TPTP Problem File: GRP778+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP778+1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Napoleon's quasigroups: Gruenbaum's theorem 1
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% Source : [Sta09]
% Names : napoleon2 [Sta09]
% Status : Theorem
% Rating : 0.79 v9.0.0, 0.78 v8.2.0, 0.72 v8.1.0, 0.64 v7.5.0, 0.66 v7.4.0, 0.67 v7.3.0, 0.69 v7.2.0, 0.72 v7.1.0, 0.70 v7.0.0, 0.73 v6.4.0, 0.69 v6.3.0, 0.67 v6.2.0, 0.76 v6.1.0, 0.80 v6.0.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.81 v5.2.0, 0.00 v4.1.0
% Syntax : Number of formulae : 16 ( 14 unt; 0 def)
% Number of atoms : 18 ( 9 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 0 &)
% ( 2 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 12 ( 12 usr; 9 con; 0-2 aty)
% Number of variables : 21 ( 21 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(sos01,axiom,
! [B,A] : difference(A,product(A,B)) = B ).
fof(sos02,axiom,
! [B,A] : product(A,difference(A,B)) = B ).
fof(sos03,axiom,
! [B,A] : quotient(product(A,B),B) = A ).
fof(sos04,axiom,
! [B,A] : product(quotient(A,B),B) = A ).
fof(sos05,axiom,
! [D,C,B,A] : product(product(A,B),product(C,D)) = product(product(A,C),product(B,D)) ).
fof(sos06,axiom,
! [A] : product(A,A) = A ).
%----Napoleon
fof(sos07,axiom,
! [B,A] : product(product(product(A,B),B),product(B,product(B,A))) = B ).
fof(sos08,axiom,
! [X0,X1,X2] :
( d(X0,X1,X2)
<=> product(X0,X1) = product(X1,X2) ) ).
fof(sos09,axiom,
! [X3,X4,X5] :
( m(X3,X4,X5)
<=> product(product(X3,X4),product(X4,X5)) = product(X3,X5) ) ).
fof(sos10,axiom,
d(a1,b,c) ).
fof(sos11,axiom,
d(a,b1,c) ).
fof(sos12,axiom,
d(a,b,c1) ).
fof(sos13,axiom,
d(a2,b1,c1) ).
fof(sos14,axiom,
d(a1,b2,c1) ).
fof(sos15,axiom,
d(a1,b1,c2) ).
fof(goals,conjecture,
m(b1,b,b2) ).
%------------------------------------------------------------------------------