TPTP Problem File: GRP666+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP666+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Inverse property A-loops are Moufang
% Version : Especial.
% English :
% Refs : [KKP02] Kinyon et al. (2002), Every Diassociative A-loop is M
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : KKP02a [PS08]
% Status : Theorem
% Rating : 0.82 v9.0.0, 0.80 v8.2.0, 0.79 v8.1.0, 0.78 v7.5.0, 0.76 v7.3.0, 0.69 v7.2.0, 0.67 v7.1.0, 0.64 v7.0.0, 0.80 v6.4.0, 0.79 v6.2.0, 0.73 v6.1.0, 0.83 v5.5.0, 0.75 v5.4.0, 0.89 v5.3.0, 0.67 v5.2.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.1, 0.90 v4.0.0
% Syntax : Number of formulae : 15 ( 12 unt; 0 def)
% Number of atoms : 18 ( 18 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 34 ( 34 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(f01,axiom,
! [B,A] : mult(A,ld(A,B)) = B ).
fof(f02,axiom,
! [B,A] : ld(A,mult(A,B)) = B ).
fof(f03,axiom,
! [B,A] : mult(rd(A,B),B) = A ).
fof(f04,axiom,
! [B,A] : rd(mult(A,B),B) = A ).
fof(f05,axiom,
! [A] : mult(A,unit) = A ).
fof(f06,axiom,
! [A] : mult(unit,A) = A ).
fof(f07,axiom,
! [B,A] : mult(i(A),mult(A,B)) = B ).
fof(f08,axiom,
! [B,A] : mult(mult(A,B),i(B)) = A ).
fof(f09,axiom,
! [D,C,B,A] : ld(mult(A,B),mult(A,mult(B,mult(C,D)))) = mult(ld(mult(A,B),mult(A,mult(B,C))),ld(mult(A,B),mult(A,mult(B,D)))) ).
fof(f10,axiom,
! [D,C,B,A] : rd(mult(mult(mult(A,B),C),D),mult(C,D)) = mult(rd(mult(mult(A,C),D),mult(C,D)),rd(mult(mult(B,C),D),mult(C,D))) ).
fof(f11,axiom,
! [C,B,A] : ld(A,mult(mult(B,C),A)) = mult(ld(A,mult(B,A)),ld(A,mult(C,A))) ).
fof(f12,axiom,
! [X0,X1,X2] :
( mult(X0,mult(X1,mult(X2,X1))) = mult(mult(mult(X0,X1),X2),X1)
=> mult(X1,mult(X0,mult(X1,X2))) = mult(mult(mult(X1,X0),X1),X2) ) ).
fof(f13,axiom,
! [X3,X4,X5] :
( mult(mult(X3,X4),mult(X5,X3)) = mult(mult(X3,mult(X4,X5)),X3)
=> mult(X3,mult(X4,mult(X3,X5))) = mult(mult(mult(X3,X4),X3),X5) ) ).
fof(f14,axiom,
! [X6,X7,X8] :
( mult(mult(X6,X7),mult(X8,X6)) = mult(X6,mult(mult(X7,X8),X6))
=> mult(X6,mult(X7,mult(X6,X8))) = mult(mult(mult(X6,X7),X6),X8) ) ).
fof(goals,conjecture,
mult(a,mult(b,mult(a,c))) = mult(mult(mult(a,b),a),c) ).
%------------------------------------------------------------------------------