TPTP Problem File: GRP631+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP631+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Group Theory
% Problem : On the Group of Inner Automorphisms T29
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Kor96] Kornilowicz (1996), On the Group of Inner Automorphism
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t29_autgroup [Urb08]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.53 v8.2.0, 0.56 v7.5.0, 0.62 v7.4.0, 0.47 v7.3.0, 0.55 v7.1.0, 0.52 v7.0.0, 0.57 v6.4.0, 0.58 v6.3.0, 0.54 v6.2.0, 0.64 v6.1.0, 0.70 v6.0.0, 0.65 v5.5.0, 0.74 v5.4.0, 0.75 v5.3.0, 0.81 v5.2.0, 0.75 v5.1.0, 0.81 v5.0.0, 0.79 v4.1.0, 0.78 v4.0.1, 0.87 v4.0.0, 0.92 v3.7.0, 0.85 v3.5.0, 0.84 v3.4.0
% Syntax : Number of formulae : 82 ( 19 unt; 0 def)
% Number of atoms : 289 ( 14 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 240 ( 33 ~; 1 |; 147 &)
% ( 3 <=>; 56 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 29 ( 27 usr; 1 prp; 0-4 aty)
% Number of functors : 14 ( 14 usr; 1 con; 0-6 aty)
% Number of variables : 157 ( 134 !; 23 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t29_autgroup,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ( k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),k6_autgroup(A,k2_group_1(A)),k6_autgroup(A,B)) = k6_autgroup(A,B)
& k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),k6_autgroup(A,B),k6_autgroup(A,k2_group_1(A))) = k6_autgroup(A,B) ) ) ) ).
fof(abstractness_v1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> ( v1_group_1(A)
=> A = g1_group_1(u1_struct_0(A),u1_group_1(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_fraenkel,axiom,
! [A] :
( v1_fraenkel(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B) ) ) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_partfun1(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B) ) ) ) ).
fof(cc1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> ( ( ~ v3_struct_0(A)
& v3_group_1(A) )
=> ( ~ v3_struct_0(A)
& v2_group_1(A) ) ) ) ).
fof(cc1_partfun1,axiom,
! [A] :
( ( v1_relat_1(A)
& v3_relat_2(A)
& v8_relat_2(A) )
=> ( v1_relat_1(A)
& v1_relat_2(A) ) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B)
& v3_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v2_funct_1(C)
& v1_funct_2(C,A,B)
& v2_funct_2(C,A,B) ) ) ) ).
fof(cc3_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v2_funct_1(C)
& v1_funct_2(C,A,B)
& v2_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B)
& v3_funct_2(C,A,B) ) ) ) ).
fof(cc4_funct_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( ( v1_funct_1(B)
& v1_partfun1(B,A,A)
& v1_relat_2(B)
& v1_funct_2(B,A,A) )
=> ( v1_funct_1(B)
& v2_funct_1(B)
& v1_funct_2(B,A,A)
& v2_funct_2(B,A,A)
& v3_funct_2(B,A,A) ) ) ) ).
fof(cc5_funct_2,axiom,
! [A,B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(cc6_funct_2,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(dt_g1_group_1,axiom,
! [A,B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ( v1_group_1(g1_group_1(A,B))
& l1_group_1(g1_group_1(A,B)) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_group_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_group_1(A) )
=> m1_subset_1(k2_group_1(A),u1_struct_0(A)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> m1_fraenkel(k4_autgroup(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_relat_1(B) )
=> v1_relat_1(k5_relat_1(A,B)) ) ).
fof(dt_k6_autgroup,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> m2_fraenkel(k6_autgroup(A,B),u1_struct_0(A),u1_struct_0(A),k4_autgroup(A)) ) ).
fof(dt_k6_partfun1,axiom,
! [A] :
( v1_partfun1(k6_partfun1(A),A,A)
& m2_relset_1(k6_partfun1(A),A,A) ) ).
fof(dt_k6_relat_1,axiom,
! [A] : v1_relat_1(k6_relat_1(A)) ).
fof(dt_k7_funct_2,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,B,C)
& m1_relset_1(E,B,C) )
=> ( v1_funct_1(k7_funct_2(A,B,C,D,E))
& v1_funct_2(k7_funct_2(A,B,C,D,E),A,C)
& m2_relset_1(k7_funct_2(A,B,C,D,E),A,C) ) ) ).
fof(dt_k7_relset_1,axiom,
! [A,B,C,D,E,F] :
( ( m1_relset_1(E,A,B)
& m1_relset_1(F,C,D) )
=> m2_relset_1(k7_relset_1(A,B,C,D,E,F),A,D) ) ).
