TPTP Problem File: GRP687-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP687-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : x(y.yz) = (x.yy)z is equivalent to xx.yz = (x.xy)z part 2
% Version : Especial.
% English :
% Refs : [PV05] Phillips & Vojtechovsky (2005), The Varieties of Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : PV05 [PS08]
% Status : Unsatisfiable
% Rating : 0.18 v8.2.0, 0.25 v7.5.0, 0.29 v7.4.0, 0.35 v7.3.0, 0.32 v7.1.0, 0.22 v7.0.0, 0.26 v6.4.0, 0.32 v6.3.0, 0.29 v6.1.0, 0.25 v6.0.0, 0.38 v5.5.0, 0.37 v5.4.0, 0.20 v5.3.0, 0.25 v5.2.0, 0.29 v5.1.0, 0.33 v5.0.0, 0.29 v4.1.0, 0.18 v4.0.1, 0.57 v4.0.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(mult(A,A),mult(B,C)) = mult(mult(A,mult(A,B)),C) ).
cnf(goals,negated_conjecture,
mult(a,mult(b,mult(b,c))) != mult(mult(a,mult(b,b)),c) ).
%------------------------------------------------------------------------------