TPTP Problem File: GRP752-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP752-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : A new basis for trimedial quasigroups: part 1b
% Version : Especial.
% English :
% Refs : [KP04] Kinyon & Phillips (2004), Axioms for Trimedial Quasigr
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KP04b_1b [Sta08]
% Status : Unsatisfiable
% Rating : 0.45 v9.0.0, 0.50 v8.2.0, 0.58 v8.1.0, 0.50 v7.5.0, 0.58 v7.4.0, 0.65 v7.3.0, 0.63 v7.1.0, 0.56 v7.0.0, 0.58 v6.3.0, 0.59 v6.2.0, 0.64 v6.1.0, 0.69 v6.0.0, 0.76 v5.5.0, 0.74 v5.4.0, 0.67 v5.2.0, 0.64 v5.1.0, 0.67 v5.0.0, 0.64 v4.1.0, 0.55 v4.0.1, 0.64 v4.0.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(mult(A,mult(A,A)),mult(B,C)) = mult(mult(A,B),mult(mult(A,A),C)) ).
cnf(f06,axiom,
mult(mult(A,A),mult(B,C)) = mult(mult(A,B),mult(A,C)) ).
cnf(f07,axiom,
mult(mult(A,B),mult(C,C)) = mult(mult(A,C),mult(B,C)) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),c) != mult(mult(a,c),mult(b,ld(c,c))) ).
%------------------------------------------------------------------------------