TPTP Problem File: GRP720+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP720+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In commutative A-loops, squares form a subloop
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : JKVxx_1 [Sta08]
% Status : Theorem
% Rating : 0.59 v9.0.0, 0.65 v8.2.0, 0.71 v8.1.0, 0.83 v7.5.0, 0.81 v7.4.0, 0.82 v7.3.0, 0.77 v7.2.0, 0.75 v7.1.0, 0.73 v7.0.0, 0.80 v6.4.0, 0.79 v6.3.0, 0.71 v6.2.0, 0.55 v6.1.0, 0.75 v5.5.0, 0.62 v5.4.0, 0.67 v5.3.0, 0.50 v5.2.0, 0.43 v5.1.0, 0.57 v5.0.0, 0.75 v4.1.0, 0.82 v4.0.1, 0.90 v4.0.0
% Syntax : Number of formulae : 8 ( 8 unt; 0 def)
% Number of atoms : 8 ( 8 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 18 ( 17 !; 1 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : mult(A,unit) = A ).
fof(f02,axiom,
! [A] : mult(unit,A) = A ).
fof(f03,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f04,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f05,axiom,
! [B,A] : mult(A,B) = mult(B,A) ).
fof(f06,axiom,
! [D,C,B,A] : ld(mult(A,B),mult(A,mult(B,mult(C,D)))) = mult(ld(mult(A,B),mult(A,mult(B,C))),ld(mult(A,B),mult(A,mult(B,D)))) ).
fof(f07,axiom,
! [C,B,A] : ld(A,mult(mult(B,C),A)) = mult(ld(A,mult(B,A)),ld(A,mult(C,A))) ).
fof(goals,conjecture,
! [X0,X1] :
? [X2] : mult(mult(X0,X0),mult(X1,X1)) = mult(X2,X2) ).
%------------------------------------------------------------------------------