TPTP Problem File: ITP004^2.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP004^2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : HOL4 set theory export of thm_2Epred__set_2EREST__SUBSET.p, bushy mode
% Version  : [BG+19] axioms.
% English  :

% Refs     : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
%          : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source   : [BG+19]
% Names    : thm_2Epred__set_2EREST__SUBSET.p [Gau19]
%          : HL401501^2.p [TPAP]

% Status   : Theorem
% Rating   : 0.38 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0
% Syntax   : Number of formulae    :   45 (   1 unt;  19 typ;   0 def)
%            Number of atoms       :  167 (   8 equ;   0 cnn)
%            Maximal formula atoms :   16 (   6 avg)
%            Number of connectives :  300 (   2   ~;   0   |;   2   &; 260   @)
%                                         (   7 <=>;  29  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   8 avg)
%            Number of types       :    3 (   1 usr)
%            Number of type conns  :   20 (  20   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   24 (  23 usr;  10 con; 0-2 aty)
%            Number of variables   :   49 (   0   ^;  49   !;   0   ?;  49   :)
% SPC      : TH0_THM_EQU_NAR

% Comments :
% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
include('Axioms/ITP001/ITP001^2.ax').
%------------------------------------------------------------------------------
thf(tp_c_2Emin_2E_3D_3D_3E,type,
    c_2Emin_2E_3D_3D_3E: $i ).

thf(mem_c_2Emin_2E_3D_3D_3E,axiom,
    mem @ c_2Emin_2E_3D_3D_3E @ ( arr @ bool @ ( arr @ bool @ bool ) ) ).

thf(ax_imp_p,axiom,
    ! [Q: $i] :
      ( ( mem @ Q @ bool )
     => ! [R: $i] :
          ( ( mem @ R @ bool )
         => ( ( p @ ( ap @ ( ap @ c_2Emin_2E_3D_3D_3E @ Q ) @ R ) )
          <=> ( ( p @ Q )
             => ( p @ R ) ) ) ) ) ).

thf(tp_c_2Epred__set_2ESUBSET,type,
    c_2Epred__set_2ESUBSET: del > $i ).

thf(mem_c_2Epred__set_2ESUBSET,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Epred__set_2ESUBSET @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ ( arr @ ( arr @ A_27a @ bool ) @ bool ) ) ) ).

thf(tp_c_2Ebool_2E_7E,type,
    c_2Ebool_2E_7E: $i ).

thf(mem_c_2Ebool_2E_7E,axiom,
    mem @ c_2Ebool_2E_7E @ ( arr @ bool @ bool ) ).

thf(ax_neg_p,axiom,
    ! [Q: $i] :
      ( ( mem @ Q @ bool )
     => ( ( p @ ( ap @ c_2Ebool_2E_7E @ Q ) )
      <=> ~ ( p @ Q ) ) ) ).

thf(tp_c_2Ebool_2E_2F_5C,type,
    c_2Ebool_2E_2F_5C: $i ).

thf(mem_c_2Ebool_2E_2F_5C,axiom,
    mem @ c_2Ebool_2E_2F_5C @ ( arr @ bool @ ( arr @ bool @ bool ) ) ).

thf(ax_and_p,axiom,
    ! [Q: $i] :
      ( ( mem @ Q @ bool )
     => ! [R: $i] :
          ( ( mem @ R @ bool )
         => ( ( p @ ( ap @ ( ap @ c_2Ebool_2E_2F_5C @ Q ) @ R ) )
          <=> ( ( p @ Q )
              & ( p @ R ) ) ) ) ) ).

thf(tp_c_2Ebool_2EIN,type,
    c_2Ebool_2EIN: del > $i ).

thf(mem_c_2Ebool_2EIN,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Ebool_2EIN @ A_27a ) @ ( arr @ A_27a @ ( arr @ ( arr @ A_27a @ bool ) @ bool ) ) ) ).

thf(tp_c_2Epred__set_2ECHOICE,type,
    c_2Epred__set_2ECHOICE: del > $i ).

thf(mem_c_2Epred__set_2ECHOICE,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Epred__set_2ECHOICE @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ A_27a ) ) ).

thf(tp_c_2Epred__set_2EDELETE,type,
    c_2Epred__set_2EDELETE: del > $i ).

thf(mem_c_2Epred__set_2EDELETE,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Epred__set_2EDELETE @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ ( arr @ A_27a @ ( arr @ A_27a @ bool ) ) ) ) ).

