TPTP Problem File: GRP772-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP772-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Buchsteiner loop lemma 9
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% : [CDK10] Csoergoe et al. (2010), Buchsteiner Loops
% Source : [Sta09]
% Names : buch9 [Sta09]
% Status : Unsatisfiable
% Rating : 0.45 v8.2.0, 0.46 v8.1.0, 0.50 v7.4.0, 0.57 v7.3.0, 0.53 v7.1.0, 0.44 v7.0.0, 0.42 v6.4.0, 0.58 v6.3.0, 0.59 v6.2.0, 0.71 v6.1.0, 0.62 v6.0.0, 0.71 v5.5.0, 0.68 v5.4.0, 0.67 v5.2.0, 0.64 v5.1.0, 0.67 v5.0.0, 0.64 v4.1.0
% Syntax : Number of clauses : 33 ( 33 unt; 0 nHn; 1 RR)
% Number of literals : 33 ( 33 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 3 con; 0-3 aty)
% Number of variables : 77 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(sos01,axiom,
product(A,one) = A ).
cnf(sos02,axiom,
product(one,A) = A ).
cnf(sos03,axiom,
product(A,difference(A,B)) = B ).
cnf(sos04,axiom,
difference(A,product(A,B)) = B ).
cnf(sos05,axiom,
quotient(product(A,B),B) = A ).
cnf(sos06,axiom,
product(quotient(A,B),B) = A ).
%----Thm 1.4
cnf(sos07,axiom,
difference(A,product(product(A,B),C)) = quotient(product(B,product(C,A)),A) ).
cnf(sos08,axiom,
difference(product(A,B),product(A,product(B,C))) = quotient(quotient(product(C,product(A,B)),B),A) ).
%----Sec.4
cnf(sos09,axiom,
i(A) = difference(A,one) ).
cnf(sos10,axiom,
j(A) = quotient(one,A) ).
cnf(sos11,axiom,
product(i(A),A) = product(A,j(A)) ).
cnf(sos12,axiom,
eta(A) = product(i(A),A) ).
cnf(sos13,axiom,
product(i(i(A)),B) = product(eta(A),product(A,B)) ).
cnf(sos14,axiom,
product(A,product(eta(A),B)) = product(j(j(A)),B) ).
cnf(sos15,axiom,
product(A,product(B,eta(A))) = product(product(A,B),eta(A)) ).
cnf(sos16,axiom,
product(eta(A),product(B,C)) = product(product(eta(A),B),C) ).
cnf(sos17,axiom,
quotient(j(A),A) = product(j(A),i(A)) ).
cnf(sos18,axiom,
product(product(product(quotient(j(A),A),product(A,A)),B),C) = product(product(quotient(j(A),A),product(A,A)),product(B,C)) ).
cnf(sos19,axiom,
t(A,B) = quotient(product(A,B),A) ).
cnf(sos20,axiom,
t(eta(A),product(B,C)) = product(t(eta(A),B),t(eta(A),C)) ).
%----WWIP
cnf(sos21,axiom,
product(i(product(A,B)),i(i(A))) = i(B) ).
cnf(sos22,axiom,
product(j(j(A)),j(product(B,A))) = j(B) ).
%----Commutativity and associativity
cnf(sos23,axiom,
product(product(A,product(B,C)),a(A,B,C)) = product(product(A,B),C) ).
cnf(sos24,axiom,
product(product(A,B),c(B,A)) = product(B,A) ).
cnf(sos25,axiom,
product(c(A,B),product(C,D)) = product(product(c(A,B),C),D) ).
cnf(sos26,axiom,
product(product(A,B),c(C,D)) = product(A,product(B,c(C,D))) ).
%----Sec.7
cnf(sos27,axiom,
product(a(A,B,C),product(D,E)) = product(product(a(A,B,C),D),E) ).
cnf(sos28,axiom,
product(product(A,B),a(C,D,E)) = product(A,product(B,a(C,D,E))) ).
cnf(sos29,axiom,
product(a(A,B,C),difference(C,product(a(C,A,B),C))) = one ).
cnf(sos30,axiom,
a(A,i(B),C) = a(A,j(B),C) ).
cnf(sos31,axiom,
a(i(A),B,C) = a(j(A),B,C) ).
cnf(sos32,axiom,
a(j(A),B,C) = a(B,C,A) ).
cnf(goals,negated_conjecture,
a(x0,x1,x1) != a(x1,x1,x0) ).
%------------------------------------------------------------------------------