TPTP Problem File: GRP734+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP734+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Non-commutative pure DTS loop.
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names :
% Status : Satisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 10 ( 8 unt; 0 def)
% Number of atoms : 19 ( 19 equ)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 10 ( 1 ~; 4 |; 3 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 16 ( 16 !; 0 ?)
% SPC : FOF_SAT_RFO_PEQ
% Comments : Size 14
%------------------------------------------------------------------------------
fof(c01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(c02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(c03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(c04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(c05,axiom,
! [A] : mult(A,unit) = A ).
fof(c06,axiom,
! [A] : mult(unit,A) = A ).
fof(c07,axiom,
! [A] : mult(A,A) = unit ).
fof(c08,axiom,
mult(op_a,op_b) != mult(op_b,op_a) ).
fof(c09,axiom,
! [X0,X1,X2] :
( mult(X0,X1) = X2
=> ( ( mult(X0,X2) = X1
& mult(X1,X2) = X0 )
| ( mult(X0,X2) = X1
& mult(X2,X1) = X0 )
| ( mult(X2,X0) = X1
& mult(X2,X1) = X0 ) ) ) ).
fof(c10,axiom,
! [X3,X4] :
( mult(X3,X4) = mult(X4,X3)
=> ( X3 = unit
| X4 = unit
| mult(X3,X4) = unit ) ) ).
%------------------------------------------------------------------------------