TPTP Problem File: GRP690-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP690-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Bruck loop elements of order 2^4 commute with elems of order 3^2
% Version : Especial.
% English :
% Refs : [AKP06] Aschbacher et al. (2006), Finite Bruck Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : AKP06 [PS08]
% Status : Unsatisfiable
% Rating : 0.82 v8.2.0, 0.83 v8.1.0, 0.90 v7.5.0, 0.88 v7.4.0, 0.87 v7.3.0, 0.95 v7.1.0, 0.89 v6.3.0, 0.88 v6.2.0, 0.93 v6.1.0, 0.94 v6.0.0, 1.00 v5.0.0, 0.93 v4.1.0, 0.91 v4.0.1, 0.93 v4.0.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 3 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,mult(A,C))) = mult(mult(A,mult(B,A)),C) ).
cnf(c08,axiom,
mult(i(A),mult(A,B)) = B ).
cnf(c09,axiom,
i(mult(A,B)) = mult(i(A),i(B)) ).
cnf(c10,axiom,
mult(op_c,mult(op_c,mult(op_c,mult(op_c,mult(op_c,mult(op_c,mult(op_c,op_c))))))) = unit ).
cnf(c11,axiom,
mult(op_d,mult(op_d,mult(op_d,mult(op_d,mult(op_d,mult(op_d,mult(op_d,mult(op_d,op_d)))))))) = unit ).
cnf(goals,negated_conjecture,
mult(op_c,op_d) != mult(op_d,op_c) ).
%------------------------------------------------------------------------------