TPTP Problem File: GRP731-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP731-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Bruck loops that are centrally nilpotent - 2nd easy part d
% Version : Especial.
% English : Bruck loops with abelian inner mapping group are centrally
% nilpotent of class two - 2nd easy part.
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : PSxx_4d [Sta08]
% Status : Unsatisfiable
% Rating : 0.27 v8.2.0, 0.33 v8.1.0, 0.25 v7.5.0, 0.38 v7.4.0, 0.43 v7.3.0, 0.37 v7.1.0, 0.28 v7.0.0, 0.32 v6.4.0, 0.37 v6.3.0, 0.35 v6.2.0, 0.50 v6.1.0, 0.62 v6.0.0, 0.67 v5.5.0, 0.68 v5.4.0, 0.67 v5.2.0, 0.64 v5.1.0, 0.60 v5.0.0, 0.57 v4.1.0, 0.55 v4.0.1, 0.71 v4.0.0
% Syntax : Number of clauses : 23 ( 23 unt; 0 nHn; 1 RR)
% Number of literals : 23 ( 23 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 5 con; 0-3 aty)
% Number of variables : 64 ( 10 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(unit,A) = A ).
cnf(c02,axiom,
mult(A,unit) = A ).
cnf(c03,axiom,
mult(A,i(A)) = unit ).
cnf(c04,axiom,
mult(i(A),A) = unit ).
cnf(c05,axiom,
i(mult(A,B)) = mult(i(A),i(B)) ).
cnf(c06,axiom,
mult(i(A),mult(A,B)) = B ).
cnf(c07,axiom,
rd(mult(A,B),B) = A ).
cnf(c08,axiom,
mult(rd(A,B),B) = A ).
cnf(c09,axiom,
mult(mult(A,mult(B,A)),C) = mult(A,mult(B,mult(A,C))) ).
cnf(c10,axiom,
mult(mult(A,B),C) = mult(mult(A,mult(B,C)),asoc(A,B,C)) ).
cnf(c11,axiom,
mult(A,B) = mult(mult(B,A),op_k(A,B)) ).
cnf(c12,axiom,
op_l(A,B,C) = mult(i(mult(C,B)),mult(C,mult(B,A))) ).
cnf(c13,axiom,
op_r(A,B,C) = rd(mult(mult(A,B),C),mult(B,C)) ).
cnf(c14,axiom,
op_t(A,B) = mult(i(B),mult(A,B)) ).
cnf(c15,axiom,
op_r(op_r(A,B,C),D,E) = op_r(op_r(A,D,E),B,C) ).
cnf(c16,axiom,
op_l(op_r(A,B,C),D,E) = op_r(op_l(A,D,E),B,C) ).
cnf(c17,axiom,
op_l(op_l(A,B,C),D,E) = op_l(op_l(A,D,E),B,C) ).
cnf(c18,axiom,
op_t(op_r(A,B,C),D) = op_r(op_t(A,D),B,C) ).
cnf(c19,axiom,
op_t(op_l(A,B,C),D) = op_l(op_t(A,D),B,C) ).
cnf(c20,axiom,
op_t(op_t(A,B),C) = op_t(op_t(A,C),B) ).
cnf(c21,axiom,
asoc(asoc(A,B,C),D,E) = unit ).
cnf(c22,axiom,
asoc(A,B,asoc(C,D,E)) = unit ).
cnf(goals,negated_conjecture,
op_k(asoc(a,b,c),d) != unit ).
%------------------------------------------------------------------------------