thf(tp_c_2Epred__set_2EREST,type,
    c_2Epred__set_2EREST: del > $i ).

thf(mem_c_2Epred__set_2EREST,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Epred__set_2EREST @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ ( arr @ A_27a @ bool ) ) ) ).

thf(tp_c_2Emin_2E_3D,type,
    c_2Emin_2E_3D: del > $i ).

thf(mem_c_2Emin_2E_3D,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Emin_2E_3D @ A_27a ) @ ( arr @ A_27a @ ( arr @ A_27a @ bool ) ) ) ).

thf(ax_eq_p,axiom,
    ! [A: del,X: $i] :
      ( ( mem @ X @ A )
     => ! [Y: $i] :
          ( ( mem @ Y @ A )
         => ( ( p @ ( ap @ ( ap @ ( c_2Emin_2E_3D @ A ) @ X ) @ Y ) )
          <=> ( X = Y ) ) ) ) ).

thf(tp_c_2Ebool_2E_21,type,
    c_2Ebool_2E_21: del > $i ).

thf(mem_c_2Ebool_2E_21,axiom,
    ! [A_27a: del] : ( mem @ ( c_2Ebool_2E_21 @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ bool ) ) ).

thf(ax_all_p,axiom,
    ! [A: del,Q: $i] :
      ( ( mem @ Q @ ( arr @ A @ bool ) )
     => ( ( p @ ( ap @ ( c_2Ebool_2E_21 @ A ) @ Q ) )
      <=> ! [X: $i] :
            ( ( mem @ X @ A )
           => ( p @ ( ap @ Q @ X ) ) ) ) ) ).

thf(ax_thm_2Epred__set_2ESUBSET__DEF,axiom,
    ! [A_27a: del,V0s: $i] :
      ( ( mem @ V0s @ ( arr @ A_27a @ bool ) )
     => ! [V1t: $i] :
          ( ( mem @ V1t @ ( arr @ A_27a @ bool ) )
         => ( ( p @ ( ap @ ( ap @ ( c_2Epred__set_2ESUBSET @ A_27a ) @ V0s ) @ V1t ) )
          <=> ! [V2x: $i] :
                ( ( mem @ V2x @ A_27a )
               => ( ( p @ ( ap @ ( ap @ ( c_2Ebool_2EIN @ A_27a ) @ V2x ) @ V0s ) )
                 => ( p @ ( ap @ ( ap @ ( c_2Ebool_2EIN @ A_27a ) @ V2x ) @ V1t ) ) ) ) ) ) ) ).

thf(conj_thm_2Epred__set_2EIN__DELETE,axiom,
    ! [A_27a: del,V0s: $i] :
      ( ( mem @ V0s @ ( arr @ A_27a @ bool ) )
     => ! [V1x: $i] :
          ( ( mem @ V1x @ A_27a )
         => ! [V2y: $i] :
              ( ( mem @ V2y @ A_27a )
             => ( ( p @ ( ap @ ( ap @ ( c_2Ebool_2EIN @ A_27a ) @ V1x ) @ ( ap @ ( ap @ ( c_2Epred__set_2EDELETE @ A_27a ) @ V0s ) @ V2y ) ) )
              <=> ( ( p @ ( ap @ ( ap @ ( c_2Ebool_2EIN @ A_27a ) @ V1x ) @ V0s ) )
                  & ( V1x != V2y ) ) ) ) ) ) ).

thf(ax_thm_2Epred__set_2EREST__DEF,axiom,
    ! [A_27a: del,V0s: $i] :
      ( ( mem @ V0s @ ( arr @ A_27a @ bool ) )
     => ( ( ap @ ( c_2Epred__set_2EREST @ A_27a ) @ V0s )
        = ( ap @ ( ap @ ( c_2Epred__set_2EDELETE @ A_27a ) @ V0s ) @ ( ap @ ( c_2Epred__set_2ECHOICE @ A_27a ) @ V0s ) ) ) ) ).

thf(conj_thm_2Epred__set_2EREST__SUBSET,conjecture,
    ! [A_27a: del,V0s: $i] :
      ( ( mem @ V0s @ ( arr @ A_27a @ bool ) )
     => ( p @ ( ap @ ( ap @ ( c_2Epred__set_2ESUBSET @ A_27a ) @ ( ap @ ( c_2Epred__set_2EREST @ A_27a ) @ V0s ) ) @ V0s ) ) ) ).

%------------------------------------------------------------------------------