TPTP Problem File: ITP004+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP004+2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Problem : HOL4 set theory export of thm_2Epred__set_2EREST__SUBSET.p, bushy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : thm_2Epred__set_2EREST__SUBSET.p [Gau19]
% : HL401501+2.p [TPAP]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.44 v8.2.0, 0.50 v7.5.0
% Syntax : Number of formulae : 27 ( 5 unt; 0 def)
% Number of atoms : 82 ( 8 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 57 ( 2 ~; 0 |; 2 &)
% ( 8 <=>; 45 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 16 ( 16 usr; 5 con; 0-2 aty)
% Number of variables : 48 ( 48 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001+2.ax').
%------------------------------------------------------------------------------
fof(mem_c_2Emin_2E_3D_3D_3E,axiom,
mem(c_2Emin_2E_3D_3D_3E,arr(bool,arr(bool,bool))) ).
fof(ax_imp_p,axiom,
! [Q] :
( mem(Q,bool)
=> ! [R] :
( mem(R,bool)
=> ( p(ap(ap(c_2Emin_2E_3D_3D_3E,Q),R))
<=> ( p(Q)
=> p(R) ) ) ) ) ).
fof(mem_c_2Epred__set_2ESUBSET,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Epred__set_2ESUBSET(A_27a),arr(arr(A_27a,bool),arr(arr(A_27a,bool),bool))) ) ).
fof(mem_c_2Ebool_2E_7E,axiom,
mem(c_2Ebool_2E_7E,arr(bool,bool)) ).
fof(ax_neg_p,axiom,
! [Q] :
( mem(Q,bool)
=> ( p(ap(c_2Ebool_2E_7E,Q))
<=> ~ p(Q) ) ) ).
fof(mem_c_2Ebool_2E_2F_5C,axiom,
mem(c_2Ebool_2E_2F_5C,arr(bool,arr(bool,bool))) ).
fof(ax_and_p,axiom,
! [Q] :
( mem(Q,bool)
=> ! [R] :
( mem(R,bool)
=> ( p(ap(ap(c_2Ebool_2E_2F_5C,Q),R))
<=> ( p(Q)
& p(R) ) ) ) ) ).
fof(mem_c_2Ebool_2EIN,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2EIN(A_27a),arr(A_27a,arr(arr(A_27a,bool),bool))) ) ).
fof(mem_c_2Epred__set_2ECHOICE,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Epred__set_2ECHOICE(A_27a),arr(arr(A_27a,bool),A_27a)) ) ).
fof(mem_c_2Epred__set_2EDELETE,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Epred__set_2EDELETE(A_27a),arr(arr(A_27a,bool),arr(A_27a,arr(A_27a,bool)))) ) ).
fof(mem_c_2Epred__set_2EREST,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Epred__set_2EREST(A_27a),arr(arr(A_27a,bool),arr(A_27a,bool))) ) ).
fof(mem_c_2Emin_2E_3D,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ) ).
fof(ax_eq_p,axiom,
! [A] :
( ne(A)
=> ! [X] :
( mem(X,A)
=> ! [Y] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> X = Y ) ) ) ) ).
fof(mem_c_2Ebool_2E_21,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Ebool_2E_21(A_27a),arr(arr(A_27a,bool),bool)) ) ).
fof(ax_all_p,axiom,
! [A] :
( ne(A)
=> ! [Q] :
( mem(Q,arr(A,bool))
=> ( p(ap(c_2Ebool_2E_21(A),Q))
<=> ! [X] :
( mem(X,A)
=> p(ap(Q,X)) ) ) ) ) ).
fof(ax_thm_2Epred__set_2ESUBSET__DEF,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0s] :
( mem(V0s,arr(A_27a,bool))
=> ! [V1t] :
( mem(V1t,arr(A_27a,bool))
=> ( p(ap(ap(c_2Epred__set_2ESUBSET(A_27a),V0s),V1t))
<=> ! [V2x] :
( mem(V2x,A_27a)
=> ( p(ap(ap(c_2Ebool_2EIN(A_27a),V2x),V0s))
=> p(ap(ap(c_2Ebool_2EIN(A_27a),V2x),V1t)) ) ) ) ) ) ) ).
fof(conj_thm_2Epred__set_2EIN__DELETE,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0s] :
( mem(V0s,arr(A_27a,bool))
=> ! [V1x] :
( mem(V1x,A_27a)
=> ! [V2y] :
( mem(V2y,A_27a)
=> ( p(ap(ap(c_2Ebool_2EIN(A_27a),V1x),ap(ap(c_2Epred__set_2EDELETE(A_27a),V0s),V2y)))
<=> ( p(ap(ap(c_2Ebool_2EIN(A_27a),V1x),V0s))
& V1x != V2y ) ) ) ) ) ) ).
fof(ax_thm_2Epred__set_2EREST__DEF,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0s] :
( mem(V0s,arr(A_27a,bool))
=> ap(c_2Epred__set_2EREST(A_27a),V0s) = ap(ap(c_2Epred__set_2EDELETE(A_27a),V0s),ap(c_2Epred__set_2ECHOICE(A_27a),V0s)) ) ) ).
fof(conj_thm_2Epred__set_2EREST__SUBSET,conjecture,
! [A_27a] :
( ne(A_27a)
=> ! [V0s] :
( mem(V0s,arr(A_27a,bool))
=> p(ap(ap(c_2Epred__set_2ESUBSET(A_27a),ap(c_2Epred__set_2EREST(A_27a),V0s)),V0s)) ) ) ).
%------------------------------------------------------------------------------