TPTP Problem File: GRP628+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP628+2 : TPTP v9.0.0. Released v3.4.0.
% Domain : Group Theory
% Problem : On the Group of Inner Automorphisms T22
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Kor96] Kornilowicz (1996), On the Group of Inner Automorphism
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t22_autgroup [Urb08]
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.83 v8.1.0, 0.89 v7.5.0, 0.94 v7.4.0, 0.93 v7.3.0, 0.97 v7.1.0, 0.91 v7.0.0, 0.93 v6.4.0, 0.92 v6.2.0, 0.96 v6.1.0, 0.97 v6.0.0, 0.96 v5.4.0, 1.00 v5.2.0, 0.95 v5.0.0, 1.00 v3.4.0
% Syntax : Number of formulae : 3836 ( 967 unt; 0 def)
% Number of atoms : 19470 (2750 equ)
% Maximal formula atoms : 49 ( 5 avg)
% Number of connectives : 17792 (2158 ~; 132 |;8600 &)
% ( 630 <=>;6272 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 6 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 246 ( 244 usr; 1 prp; 0-4 aty)
% Number of functors : 625 ( 625 usr; 245 con; 0-8 aty)
% Number of variables : 8467 (8012 !; 455 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Bushy version: includes all articles that contribute axioms to the
% Normal version.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
include('Axioms/SET007/SET007+0.ax').
include('Axioms/SET007/SET007+1.ax').
include('Axioms/SET007/SET007+2.ax').
include('Axioms/SET007/SET007+3.ax').
include('Axioms/SET007/SET007+6.ax').
include('Axioms/SET007/SET007+7.ax').
include('Axioms/SET007/SET007+9.ax').
include('Axioms/SET007/SET007+10.ax').
include('Axioms/SET007/SET007+11.ax').
include('Axioms/SET007/SET007+13.ax').
include('Axioms/SET007/SET007+14.ax').
include('Axioms/SET007/SET007+16.ax').
include('Axioms/SET007/SET007+17.ax').
include('Axioms/SET007/SET007+20.ax').
include('Axioms/SET007/SET007+23.ax').
include('Axioms/SET007/SET007+24.ax').
include('Axioms/SET007/SET007+26.ax').
include('Axioms/SET007/SET007+31.ax').
include('Axioms/SET007/SET007+32.ax').
include('Axioms/SET007/SET007+34.ax').
include('Axioms/SET007/SET007+35.ax').
include('Axioms/SET007/SET007+40.ax').
include('Axioms/SET007/SET007+48.ax').
include('Axioms/SET007/SET007+54.ax').
include('Axioms/SET007/SET007+55.ax').
include('Axioms/SET007/SET007+117.ax').
include('Axioms/SET007/SET007+200.ax').
include('Axioms/SET007/SET007+210.ax').
include('Axioms/SET007/SET007+212.ax').
include('Axioms/SET007/SET007+213.ax').
include('Axioms/SET007/SET007+223.ax').
include('Axioms/SET007/SET007+246.ax').
include('Axioms/SET007/SET007+252.ax').
include('Axioms/SET007/SET007+298.ax').
include('Axioms/SET007/SET007+312.ax').
include('Axioms/SET007/SET007+338.ax').
%------------------------------------------------------------------------------
fof(dt_k1_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> m1_fraenkel(k1_autgroup(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_k2_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ( v1_funct_1(k2_autgroup(A))
& v1_funct_2(k2_autgroup(A),k2_zfmisc_1(k1_autgroup(A),k1_autgroup(A)),k1_autgroup(A))
& m2_relset_1(k2_autgroup(A),k2_zfmisc_1(k1_autgroup(A),k1_autgroup(A)),k1_autgroup(A)) ) ) ).
fof(dt_k3_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ( ~ v3_struct_0(k3_autgroup(A))
& v1_group_1(k3_autgroup(A))
& v3_group_1(k3_autgroup(A))
& v4_group_1(k3_autgroup(A))
& l1_group_1(k3_autgroup(A)) ) ) ).
