TPTP Problem File: ITP018+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP018+2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Ebinary__ieee_2Eneg__ulp.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Ebinary__ieee_2Eneg__ulp.p [Gau19]
% : HL408501+2.p [TPAP]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.2.0, 0.42 v7.5.0
% Syntax : Number of formulae : 29 ( 7 unt; 0 def)
% Number of atoms : 77 ( 10 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 48 ( 0 ~; 0 |; 0 &)
% ( 4 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 19 ( 19 usr; 5 con; 0-2 aty)
% Number of variables : 49 ( 49 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001+2.ax').
%------------------------------------------------------------------------------
fof(ne_ty_2Erealax_2Ereal,axiom,
ne(ty_2Erealax_2Ereal) ).
fof(mem_c_2Erealax_2Ereal__neg,axiom,
mem(c_2Erealax_2Ereal__neg,arr(ty_2Erealax_2Ereal,ty_2Erealax_2Ereal)) ).
fof(ne_ty_2Ebinary__ieee_2Efloat,axiom,
! [A0] :
( ne(A0)
=> ! [A1] :
( ne(A1)
=> ne(ty_2Ebinary__ieee_2Efloat(A0,A1)) ) ) ).
fof(mem_c_2Ebinary__ieee_2Efloat__negate,axiom,
! [A_27t] :
( ne(A_27t)
=> ! [A_27w] :
( ne(A_27w)
=> mem(c_2Ebinary__ieee_2Efloat__negate(A_27t,A_27w),arr(ty_2Ebinary__ieee_2Efloat(A_27t,A_27w),ty_2Ebinary__ieee_2Efloat(A_27t,A_27w))) ) ) ).
fof(ne_ty_2Epair_2Eprod,axiom,
! [A0] :
( ne(A0)
=> ! [A1] :
( ne(A1)
=> ne(ty_2Epair_2Eprod(A0,A1)) ) ) ).
fof(ne_ty_2Ebool_2Eitself,axiom,
! [A0] :
( ne(A0)
=> ne(ty_2Ebool_2Eitself(A0)) ) ).
fof(mem_c_2Ebinary__ieee_2Efloat__plus__min,axiom,
! [A_27t] :
( ne(A_27t)
=> ! [A_27w] :
( ne(A_27w)
=> mem(c_2Ebinary__ieee_2Efloat__plus__min(A_27t,A_27w),arr(ty_2Ebool_2Eitself(ty_2Epair_2Eprod(A_27t,A_27w)),ty_2Ebinary__ieee_2Efloat(A_27t,A_27w))) ) ) ).
fof(mem_c_2Ebinary__ieee_2Efloat__to__real,axiom,
! [A_27t] :
( ne(A_27t)
=> ! [A_27w] :
( ne(A_27w)
=> mem(c_2Ebinary__ieee_2Efloat__to__real(A_27t,A_27w),arr(ty_2Ebinary__ieee_2Efloat(A_27t,A_27w),ty_2Erealax_2Ereal)) ) ) ).
fof(mem_c_2Ebool_2Ethe__value,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2Ethe__value(A_27a),ty_2Ebool_2Eitself(A_27a)) ) ).
fof(mem_c_2Ebinary__ieee_2Eulp,axiom,
! [A_27t] :
( ne(A_27t)
=> ! [A_27w] :
( ne(A_27w)
=> mem(c_2Ebinary__ieee_2Eulp(A_27t,A_27w),arr(ty_2Ebool_2Eitself(ty_2Epair_2Eprod(A_27t,A_27w)),ty_2Erealax_2Ereal)) ) ) ).
fof(mem_c_2Ebool_2ET,axiom,
mem(c_2Ebool_2ET,bool) ).
fof(ax_true_p,axiom,
p(c_2Ebool_2ET) ).
fof(mem_c_2Emin_2E_3D,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ) ).
fof(ax_eq_p,axiom,
! [A] :
( ne(A)
=> ! [X] :
( mem(X,A)
=> ! [Y] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> X = Y ) ) ) ) ).
fof(mem_c_2Ebool_2E_21,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2E_21(A_27a),arr(arr(A_27a,bool),bool)) ) ).
fof(ax_all_p,axiom,
! [A] :
( ne(A)
=> ! [Q] :
( mem(Q,arr(A,bool))
=> ( p(ap(c_2Ebool_2E_21(A),Q))
<=> ! [X] :
( mem(X,A)
=> p(ap(Q,X)) ) ) ) ) ).
fof(conj_thm_2Ebinary__ieee_2Efloat__to__real__negate,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0x] :
( mem(V0x,ty_2Ebinary__ieee_2Efloat(A_27a,A_27b))
=> ap(c_2Ebinary__ieee_2Efloat__to__real(A_27a,A_27b),ap(c_2Ebinary__ieee_2Efloat__negate(A_27a,A_27b),V0x)) = ap(c_2Erealax_2Ereal__neg,ap(c_2Ebinary__ieee_2Efloat__to__real(A_27a,A_27b),V0x)) ) ) ) ).
fof(conj_thm_2Ebinary__ieee_2Eulp,axiom,
! [A_27t] :
( ne(A_27t)
=> ! [A_27w] :
( ne(A_27w)
=> ap(c_2Ebinary__ieee_2Eulp(A_27t,A_27w),c_2Ebool_2Ethe__value(ty_2Epair_2Eprod(A_27t,A_27w))) = ap(c_2Ebinary__ieee_2Efloat__to__real(A_27t,A_27w),ap(c_2Ebinary__ieee_2Efloat__plus__min(A_27t,A_27w),c_2Ebool_2Ethe__value(ty_2Epair_2Eprod(A_27t,A_27w)))) ) ) ).
fof(conj_thm_2Ebool_2ETRUTH,axiom,
$true ).
fof(conj_thm_2Ebool_2EREFL__CLAUSE,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0x] :
( mem(V0x,A_27a)
=> ( V0x = V0x
<=> $true ) ) ) ).
fof(conj_thm_2Ebinary__ieee_2Eneg__ulp,conjecture,
! [A_27t] :
( ne(A_27t)
=> ! [A_27w] :
( ne(A_27w)
=> ap(c_2Erealax_2Ereal__neg,ap(c_2Ebinary__ieee_2Eulp(A_27t,A_27w),c_2Ebool_2Ethe__value(ty_2Epair_2Eprod(A_27t,A_27w)))) = ap(c_2Ebinary__ieee_2Efloat__to__real(A_27t,A_27w),ap(c_2Ebinary__ieee_2Efloat__negate(A_27t,A_27w),ap(c_2Ebinary__ieee_2Efloat__plus__min(A_27t,A_27w),c_2Ebool_2Ethe__value(ty_2Epair_2Eprod(A_27t,A_27w))))) ) ) ).
%------------------------------------------------------------------------------