TPTP Problem File: GRP683-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP683-10 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Axioms of rectangular loops - b
% Version : Especial.
% English :
% Refs : [KP05] Kinyon & Phillips (2005), Rectangular Quasigroups and
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.21 v8.1.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP683+1.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
ld(A,mult(A,A)) = A ).
cnf(f02,axiom,
rd(mult(A,A),A) = A ).
cnf(f03,axiom,
mult(A,ld(A,B)) = ld(A,mult(A,B)) ).
cnf(f04,axiom,
mult(rd(A,B),B) = rd(mult(A,B),B) ).
cnf(f05,axiom,
ld(ld(A,B),mult(ld(A,B),mult(C,D))) = mult(ld(A,mult(A,C)),D) ).
cnf(f06,axiom,
rd(mult(mult(A,B),rd(C,D)),rd(C,D)) = mult(A,rd(mult(B,D),D)) ).
cnf(f07,axiom,
ld(A,mult(A,ld(B,B))) = rd(mult(rd(A,A),B),B) ).
cnf(goal,negated_conjecture,
mult(x3,ld(x4,mult(x4,x5))) != mult(x3,x5) ).
%------------------------------------------------------------------------------