TPTP Problem File: GRP745+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP745+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Right alternative loop rings: the extra case
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : CGKxx_1 [Sta08]
% Status : Theorem
% Rating : 0.71 v9.0.0, 0.60 v8.2.0, 0.62 v8.1.0, 0.65 v7.5.0, 0.62 v7.4.0, 0.59 v7.3.0, 0.54 v7.2.0, 0.50 v7.1.0, 0.36 v7.0.0, 0.53 v6.4.0, 0.57 v6.2.0, 0.55 v6.1.0, 0.58 v6.0.0, 0.67 v5.5.0, 0.62 v5.4.0, 0.56 v5.3.0, 0.50 v5.2.0, 0.43 v5.1.0, 0.71 v5.0.0, 1.00 v4.0.1, 0.90 v4.0.0
% Syntax : Number of formulae : 9 ( 8 unt; 0 def)
% Number of atoms : 12 ( 12 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 1 |; 2 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 16 ( 16 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(f04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(f05,axiom,
! [A] : mult(A,unit) = A ).
fof(f06,axiom,
! [A] : mult(unit,A) = A ).
fof(f07,axiom,
! [C,B,A] : mult(mult(mult(A,B),C),B) = mult(A,mult(mult(B,C),B)) ).
fof(f08,axiom,
! [X0,X1,X2] :
( ( mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2))
& mult(mult(X0,X2),X1) = mult(X0,mult(X2,X1)) )
| ( mult(mult(X0,X1),X2) = mult(X0,mult(X2,X1))
& mult(mult(X0,X2),X1) = mult(X0,mult(X1,X2)) ) ) ).
fof(goals,conjecture,
mult(a,mult(b,mult(c,a))) = mult(mult(mult(a,b),c),a) ).
%------------------------------------------------------------------------------