TPTP Problem File: GRP590-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP590-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Group Theory (Abelian)
% Problem : Axiom for Abelian group theory, in double div and inv, part 2
% Version : [McC93] (equality) axioms.
% English :
% Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.21 v8.1.0, 0.25 v7.5.0, 0.17 v7.4.0, 0.30 v7.3.0, 0.21 v7.1.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.07 v5.3.0, 0.00 v5.1.0, 0.07 v5.0.0, 0.00 v2.6.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : A UEQ part of GRP105-1
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
double_divide(inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(C))))),B) = C ).
cnf(multiply,axiom,
multiply(A,B) = inverse(double_divide(B,A)) ).
cnf(prove_these_axioms_2,negated_conjecture,
multiply(multiply(inverse(b2),b2),a2) != a2 ).
%--------------------------------------------------------------------------