TPTP Problem File: HAL002+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : HAL002+1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Homological Algebra
% Problem : Equivalence of injection axioms
% Version : [TPTP] axioms.
% English :
% Refs : [Wei94] Weibel (1994), An Introduction to Homological Algebra
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.44 v8.2.0, 0.39 v7.5.0, 0.53 v7.4.0, 0.33 v7.3.0, 0.38 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.42 v6.2.0, 0.44 v6.1.0, 0.53 v6.0.0, 0.52 v5.5.0, 0.56 v5.4.0, 0.61 v5.3.0, 0.70 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.54 v4.1.0, 0.65 v4.0.1, 0.61 v4.0.0, 0.62 v3.7.0, 0.65 v3.5.0, 0.63 v3.3.0, 0.57 v3.2.0, 0.64 v3.1.0, 0.67 v2.6.0
% Syntax : Number of formulae : 17 ( 1 unt; 0 def)
% Number of atoms : 79 ( 20 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 62 ( 0 ~; 0 |; 34 &)
% ( 3 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 9 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-3 aty)
% Number of variables : 77 ( 73 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include Standard homological algebra axioms
include('Axioms/HAL001+0.ax').
%--------------------------------------------------------------------------
%----Alternative defn of injection
fof(injection_properties_2,axiom,
! [Morphism,Dom,Cod] :
( ( injection_2(Morphism)
& morphism(Morphism,Dom,Cod) )
=> ! [El] :
( ( element(El,Dom)
& apply(Morphism,El) = zero(Cod) )
=> El = zero(Dom) ) ) ).
fof(properties_for_injection_2,axiom,
! [Morphism,Dom,Cod] :
( ( morphism(Morphism,Dom,Cod)
& ! [El] :
( ( element(El,Dom)
& apply(Morphism,El) = zero(Cod) )
=> El = zero(Dom) ) )
=> injection_2(Morphism) ) ).
fof(x_morphism,hypothesis,
morphism(x,any1,any2) ).
fof(my,conjecture,
( injection(x)
<=> injection_2(x) ) ).
%--------------------------------------------------------------------------