TPTP Problem File: HAL003+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HAL003+3 : TPTP v9.0.0. Released v2.6.0.
% Domain : Homological Algebra
% Problem : Short Five Lemma, Part 2
% Version : [TPTP] axioms : Augmented.
% English :
% Refs : [Wei94] Weibel (1994), An Introduction to Homological Algebra
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.19 v8.2.0, 0.25 v8.1.0, 0.22 v7.4.0, 0.23 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.26 v7.0.0, 0.27 v6.4.0, 0.31 v6.3.0, 0.33 v6.2.0, 0.24 v6.1.0, 0.33 v6.0.0, 0.35 v5.5.0, 0.33 v5.4.0, 0.39 v5.3.0, 0.41 v5.2.0, 0.30 v5.1.0, 0.29 v5.0.0, 0.33 v4.1.0, 0.35 v4.0.1, 0.39 v4.0.0, 0.38 v3.7.0, 0.35 v3.5.0, 0.37 v3.3.0, 0.29 v3.2.0, 0.45 v3.1.0, 0.33 v2.7.0, 0.17 v2.6.0
% Syntax : Number of formulae : 34 ( 18 unt; 0 def)
% Number of atoms : 101 ( 23 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 67 ( 0 ~; 0 |; 41 &)
% ( 2 <=>; 24 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 17 ( 17 usr; 14 con; 0-3 aty)
% Number of variables : 79 ( 68 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Augmented with lemmas suggested by YiLT.
%--------------------------------------------------------------------------
%----Include Standard homological algebra axioms
include('Axioms/HAL001+0.ax').
%--------------------------------------------------------------------------
fof(alpha_morphism,axiom,
morphism(alpha,a,b) ).
fof(beta_morphism,axiom,
morphism(beta,b,c) ).
fof(gamma_morphism,axiom,
morphism(gamma,d,e) ).
fof(delta_morphism,axiom,
morphism(delta,e,r) ).
fof(f_morphism,axiom,
morphism(f,a,d) ).
fof(g_morphism,axiom,
morphism(g,b,e) ).
fof(h_morphism,axiom,
morphism(h,c,r) ).
fof(alpha_injection,axiom,
injection(alpha) ).
fof(gamma_injection,axiom,
injection(gamma) ).
fof(beta_surjection,axiom,
surjection(beta) ).
fof(delta_surjection,axiom,
surjection(delta) ).
fof(alpha_beta_exact,axiom,
exact(alpha,beta) ).
fof(gamma_delta_exact,axiom,
exact(gammma,delta) ).
fof(alpha_g_f_gamma_commute,axiom,
commute(alpha,g,f,gamma) ).
fof(beta_h_g_delta_commute,axiom,
commute(beta,h,g,delta) ).
fof(f_surjection,hypothesis,
surjection(f) ).
fof(h_surjection,hypothesis,
surjection(h) ).
fof(lemma3,axiom,
! [E] :
( element(E,e)
=> ? [R,B1] :
( element(R,r)
& apply(delta,E) = R
& element(B1,b)
& apply(h,apply(beta,B1)) = R
& apply(delta,apply(g,B1)) = R ) ) ).
fof(lemma8,axiom,
! [E] :
( element(E,e)
=> ? [B1,E1,A] :
( element(B1,b)
& element(E1,e)
& subtract(e,apply(g,B1),E) = E1
& element(A,a)
& apply(gamma,apply(f,A)) = E1
& apply(g,apply(alpha,A)) = E1 ) ) ).
fof(lemma12,axiom,
! [E] :
( element(E,e)
=> ? [B1,B2] :
( element(B1,b)
& element(B2,b)
& apply(g,subtract(b,B1,B2)) = E ) ) ).
fof(g_surjection,conjecture,
surjection(g) ).
%--------------------------------------------------------------------------