fof(dt_l1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_fraenkel,axiom,
! [A,B,C] :
( m1_fraenkel(C,A,B)
=> ( ~ v1_xboole_0(C)
& v1_fraenkel(C) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_fraenkel,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(B)
& m1_fraenkel(C,A,B) )
=> ! [D] :
( m2_fraenkel(D,A,B,C)
=> ( v1_funct_1(D)
& v1_funct_2(D,A,B)
& m2_relset_1(D,A,B) ) ) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_group_1,axiom,
! [A] :
( l1_group_1(A)
=> ( v1_funct_1(u1_group_1(A))
& v1_funct_2(u1_group_1(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u1_group_1(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_group_1,axiom,
? [A] : l1_group_1(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_fraenkel,axiom,
! [A,B] :
? [C] : m1_fraenkel(C,A,B) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_fraenkel,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(B)
& m1_fraenkel(C,A,B) )
=> ? [D] : m2_fraenkel(D,A,B,C) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_funct_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_relat_1(B)
& v1_funct_1(B) )
=> ( v1_relat_1(k5_relat_1(A,B))
& v1_funct_1(k5_relat_1(A,B)) ) ) ).
fof(fc1_group_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ( ~ v3_struct_0(g1_group_1(A,B))
& v1_group_1(g1_group_1(A,B)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_funct_1,axiom,
! [A] :
( v1_relat_1(k6_relat_1(A))
& v1_funct_1(k6_relat_1(A)) ) ).
fof(fc2_partfun1,axiom,
! [A] :
( v1_relat_1(k6_relat_1(A))
& v1_funct_1(k6_relat_1(A))
& v1_relat_2(k6_relat_1(A))
& v3_relat_2(k6_relat_1(A))
& v4_relat_2(k6_relat_1(A))
& v8_relat_2(k6_relat_1(A)) ) ).
fof(free_g1_group_1,axiom,
! [A,B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ! [C,D] :
( g1_group_1(A,B) = g1_group_1(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(rc1_fraenkel,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_fraenkel(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_funct_2,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,A,B) ) ).
fof(rc1_group_1,axiom,
? [A] :
( l1_group_1(A)
& v1_group_1(A) ) ).
fof(rc1_partfun1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A)
& v1_xboole_0(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_funct_2,axiom,
! [A] :
? [B] :
( m1_relset_1(B,A,A)
& v1_relat_1(B)
& v1_funct_1(B)
& v2_funct_1(B)
& v1_funct_2(B,A,A)
& v2_funct_2(B,A,A)
& v3_funct_2(B,A,A) ) ).
fof(rc2_group_1,axiom,
? [A] :
( l1_group_1(A)
& ~ v3_struct_0(A)
& v1_group_1(A) ) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_group_1,axiom,
? [A] :
( l1_group_1(A)
& ~ v3_struct_0(A)
& v1_group_1(A)
& v2_group_1(A)
& v3_group_1(A)
& v4_group_1(A) ) ).
fof(rc3_partfun1,axiom,
! [A] :
? [B] :
( m1_relset_1(B,A,A)
& v1_relat_1(B)
& v1_relat_2(B)
& v3_relat_2(B)
& v4_relat_2(B)
& v8_relat_2(B)
& v1_partfun1(B,A,A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(redefinition_k6_partfun1,axiom,
! [A] : k6_partfun1(A) = k6_relat_1(A) ).
fof(redefinition_k7_funct_2,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,B,C)
& m1_relset_1(E,B,C) )
=> k7_funct_2(A,B,C,D,E) = k5_relat_1(D,E) ) ).
fof(redefinition_k7_relset_1,axiom,
! [A,B,C,D,E,F] :
( ( m1_relset_1(E,A,B)
& m1_relset_1(F,C,D) )
=> k7_relset_1(A,B,C,D,E,F) = k5_relat_1(E,F) ) ).
fof(redefinition_m2_fraenkel,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(B)
& m1_fraenkel(C,A,B) )
=> ! [D] :
( m2_fraenkel(D,A,B,C)
<=> m1_subset_1(D,C) ) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t23_funct_2,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> ( k7_relset_1(A,A,A,B,k6_partfun1(A),C) = C
& k7_relset_1(A,B,B,B,C,k6_partfun1(B)) = C ) ) ).
fof(t24_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> k6_autgroup(A,k2_group_1(A)) = k6_partfun1(u1_struct_0(A)) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------