TPTP Problem File: GRP766-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP766-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Buchsteiner loop lemma 3
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% : [CDK10] Csoergoe et al. (2010), Buchsteiner Loops
% Source : [Sta09]
% Names : buch3 [Sta09]
% Status : Unsatisfiable
% Rating : 0.64 v8.2.0, 0.58 v8.1.0, 0.65 v7.5.0, 0.79 v7.4.0, 0.87 v7.3.0, 0.79 v7.1.0, 0.83 v7.0.0, 0.79 v6.3.0, 0.82 v6.2.0, 0.79 v6.1.0, 0.81 v6.0.0, 0.86 v5.5.0, 0.84 v5.4.0, 0.87 v5.3.0, 0.92 v5.2.0, 0.86 v5.1.0, 0.87 v5.0.0, 0.93 v4.1.0
% Syntax : Number of clauses : 20 ( 20 unt; 0 nHn; 1 RR)
% Number of literals : 20 ( 20 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 4 con; 0-3 aty)
% Number of variables : 37 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(sos01,axiom,
product(A,one) = A ).
cnf(sos02,axiom,
product(one,A) = A ).
cnf(sos03,axiom,
product(A,difference(A,B)) = B ).
cnf(sos04,axiom,
difference(A,product(A,B)) = B ).
cnf(sos05,axiom,
quotient(product(A,B),B) = A ).
cnf(sos06,axiom,
product(quotient(A,B),B) = A ).
%----Thm 1.4
cnf(sos07,axiom,
difference(A,product(product(A,B),C)) = quotient(product(B,product(C,A)),A) ).
cnf(sos08,axiom,
difference(product(A,B),product(A,product(B,C))) = quotient(quotient(product(C,product(A,B)),B),A) ).
%----Sec.4
cnf(sos09,axiom,
i(A) = difference(A,one) ).
cnf(sos10,axiom,
j(A) = quotient(one,A) ).
cnf(sos11,axiom,
product(i(A),A) = product(A,j(A)) ).
cnf(sos12,axiom,
eta(A) = product(i(A),A) ).
cnf(sos13,axiom,
l(A,B,C) = difference(product(A,B),product(A,product(B,C))) ).
cnf(sos14,axiom,
l(A,A,product(B,C)) = product(l(A,A,B),l(A,A,C)) ).
cnf(sos15,axiom,
product(i(i(A)),B) = product(eta(A),product(A,B)) ).
cnf(sos16,axiom,
product(A,product(eta(A),B)) = product(j(j(A)),B) ).
cnf(sos17,axiom,
product(A,product(B,eta(A))) = product(product(A,B),eta(A)) ).
cnf(sos18,axiom,
t(A,B) = quotient(product(A,B),A) ).
cnf(sos19,axiom,
t(eta(A),product(B,C)) = product(t(eta(A),B),t(eta(A),C)) ).
cnf(goals,negated_conjecture,
product(eta(x0),product(x1,x2)) != product(product(eta(x0),x1),x2) ).
%------------------------------------------------------------------------------