fof(dt_k4_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> m1_fraenkel(k4_autgroup(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_k5_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ( v1_group_1(k5_autgroup(A))
& v1_group_3(k5_autgroup(A),k3_autgroup(A))
& m1_group_2(k5_autgroup(A),k3_autgroup(A)) ) ) ).
fof(dt_k6_autgroup,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> m2_fraenkel(k6_autgroup(A,B),u1_struct_0(A),u1_struct_0(A),k4_autgroup(A)) ) ).
fof(l1_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_group_2(B,A)
=> ( ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( m1_subset_1(D,u1_struct_0(B))
=> r1_rlvect_1(B,k2_group_3(A,D,C)) ) ) )
=> v1_group_3(B,A) ) ) ) ).
fof(l2_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_group_2(B,A)
=> ( v1_group_3(B,A)
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( m1_subset_1(D,u1_struct_0(B))
=> r1_rlvect_1(B,k2_group_3(A,D,C)) ) ) ) ) ) ) ).
fof(t1_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_group_2(B,A)
=> ( ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( m1_subset_1(D,u1_struct_0(B))
=> r1_rlvect_1(B,k2_group_3(A,D,C)) ) ) )
<=> v1_group_3(B,A) ) ) ) ).
fof(d1_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_fraenkel(B,u1_struct_0(A),u1_struct_0(A))
=> ( B = k1_autgroup(A)
<=> ( ! [C] :
( m2_fraenkel(C,u1_struct_0(A),u1_struct_0(A),B)
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(A))
& v1_group_6(C,A,A)
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(A)) ) )
& ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(A))
& v1_group_6(C,A,A)
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(A)) )
=> ( r2_hidden(C,B)
<=> ( v2_funct_1(C)
& v3_group_6(C,A,A) ) ) ) ) ) ) ) ).
fof(t2_autgroup,axiom,
$true ).
fof(t3_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> r1_tarski(k1_autgroup(A),k1_fraenkel(u1_struct_0(A),u1_struct_0(A))) ) ).
fof(t4_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> m2_fraenkel(k6_partfun1(u1_struct_0(A)),u1_struct_0(A),u1_struct_0(A),k1_autgroup(A)) ) ).
fof(t5_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,u1_struct_0(A),u1_struct_0(A))
& v1_group_6(B,A,A)
& m2_relset_1(B,u1_struct_0(A),u1_struct_0(A)) )
=> ( r2_hidden(B,k1_autgroup(A))
<=> v4_group_6(B,A,A) ) ) ) ).
fof(l9_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ( k1_relat_1(B) = k2_relat_1(B)
& k1_relat_1(B) = u1_struct_0(A) ) ) ) ).
fof(t6_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ( v1_funct_1(k2_funct_1(B))
& v1_funct_2(k2_funct_1(B),u1_struct_0(A),u1_struct_0(A))
& v1_group_6(k2_funct_1(B),A,A)
& m2_relset_1(k2_funct_1(B),u1_struct_0(A),u1_struct_0(A)) ) ) ) ).
fof(t7_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> m2_fraenkel(k2_funct_1(B),u1_struct_0(A),u1_struct_0(A),k1_autgroup(A)) ) ) ).
fof(t8_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ! [C] :
( m2_fraenkel(C,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> m2_fraenkel(k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),C,B),u1_struct_0(A),u1_struct_0(A),k1_autgroup(A)) ) ) ) ).
fof(d2_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(k1_autgroup(A),k1_autgroup(A)),k1_autgroup(A))
& m2_relset_1(B,k2_zfmisc_1(k1_autgroup(A),k1_autgroup(A)),k1_autgroup(A)) )
=> ( B = k2_autgroup(A)
<=> ! [C] :
( m2_fraenkel(C,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ! [D] :
( m2_fraenkel(D,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> k2_binop_1(k1_autgroup(A),k1_autgroup(A),k1_autgroup(A),B,C,D) = k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),D,C) ) ) ) ) ) ).
