TPTP Problem File: GRP763+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP763+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory
% Problem : Lattice ordered group
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to Geoff Sutcliffe
% Source : [Sta08]
% Names :
% Status : Satisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 14 ( 14 unt; 0 def)
% Number of atoms : 14 ( 14 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 1 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 27 ( 27 !; 0 ?)
% SPC : FOF_SAT_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : mult(A,i(A)) = e ).
fof(f02,axiom,
! [A] : mult(A,e) = A ).
fof(f03,axiom,
! [A,B,C] : mult(A,mult(B,C)) = mult(mult(A,B),C) ).
fof(f04,axiom,
! [A] : m(A,A) = A ).
fof(f05,axiom,
! [A,B] : m(A,B) = m(B,A) ).
fof(f06,axiom,
! [A,B,C] : m(A,m(B,C)) = m(m(A,B),C) ).
fof(f07,axiom,
! [A] : j(A,A) = A ).
fof(f08,axiom,
! [A,B] : j(A,B) = j(B,A) ).
fof(f09,axiom,
! [A,B,C] : j(A,j(B,C)) = j(j(A,B),C) ).
fof(f10,axiom,
! [A,B] : m(A,j(A,B)) = A ).
fof(f11,axiom,
! [A,B] : j(A,m(A,B)) = A ).
fof(f12,axiom,
! [A,B,C] : mult(A,j(B,C)) = j(mult(A,B),mult(A,C)) ).
fof(f13,axiom,
! [A,B,C] : mult(j(B,C),A) = j(mult(B,A),mult(C,A)) ).
fof(f14,axiom,
a != e ).
%------------------------------------------------------------------------------