TPTP Problem File: GRP725-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP725-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Loops with abelian inner mapping group - commutativity
% Version : Especial.
% English : Uniquely 2-divisible loops with abelian inner mapping group of
% exponent 2 are commutative.
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : PSxx_1b [Sta08]
% Status : Unsatisfiable
% Rating : 0.95 v8.2.0, 0.96 v8.1.0, 0.95 v7.5.0, 0.92 v7.4.0, 0.96 v7.3.0, 0.89 v7.1.0, 0.94 v7.0.0, 0.95 v6.4.0, 0.89 v6.3.0, 0.88 v6.2.0, 0.86 v6.1.0, 1.00 v4.0.1, 0.93 v4.0.0
% Syntax : Number of clauses : 21 ( 21 unt; 0 nHn; 1 RR)
% Number of literals : 21 ( 21 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 3 con; 0-3 aty)
% Number of variables : 54 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(unit,A) = A ).
cnf(c02,axiom,
mult(A,unit) = A ).
cnf(c03,axiom,
mult(A,ld(A,B)) = B ).
cnf(c04,axiom,
ld(A,mult(A,B)) = B ).
cnf(c05,axiom,
rd(mult(A,B),B) = A ).
cnf(c06,axiom,
mult(rd(A,B),B) = A ).
cnf(c07,axiom,
mult(s(A),s(A)) = A ).
cnf(c08,axiom,
s(mult(A,A)) = A ).
cnf(c09,axiom,
op_l(A,B,C) = ld(mult(C,B),mult(C,mult(B,A))) ).
cnf(c10,axiom,
op_r(A,B,C) = rd(mult(mult(A,B),C),mult(B,C)) ).
cnf(c11,axiom,
op_t(A,B) = ld(B,mult(A,B)) ).
cnf(c12,axiom,
op_r(op_r(A,B,C),D,E) = op_r(op_r(A,D,E),B,C) ).
cnf(c13,axiom,
op_l(op_r(A,B,C),D,E) = op_r(op_l(A,D,E),B,C) ).
cnf(c14,axiom,
op_l(op_l(A,B,C),D,E) = op_l(op_l(A,D,E),B,C) ).
cnf(c15,axiom,
op_t(op_r(A,B,C),D) = op_r(op_t(A,D),B,C) ).
cnf(c16,axiom,
op_t(op_l(A,B,C),D) = op_l(op_t(A,D),B,C) ).
cnf(c17,axiom,
op_t(op_t(A,B),C) = op_t(op_t(A,C),B) ).
cnf(c18,axiom,
op_t(op_t(A,B),B) = A ).
cnf(c19,axiom,
op_r(op_r(A,B,C),B,C) = A ).
cnf(c20,axiom,
op_l(op_l(A,B,C),B,C) = A ).
cnf(goals,negated_conjecture,
mult(a,b) != mult(b,a) ).
%------------------------------------------------------------------------------