TPTP Problem File: GRP707-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP707-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : A C-loop of exponent four with central squares is flexible
% Version : Especial.
% English :
% Refs : [KPV07] Kinyon et al. (2007), C-loops: Extensions and Construc
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KPV07 [PS08]
% Status : Unsatisfiable
% Rating : 0.14 v9.0.0, 0.09 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.25 v7.4.0, 0.30 v7.3.0, 0.21 v7.1.0, 0.11 v7.0.0, 0.16 v6.4.0, 0.26 v6.3.0, 0.29 v6.1.0, 0.19 v6.0.0, 0.38 v5.5.0, 0.37 v5.4.0, 0.20 v5.3.0, 0.17 v5.2.0, 0.21 v5.1.0, 0.27 v5.0.0, 0.21 v4.1.0, 0.18 v4.0.1, 0.57 v4.0.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C) ).
cnf(c08,axiom,
mult(A,mult(A,mult(A,A))) = unit ).
cnf(c09,axiom,
mult(mult(A,A),B) = mult(B,mult(A,A)) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),a) != mult(a,mult(b,a)) ).
%------------------------------------------------------------------------------