2 ) )
     => ( ord_less_eq_a_o @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_279_sup_OorderI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2
        = ( sup_sup_set_a @ A2 @ B2 ) )
     => ( ord_less_eq_set_a @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_280_sup_OorderE,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( A2
        = ( sup_sup_int @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_281_sup_OorderE,axiom,
    ! [B2: a > $o,A2: a > $o] :
      ( ( ord_less_eq_a_o @ B2 @ A2 )
     => ( A2
        = ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_282_sup_OorderE,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( A2
        = ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_283_le__iff__sup,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Y4: int] :
          ( ( sup_sup_int @ X4 @ Y4 )
          = Y4 ) ) ) ).

% le_iff_sup
thf(fact_284_le__iff__sup,axiom,
    ( ord_less_eq_a_o
    = ( ^ [X4: a > $o,Y4: a > $o] :
          ( ( sup_sup_a_o @ X4 @ Y4 )
          = Y4 ) ) ) ).

% le_iff_sup
thf(fact_285_le__iff__sup,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X4: set_a,Y4: set_a] :
          ( ( sup_sup_set_a @ X4 @ Y4 )
          = Y4 ) ) ) ).

% le_iff_sup
thf(fact_286_sup__least,axiom,
    ! [Y: int,X: int,Z4: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_less_eq_int @ Z4 @ X )
       => ( ord_less_eq_int @ ( sup_sup_int @ Y @ Z4 ) @ X ) ) ) ).

% sup_least
thf(fact_287_sup__least,axiom,
    ! [Y: a > $o,X: a > $o,Z4: a > $o] :
      ( ( ord_less_eq_a_o @ Y @ X )
     => ( ( ord_less_eq_a_o @ Z4 @ X )
       => ( ord_less_eq_a_o @ ( sup_sup_a_o @ Y @ Z4 ) @ X ) ) ) ).

% sup_least
thf(fact_288_sup__least,axiom,
    ! [Y: set_a,X: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ Z4 @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z4 ) @ X ) ) ) ).

% sup_least
thf(fact_289_sup__mono,axiom,
    ! [A2: int,C3: int,B2: int,D2: int] :
      ( ( ord_less_eq_int @ A2 @ C3 )
     => ( ( ord_less_eq_int @ B2 @ D2 )
       => ( ord_less_eq_int @ ( sup_sup_int @ A2 @ B2 ) @ ( sup_sup_int @ C3 @ D2 ) ) ) ) ).

% sup_mono
thf(fact_290_sup__mono,axiom,
    ! [A2: a > $o,C3: a > $o,B2: a > $o,D2: a > $o] :
      ( ( ord_less_eq_a_o @ A2 @ C3 )
     => ( ( ord_less_eq_a_o @ B2 @ D2 )
       => ( ord_less_eq_a_o @ ( sup_sup_a_o @ A2 @ B2 ) @ ( sup_sup_a_o @ C3 @ D2 ) ) ) ) ).

% sup_mono
thf(fact_291_sup__mono,axiom,
    ! [A2: set_a,C3: set_a,B2: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C3 )
     => ( ( ord_less_eq_set_a @ B2 @ D2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ C3 @ D2 ) ) ) ) ).

