TPTP Problem File: GRP705-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP705-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Property of commutative C-loop
% Version : Especial.
% English : In a commutative C-loop, if a has order 4 and b has order 9, then
% a.bx = ab.x
% Refs : [PV06] Phillips & Vojtechovsky (2006), C-loops: an Introducti
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : PV06 [PS08]
% Status : Unsatisfiable
% Rating : 0.36 v8.2.0, 0.33 v8.1.0, 0.40 v7.5.0, 0.42 v7.4.0, 0.48 v7.3.0, 0.42 v7.1.0, 0.33 v7.0.0, 0.37 v6.4.0, 0.47 v6.2.0, 0.50 v6.1.0, 0.62 v6.0.0, 0.71 v5.5.0, 0.68 v5.4.0, 0.53 v5.3.0, 0.58 v5.2.0, 0.64 v5.1.0, 0.67 v5.0.0, 0.57 v4.1.0, 0.45 v4.0.1, 0.71 v4.0.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 3 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C) ).
cnf(c08,axiom,
mult(op_a,mult(op_a,mult(op_a,op_a))) = unit ).
cnf(c09,axiom,
mult(op_b,mult(op_b,mult(op_b,mult(op_b,mult(op_b,mult(op_b,mult(op_b,mult(op_b,op_b)))))))) = unit ).
cnf(goals,negated_conjecture,
mult(op_a,mult(op_b,a)) != mult(mult(op_a,op_b),a) ).
%------------------------------------------------------------------------------