TPTP Problem File: GRP656-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP656-10 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : A quasigroup satisfying Moufang 3 is a loop
% Version : Especial.
% English :
% Refs : [Kun96] Kunen (1996), Moufang Quasigroups
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.18 v8.2.0, 0.21 v8.1.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 0 con; 1-2 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP656+1.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(mult(A,B),mult(C,A)) = mult(mult(A,mult(B,C)),A) ).
cnf(goal,negated_conjecture,
tuple(mult(X0,x1(X0)),mult(x1_2(X0),X0)) != tuple(x1(X0),x1_2(X0)) ).
%------------------------------------------------------------------------------