% sup_mono
thf(fact_292_sup_Omono,axiom,
    ! [C3: int,A2: int,D2: int,B2: int] :
      ( ( ord_less_eq_int @ C3 @ A2 )
     => ( ( ord_less_eq_int @ D2 @ B2 )
       => ( ord_less_eq_int @ ( sup_sup_int @ C3 @ D2 ) @ ( sup_sup_int @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_293_sup_Omono,axiom,
    ! [C3: a > $o,A2: a > $o,D2: a > $o,B2: a > $o] :
      ( ( ord_less_eq_a_o @ C3 @ A2 )
     => ( ( ord_less_eq_a_o @ D2 @ B2 )
       => ( ord_less_eq_a_o @ ( sup_sup_a_o @ C3 @ D2 ) @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_294_sup_Omono,axiom,
    ! [C3: set_a,A2: set_a,D2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C3 @ A2 )
     => ( ( ord_less_eq_set_a @ D2 @ B2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ C3 @ D2 ) @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_295_le__supI2,axiom,
    ! [X: int,B2: int,A2: int] :
      ( ( ord_less_eq_int @ X @ B2 )
     => ( ord_less_eq_int @ X @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_296_le__supI2,axiom,
    ! [X: a > $o,B2: a > $o,A2: a > $o] :
      ( ( ord_less_eq_a_o @ X @ B2 )
     => ( ord_less_eq_a_o @ X @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_297_le__supI2,axiom,
    ! [X: set_a,B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ X @ B2 )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_298_le__supI1,axiom,
    ! [X: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ X @ A2 )
     => ( ord_less_eq_int @ X @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_299_le__supI1,axiom,
    ! [X: a > $o,A2: a > $o,B2: a > $o] :
      ( ( ord_less_eq_a_o @ X @ A2 )
     => ( ord_less_eq_a_o @ X @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_300_le__supI1,axiom,
    ! [X: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ X @ A2 )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_301_sup__ge2,axiom,
    ! [Y: int,X: int] : ( ord_less_eq_int @ Y @ ( sup_sup_int @ X @ Y ) ) ).

% sup_ge2
thf(fact_302_sup__ge2,axiom,
    ! [Y: a > $o,X: a > $o] : ( ord_less_eq_a_o @ Y @ ( sup_sup_a_o @ X @ Y ) ) ).

% sup_ge2
thf(fact_303_sup__ge2,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge2
thf(fact_304_sup__ge1,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ X @ ( sup_sup_int @ X @ Y ) ) ).

% sup_ge1
thf(fact_305_sup__ge1,axiom,
    ! [X: a > $o,Y: a > $o] : ( ord_less_eq_a_o @ X @ ( sup_sup_a_o @ X @ Y ) ) ).

% sup_ge1
thf(fact_306_sup__ge1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge1
thf(fact_307_le__supI,axiom,
    ! [A2: int,X: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ X )
     => ( ( ord_less_eq_int @ B2 @ X )
       => ( ord_less_eq_int @ ( sup_sup_int @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_308_le__supI,axiom,
    ! [A2: a > $o,X: a > $o,B2: a > $o] :
      ( ( ord_less_eq_a_o @ A2 @ X )
     => ( ( ord_less_eq_a_o @ B2 @ X )
       => ( ord_less_eq_a_o @ ( sup_sup_a_o @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_309_le__supI,axiom,
    ! [A2: set_a,X: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ X )
     => ( ( ord_less_eq_set_a @ B2 @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_310_le__supE,axiom,
    ! [A2: int,B2: int,X: int] :
      ( ( ord_less_eq_int @ ( sup_sup_int @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_int @ A2 @ X )
         => ~ ( ord_less_eq_int @ B2 @ X ) ) ) ).

% le_supE
thf(fact_311_le__supE,axiom,
    ! [A2: a > $o,B2: a > $o,X: a > $o] :
      ( ( ord_less_eq_a_o @ ( sup_sup_a_o @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_a_o @ A2 @ X )
         => ~ ( ord_less_eq_a_o @ B2 @ X ) ) ) ).

% le_supE
thf(fact_312_le__supE,axiom,
    ! [A2: set_a,B2: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_set_a @ A2 @ X )
         => ~ ( ord_less_eq_set_a @ B2 @ X ) ) ) ).

