TPTP Problem File: HAL003+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HAL003+2 : TPTP v9.0.0. Released v2.6.0.
% Domain : Homological Algebra
% Problem : Short Five Lemma, Part 2
% Version : [TPTP] axioms : Reduced > Incomplete.
% English :
% Refs : [Wei94] Weibel (1994), An Introduction to Homological Algebra
% Source : [TPTP]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v8.1.0, 0.25 v7.5.0, 0.60 v7.4.0, 0.00 v7.3.0, 0.33 v6.3.0, 0.67 v6.2.0, 0.64 v6.1.0, 0.55 v6.0.0, 0.62 v5.5.0, 0.50 v5.4.0, 0.71 v5.3.0, 0.86 v5.2.0, 0.83 v5.0.0, 0.86 v4.1.0, 1.00 v3.7.0, 0.67 v3.4.0, 0.33 v3.2.0, 0.67 v3.1.0, 1.00 v2.6.0
% Syntax : Number of formulae : 27 ( 14 unt; 0 def)
% Number of atoms : 80 ( 16 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 53 ( 0 ~; 0 |; 30 &)
% ( 2 <=>; 21 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 17 ( 17 usr; 14 con; 0-3 aty)
% Number of variables : 69 ( 65 !; 4 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments : Remove unnecessary constraints on the diagram
%--------------------------------------------------------------------------
%----Include Standard homological algebra axioms
include('Axioms/HAL001+0.ax').
%--------------------------------------------------------------------------
fof(alpha_morphism,axiom,
morphism(alpha,a,b) ).
fof(beta_morphism,axiom,
morphism(beta,b,c) ).
fof(gamma_morphism,axiom,
morphism(gamma,d,e) ).
fof(delta_morphism,axiom,
morphism(delta,e,r) ).
fof(f_morphism,axiom,
morphism(f,a,d) ).
fof(g_morphism,axiom,
morphism(g,b,e) ).
fof(h_morphism,axiom,
morphism(h,c,r) ).
fof(beta_surjection,axiom,
surjection(beta) ).
fof(gamma_delta_exact,axiom,
exact(gammma,delta) ).
fof(alpha_g_f_gamma_commute,axiom,
commute(alpha,g,f,gamma) ).
fof(beta_h_g_delta_commute,axiom,
commute(beta,h,g,delta) ).
fof(f_surjection,hypothesis,
surjection(f) ).
fof(h_surjection,hypothesis,
surjection(h) ).
fof(g_surjection,conjecture,
surjection(g) ).
%--------------------------------------------------------------------------