TPTP Problem File: GRP664-12.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP664-12 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : Conjugacy closed with ab = 1 implies ba is in the nucleus - a
% Version : Especial.
% English :
% Refs : [Kun00] Kunen (2000), The Structure of Conjugacy Closed Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.86 v9.0.0, 0.91 v8.2.0, 0.96 v8.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 2 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP664+2.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,unit) = A ).
cnf(f06,axiom,
mult(unit,A) = A ).
cnf(f07,axiom,
mult(A,mult(B,C)) = mult(rd(mult(A,B),A),mult(A,C)) ).
cnf(f08,axiom,
mult(mult(A,B),C) = mult(mult(A,C),ld(C,mult(B,C))) ).
cnf(goal1,negated_conjecture,
mult(x0,x1) = unit ).
cnf(goal2,negated_conjecture,
mult(mult(x2,x3),mult(x1,x0)) != mult(x2,mult(x3,mult(x1,x0))) ).
%------------------------------------------------------------------------------