% le_supE
thf(fact_313_inf__sup__ord_I3_J,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ X @ ( sup_sup_int @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_314_inf__sup__ord_I3_J,axiom,
    ! [X: a > $o,Y: a > $o] : ( ord_less_eq_a_o @ X @ ( sup_sup_a_o @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_315_inf__sup__ord_I3_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_316_inf__sup__ord_I4_J,axiom,
    ! [Y: int,X: int] : ( ord_less_eq_int @ Y @ ( sup_sup_int @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_317_inf__sup__ord_I4_J,axiom,
    ! [Y: a > $o,X: a > $o] : ( ord_less_eq_a_o @ Y @ ( sup_sup_a_o @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_318_inf__sup__ord_I4_J,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_319_less__supI1,axiom,
    ! [X: a > $o,A2: a > $o,B2: a > $o] :
      ( ( ord_less_a_o @ X @ A2 )
     => ( ord_less_a_o @ X @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% less_supI1
thf(fact_320_less__supI1,axiom,
    ! [X: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ X @ A2 )
     => ( ord_less_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% less_supI1
thf(fact_321_less__supI1,axiom,
    ! [X: int,A2: int,B2: int] :
      ( ( ord_less_int @ X @ A2 )
     => ( ord_less_int @ X @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% less_supI1
thf(fact_322_less__supI2,axiom,
    ! [X: a > $o,B2: a > $o,A2: a > $o] :
      ( ( ord_less_a_o @ X @ B2 )
     => ( ord_less_a_o @ X @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% less_supI2
thf(fact_323_less__supI2,axiom,
    ! [X: set_a,B2: set_a,A2: set_a] :
      ( ( ord_less_set_a @ X @ B2 )
     => ( ord_less_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% less_supI2
thf(fact_324_less__supI2,axiom,
    ! [X: int,B2: int,A2: int] :
      ( ( ord_less_int @ X @ B2 )
     => ( ord_less_int @ X @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% less_supI2
thf(fact_325_sup_Ostrict__boundedE,axiom,
    ! [B2: a > $o,C3: a > $o,A2: a > $o] :
      ( ( ord_less_a_o @ ( sup_sup_a_o @ B2 @ C3 ) @ A2 )
     => ~ ( ( ord_less_a_o @ B2 @ A2 )
         => ~ ( ord_less_a_o @ C3 @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_326_sup_Ostrict__boundedE,axiom,
    ! [B2: set_a,C3: set_a,A2: set_a] :
      ( ( ord_less_set_a @ ( sup_sup_set_a @ B2 @ C3 ) @ A2 )
     => ~ ( ( ord_less_set_a @ B2 @ A2 )
         => ~ ( ord_less_set_a @ C3 @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_327_sup_Ostrict__boundedE,axiom,
    ! [B2: int,C3: int,A2: int] :
      ( ( ord_less_int @ ( sup_sup_int @ B2 @ C3 ) @ A2 )
     => ~ ( ( ord_less_int @ B2 @ A2 )
         => ~ ( ord_less_int @ C3 @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_328_sup_Ostrict__order__iff,axiom,
    ( ord_less_a_o
    = ( ^ [B: a > $o,A: a > $o] :
          ( ( A
            = ( sup_sup_a_o @ A @ B ) )
          & ( A != B ) ) ) ) ).

% sup.strict_order_iff
thf(fact_329_sup_Ostrict__order__iff,axiom,
    ( ord_less_set_a
    = ( ^ [B: set_a,A: set_a] :
          ( ( A
            = ( sup_sup_set_a @ A @ B ) )
          & ( A != B ) ) ) ) ).

% sup.strict_order_iff
thf(fact_330_sup_Ostrict__order__iff,axiom,
    ( ord_less_int
    = ( ^ [B: int,A: int] :
          ( ( A
            = ( sup_sup_int @ A @ B ) )
          & ( A != B ) ) ) ) ).

% sup.strict_order_iff
thf(fact_331_sup_Ostrict__coboundedI1,axiom,
    ! [C3: a > $o,A2: a > $o,B2: a > $o] :
      ( ( ord_less_a_o @ C3 @ A2 )
     => ( ord_less_a_o @ C3 @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI1
thf(fact_332_sup_Ostrict__coboundedI1,axiom,
    ! [C3: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ C3 @ A2 )
     => ( ord_less_set_a @ C3 @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI1
thf(fact_333_sup_Ostrict__coboundedI1,axiom,
    ! [C3: int,A2: int,B2: int] :
      ( ( ord_less_int @ C3 @ A2 )
     => ( ord_less_int @ C3 @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI1
thf(fact_334_sup_Ostrict__coboundedI2,axiom,
    ! [C3: a > $o,B2: a > $o,A2: a > $o] :
      ( ( ord_less_a_o @ C3 @ B2 )
     => ( ord_less_a_o @ C3 @ ( sup_sup_a_o @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI2
thf(fact_335_sup_Ostrict__coboundedI2,axiom,
    ! [C3: set_a,B2: set_a,A2: set_a] :
      ( ( ord_less_set_a @ C3 @ B2 )
     => ( ord_less_set_a @ C3 @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI2
thf(fact_336_sup_Ostrict__coboundedI2,axiom,
    ! [C3: int,B2: int,A2: int] :
      ( ( ord_less_int @ C3 @ B2 )
     => ( ord_less_int @ C3 @ ( sup_sup_int @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI2
thf(fact_337_predicate1I,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_a_o @ P @ Q ) ) ).

