TPTP Problem File: GRP777-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP777-10 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Napoleon's quasigroups: the centroid relation
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.23 v9.0.0, 0.27 v8.2.0, 0.33 v8.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 2 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 18 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP777+1.p
%------------------------------------------------------------------------------
cnf(sos01,axiom,
difference(A,product(A,B)) = B ).
cnf(sos02,axiom,
product(A,difference(A,B)) = B ).
cnf(sos03,axiom,
quotient(product(A,B),B) = A ).
cnf(sos04,axiom,
product(quotient(A,B),B) = A ).
cnf(sos05,axiom,
product(product(A,B),product(C,D)) = product(product(A,C),product(B,D)) ).
cnf(sos06,axiom,
product(A,A) = A ).
%----Napoleon
cnf(sos07,axiom,
product(product(product(A,B),B),product(B,product(B,A))) = B ).
cnf(sos08,axiom,
bigC(A,B,C) = product(product(A,B),product(C,A)) ).
cnf(sos09,axiom,
product(product(a,c),product(c,b)) = product(a,b) ).
cnf(goal,negated_conjecture,
bigC(a,b,x0) != bigC(c,c,x0) ).
%------------------------------------------------------------------------------