TPTP Problem File: GRP699-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP699-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Variety of power associative, WIP conjugacy closed loops - 2b
% Version : Especial.
% English :
% Refs : [Phi06] Phillips (2006), A Short Basis for the Variety of WIP
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : Phi06 [PS08]
% Status : Unsatisfiable
% Rating : 0.23 v8.2.0, 0.25 v8.1.0, 0.30 v7.5.0, 0.33 v7.4.0, 0.39 v7.3.0, 0.37 v7.1.0, 0.28 v7.0.0, 0.26 v6.4.0, 0.37 v6.3.0, 0.35 v6.2.0, 0.29 v6.1.0, 0.31 v6.0.0, 0.38 v5.5.0, 0.42 v5.4.0, 0.27 v5.3.0, 0.33 v5.2.0, 0.36 v5.1.0, 0.40 v5.0.0, 0.36 v4.1.0, 0.27 v4.0.1, 0.57 v4.0.0
% Syntax : Number of clauses : 9 ( 9 unt; 0 nHn; 1 RR)
% Number of literals : 9 ( 9 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(mult(mult(A,B),A),mult(A,C)) = mult(A,mult(mult(mult(B,A),A),C)) ).
cnf(c08,axiom,
mult(mult(A,B),mult(B,mult(C,B))) = mult(mult(A,mult(B,mult(B,C))),B) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),c) != mult(mult(a,c),ld(c,mult(b,c))) ).
%------------------------------------------------------------------------------