TPTP Problem File: GRP695-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP695-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In power associative conjugacy closed loop c^12 is in nucleus - c
% Version : Especial.
% English :
% Refs : [KK06] Kinyon & Kunen (2006), Power-associative, Conjugacy Cl
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KK06 [PS08]
% Status : Unsatisfiable
% Rating : 0.77 v8.2.0, 0.75 v8.1.0, 0.90 v7.5.0, 0.88 v7.4.0, 0.87 v7.3.0, 0.89 v7.1.0, 0.83 v7.0.0, 0.84 v6.3.0, 0.76 v6.2.0, 0.79 v6.1.0, 0.88 v6.0.0, 0.95 v5.4.0, 0.93 v5.3.0, 0.92 v5.2.0, 0.93 v4.1.0, 0.91 v4.0.1, 0.93 v4.0.0
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 4 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 7 con; 0-2 aty)
% Number of variables : 18 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,C)) = mult(rd(mult(A,B),A),mult(A,C)) ).
cnf(c08,axiom,
mult(mult(A,B),C) = mult(mult(A,C),ld(C,mult(B,C))) ).
cnf(c09,axiom,
mult(i(A),A) = unit ).
cnf(c10,axiom,
mult(A,i(A)) = unit ).
cnf(c11,axiom,
mult(op_c,mult(op_c,op_c)) = op_d ).
cnf(c12,axiom,
mult(op_d,op_d) = op_e ).
cnf(c13,axiom,
mult(op_e,op_e) = op_f ).
cnf(goals,negated_conjecture,
mult(a,mult(b,op_f)) != mult(mult(a,b),op_f) ).
%------------------------------------------------------------------------------