% predicate1I
thf(fact_338_pred__subset__eq,axiom,
    ! [R: set_a,S: set_a] :
      ( ( ord_less_eq_a_o
        @ ^ [X4: a] : ( member_a @ X4 @ R )
        @ ^ [X4: a] : ( member_a @ X4 @ S ) )
      = ( ord_less_eq_set_a @ R @ S ) ) ).

% pred_subset_eq
thf(fact_339_the__elem__eq,axiom,
    ! [X: a] :
      ( ( the_elem_a @ ( insert_a @ X @ bot_bot_set_a ) )
      = X ) ).

% the_elem_eq
thf(fact_340_order__refl,axiom,
    ! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).

% order_refl
thf(fact_341_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_342_order__refl,axiom,
    ! [X: a > $o] : ( ord_less_eq_a_o @ X @ X ) ).

% order_refl
thf(fact_343_sup1CI,axiom,
    ! [B3: a > $o,X: a,A3: a > $o] :
      ( ( ~ ( B3 @ X )
       => ( A3 @ X ) )
     => ( sup_sup_a_o @ A3 @ B3 @ X ) ) ).

% sup1CI
thf(fact_344_bot__apply,axiom,
    ( bot_bot_a_o
    = ( ^ [X4: a] : bot_bot_o ) ) ).

% bot_apply
thf(fact_345_sup1I2,axiom,
    ! [B3: a > $o,X: a,A3: a > $o] :
      ( ( B3 @ X )
     => ( sup_sup_a_o @ A3 @ B3 @ X ) ) ).

% sup1I2
thf(fact_346_sup1I1,axiom,
    ! [A3: a > $o,X: a,B3: a > $o] :
      ( ( A3 @ X )
     => ( sup_sup_a_o @ A3 @ B3 @ X ) ) ).

% sup1I1
thf(fact_347_sup1E,axiom,
    ! [A3: a > $o,B3: a > $o,X: a] :
      ( ( sup_sup_a_o @ A3 @ B3 @ X )
     => ( ~ ( A3 @ X )
       => ( B3 @ X ) ) ) ).

% sup1E
thf(fact_348_order__subst1,axiom,
    ! [A2: int,F2: ( a > $o ) > int,B2: a > $o,C3: a > $o] :
      ( ( ord_less_eq_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_a_o @ B2 @ C3 )
       => ( ! [X3: a > $o,Y3: a > $o] :
              ( ( ord_less_eq_a_o @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F2 @ C3 ) ) ) ) ) ).

% order_subst1
thf(fact_349_order__subst1,axiom,
    ! [A2: a > $o,F2: set_a > a > $o,B2: set_a,C3: set_a] :
      ( ( ord_less_eq_a_o @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_set_a @ B2 @ C3 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_a_o @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a_o @ A2 @ ( F2 @ C3 ) ) ) ) ) ).

% order_subst1
thf(fact_350_order__subst1,axiom,
    ! [A2: a > $o,F2: int > a > $o,B2: int,C3: int] :
      ( ( ord_less_eq_a_o @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C3 )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_a_o @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a_o @ A2 @ ( F2 @ C3 ) ) ) ) ) ).

% order_subst1
thf(fact_351_order__subst1,axiom,
    ! [A2: a > $o,F2: ( a > $o ) > a > $o,B2: a > $o,C3: a > $o] :
      ( ( ord_less_eq_a_o @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_a_o @ B2 @ C3 )
       => ( ! [X3: a > $o,Y3: a > $o] :
              ( ( ord_less_eq_a_o @ X3 @ Y3 )
             => ( ord_less_eq_a_o @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a_o @ A2 @ ( F2 @ C3 ) ) ) ) ) ).

% order_subst1

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_int @ ( h @ l ) @ ( h @ ( binary339557810e_rm_a @ h @ ( binary717961607le_T_a @ t1 @ x @ t2 ) ) ) ).

%------------------------------------------------------------------------------