TPTP Problem File: GRP678-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP678-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : In CC-loops, associators are in the center of the nucleus - 2
% Version : Especial.
% English :
% Refs : [KKP04] Kinyon et al. (2004), Diassociativity in Conjugacy Clo
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KKP04 [PS08]
% Status : Unsatisfiable
% Rating : 0.95 v8.2.0, 0.92 v8.1.0, 0.95 v7.5.0, 0.88 v7.4.0, 0.96 v7.3.0, 0.95 v7.2.0, 0.89 v7.1.0, 0.94 v7.0.0, 0.95 v6.3.0, 0.94 v6.2.0, 0.86 v6.1.0, 1.00 v4.0.0
% Syntax : Number of clauses : 13 ( 13 unt; 0 nHn; 1 RR)
% Number of literals : 13 ( 13 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-3 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,C)) = mult(rd(mult(A,B),A),mult(A,C)) ).
cnf(c08,axiom,
mult(mult(A,B),C) = mult(mult(A,C),ld(C,mult(B,C))) ).
cnf(c09,axiom,
asoc(A,B,C) = ld(mult(A,mult(B,C)),mult(mult(A,B),C)) ).
cnf(c10,axiom,
mult(op_c,mult(A,B)) = mult(mult(op_c,A),B) ).
cnf(c11,axiom,
mult(A,mult(op_c,B)) = mult(mult(A,op_c),B) ).
cnf(c12,axiom,
mult(A,mult(B,op_c)) = mult(mult(A,B),op_c) ).
cnf(goals,negated_conjecture,
mult(asoc(a,b,c),op_c) != mult(op_c,asoc(a,b,c)) ).
%------------------------------------------------------------------------------