TPTP Problem File: GRP654-11.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP654-11 : TPTP v9.0.0. Released v8.1.0.
% Domain : Group Theory (Quasigroups)
% Problem : A quasigroup satisfying Moufang 1 is a loop
% Version : Especial.
% English :
% Refs : [Kun96] Kunen (1996), Moufang Quasigroups
% : [PS08] Phillips & Stanovsky (2008), Automated Theorem Proving
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names :
% Status : Unsatisfiable
% Rating : 0.64 v9.0.0, 0.73 v8.2.0, 0.71 v8.1.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : UEQ version, converted from GRP654+2.p
%------------------------------------------------------------------------------
cnf(f01,axiom,
mult(A,ld(A,B)) = B ).
cnf(f02,axiom,
ld(A,mult(A,B)) = B ).
cnf(f03,axiom,
mult(rd(A,B),B) = A ).
cnf(f04,axiom,
rd(mult(A,B),B) = A ).
cnf(f05,axiom,
mult(A,mult(B,mult(A,C))) = mult(mult(mult(A,B),A),C) ).
cnf(goal,negated_conjecture,
mult(x0,rd(x1,x1)) != x0 ).
%------------------------------------------------------------------------------