TPTP Problem File: GRP666-3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP666-3 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Inverse property A-loops are Moufang
% Version : Especial.
% English :
% Refs : [KKP02] Kinyon et al. (2002), Every Diassociative A-loop is M
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KKP02a [PS08]
% Status : Unsatisfiable
% Rating : 0.86 v8.2.0, 0.88 v8.1.0, 0.95 v7.5.0, 0.88 v7.4.0, 0.91 v7.3.0, 0.89 v6.3.0, 0.82 v6.2.0, 0.71 v6.1.0, 0.81 v6.0.0, 0.86 v5.5.0, 0.84 v5.4.0, 0.87 v5.3.0, 0.75 v5.2.0, 0.86 v5.1.0, 0.87 v5.0.0, 0.86 v4.1.0, 0.82 v4.0.1, 0.86 v4.0.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 1 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
ld(mult(A,B),mult(A,mult(B,mult(C,D)))) = mult(ld(mult(A,B),mult(A,mult(B,C))),ld(mult(A,B),mult(A,mult(B,D)))) ).
cnf(c08,axiom,
rd(mult(mult(mult(A,B),C),D),mult(C,D)) = mult(rd(mult(mult(A,C),D),mult(C,D)),rd(mult(mult(B,C),D),mult(C,D))) ).
cnf(c09,axiom,
ld(A,mult(mult(B,C),A)) = mult(ld(A,mult(B,A)),ld(A,mult(C,A))) ).
cnf(c10,axiom,
mult(i(A),mult(A,B)) = B ).
cnf(c11,axiom,
mult(mult(A,B),i(B)) = A ).
cnf(goals,negated_conjecture,
mult(a,mult(b,mult(c,b))) != mult(mult(mult(a,b),c),b) ).
%------------------------------------------------------------------------------