TPTP Problem File: GRP661-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP661-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Group Theory (Quasigroups)
% Problem : Conjugacy closed with ab = 1 implies ba is in the nucleus - a
% Version : Especial.
% English :
% Refs : [Kun00] Kunen (2000), The Structure of Conjugacy Closed Loops
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : Kun00 [PS08]
% Status : Unsatisfiable
% Rating : 0.86 v8.2.0, 0.83 v8.1.0, 0.90 v7.5.0, 0.88 v7.4.0, 0.91 v7.3.0, 0.89 v7.1.0, 0.83 v7.0.0, 0.84 v6.3.0, 0.82 v6.2.0, 0.86 v6.1.0, 0.88 v6.0.0, 0.90 v5.5.0, 0.89 v5.4.0, 0.87 v5.3.0, 0.83 v5.2.0, 0.93 v5.0.0, 1.00 v4.0.1, 0.93 v4.0.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 2 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,ld(A,B)) = B ).
cnf(c02,axiom,
ld(A,mult(A,B)) = B ).
cnf(c03,axiom,
mult(rd(A,B),B) = A ).
cnf(c04,axiom,
rd(mult(A,B),B) = A ).
cnf(c05,axiom,
mult(A,unit) = A ).
cnf(c06,axiom,
mult(unit,A) = A ).
cnf(c07,axiom,
mult(A,mult(B,C)) = mult(rd(mult(A,B),A),mult(A,C)) ).
cnf(c08,axiom,
mult(mult(A,B),C) = mult(mult(A,C),ld(C,mult(B,C))) ).
cnf(c09,axiom,
mult(op_c,op_d) = unit ).
cnf(goals,negated_conjecture,
mult(mult(op_d,op_c),mult(a,b)) != mult(mult(mult(op_d,op_c),a),b) ).
%------------------------------------------------------------------------------