fof(d3_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> k3_autgroup(A) = g1_group_1(k1_autgroup(A),k2_autgroup(A)) ) ).
fof(t9_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(k3_autgroup(A)))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k3_autgroup(A)))
=> ! [D] :
( m2_fraenkel(D,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ! [E] :
( m2_fraenkel(E,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ( ( B = D
& C = E )
=> k1_group_1(k3_autgroup(A),B,C) = k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),E,D) ) ) ) ) ) ) ).
fof(t10_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> k6_partfun1(u1_struct_0(A)) = k2_group_1(k3_autgroup(A)) ) ).
fof(t11_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k3_autgroup(A)))
=> ( B = C
=> k2_funct_1(B) = k3_group_1(k3_autgroup(A),C) ) ) ) ) ).
fof(d4_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_fraenkel(B,u1_struct_0(A),u1_struct_0(A))
=> ( B = k4_autgroup(A)
<=> ! [C] :
( m2_fraenkel(C,u1_struct_0(A),u1_struct_0(A),k1_fraenkel(u1_struct_0(A),u1_struct_0(A)))
=> ( r2_hidden(C,B)
<=> ? [D] :
( m1_subset_1(D,u1_struct_0(A))
& ! [E] :
( m1_subset_1(E,u1_struct_0(A))
=> k8_funct_2(u1_struct_0(A),u1_struct_0(A),C,E) = k2_group_3(A,E,D) ) ) ) ) ) ) ) ).
fof(t12_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> r1_tarski(k4_autgroup(A),k1_fraenkel(u1_struct_0(A),u1_struct_0(A))) ) ).
fof(t13_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k1_autgroup(A)) ) ) ).
fof(t14_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> r1_tarski(k4_autgroup(A),k1_autgroup(A)) ) ).
fof(t15_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> ! [C] :
( m2_fraenkel(C,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> k1_binop_1(k2_autgroup(A),B,C) = k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),C,B) ) ) ) ).
fof(t16_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> m2_fraenkel(k6_partfun1(u1_struct_0(A)),u1_struct_0(A),u1_struct_0(A),k4_autgroup(A)) ) ).
fof(t17_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> m2_fraenkel(k2_funct_1(B),u1_struct_0(A),u1_struct_0(A),k4_autgroup(A)) ) ) ).
fof(t18_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> ! [C] :
( m2_fraenkel(C,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> m2_fraenkel(k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),C,B),u1_struct_0(A),u1_struct_0(A),k4_autgroup(A)) ) ) ) ).
fof(d5_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( ( v1_group_1(B)
& v1_group_3(B,k3_autgroup(A))
& m1_group_2(B,k3_autgroup(A)) )
=> ( B = k5_autgroup(A)
<=> u1_struct_0(B) = k4_autgroup(A) ) ) ) ).
fof(t19_autgroup,axiom,
$true ).
fof(t20_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(k5_autgroup(A)))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k5_autgroup(A)))
=> ! [D] :
( m2_fraenkel(D,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> ! [E] :
( m2_fraenkel(E,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> ( ( B = D
& C = E )
=> k1_group_1(k5_autgroup(A),B,C) = k7_funct_2(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),E,D) ) ) ) ) ) ) ).
fof(t21_autgroup,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> k6_partfun1(u1_struct_0(A)) = k2_group_1(k5_autgroup(A)) ) ).
fof(t22_autgroup,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v1_group_1(A)
& v3_group_1(A)
& v4_group_1(A)
& l1_group_1(A) )
=> ! [B] :
( m2_fraenkel(B,u1_struct_0(A),u1_struct_0(A),k4_autgroup(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k5_autgroup(A)))
=> ( B = C
=> k2_funct_1(B) = k3_group_1(k5_autgroup(A),C) ) ) ) ) ).
%------------------------------------------------------------------------------