TPTP Problem File: GRP666+6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP666+6 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Inverse property A-loops are Moufang
% Version : Especial.
% English :
% Refs : [KKP02] Kinyon et al. (2002), Every Diassociative A-loop is M
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KKP02a [PS08]
% Status : Theorem
% Rating : 0.82 v9.0.0, 0.85 v8.2.0, 0.88 v8.1.0, 0.91 v7.5.0, 0.86 v7.4.0, 0.88 v7.3.0, 0.77 v7.2.0, 0.75 v7.1.0, 0.73 v7.0.0, 0.87 v6.4.0, 0.86 v6.3.0, 0.79 v6.2.0, 0.73 v6.1.0, 0.83 v5.5.0, 0.75 v5.4.0, 0.89 v5.3.0, 0.67 v5.2.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.1, 0.90 v4.0.0
% Syntax : Number of formulae : 12 ( 11 unt; 0 def)
% Number of atoms : 15 ( 15 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 3 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 37 ( 37 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(f04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(f05,axiom,
! [A] : mult(A,unit) = A ).
fof(f06,axiom,
! [A] : mult(unit,A) = A ).
fof(f07,axiom,
! [D,C,B,A] : ld(mult(A,B),mult(A,mult(B,mult(C,D)))) = mult(ld(mult(A,B),mult(A,mult(B,C))),ld(mult(A,B),mult(A,mult(B,D)))) ).
fof(f08,axiom,
! [D,C,B,A] : rd(mult(mult(mult(A,B),C),D),mult(C,D)) = mult(rd(mult(mult(A,C),D),mult(C,D)),rd(mult(mult(B,C),D),mult(C,D))) ).
fof(f09,axiom,
! [C,B,A] : ld(A,mult(mult(B,C),A)) = mult(ld(A,mult(B,A)),ld(A,mult(C,A))) ).
fof(f10,axiom,
! [B,A] : mult(i(A),mult(A,B)) = B ).
fof(f11,axiom,
! [B,A] : mult(mult(A,B),i(B)) = A ).
fof(goals,conjecture,
( ! [X0,X1,X2] : mult(X2,mult(X0,mult(X2,X1))) = mult(mult(mult(X2,X0),X2),X1)
| ! [X3,X4,X5] : mult(X3,mult(X5,mult(X4,X5))) = mult(mult(mult(X3,X5),X4),X5)
| ! [X6,X7,X8] : mult(mult(X8,X6),mult(X7,X8)) = mult(mult(X8,mult(X6,X7)),X8)
| ! [X9,X10,X11] : mult(mult(X11,X9),mult(X10,X11)) = mult(X11,mult(mult(X9,X10),X11)) ) ).
%------------------------------------------------------------------------------